A Software Framework for Comparing Training
Approaches for Spiking Neuromorphic Systems

Catherine D. Schuman
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
schumancd @ornl.gov

Shruti R. Kulkarni
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
kulkarnisr @ornl.gov

Abstract—There are a wide variety of training approaches for
spiking neural networks for neuromorphic deployment. However,
it is often not clear how these training algorithms perform or
compare when applied across multiple neuromorphic hardware
platforms and multiple datasets. In this work, we present a
software framework for comparing performance across four
neuromorphic training algorithms across three neuromorphic
simulators and four simple classification tasks. We introduce
an approach for training a spiking neural network using a
decision tree, and we compare this approach to training algo-
rithms based on evolutionary algorithms, back-propagation, and
reservoir computing. We present a hyperparameter optimization
approach to tune the hyperparameters of the algorithm, and
show that these optimized hyperparameters depend on the
processor, algorithm, and classification task. Finally, we compare
the performance of the optimized algorithms across multiple
metrics, including accuracy, training time, and resulting network
size, and we show that there is not one best training algorithm
across all datasets and performance metrics.

Index Terms—spiking neural networks, neuromorphic comput-
ing, genetic algorithms, decision trees

I. INTRODUCTION

Neuromorphic computing systems have great promise as
a future complementary computing paradigm to traditional
von Neumann systems [1]. However, there are a variety of
issues associated with programming neuromorphic systems.
First, most neuromorphic computers implement spiking neural
networks (SNNs), and there is currently no obvious way
to train or design SNNs to perform different tasks. There
are, in fact, a wide variety of different types of training

Notice: This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-000R22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

James S. Plank
Department of EECS
University of Tennessee
Knoxville, TN, USA

jplank @utk.edu

Nicholas Skuda
Department of EECS
University of Tennessee
Knoxville, TN, USA

nskuda@vols.utk.edu

Maryam Parsa
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
parsam@ornl.gov

J. Parker Mitchell
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN, USA
mitchelljpl @ornl.gov

algorithms, and it is not clear a priori which algorithm will be
most successful in performing a given task. Second, different
neuromorphic hardware systems can implement different types
of computation (e.g., different types of neuron and synapse
models) or different characteristics (e.g., precision of param-
eters in the network), which means that the same algorithm
may have radically different performance on different neuro-
morphic hardware. Third, neuromorphic algorithms often have
hyperparameters that can be difficult to manually tune for a
given task. Finally, the performance of a neuromorphic system
can be impacted by other factors beyond accuracy on a given
task, such as power usage or model/network size, especially if
the resulting solution is meant to be deployed in a real-world
hardware implementation.

In this work, we present an approach for addressing these
four issues. We discuss an updated version of the TENNLab
neuromorphic computing framework [2], which enables a
common interface across neuromorphic hardware systems to
allow for ease of use for application and algorithm developers.
We discuss four different ways to train SNNs that are now sup-
ported in this framework, including a new approach for map-
ping decision trees into SNNs and an approach for mapping a
separately trained neural network using an approach called
Whetstone into SNNs in this framework. We also discuss
a newly implemented hyperparameter optimization approach
that automatically tunes the hyperparameters of each of these
algorithms to produce the best performance for that algorithm,
dataset, and processor combination. In Section IV, we present
results for classification tasks across four different datasets. We
show how the hyperparameter optimization approach tunes the
hyperparameters for the algorithm, dataset, and neuromorphic
processor, and show the performance differences across algo-
rithms and processors for each dataset.

The contributions of this work are:

o An approach for converting a decision tree into an SNN

amenable for deployment on neuromorphic hardware

e A quantitative comparison of different training ap-
proaches for common classification tasks in terms of
accuracy, time, and network size

o An illustration of the importance of hyperparameter opti-
mization to achieve optimal performance of an algorithm
and processor on a particular application

¢ A common software framework that allows for compar-
isons across algorithms, processors, and datasets, as well
as hyperparameter optimization for each.

II. BACKGROUND AND RELATED WORK

There are relatively few software frameworks in the realm
of spiking neural simulators and neuromorphic hardware that
support multiple backends. PyNN [3] is a Python interface
that supports backends for a variety of computational neu-
roscience simulators including NEST and Brian, as well as
neuromorphic hardware such as SpiNNaker with sPynnaker [4]
and the BrainScaleS system [5]. PyNN is primarily focused
towards computational neuroscience workloads and less so
for machine learning applications. Nengo [6] is another soft-
ware framework that provides a front-end for different types
of simulators and hardware, including NengoFPGA [7] and
Loihi [8]. Nengo is built on the philosophy of the neural
engineering framework, which can make it difficult to port to
new applications. Large-scale neuromorphic hardware efforts
often develop their own toolchains, such as the software frame-
work for IBM’s TrueNorth [9] and the software framework
for Intel’s Loihi [10]. Because these software frameworks are
customized specifically for each of those hardware platforms,
it can be non-trivial to port an algorithm between frameworks,
making it difficult to quickly evaluate an algorithm across
multiple hardware platforms.

In this work, we use four different training approaches
for SNNs, an evolutionary algorithm based approach called
EONS [11], [12], a reservoir computing approach, a back-
propagation-based training approach called Whetstone [13],
and we introduce an approach for mapping a decision tree
into an SNN for neuromorphic deployment. There are a wide
variety of other training approaches for SNNs. Some ap-
proaches train a conventional artificial neural network and then
map that network onto an SNN appropriate for neuromorphic
deployment [14]-[16]. There are also a variety of approaches
that adapt back-propagation in some way to accommodate for
spiking neurons [17]-[20], as well as an approach that uses a
version of back-propagation to train both weights and delays
for SNNs [21]. Reservoir computing or liquid state machines
are a common approach for utilizing SNNs, because they
do not require training for the SNN component itself [22],
[23]. It has been shown that optimizing the SNN reservoir,
for example via evolutionary optimization, can improve per-
formance [24]. There are also other approaches for evolving
SNNs [25]-[27]. Though there is clearly a tremendous amount
of work on algorithms for SNNs and neuromorphic computing,
the key issue is that most algorithms are developed in isolation
or for one particular neuromorphic hardware implementation.
It is often unclear how to map the algorithm to a new

hardware platform and difficult to estimate how performance
might change because of hardware constraints. We seek to
address that issue here by utilizing a common interface that
all algorithms are implemented in or mapped to, and evaluate
the algorithms across multiple hardware platforms to see how
different hardware characteristics affect performance.

