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Study of the polarized proton-proton elastic scattering in the Coulomb Nuclear interference region
allows one to measure forward hadronic spin-flip amplitude including the phase. However, in a
precision experimental data analysis, a phase shift correction dc due to the long distance Coulomb
interaction should be taken into account. For the unpolarized scattering, dc¢ is commonly considered
as well established. Here, we evaluate the Coulomb phase shifts for the spin-flip electromagnetic
and hadronic amplitudes. The difference between spin-flip and non-flip Coulomb phase shifts was
found to be negligible for current experimental accuracy in the high energy transverse spin elastic pp
measurements. However, effective alteration of the hadronic spin-flip amplitude by the long distance

electromagnetic corrections can be noticeable.

I. INTRODUCTION

It is well known that an experimentally determined
hadronic scattering amplitude is effectively altered by
the accompanying electromagnetic interaction. In the
Coulomb-nuclear interference (CNI) region, the proton-
proton amplitude can be approximated by the following
sum of hadronic ¢(s,t) and electromagnetic, t./t, ampli-
tudes [1]

ONI(s,t) = Im (s, 0) (i+p)eBt/2+%ei5C+Bt/2 (D)
Here, 0c(s,t) stands for difference between the elec-
tromagnetic and hadronic phases induced by the long-
distance Coulomb interaction. Following QED calcu-
lations and the optical theorem, t. = —8mwa/otot(s) [2],
where « is the fine structure constant and oy is the to-
tal pp cross section. Generally, the amplitudes are func-
tions of total energy squared s and momentum transfer
squared t.

In this paper, numerical estimates will be done for a
100 GeV proton beam (typical for the Relativistic Heavy
Ton Collider or the future Electron Ion Collider) scatter-
ing on a fixed proton target. Therefore, p = —0.079 [3],
Oror = 39.2mb [3], t. = —1.86 x 1073 GeV?, and B =
11.2GeV ™2 [4]. For the sake of simplicity, we do not dis-
tinguish between the hadronic B and electromagnetic B
slopes in expressions for the elastic differential cross sec-
tion

do! te\’ te ol e
S Gy —2(p—|—5c)?—|—1+p e”t,  (2)

and the analyzing power Ax(t) [Eq. (8)]. We also do not
consider small corrections [5] due to Dirac and Pauli form
factors and due to the absorption [6].
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For the unpolarized scattering, theoretical understand-
ing of d¢(t) was developed in many works, in particu-
larly, [7-10].

In Ref. [9], the Coulomb phase was evaluated as

—(B+DB)t Bt. —-Bt Bt
u 7_71117_;’_7

oc = —a |ln 5 + 5 5 1

) (3)

where v = 0.5772 is Euler’s constant and B = 8/A% =
11.2 GeV 2 was derived from the ep electromagnetic form
factor in dipole form, F.,=(1—t/A%)~2, A2=0.71 GeV?
[11]. Up to now, this result is commonly used in experi-
mental data analysis.

Neglecting the slopes B and B dependence on t and
omitting the O(a?) terms, analytical solution for o was
found in Ref. [10]

B2 2B2/B
bc=ax<In— + Ei —w | — Fi(w
¢ { B <B+B ) w)

+ e*" [2F1 (2w) — By (w)] } (4)
where w= ‘ét’ /4 and

~ 2
B= 57"129:12'1 GeV ™2 (5)

was expressed via rms charge radius of a proton, rg =
0.841fm[12]. In terms of B and B, Egs. (3) and (4) are
in agreement for low ¢.

It was shown in Ref. [13] that Coulomb phase should
be independent of the helicity structure of the scattering
amplitudes. However, the conclusion made was actually
relevant only for the leading term ~ In|t| in d¢(¢).

In this paper we adapt formulas derived in Ref. [10]
to evaluate Coulomb phases in the spin-flip scattering.
Consequent alteration of the expression [14] for forward
elastic pp analyzing power An(t) will be discussed.
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FIG. 1. Three types of the elastic pp scattering: (C) elec-
tromagnetic including multiple photon exchange, (N) bare
hadronic, and (NC) combined hadronic and electromagnetic.

