

Empirical estimation of densities in NaCl-KCl-UCl₃ and NaCl-KCl-YCl₃ molten salts using Redlich-Kister expansion

Can Agca¹, Jake W. McMurray¹

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

August 24, 2021

Abstract

Densities of molten KCl-NaCl-UCl₃ and KCl-NaCl-YCl₃ ternary systems have been estimated using a multidimensional Redlich-Kister model. Temperature and composition dependent Redlich-Kister functions have been used to generate binary interaction parameters in the outlined ternary salt systems. These binary interactions have been used in the extrapolation to ternary system densities. The results of the density extrapolations by Muggianu interpolation scheme provide agreement within 2-3% for the NaCl-KCl-YCl₃ liquids and 11% in NaCl-KCl-UCl₃ liquids compared to the available experimental data. Modeling NaCl-KCl-UCl₃ molten phase density with a ternary interaction parameter improved the agreement within 4%. Thermophysical modeling used in this study has shown promising results for use in other material properties, such as viscosity, thermal conductivity, and heat capacity of the molten salts. Furthermore, the outlined modeling method applied in these specific molten salt ternaries can be used for quaternary or higher multicomponent molten salt systems.

Keywords: Molten salts, density, NaCl-KCl-UCl₃, NaCl-KCl-YCl₃, nuclear energy, Redlich-Kister model

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

1. Introduction

Molten salts are of interest as a fuel or a coolant in Molten Salt Reactors (MSRs). They achieve higher thermal efficiency, potentially reducing costs compared to conventional Light Water Reactors (LWRs), which makes them promising candidates for the next generation of nuclear reactors (Qualls, 2018; Serp et al., 2014; Zhang et al., 2018). Some of the perceived operational and safety advantages of MSRs over LWRs are: the fluid nature of the fuel; high thermal efficiency; online refueling and processing options; elimination of high pressure vessels as opposed to LWRs; utilization of the conversion of fertile thorium to fissile ^{233}U taking advantage of the abundance of thorium (3 times that of uranium (Degueldre and Joyce, 2020)); and reduction in transuranic wastes (LeBlanc, 2010). There are different designs, some with unique features addressing technological challenges like radionuclide retention through the use of TRISO fuel in combination with a molten salt. Others address waste by using a fast neutron spectrum to minimize long-lived, hazardous radioisotopes. MSRs are potential candidates for replacing existing fossil fueled plants. However, the great potential of MSRs over existing nuclear reactors and fossil fuel industry will remain speculative until proven through operation.

A complete understanding of thermophysical properties of molten salts is necessary for the proper design, safety analyses and operation (Greenwood et al., 2020). Thermophysical and thermodynamic properties of interest include density, viscosity, thermal conductivity, and heat capacity. These properties have been experimentally and theoretically studied in the past for specific compositions in relation with temperature and compiled in several reports (Janz, 1988; Jerden, 2019; Magnusson et al., 2020; Williams, 2006a, 2006b). The US Department of Energy (DOE) Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in coordination with the Molten Salt Reactor Campaign is developing the Molten Salt Thermal Properties Database (MSTDB) (McMurray et al., 2021). The thermophysical properties version of MSTDB, that is MSTDB-TP, contains parameters for relevant models developed using experimental data from the literature. The models are thermophysical property relations with composition and temperature that can be used standalone or with multiphysics tools for MSR modeling and simulation (Betzler et al., 2019; McMurray et al., 2018).

It is well established within the materials thermodynamics community that multicomponent system behavior can be estimated by extrapolation from the lower order subsystems. The unaries

and binaries are therefore fundamental. It has been demonstrated that two species interactions generally dominate (Chartrand and Pelton, 2001; Hwang et al., 1991; Kattner, 1997). The MSTDB-TP is to be populated with property relations for pure and pseudo-binary¹ salts with respect to temperature and composition. A formalism based on a Redlich-Kister expansion (Redlich and Kister, 1948) corrects for the interactions in binary systems that can be combined for predicting property behavior in higher order systems using the Muggianu interpolation method (Hillert, 1980; Luo et al., 2019; Muggianu et al., 1975). In this way, populating the MSTDB with pure salt properties, and pseudo-binary mixture properties allows for reference data-based extrapolation into multicomponent space (i.e., properties of a base salt with fission products). Interactions can be refined with follow-on studies for more specific compositions as needed.