III. APPROACH

In this section, we discuss our overall approach. In Section
II-A, we discuss the TENNLab neuromorphic computing
software framework to enable a common interface across
multiple neuromorphic processors and algorithms. In Section
III-B, we discuss the three neuromorphic processors used in
this work and their characteristics. In Section III-C, we cover
four of the training algorithms evaluated. Finally, in Section
III-D, we discuss our Bayesian hyperparameter optimization
approach and how we use it to determine the best algorithmic
hyperparameters in this work. The overall approach is shown
in Figure 1, in which a dataset and neuromorphic proces-
sor is selected, and then the algorithms and hyperparameter
optimization approach are used to produce candidate SNN
solutions for the specified dataset and processor.

A. TENNLab Framework

The TENNLab neuromorphic computing framework [2]
specifies a common interface between neuromorphic proces-
sors, learning algorithms and applications, so that neuromor-
phic processors can be exchanged and evaluated easily across
multiple algorithms and applications. In the latest version
of the TENNLab neuromorphic computing framework, we
support applications, algorithms, and neuromorphic processor
interfaces written in both C++ and Python.

The framework itself includes modules to perform spike
encoding and decoding. Spike encoding supports rate and
temporal coding, as well as less common encoding approaches
such as binning, charge injection, and spike count encoding
(described in more detail in [28]). Spike decoding approaches
include winner-take-all, in which the output neuron that spikes
the most specifies the output label or action, as well as decod-
ing processes based on number of spikes, timing of spikes, or
rate or spikes. In this work, we use the encoding/decoding
approaches specific to the algorithm, or, if the algorithm
supports multiple encoding approaches, we allow encoding
approach as a hyperparameter of the algorithm and fix the
decoding approach to winner-take-all.

B. Neuromorphic Processors

In this section, we describe different neuromorphic proces-
sors that are included and evaluated in this work. We use the
word “processor” in this work to refer to these because they
can represent neuromorphic simulators and/or neuromorphic
hardware. Other neuromorphic or SNN processors/simulators
are also supported in the TENNLab framework, including
Brian2 [29], Nengo [6], and BindsNET [30], but we omit
those in our study here. It is also worth noting that all of the
neuromorphic processors described here have their own sets

Bayesian Hyperparameter Optimization

Collection of
Classification Scikit-Learn Neuromorphic Potential SNN
Dataset ‘ Decision Tree - “Compilation” Solutions
(X, y)
EONS
Neuromorphic
Processor/Simulator Reservoir

Caspian GNP ’

Neuromorphic
“Compilation”

Whetstone ‘

NEST

Fig. 1. Overall approach utilized in this work. A classification dataset and neuromorphic processor are selected. Then, four different training algorithms and
a Bayesian hyperparameter optimization approach are used to produce a collection of SNN solutions.

of hyperparameters (e.g., neuron models, leak implementation,
synaptic plasticity, precision of weights, delays or threshold).
We fix the hyperparameters for these processors in this work,
but the hyperparameter optimization process described in
Section III-D may be used to optimize these parameters as
well to inform future hardware design.

1) Caspian: Caspian [31] is a neuromorphic development
platform that includes both a physical hardware implemen-
tation on an FPGA [32], as well as a hardware accurate
software simulator, written in C++. Caspian implements leaky
integrate and fire neurons and synapses with delay. In this
work, we disable leak. Synaptic weights and neuron thresholds
in Caspian are integer values, but the minimum and maximum
values in the simulator are parameterizable. In this work, we
use hardware-realistic values for the parameters, where the
synaptic weights can range from -255 to 255, and the neuron
threshold values can range from 0 to 255.

2) Generic Neuromorphic Processor (GNP): The Generic
Neuromorphic Processor (GNP) is a parameterizable neu-
romorphic simulator developed by the TENNLab research
group [33]. GNP is an event-driven spiking simulator written
in C++ that allows for customizable neuron and synapse
models. GNP includes several neuron models with different
types of leak implementations, as well as multiple synapse
models with different forms of plasticity. The parameters of
GNP can be set to be integer or floating point values, based on
what is supported by the neuromorphic processor that is being
simulated. In this work, we utilize integrate-and-fire neurons
with no leak and synapses with no plasticity mechanisms.
Synaptic weights and neuron thresholds are continuous (i.e.,
floating point) values, where the valid ranges are -1 to 1 and
0 to 1, respectively.

3) NEST: The NEST Neural Simulator [34], [35] is sim-
ulator for systems of spiking neurons and can be configured
as a simulator for a neuromorphic hardware implementation.

In this work, we use PyNEST [35] and specify a specific
neuron model (iaf_psc_delta) and a simple synapse model; we
limit to specific weight (-15 to 15), threshold (1 to 15), and
delay (1 to 15) ranges. However, depending on the hardware
implementation, these ranges and the neuron and synapse
model can be updated. If they are updated, the algorithm
mappings described below for Whetstone and decision trees
will need to be updated to accommodate for those model
changes.