II. HIGH ENERGY FORWARD ELASTIC pp
ANALYZING POWER

For a CNI elastic scattering of a vertically polarized
proton beam p'p, the analyzing power Ay is caused by
interference of the non-flip (nf) and spin-flip (sf) ampli-
tudes [2, 13, 14]

2Im [ Gufd  + Dogd’ s + Dosd
P il #l

¢nf + gnf

Here, hadronic ¢ and electromagnetic % parts of an am-
plitude are discriminated by tilde symbol.
The sf amplitudes can be simply related to the nfones:

g/ by = % V—=t/mp, G/ bns = i%p V—t/my, (7)

where K, =, —1=1.973 is anomalous magnetic moment
of a proton, |r5|=|Rs+ils|~0.02[15] is hadronic spin-flip
parameter [14], and m,, is a proton mass. Consequently,
V=t

X

mp

An(t) =

[kp (168" p) —2(I5— 0% Rs5)| % —2(Rs+ pl5)
(&) —2(p+6d0) b +1 4 p?

) (8)

where non-flip phase d¢ is given in Eq. (4) while 6&™ and
6(}3 are spin-flip phase shifts in ¢sf¢7*1f and ¢5f¢;‘1f interfer-
ence terms, respectively.

All recent experimental studies [15, 16] of the forward
elastic proton-proton An(t) were based on Eq. (8) with
Sem=6h=6c.

III. SPIN-FLIP COULOMB PHASES IN
ELASTIC p'p ANALYZING POWER

To evaluate spin-flip §¢™ and 5@, we adapt the expres-
sions which were derived in Ref. [10] to calculate d¢.

A. The theoretical approach [10] used to calculate
Coulomb corrections to the non-flip amplitudes

Considering multiple photon exchange in the elastic
pp scattering and neglecting the higher order corrections

O(a?), the net long range Coulomb (C) amplitude (see
Fig.1) can be presented as [10]

folar) = 5= [ @oei®® [1 - i) )
2w
; ) s
= folar) + g/deewa xe®)])?/2  (10)
where gr ~+/—t is transverse momentum and the eikonal
phase

nf 1 R —iGrb
W) = 5 [ Earfelane ™
is a Fourier transform of the Coulomb part of the ampli-
tude calculated in Born approximation [10]

_—2a o~ Bar/2 (12)

fC(CIT) = q% +>\2

Here, the amplitude is defined as sum of two non-flip
helicity amplitudes (+ + |+ +) and (+ — |+ —) [14]. A
small photon mass A was included to Eq. (12) to keep the
integrals finite.

The multi-photon exchange results in an acquired
Coulomb phase ®¢(gr)

folar) = folgr) e®etor) (13)
Assuming ¢ (gr) < 1, one finds
@clgr) = =i |folar)/ folar) =1 (14)
1 o o o fc(m)fc((h)
= — | Pqd2gd(Gr—q— 3p) 1S PI 9
(15)

Similarly, to calculate the Coulomb corrections to the
hadronic amplitude

A 1+ p)0iot _
fnlar) = %;3“ o~ Bar/2 (16)
one can use the following relations:
) =7 n i
fNC(QT) = %/d2bequb"/Nf(b)€ xc (0) (]_7)
£ i iqrb _nf. n
— flar) + o [T, as)
— i
Y (b) = %/dQQTe 7 fn(qr), (19)
« d’q
) =——
olar) = =2 [ 2
X exp [—(B + E)q%/? + Bqiq1. (20)

Egs. (15) and (20) were analytically integrated in
Ref. [10]. Both, ®c(gr) and Pnc(gr), contains the di-
vergent term In ¢%/A\? which, however, is canceled in the
final expression for the Coulomb phase difference

dc(t) = e (t) — Pne(t) (21)
displayed in Eq. (4).



B. Coulomb corrections to the spin-flip amplitudes

To find the Coulomb corrected spin-flip amplitudes
(qr) and fJ.(qr), one can use the following eikonal
phases [17]

, 1 .
X (b) = o /dzqe‘“ﬂ) x

(i) folo)/2 (22)
and
W) = 5 [ e T e i ()2 (29)

respectively. Here, 7 o Pheam X § is a unit vector orthog-
onal to the beam momentum pheam and the proton spin
5.