In this study, densities of molten NaCl-KCl-UCl₃ and NaCl-KCl-YCl₃ ternary systems have been modeled using the Redlich-Kister (RK) model (Redlich and Kister, 1948). Property measurements of the NaCl-KCl-UCl₃ salt system are underway (Rose and Thomas, 2021). YCl₃ is one of the well-known rare-earth fission products in MSRs (Iwadate et al., 2014). UCl₃-KCl and UCl₃-NaCl binary system densities were measured using the method of maximum pressure in a gas bubble (Desyatnik et al., 1976, 1975). Katyshev et al. (1983) measured the densities of NaCl-KCl-UCl₃ ternary chloride mixtures. Van Artsdalen and Yaffe (1955) measured the density of the NaCl-KCl binary system using the Archimedes method. Mochinaga and Irisawa (1974) measured the density of the NaCl-YCl₃, KCl-YCl₃ and NaCl-KCl-YCl₃ systems using dilatometry.

2. Modeling Approach

The RK model is shown in Equation 1 to represent the behavior of molten salt density with composition.

$$\rho_{mix} = \rho_{id} + \rho_{ex} \quad \text{Equation 1}$$

Here, ρ_{mix} is the density of the mixture, ρ_{id} is the density with ideal behavior and ρ_{ex} is the excess term to account for the deviation from ideal behavior. Some reports interpret ideal density as the weighted molar average of pure salt densities indirectly (Cooper and Asfour, 1991; Guo et al., 1989). Others use weighted averages of molar volume (additive behavior) and convert the molar

¹ Since the end-members are halides, a two salt mixture is a pseudo-binary since the system is properly a ternary.

volume to density in the modeling (Chrenková et al., 2003; Kubíková et al., 2020; Mlynáriková et al., 2017). Using the additive behavior approach, the ideal behavior of density is given in Equation 2 as:

$$\rho_{id} = \frac{\sum x_i MW_i}{\sum \frac{x_i MW_i}{\rho_i}} \quad \text{Equation 2}$$

where MW_i is the molecular weight of component i and x_i is the mole fraction of component i . This expression is simply the ratio of average molar mass to average molar volume. The non-ideal behavior density term is defined using the RK expansion (Redlich and Kister, 1948), which has been used for CALPHAD Gibbs energy functions (McMurray and Besmann, 2018). Equation 3 shows the excess term via the RK expansion, which accounts for the non-ideal density with two components, A and B.

$$\rho_{ex} = x_A x_B \sum_{j=1}^n L_j (x_A - x_B)^{j-1} \quad \text{Equation 3}$$

where j defines the order of the expansion. L_j defines the j -th order binary interaction parameter between A and B, and it has a linear temperature dependence (Equation 4).

$$L_j = A_j + B_j T \quad \text{Equation 4}$$

Temperature units are all in Kelvin. More temperature dependent terms can be added to Eqn. 4 per the Redlich-Kister model; however, for simplicity, it was treated as a linear function. Ternary systems have been modeled using this approach. However, the ternary interactions have been considered negligible as the initial guess. The NaCl-KCl-UCl₃ required a ternary interaction parameter which was explained in the Results and Discussion part. Equation 5 shows a typical ternary RK expansion with three binary interaction terms.

$$\rho_{ex} = x_A x_B \sum_{j=1}^n L_j (x_A - x_B)^{j-1} + x_A x_C \sum_{j=1}^n L_j (x_A - x_C)^{j-1} + x_B x_C \sum_{j=1}^n L_j (x_B - x_C)^{j-1} \quad \text{Equation 5}$$

Ternary halide system studies using the Redlich-Kister model at a single temperature have shown that ternary interaction parameters may be either negligible or zero depending on the mixture (Cibulková et al., 2006; Guo et al., 1989; Kubíková et al., 2016). In the final expression, ρ_{ex} in Equation 1 is composed of a summation of three binary terms between A, B and C

components. The final model estimates only the molten salt phase densities rather than the densities of the overall systems. Therefore, temperature and composition ranges of interest apply solely to regions of the corresponding phase diagrams representing molten salts rather than other combinations of phases.

3. Parameter Estimation Method

A multidimensional least squares approach has been used as the interaction parameter estimation method for the molten KCl-NaCl-UCl₃ and KCl-NaCl-YCl₃ ternary systems using the experimental data from Katyshev (1983) and Mochinaga (1974) (Katyshev et al., 1983; Mochinaga and Irisawa, 1974). MATLAB's curve fitting tool with Trust-Region and Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) algorithms were utilized in the calculations.