C. Training Algorithms

1) EONS: Evolutionary Optimization for Neuromorphic
Systems (EONS) [11], [12] is an evolutionary approach for
designing and training SNNs for neuromorphic deployment.
EONS begins by initializing a population of randomly gen-
erated SNN solutions for a given task and neuromorphic
implementation. Then, EONS evaluates all of the networks
in that population by loading them into the neuromorphic
implementation and testing them on a task to produce a
fitness score. In this work, we focus on classification tasks,
so evaluating the network entails taking each data instance in
the training set, running it through the network, and collecting
the output to produce an accuracy score on the training set.
Once EONS has evaluated all of the networks (which can be
performed in parallel), EONS performs selection to preferen-
tially select better performing networks to serve as parents,
and then reproduction operations of duplication, crossover,
and mutation are used to produce children networks from
those parents. EONS hyperparameters include population size,
crossover rate, and mutation rate.

EONS has several advantages over other training approaches
for SNNs for neuromorphic deployment. First, it can determine
both the structure and parameters of the network, and it can
produce networks without any connectivity constraints. Sec-
ond, it designs directly for a particular neuromorphic hardware
implementation and thus does not require a mapping procedure

such as those described below. Third, it can work with a variety
of spike encoding and decoding approaches. Fourth, it is not
restricted to classification tasks; it can be trivially applied to
other types of tasks such as control and anomaly detection
because it simply requires a fitness function that scores how
well the SNN performs the task. The key disadvantage of using
EONS is that it often requires significantly more time to train
than other training approaches and in its current form, does
not scale well to larger input spaces.

2) Reservoir Computing: We implement a simple reservoir
computing approach. We create a reservoir by specifying the
input encoding approach, the number of hidden neurons, the
number of output neurons, and the probability of connection
between any two neurons in the network. Any two neurons
can be connected to each other via a synapse. We run each
data instance through the encoding process which creates
spike events in the network and simulate for a number of
time steps. We collect the number of spikes on each output
neuron and form a vector from those values. This vector is
then sent as output to a (non-spiking) readout layer. Here, we
use the SGDClassifier from scikit-learn as our readout layer,
with default parameters. We specify the encoding approach,
the number of hidden neurons, the number of output neurons,
and the probability of connection as hyperparameters of this
approach.

3) Whetstone: Whetstone [13] is an approach for training
neural networks with binary activation functions that can be
mapped to spiking neuromorphic systems. Whetstone begins
with a typical activation function throughout the network, such
as a rectified linear unit (ReLU) and then over the course
of training, it gradually “sharpens” the activation functions
throughout the network to be closer to binary activations where
the threshold is 0.5. Whetstone allows for a m-hot output
encoding to prevent the “dead neuron” issue, and it uses a key
to decode the output before passing to a softmax function. In
this work, we restrict our attention to training and mapping
dense feed-forward neural networks into SNNs, though there
are approaches to map convolutional neural networks to SNNs
for neuromorphic deployment as well [36]. Whetstone is
written in Python and is built on top of Keras.

There are several steps to map a network from one that
is produced by Whetstone to one that can be processed by
a neuromorphic implementation. First, a quirk of Whetstone
is that the input layer itself is not a binary activation. Thus,
we cannot directly encode the input layer to first hidden
layer computation in an SNN. To accommodate this, we
instead perform a “pre-processing” step of calculating the
first layer. We perform the weight matrix multiplication on
the input vector and add in appropriate biases for that layer.
In the converted SNN, our input layer corresponds to the
first hidden layer in the Whetstone network, and the pre-
processed values are used as the input values directly to that
layer. This is the most dramatic change in network structure
from the Whetstone network to the corresponding SNN and
requires significant pre-processing that is not performed on a
neuromorphic system.

Second the synaptic weight values and biases in Whetstone
are floating point values and need to be scaled and rounded
to the appropriate precision levels for a given neuromorphic
implementation. For example, for the Caspian implementation,
we multiply weight values by 255 and round to integers. This
reduction of precision and perhaps limiting of the range of
the values can cause a decrease in the accuracy of the mapped
network from the one that is trained in Whetstone. Third, to
inject bias values into the network, we create a single neuron
that is connected to every other neuron in the SNN and we
set the weights of those synapses to be each of those neuron’s
scaled bias value and the delays to be such that their bias value
will arrive when the rest of the data is propagated through the
network and arrives at that neuron. Finally, we still have to use
the decoding key and softmax layer from Whetstone training to
produce an output. This requires that we take the output spikes
from the output layer of the SNN, multiply by the key vector,
and take the softmax function, all of which occurs outside the
neuromorphic implementation as well.

In the case of Whetstone, the hyperparameters are the
number of hidden layers, the number of neurons per hidden
layer, and n for the output encoding. We also include a hyper-
parameter for constraining the max norm of the weights, which
can help in the mapping procedure from the ideal Whetstone
network to the actual neuromorphic implementation.

4) Decision Tree: We introduce in this work an approach
for mapping a decision tree into an SNN suitable for deploy-
ment onto a neuromorphic processor. We use scikit-learn’s
decision tree classifier to produce the decision tree. We also
perform a MinMaxScaler transform on the data to scale it into
the range [0, 1] prior to training the decision tree. We make
an assumption that charge values can be injected directly into
the input neurons in the neuromorphic implementation. The
TENNLab neuromorphic framework assumes charge values
will be between 0 and 1 and that the neuromorphic imple-
mentation will scale them appropriately for the input ranges
that are valid for that system.

The mapping procedure then parses the decision tree string
produced by scikit-learn to determine the decision nodes and
the leaf nodes. For each decision node (labeled as z[i] < a),
two input neurons are constructed. One of the input neurons
corresponds to the z[i] < a case and has its threshold set
as 0 or the minimum value possible for the neuromorphic
processor. The other input neuron corresponds to the x[i] > a
case, and has its threshold set to aT,q., Where Tj,q. iS
the maximum threshold value that can be realized by the
neuromorphic processor. A single output neuron is created for
each leaf node, and its threshold value is set to the number of
conditions that are required to be met before reaching that
node in the decision tree, multiplied by a value w, which
is a small weight value that is allowed in the neuromorphic
implementation. A synapse is created between each decision
node and the leaf nodes that are further down the tree from
that node. That synapse is set to have a small delay value (the
smallest possible delay value allowed), and the weight value
is set to w.