Considering the spin flip amplitudes for gr = 7iqr,
one can readily determine the spin-flip phase ng(QT) by
adding factor 2(¢rq1)/q% or 2(grg>)/q> to integral (15).
Since §1¢r+qgr = g%, we immediately find

®J(gr)=Pc(ar), (24)
which leads to
SE(t) = dolt). (25)

To calculate <I>§{C, factor (@qr)/q% = 1 — (q1qr)/q>
should be added to Eq. (20), which gives

S aB S,
oclar) = Pncler) — ——= x Afo(n), (26)
s * du —u? T de o8
Mot = [ St [ Faosperee, - (2n)
B Bq% 9
= = X ~ Bq7 /4. 28
n BB 9 T/ (28)
Expanding
uF
"% cosp — Z — cosFtl (29)
k=0

and using the following integrals [18]

/ cos ™z dx =0, (30)
T 1 (2n-1)
/;Tr COS rdr = 2%—2 m, (31)
> 2n+1 —pa:z _ n!
T e de = ——, 32
/0 2pn+1 ( )

one arrives to

M =3 Gim= @

Thus,
B -1
0 -
B+B 1
In Ref. [6], it was pointed out that hadronic spin-flip

amplitude should also include the spin-flip photon ex-
change, i.e. one should replace

M) = W) + xR (0) (35)
19). Using Eq. (26) one readily finds

/ d2be' TP xS (0)y 1 (b)

_ Kp [‘I’N(QT)—(I)J\];(QT)} (730) Fr(an). (36)

2m,,

=0c(t) - (34)

in Eq. (

Thus, replacement (35) can be interpreted as an effective
alteration of the hadronic spin-flip parameter

rs =15 +i(i+ p)Ay s — A, (37)
B
A, = —222 5 0.003. (38)
2(B + B)

For the corrected r5, Coulomb phase <I>1‘§fc (t) is the same

as in Eq. (26).

IV. SUMMARY

Adapting the technique developed in Ref.[10], the
Coulomb phase shifts in the elastic pp spin-flip amplitude
interferences qSSfQS (25) and ¢Sf¢ (34) were calculated.

Small difference, 6% — 8o ~ —04/27 was found for the
CNI scattering [t| < 0.1GeV? (y < 0.3). Since |Rs| <
0.02, such a discrepansy can be neglected in expression
(8) for Ax(t).

Thus, we can agree with the Coulomb phases approx-
imation

B+B
(Sem 5g=5C:—O¢><[ln( + )m_’_

5 (39)

suggested in Ref. [14].

Evaluating §&™ and 60%, we did not distinguish between
non-flip B and spin-flip By slopes as well as between By
and

By = (g +730) /3, (40)
where rp; = 0.85140.026 fm [19] is magnetic radius of a
proton.
Using explicit expressions for ®¢(t) and @y (t) [10] one
can derive

5™ (t, Boj, B) = 6c(t, B, B) + O(|By— Blt), (41)
- - B
Sh(t, B, By) = 80(t, B, B) — —2_
ol f) = dc( ) Byt B
B+ B
taln 27 L O(By—Blt).  (42)
Bsf+B



For a reasonable ratio B,s/B between the spin-flip and
non-flip slopes [20], the related corrections to 6&™ and &%,
can be neglected in the experimental data analysis.

Spin-flip photon exchange (35) results in the correction

ARer; = —A., ~ —0.003 (43)

to the value of the hadronic spin-flip parameter r5. The
correction found is about triple of the experimental ac-
curacy for Ry in the HJET measurements [15]. Thus, the

published values of Ry [15] should be corrected,
Rers = Rerg™®™ + A, (44)

This is especially important for the Regge fit of the
hadronic spin-flip amplitudes.
It is interesting to note that an absorptive correction,

a;y=aB/(B + By), (45)

to the electromagnetic spin-flip form factor, .F;g(t) —
FI(t) x (14 agpt/tc), results [5] in the same effective al-
teration of r5 as shown in Eq. (43).
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