KCl-NaCl, KCl-UCl₃, NaCl-UCl₃, KCl-YCl₃ and NaCl-YCl₃ binary densities have been calculated using the Redlich-Kister model outlined in Eqns 1-5. Temperature dependent linear fits taken from experimental density data at different compositions have been converted to a matrix. Each density equation had different valid temperature ranges due to experimental limitations and/or liquidus boundaries. In order to extrapolate and get a single equation for the whole composition range in a binary, the minimum and the maximum measurement temperature of all compositions were taken. Although the final equation will yield a density relation at all compositions and temperatures in the range, part of it can be unphysical due to phase relations. In the estimation of the valid temperature ranges for the final equation, the phase diagram for each system must be considered.

4. Results and Discussion

Consistent density relations for the pure salts are needed to model the binary molten salt phases. Since some experimental studies use different relations for the pure salts, a single equation had to be selected for each end-member salt given in Table 1.

Table 1

Selected pure salt density relations that are used in the modeling and interpolations

Pure Salt	Density Relation (g/cm ³), T in K	Reference
KCl	$2.1360 - 5.831 \times 10^{-4} T$	(Van Artsdalen and Yaffe, 1955)
NaCl	$2.1394 - 5.430 \times 10^{-4} T$	(Van Artsdalen and Yaffe, 1955)
YCl ₃	$3.0481 - 4.594 \times 10^{-4} T$	(Mochinaga and Irisawa, 1974)
UCl ₃	$6.3747 - 1.5222 \times 10^{-3} T$	(Desyatnik et al., 1975)

The fitting parameter A_1 in Eqn. 4 is the dominant term and shows the degree of non-ideality due to mixing of the liquids. It also indicates whether the deviation from the ideal behavior is negative or positive. For the molten salts discussed in this work, a parameter A_1 that is smaller than 0.5 suggests close-to-ideal behavior for engineering design purposes.

Calculated binary interaction parameters, L_j , are shown in Table 2. KCl-NaCl system experimental density data (Van Artsdalen and Yaffe, 1955) showed ideal behavior with 1 percent uncertainty range (Fig. 1), although it was shown to have a small deviation from ideality (Robelin et al., 2007). Ideal mixing volume for this system is supported by Van Arstdalen and Yaffe (1955) and Holm (1971). Non-ideal mixing volume differences of NaCl-KCl at 1073 K are well below 1 % of the ideal volumes (Holm, 1971). The calculated interaction parameters for this system supports ideal behavior. Therefore, the NaCl-KCl density was considered to have an ideal behavior in the interpolations to ternaries.

Density fit results for NaCl-YCl₃ and KCl-YCl₃ revealed ideal density behavior (Fig. 2). Reference data from both molten salt systems are fit to first order Redlich-Kister equation for comparison with the ideal behavior equation (Eqn. 2). The RK model and the ideal behavior lines show visually insignificant differences and fit well to the experimental data. A_1 terms calculated for both systems are below 0.5, which suggests close-to-ideal behavior. However, there are fluctuations in the data from Mochiaga and Irisawa (1974) depicting that the calculated deviation by RK model may be within the experimental errors. The density fit temperature ranges were 998-1278 K and 998-1276 K for NaCl-YCl₃ and KCl-YCl₃, respectively.