We provide as input the values x[é] to each of the decision
nodes that require x[i]; however, we stimulate the decision
nodes corresponding to “greater than” decisions at time 0
and decision nodes corresponding to “less than or equal to”
decisions at time 100. We then create a small inhibition loop
consisting of two additional neurons to drive the neuronal
charge on the “less than or equal to” decision nodes to
the minimum charge value if and only if the corresponding
“greater than” neuron fires. Thus, for each decision node in
the decision tree, only one of the two corresponding input
neurons will fire. An example of a decision tree for the iris
data set is shown in Figure 2 and its corresponding SNN is
shown in Figure 3 to illustrate the mapping procedure.

x[3] <= 0.6

yes no

yes no

Fig. 2. Example decision tree for the iris dataset.

x[2] <= 0.25

For clarity, we include an example of how a data example
would be processed in the SNN shown in Figure 3. We will
assume that the thresholds of the “greater than” input neurons
are exactly as shown in the figure, while the thresholds of
the “less than or equal to” input neurons are 0. Suppose
x =[0.2,0.3,0.4,0.5]. Since only z[2] = 0.4 and z[3] = 0.5
are required, we will create a spike with charge value 0.4 on
the neuron corresponding to z[2] < 0.25 at time 100 and a
spike with charge value 0.4 on the neuron corresponding to
x[2] > 0.25 at time 0. Similarly, we will create a spike with
charge value 0.5 on the neuron corresponding to z[3] < 0.6
at time 100 and a spike with charge value 0.6 on the neuron
corresponding to x[3] > 0.6 at time 0. At time 0, because
0.4 > 0.25 this will cause neuron z[2] > 0.25 to fire, sending
a spike along to the output neuron corresponding to output 1.
It will also create a spike along the synapse to the inhibition
cycle. This inhibition cycle will begin a loop of both of the
green neurons firing every other cycle and the second one
sending an inhibitory signal of maximum strength to the input
neuron corresponding to z[2] < 0.25. By the time the value
of 0.4 is injected into this input neuron at time 100, its charge
value will be at an extremely low value, ensuring that the
addition of 0.4 will not trigger that neuron to fire. On the
other hand, the input value of z[3] = 0.5 will not trigger the
input neuron corresponding to z[3] > 0.6, thus the inhibition
cycle there will not be activated. When the value of z[3] = 0.5
stimulates the input neuron z[3] < 0.6 at time 100, it will

Inhibition cycles to prevent <=
neurons from firing if > neuron fires

Fig. 3. SNN for the decision tree shown in Figure 2. Each decision node is
mapped to two input neurons, one corresponding to less than or equal and the
other to greater than. Both are connected to all of their downstream leaf nodes.
The leaf nodes have thresholds set to the total number of incoming synapses,
so that they only fire if all of the decision neurons they are connected to fire.
Finally, the greater than input nodes are stimulated first and if they fire, they
stimulate a loop that continuously inhibits the less than or equal to neuron,
preventing it from firing when it receives external stimulus. The colors of the
decision and leaf nodes correspond to the colors in Figure 2, and the strongly
inhibitory synapse is shown in red.

satisfy the threshold of 0 and cause that neuron to fire a spike
to the output neuron corresponding to output 1. Output 1 will
have received 2 spikes at that point and will fire, and thus,
will be the chosen output label.

It is worth noting that this approach requires that the
threshold values of the output neurons be able to realize the
number of values corresponding to the maximum depth of the
tree. This means that the if the decision tree is sufficiently
complex, the neuromorphic implementation may not be able
to realize it. In the case of the neuromorphic implementations
we evaluate in this work, we have placed an artificial limit on
threshold values for NEST to be integers between 1 and 15,
inclusive. As such, if the depth of the decision tree is more
than 15, the SNN cannot be realized in that implementation.

D. Bayesian Hyperparameter Optimization

Bayesian hyperparameter optimization is a data efficient op-
timization approach suitable for black-box and expensive ob-
jective functions such as performance of a computing system.
This technique is based on leveraging prior belief and current
observations on the performance trend, estimating a posterior
belief, and updating these beliefs using new observations. In
this optimization approach, observation is a performance value
(e.g., accuracy) for a set of hyperparameter combination. Since
each observation is expensive to evaluate and time-consuming,
the goal is to predict a posterior distribution close to the

actual performance trend of the system with minimum required
observations.

Bayesian hyperparameter optimization begins with sets of
random hyperparameters to build an initial prior distribution,
and likelihood model, calculating a surrogate model to ex-
plore and exploit the search space (which is all possible
hyperparameter combinations), and optimizing this surrogate
model to determine a set of hyperparameter to explore in the
next iteration. In this work we optimized performance of the
aforementioned training algorithms (single objective Bayesian
optimization) using python’s scikit-optimize [37] package. For
further details please refer to [38], [39].

IV. RESULTS

We evaluate each of these four algorithms across all three
neuromorphic simulators/processors for four different simple
classification datasets from scikit-learn’s toy dataset collec-
tion: iris, wine, breast cancer, and digits. A summary of
characteristics of those datasets is given in Table I. Some
of the algorithm/processor/dataset combinations could not be
completed due to compute time constraints and are omitted in
the results. For example, the NEST simulator is significantly
slower than the other two processors and EONS requires
hundreds of thousands of simulation runs, so none of the
NEST simulations completed hyperparameter optimization.