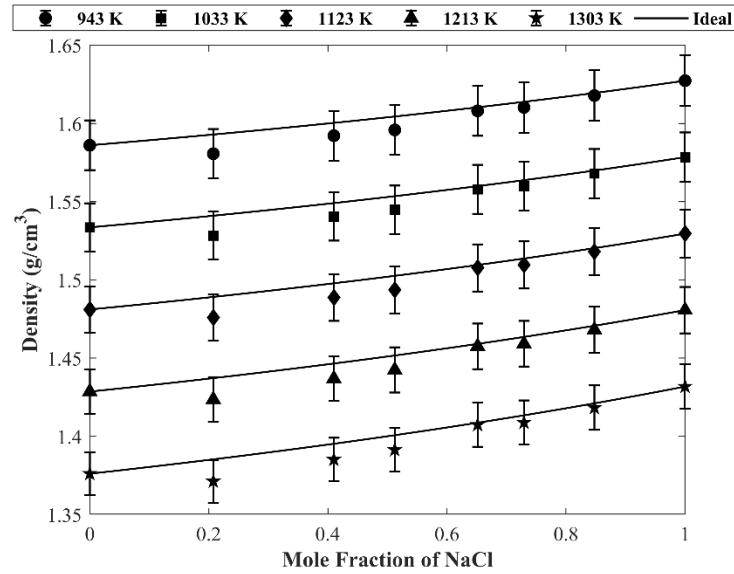
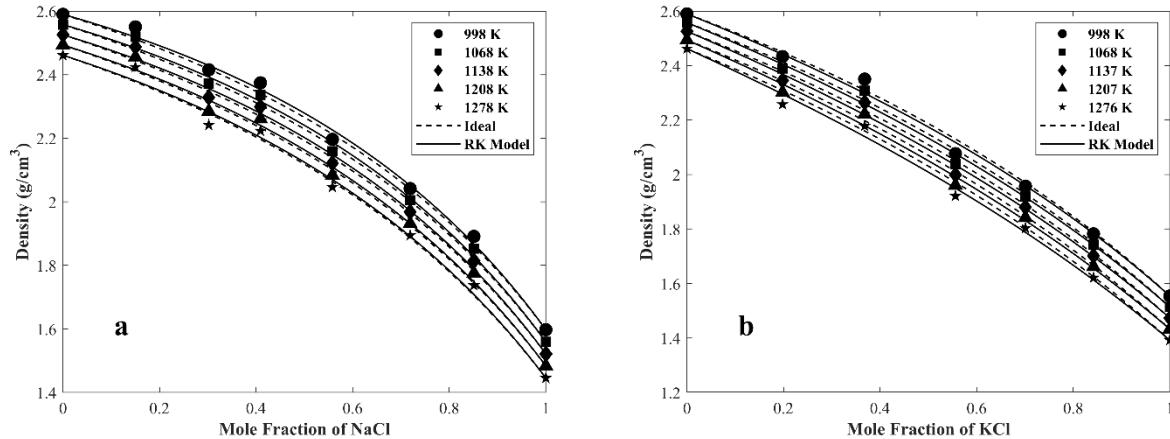

Using the ideal behavior and interaction parameters in Table 2, density of the KCl-NaCl-YCl₃ has been extrapolated from the pseudo-binaries and compared to existing experimental data for the pseudo-ternary (Mochinaga and Irisawa, 1974). The resulting density interpolation is shown in Fig. 3 with equimolar KCl and NaCl mole fractions and 5 % uncertainty error bars. Both the calculation results and the experimental data indicate ideal density behavior at all compositions in NaCl-KCl-YCl₃ molten phase. Ideal behavior and RK model are within 2-3 % of the available experimental data. The fact that NaCl-KCl-YCl₃ molten phase behaves ideally is useful for engineering purposes and eliminates the need for rigorous modeling for this specific system.

Table 2


Density binary interaction parameters ($L_j = A_j + B_j T$ (K) in Eqn. 4) using the Redlich-Kister model in KCl-UCl₃, KCl-YCl₃, NaCl-UCl₃ and NaCl-YCl₃ molten salt systems. Order of the salts are given consistent with Equation 3.

Binary System (Salt A – Salt B)	L ₁		L ₂	
	A ₁	B ₁	A ₂	B ₂
UCl₃-KCl	-2.3395	0.0015032	-1.8929	0.0016903
UCl₃-NaCl	-1.8722	0.0011698	-0.62805	0.00084717
KCl-YCl₃	0.083039	-1.3406 x 10 ⁻⁴		
NaCl-YCl₃	0.15439	-0.00010099		
NaCl-KCl	-0.018469	-1.1918 x 10 ⁻⁵		

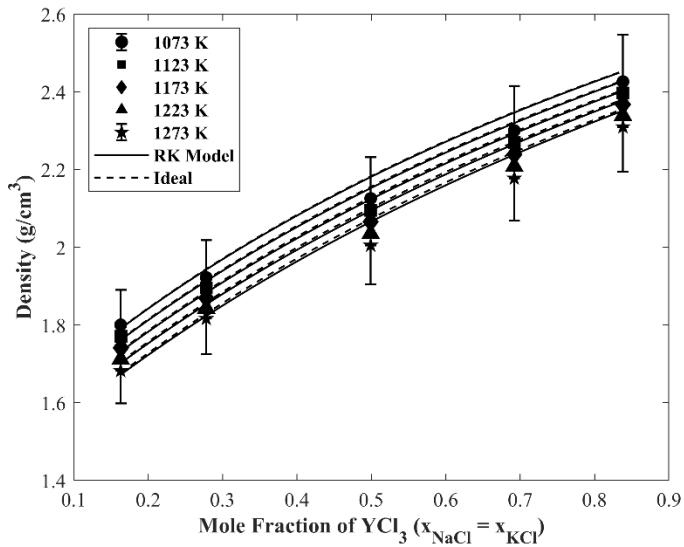

* Although the KCl-NaCl system is included in Table 2, its parameters are not used in the interpolations. It is assumed to be an ideal system, see discussion.

Fig. 1. Density of KCl-NaCl system comparing both ideal mixing rule and experimental data (Van Artsdalen and Yaffe, 1955) with 1 % uncertainty error bars.

Fig. 2. Density comparisons using experimental data (Mochinaga and Irisawa, 1974), ideal behavior and Redlich-Kister model (RK Model) in **a)** NaCl-YCl₃, and **b)** KCl-YCl₃ binary systems.