TABLE I
DATASET CHARACTERISTICS

Dataset || Dimensionality | Classes | Instances
Iris 4 3 150
Wine 13 3 178
Breast Cancer 30 2 569
Digits 64 10 1797

A. Hyperparameter Optimization Results

We completed single objective Bayesian hyperparameter
optimization on all processor, dataset, and algorithm combi-
nations that could complete in a reasonable amount of time.
We did not perform a hyperparameter optimization on the
decision tree algorithm, though we could potentially optimize
the hyperparameters in the scikit-learn implementation in the
future. For each combination, we completed 75 iterations of
Bayesian optimization. For each iteration, five evaluations of
that hyperparameter set are completed to obtain an idea of the
variation in performance. Figure 4 shows the results of three
of those Bayesian optimization runs on the wine dataset, one
with Caspian and EONS (top), one with NEST and reservoir
computing (middle), and one with Whetstone (bottom). Here,
the hyperparameters of the Whetstone algorithm are optimized
independently of the processor. As can be seen in Figure
4, there is significant variation in performance based on
the selection of hyperparameters. This demonstrates clearly
that if hyperparameters are not optimized, the algorithmic
performance can suffer significantly. Figure 4 also shows how
the Bayesian optimization process performs exploration and

Wine with Caspian and EONS

l‘ |. |‘* | '"l |'!ii

1.0
LN INY

” ‘ll

o
)

Accuracy
o
(o)}

©
IS

i Hlu

10 20 30 40 50 60 70
Bayesian Iteration Number

o
[N)

o
o
o

Wine with NEST and Reservoir

T ”H “'i. ml”’ |
I"’l q

1.0

o
©

*0

i,

o
o

| |' 'l

Accuracy

o
IS

o
IN)

o
=)
)

10 20 30 40 50 60 70
Bayesian Iteration Number

Wine with Whetstone

i i",'lqi i|!'l-il‘!rlliil || " | m.i ,‘.l-ili",i.-qli“-rii
|

1.0

Accuracy
o o
(o)} (o]

o
>

o
IN)

0'00 10 20 30 40 50 60 70

Bayesian Iteration Number

Fig. 4. Hyperparameter optimization results across 75 iterations in the wine
dataset for each of the three algorithms in which hyperparameters were
optimized (EONS, Reservoir, and Whetstone).

exploitation within the search space of potential hyperparam-
eters, showing an improvement in general performance as
iterations increase, but still exploring the space (resulting in
different hyperparameter combinations and different perfor-
mance).

Tables II-IV gives a brief overview of the best hyperpa-
rameters for some of the datasets, algorithms, and processor
combinations. We omit the full optimized hyperparameter sets
here due to space constraints. However, these tables show the

TABLE 11
EONS HYPERPARAMETER OPTIMIZATION RESULTS

Iris Wine
Caspian GNP Caspian GNP
Population 50 40 50 50
Crossover rate 0.9 0.9 0.7 0.4
Mutation rate 0.9 0.9 0.9 0.6
Encoding interval 15 15 25 50
Encoding function triangle triangle flip_flop flip_flop
No. of bins 2 4 2 2
Min/max values 0.75,1.0 0.75, 1.0 | 0.25, 0.75 0, 0.5
max spikes 2 8 12 10
Sim time 55 100 85 95
TABLE III
RESERVOIR HYPERPARAMETER OPTIMIZATION RESULTS
Iris
Caspian GNP Nest
No of hidden nodes 100 200 150
No. of output nodes 50 40 35
Probability of connection 0.1 0.1 0.15
Encoding interval 30 30 45
Encoding function triangle triangle triangle
No. of bins 4 2
Min/max values 0, 0.25 0.25,0.75 0.5, 0.75
max spikes 12 8 2
Sim time 65 55 65

TABLE IV

WHETSTONE HYPERPARAMETER OPTIMIZATION RESULTS

|| Iris Wine Digits Breast cancer
Hidden layer structure 25 10,5,10 100 10,5,5,10
N hot output 2 5 10
Max norm constraint 1 4
TABLE V
SUMMARY OF IRIS RESULTS
Train Test Tl:ain
Algorithm | Proc A A Time Neurons Synapses
cc cc
(sec)
caspian 0.92 0.93 2.15 7.85 9.73
EONS gnp 0.94 0.94 247 8.29 7.76
Reservoir caspian | 0.93 0.95 0.07 166.0 2731.0
nest 0.95 0.95 | 114.67 193.0 5562.0
caspian 0.78 0.72 0.9 32.0 154.75
Whetstone | gnp 0.79 0.72 0.9 32.0 156.0
nest 0.76 0.7 0.9 32.0 134.73
Decision caspian 1.0 0.93 0.0 11.0 13.0
Tree gnp 1.0 0.93 0.0 11.0 13.0
nest 0.97 0.96 0.0 11.0 13.0

and dataset combinations that completed a Bayesian optimiza-

importance of optimizing hyperparameters for the dataset, the
processor and the algorithm. For example, both EONS and
reservoir share input encoding hyperparameters, but as we can
see in Tables II and III, but the optimal encoding parameters
differ even for the same dataset/processor. That is, though
all processors and algorithms on the iris dataset share the
“triangle” encoding function, the encoding intervals, number
of bins, minimum and maximum values and number of spikes
differ between datasets and algorithm for the same processors.
Similarly, it is important to customize the hyperparameters for
each dataset. Table II shows that the best encoding function for
the iris dataset using EONS is triangle, but the best encoding
function for the wine dataset using EONS is flip-flop (see [28]
for a full description of the distinction between triangle and
flip-flop). Table IV also shows that it is important to customize
the algorithmic hyperparameters to the dataset; in this case,
the structure of the feed-forward network used is significantly
different across datasets. Table III shows the importance of
customizing algorithmic hyperparameters across processors; in
this case, we can see that the optimal size of the reservoir used
depends on the characteristics of the selected processor. In
general, it is clear from these results that we cannot expect
one set of hyperparameters for an algorithm to work well
in all cases, nor should we dismiss an algorithmic approach
simply because one set of hyperparameters results in poor
performance. Instead, we should plan to tune or optimize the
hyperparameters for the dataset, algorithm, and processor.