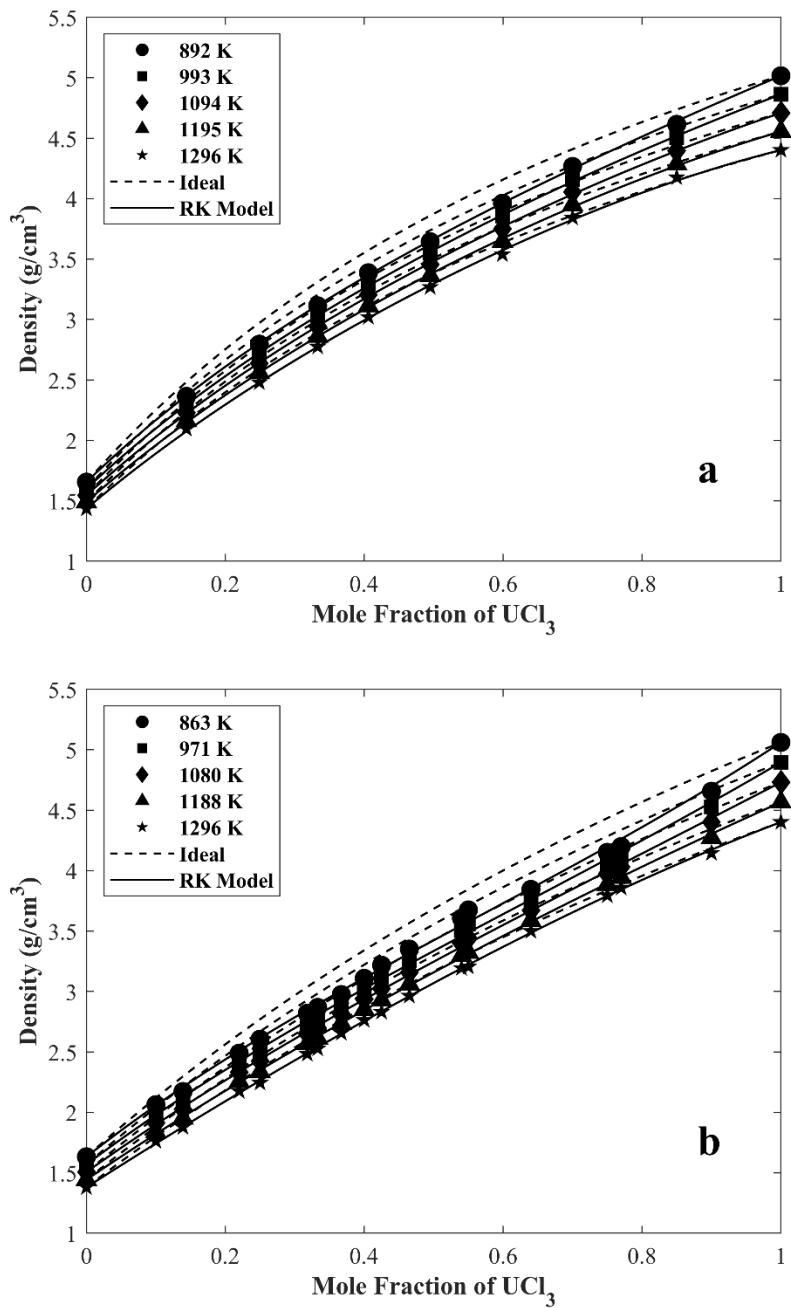
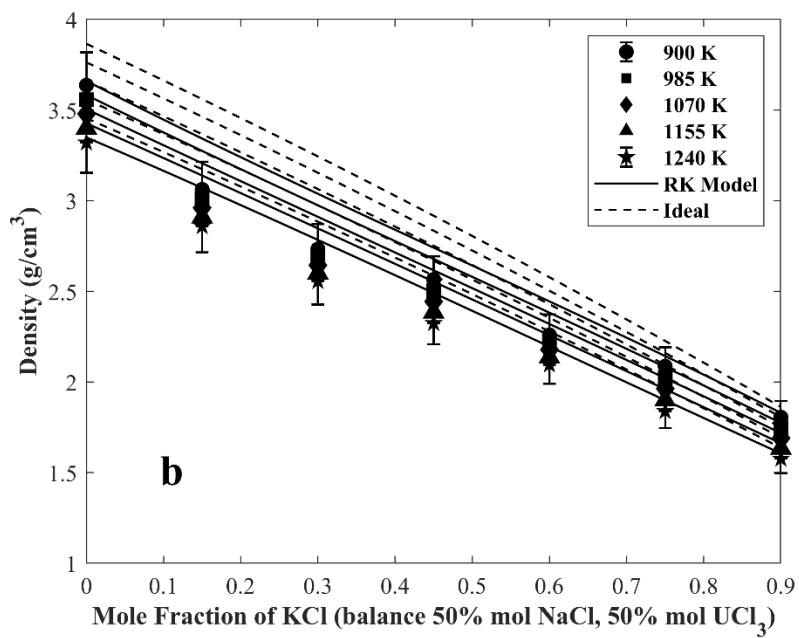
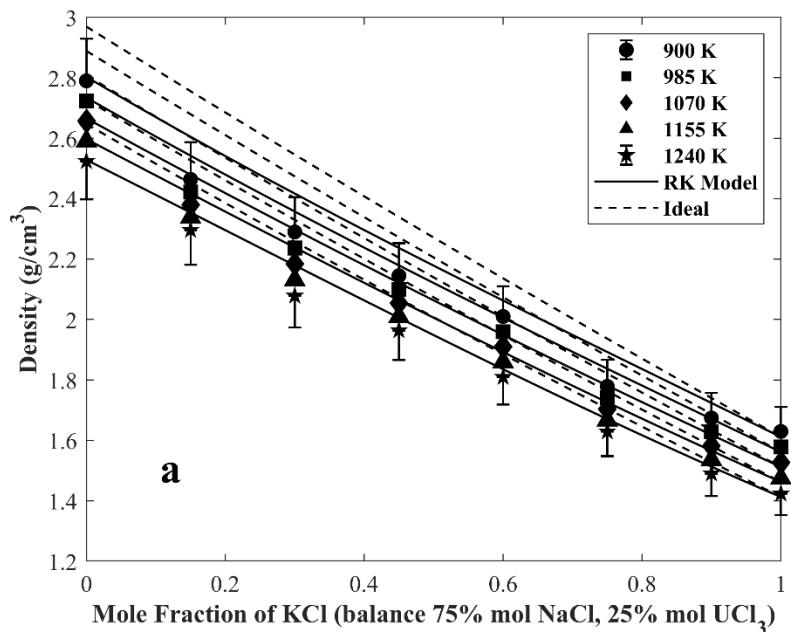
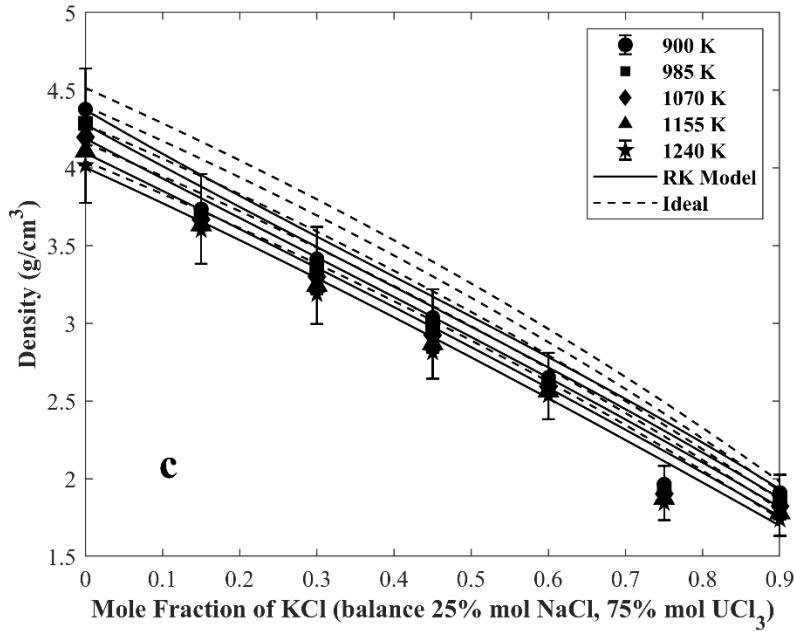