B. Algorithm Comparison

Once hyperparameter optimization was complete, we ran
100 different evaluations of each of the algorithm, processor,

tion run in a reasonable amount of time (five days) with
their corresponding best hyperparameters. Figure 5 shows the
results for test accuracy for each of those combinations. There
are several things to note from this figure. First, the Whetstone
algorithm suffers with smaller datasets (iris and wine) and
results in significantly larger variation in performance on these
tasks when compared with the other training approaches.
Second, Whetstone performs the best on the largest dataset
with the largest input space (digits), whereas as expected,
EONS performs poorly on this task. Third, for all algorithms,
we can see a variation in performance across processors, due to
the characteristics of the processors themselves. For example,
GNP’s higher weight resolution can both help performance in
some cases (e.g., on the wine dataset with Whetstone), but
it can also hurt performance in some cases (e.g., on the wine
dataset with EONS). Fourth, the newly described decision tree
approach results in very good performance for the smaller
datasets, but when the processor has limited precision (in the
case of our configuration of NEST), it can suffer greatly (e.g.,
on both the wine and digits results for NEST).

Tables V-VIII show summaries of the results for the mean
training and testing accuracies, mean training time (in sec-
onds), and mean size of the network (in terms of average
number of neurons and synapses) across 100 runs for each
of the algorithm, processor, and dataset combinations. The
best performing algorithm in each category is bolded in each
column. With these tables, we can see stark differences across
the different training algorithms in terms of different aspects
of performance. First, the decision tree approach tends to give
the fastest training times, but the test accuracy can suffer,
especially for the digits dataset (shown in Table VIII). Second,
EONS often results in networks that are competitive with
the best approach in accuracy (except on the digits dataset),
but the resulting networks are the smallest. However, training

EONS Reservoir Whetstone Decision Tree
> 4 4 4
S 1.0 7= === = == i o o @
S []
JLl T
=< 0.5 1 - - -
3
'_ T T T T T T T T T T T T
2 1.0 T . . .
25 |- T B3 -
$< 0.5 - : : :
i
l_ T T T T T T T T T T T T
810 = T == s | | == o=
&8 e = = - T
o 5
Y9
t,’l<(0.5 - - -
S
Q l_ T T T T T T T T T T T T
>
9 1.0 o ——
) é % -
£95
=< 0.5 1 - - -
©
]
(%]
v =
'_ T T T T T T T T T T T _t
& & o & & o & & o § & o
2 o & a o @ 2 o & 5 o &
(")) 1%} (")) [%)]
© © © ©
(@] 9] (@] (9]

Fig. 5. Test accuracy across 100 runs for each of the algorithm processor, and dataset combinations. The algorithm/processor/dataset combinations that are
not included are those that could not be completed because of compute time constraints.

TABLE VI
SUMMARY OF WINE RESULTS

Train Test Train
Algorithm | Proc A A Time | Neurons Synapses
cc cc
(sec)
caspian | 0.9 0.86 | 4.43 8.88 7.61
EONS enp 084 082 | 419 | 801 6.52
Reservoir caspian | 0.89 0.88 | 0.03 137.0 934.0
nest 0.96 0.9 84.82 | 176.0 3083.0
caspian | 0.85 0.77 | 1.55 41.0 278.31
Whetstone | gnp 0.9 0.81 | 1.55 41.0 280.0
nest 0.79 0.71 | 1.55 41.0 250.93
Decision caspian | 1.0 0.85 | 0.0 16.0 21.0
Tree gnp 099 085 | 0.0 16.0 21.0
nest 0.78 0.66 | 0.0 16.0 21.0

times for EONS are typically significantly longer than the
Whetstone or decision tree approaches. Third, both reservoir
and Whetstone networks tend to be much larger than either
EONS or reservoir networks.

We can also see in these tables that differences in the
processors can result in different accuracy values for the
resulting networks. For example, in Table VI, we can see

that the testing accuracy results are different across processors
for each algorithm. In this case, these differences are due
to the different precision level and parameter ranges of the
weights, thresholds, and delay values in these processors.
In this particular dataset (wine), restricted precision values
helped in the performance of both EONS and reservoir, but
decreased performance for both Whetstone and the decision
tree approach. In this case, we can see an advantage to using
training approaches that take into account the actual processor
during the training process, rather than performing a training
approach and then performing a fixed mapping procedure (as
is done in the Whetstone and decision tree approaches). We
speculate the reduced precision improved performance in the
case of EONS and reservoir because reduced precision can
mitigate effects of overfitting during training in some cases.

V. DISCUSSION AND FUTURE WORK

In this work, we have described a software framework for
comparing training approaches across spiking neuromorphic
systems. We have introduced a new approach for mapping
decision trees into SNNs suitable for deployment to neuro-
morphic hardware, and we have shown that this approach is

TABLE VII
SUMMARY OF BREAST CANCER RESULTS
. Train
Algorithm | Proc ’[:am Test Time | Neurons Synapses
cc Acc
(sec)
caspian | 0.89 0.9 2331 | 4.95 3.67
EONS enp 088 0.88 | 1095 | 533 3.87
Reservoir caspian | 0.89 0.89 | 0.33 195.0 3788.0
caspian | 0.88 0.88 | 4.06 35.0 188.01
Whetstone | gnp 0.89 0.89 | 4.06 35.0 189.0
nest 0.87 0.87 | 4.06 35.0 171.72
Decision caspian | 0.98 091 | 0.0 46.0 72.0
Tree gnp 0.99 091 | 0.0 46.0 72.0
nest 0.91 0.9 0.01 46.0 72.0
TABLE VIII
SUMMARY OF DIGITS RESULTS
. Train
Algorithm | Proc ’[:am Test Time | Neurons Synapses
cc Acc
(sec)
EONS caspian | 0.24 0.22 | 69.86 11.76 7.75
Reservoir caspian | 0.74 0.71 | 2.76 328.0 5362.0
Whetstone caspian | 1.0 093 | 3.22 201.0 9880.57
gnp 1.0 093 | 3.22 201.0 10100.0
Decision caspian | 1.0 0.75 | 0.01 331.0 778.0
Tree gnp 1.0 0.75 | 0.01 331.0 778.0
nest 0.13 0.15 | 0.01 241.0 514.0