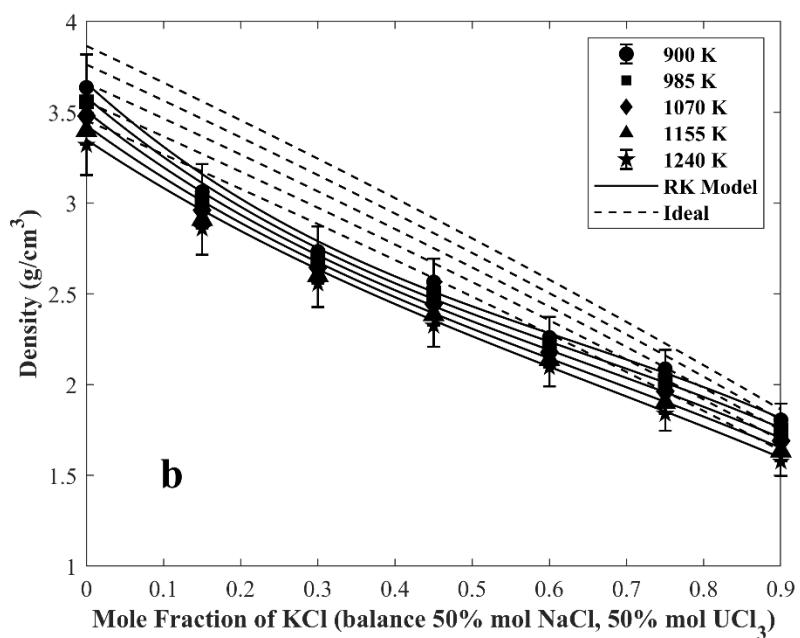
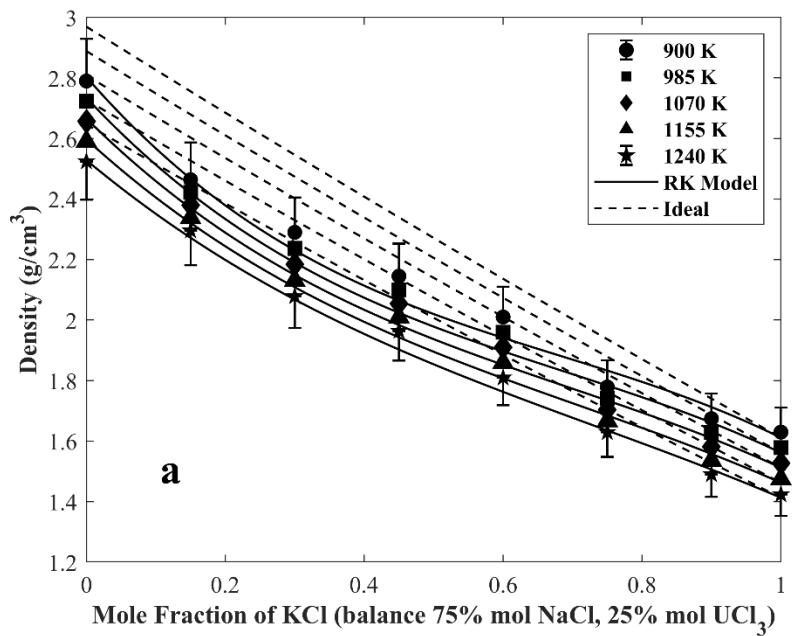
Fig. 3. Comparisons of Redlich-Kister model (shown as RK model) and ideal behavior estimation of density in KCl-NaCl-YCl₃ ternary system. Discrete symbols show the data from the literature with upper and lower 5 % uncertainty bounds added.