competitive with other more conventional training approaches
for SNNs on simple classification tasks. We have also demon-
strated a hyperparameter optimization approach for choosing
the hyperparameters of each algorithm, and we have shown
that the optimized hyperparameters depend on the processor,
dataset, and algorithm. Additionally, we have demonstrated
the results for each optimized hyperparameter set across algo-
rithms, datasets, and processors. We have shown that there
is not one winning algorithmic approach, especially when
metrics such as training time or network size are considered.
This demonstrates that the future of neuromorphic computing
is likely to include a wide variety of algorithmic approaches
and that a software framework such as this one will be
necessary to enable usability of neuromorphic systems moving
forward.

There are several future directions for this work that we
intend to pursue. First, we have limited ourselves to optimizing
hyperparameters associated with each algorithm in this work.
However, neuromorphic processors or simulators often also
have hyperparameters that can be tuned. For example, the
precision of the weight parameters or the range of values that
can be realized can potentially be adjusted in the physical
hardware. This process can be used to determine the best
values for these processor hyperparameters in the future, and
thus can be used as part of an application-hardware co-design
process.

In this work, we have also limited our focus to optimization
based entirely on accuracy. However, we have previously
illustrated a novel hierarchical Bayesian optimization process
that can be used to perform multi-objective optimization [39].
As can be seen in Tables V-VIII, the network sizes and

training times are radically different across algorithms. Our
hyperparameter optimization process can be used to optimize
these performance metrics, for example, to minimize training
time or minimize the resulting network size. In the future,
we also intend to include energy estimates from each pro-
cessor/simulator and to use our multi-objective optimization
approach to maximize accuracy while minimizing energy
usage for each algorithm.

It is clear from these results that the different algorithms
have different strengths across the datasets, and that the
performance for even a single algorithm across the same
dataset can differ significantly. We have previously shown that
ensembling the results from networks trained using EONS can
significantly improve performance on different tasks [40]. In
the future, we intend to explore ensembling the SNN results
obtained through this framework. With this approach, we can
ensemble results obtained across different hyperparameters
for the same algorithm, or even ensemble the results across
multiple algorithms.

Finally, in this work we have focused our attention entirely
on simple classification tasks to demonstrate with large-scale
tests the value of a framework that can use multiple training
approaches to discover a variety of neuromorphic solutions
for different neuromorphic processors. We intend to apply this
framework to more complex datasets, and we are interested in
expanding this approach to account for control applications
as well. We have previously utilized EONS to train networks
for a variety of control tasks [12], [41]. However, extending
reservoir computing, Whetstone (and other back-propagation-
based training approaches), and decision trees to control tasks
is non-trivial. We intend to explore reinforcement learning-
based approaches in adapting these algorithms for control tasks
in the future.

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
ACO05-000R22725, and in part by an Air Force Research Lab-
oratory Information Directorate grant (FA8750-16-1-0065).

This research used resources of the Compute and Data
Environment for Science (CADES) at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-ACO05-
000R22725.

REFERENCES

[1] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[2] J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean, and G. S. Rose, “The
tennlab exploratory neuromorphic computing framework,” IEEE Letters
of the Computer Society, vol. 1, no. 2, pp. 17-20, 2018.

[31 A. P. Davison, D. Briiderle, J. M. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “Pynn: a common interface for
neuronal network simulators,” Frontiers in neuroinformatics, vol. 2,
p. 11, 2009.

[4]

[7]
[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

O. Rhodes, P. A. Bogdan, C. Brenninkmeijer, S. Davidson, D. Fellows,
A. Gait, D. R. Lester, M. Mikaitis, L. A. Plana, A. G. Rowley
et al., “spynnaker: a software package for running pynn simulations
on spinnaker,” Frontiers in neuroscience, vol. 12, p. 816, 2018.

E. Miiller, S. Schmitt, C. Mauch, S. Billaudelle, A. Griibl, M. Giittler,
D. Husmann, J. Ilmberger, S. Jeltsch, J. Kaiser et al., “The operat-
ing system of the neuromorphic brainscales-1 system,” arXiv preprint
arXiv:2003.13749, 2020.

T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. Voelker, and C. Eliasmith, “Nengo: a
python tool for building large-scale functional brain models,” Frontiers
in neuroinformatics, vol. 7, p. 48, 2014.

B. Morcos, “Nengofpga: an fpga backend for the nengo neural simula-
tor,” Master’s thesis, University of Waterloo, 2019.

P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith, “Benchmarking
keyword spotting efficiency on neuromorphic hardware,” in Proceedings
of the 7th Annual Neuro-inspired Computational Elements Workshop,
2019, pp. 1-8.

J. Sawada, F. Akopyan, A. S. Cassidy, B. Taba, M. V. Debole, P. Datta,
R. Alvarez-Icaza, A. Amir, J. V. Arthur, A. Andreopoulos et al.,
“Truenorth ecosystem for brain-inspired computing: scalable systems,
software, and applications,” in SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1EEE, 2016, pp. 130-141.

C.-K. Lin, A. Wild, G. N. Chinya, Y. Cao, M. Davies, D. M. Lavery,
and H. Wang, “Programming spiking neural networks on intel’s loihi,”
Computer, vol. 51, no. 3, pp. 52-61, 2018.

C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in 2016 International Joint Conference on Neural Net-
works (IJCNN). IEEE, 2016, pp. 145-154.

C. D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and J. S. Plank,
“Evolutionary optimization for neuromorphic systems,” in Proceedings
of the Neuro-inspired Computational Elements Workshop, 2020, pp. 1-9.
W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone,
“Training deep neural networks for binary communication with the
whetstone method,” Nature Machine Intelligence, vol. 1, no. 2, pp. 86—
94, 2019.

P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci, “Con-
version of artificial recurrent neural networks to spiking neural networks
for low-power neuromorphic hardware,” in 2016 IEEE International
Conference on Rebooting Computing (ICRC). 1EEE, 2016, pp. 1-8.
X. Ju, B. Fang, R. Yan, X. Xu, and H. Tang, “An fpga implementation
of deep spiking neural networks for low-power and fast classification,”
Neural computation, vol. 32, no. 1, pp. 182-204, 2020.

P. Gu, R. Xiao, G. Pan, and H. Tang, “Stca: Spatio-temporal credit
assignment with delayed feedback in deep spiking neural networks.” in
1JCAL 2019, pp. 1366-1372.

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10, p.
508, 2016.

Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
1311-1318.

Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropa-
gation for training high-performance spiking neural networks,” Frontiers
in neuroscience, vol. 12, p. 331, 2018.

S. Yin, S. K. Venkataramanaiah, G. K. Chen, R. Krishnamurthy, Y. Cao,
C. Chakrabarti, and J.-s. Seo, “Algorithm and hardware design of
discrete-time spiking neural networks based on back propagation with
binary activations,” in 2017 IEEE Biomedical Circuits and Systems
Conference (BioCAS). 1EEE, 2017, pp. 1-5.

S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” arXiv preprint arXiv:1810.08646, 2018.

N. Soures and D. Kudithipudi, “Deep liquid state machines with neural
plasticity for video activity recognition,” Frontiers in neuroscience,
vol. 13, p. 686, 2019.

P. Wijesinghe, G. Srinivasan, P. Panda, and K. Roy, “Analysis of liquid
ensembles for enhancing the performance and accuracy of liquid state
machines,” Frontiers in neuroscience, vol. 13, p. 504, 2019.

J. J. Reynolds, J. S. Plank, and C. D. Schuman, “Intelligent reservoir
generation for liquid state machines using evolutionary optimization,”

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

in 2019 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2019, pp. 1-8.

J. D. Schaffer, “Evolving spiking neural networks for robot sensory-
motor decision tasks of varying difficulty,” in Proceedings of the Neuro-
inspired Computational Elements Workshop, 2020, pp. 1-7.

E. Eskandari, A. Ahmadi, S. Gomar, M. Ahmadi, and M. Saif, “Evolving
spiking neural networks of artificial creatures using genetic algorithm,”
in 2016 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2016, pp. 411-418.

J. D. Schaffer, “Evolving spiking neural networks: A novel growth algo-
rithm corrects the teacher,” in 2015 IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA). IEEE,
2015, pp. 1-8.

C. D. Schuman, J. S. Plank, G. Bruer, and J. Anantharaj, “Non-traditional
input encoding schemes for spiking neuromorphic systems,” in 2079
International Joint Conference on Neural Networks (IJCNN). 1EEE,
2019, pp. 1-10.

M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive and
efficient neural simulator,” Elife, vol. 8, p. e47314, 2019.

H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, H. T.
Siegelmann, and R. Kozma, “Bindsnet: A machine learning-oriented
spiking neural networks library in python,” Frontiers in neuroinformat-
ics, vol. 12, p. 89, 2018.

J. P. Mitchell, C. D. Schuman, R. M. Patton, and T. E. Potok, “Caspian:
A neuromorphic development platform,” in Proceedings of the Neuro-
inspired Computational Elements Workshop, 2020, pp. 1-6.

J. P. Mitchell, C. D. Schuman, and T. E. Potok, “A small, low cost
event-driven architecture for spiking neural networks on fpgas,” in
International Conference on Neuromorphic Systems 2020, 2020, pp. 1—
4.

N. Skuda, J. S. Plank, and C. D. Schuman, “Gnp: A configurable spiking
simulator for rapid learning,” 2021, in preparation.

M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig,
“Pynest: a convenient interface to the nest simulator,” Frontiers in
neuroinformatics, vol. 2, p. 12, 2009.

J. S. Plank, J. Zhao, and B. Hurst, “Reducing the size of spiking
convolutional neural networks by trading time for space,” in IEEE
International Conference on Rebooting Computing (ICRC). IEEE,
December 2020, pp. 115-126.

T. Head, M. Kumar, H. Nahrstaedt, G. Louppe, and I. Shcherbatyi,
“scikit-optimize/scikit-optimize,” Sep. 2020. [Online]. Available:
https://doi.org/10.528 1/zenodo.4014775

M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok,
and K. Roy, “Bayesian-based hyperparameter optimization for spiking
neuromorphic systems,” in 2019 IEEE International Conference on Big
Data (Big Data). 1EEE, 2019, pp. 4472-4478.

, “Bayesian multi-objective hyperparameter optimization for accu-
rate, fast, and efficient neural network accelerator design,” Frontiers in
neuroscience, vol. 14, p. 667, 2020.

D. Elbrecht, S. R. Kulkarni, M. Parsa, J. P. Mitchell, and C. D. Schuman,
“Evolving ensembles of spiking neural networks for neuromorphic sys-
tems,” in 2020 IEEE Symposium Series on Computational Intelligence
(SSCI). 1IEEE, 2020, pp. 1989-1994.

J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao,
J. Anantharaj, C. D. Schuman, M. E. Dean, G. S. Rose, N. C. Cady,
and J. Van Nostrand, “The TENNLab suite of LIDAR-based control
applications for recurrent, spiking, neuromorphic systems,” in 44th
Annual GOMACTech Conference, Albuquerque, March 2019. [Online].
Available: http://neuromorphic.eecs.utk.edu/raw/files/publications/2019-
Plank-Gomac.pdf