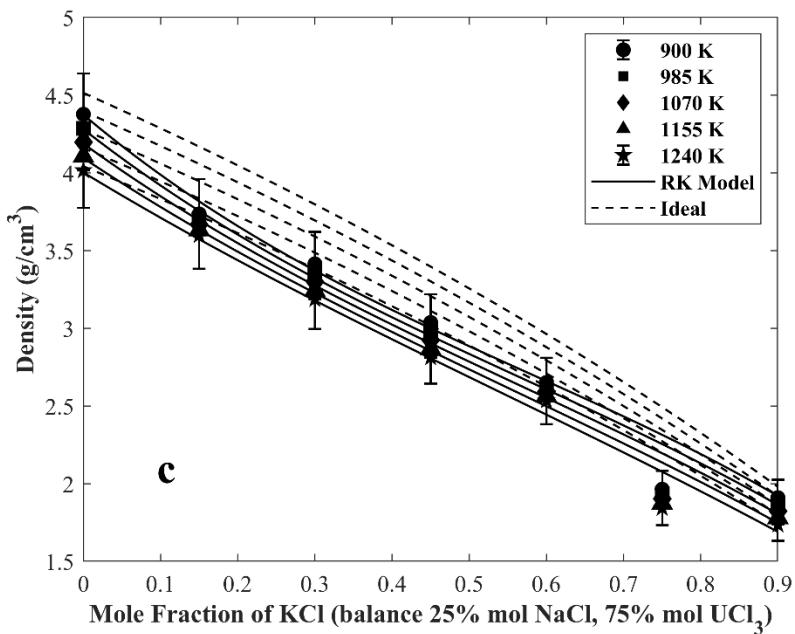


UCl₃-NaCl and KCl-UCl₃ binary salts have been fit to first and second order binary interaction parameters. Both systems show negative deviation from ideal behavior (Fig. 4.a-b). A₁ terms on both systems are above 1 suggesting significant nonideality. The negative density (or positive molar volume) deviation was connected to the formation of complex UCl₅²⁻ type aggregates at the intermediary compositions (Desyatnik et al., 1976, 1975). Furthermore, a first principles study of the NaCl-UCl₃ system suggested evidence of [UCl_n]ⁿ⁻³⁻ complexes, which might support the former theory on the cause of negative density deviation (Li et al., 2019). Experimental clarification is needed to find a relationship between the complex formation and density deviations. The UCl₃-NaCl system was modeled between 892-1296 K, and UCl₃-KCl system was between 863-1296 K.


Calculations were also made for the KCl-NaCl-UCl₃ pseudo-ternary system by interpolation using the binary interaction parameters. The calculation results are compared against measured density data from Katyshev et al. (1983) who studied various KCl-NaCl-UCl₃ compositions. Fig. 5 shows all the RK model interpolations compared to experimental data. Unlike the KCl-NaCl-YCl₃ system, the measured densities deviate significantly from ideality. The interpolation resulted in negative density deviation that resembles the binary fit results. Similar to behavior in binaries,

Katyshev (1983) argued that the deviations are a result of the formation of UCl_5^{2-} complexes in the salts due to the addition of K^+ ions. The interpolations are generally in agreement with Katyshev's results within 11 %. A sharp negative density deviation is seen at 75 mol % KCl in Fig 5-c. That composition deviates 18 % from the RK model density estimation. Aside from UCl_5^{2-} ion formation, this region lies within the composition range of K_2UCl_5 endmember. This endmember congruently melts at a higher temperature (905 K) in the $\text{KCl}-\text{UCl}_3$ system and has been found to build up at uranium anodes during uranium electrorefining in molten chlorides (Hames et al., 2018; Rose et al., 2015). However, these results do not appear to be an artifact of the experiment because the density behavior that is measured at multiple temperatures look consistent. The sample purity could be a problem and needs to be clarified with further measurements on this specific composition. In the modeling, this sharp difference suggests that higher order terms are needed to capture non-ideal behavior.

Fig. 4. Density comparisons using experimental data, ideal behavior and Redlich-Kister model (RK Model) in **a)** $\text{NaCl}-\text{UCl}_3$ (Desyatnik et al., 1975), and **b)** $\text{KCl}-\text{UCl}_3$ (Desyatnik et al., 1976) binary systems.



Fig. 5. KCl-NaCl-UCl₃ ternary density interpolations between KCl- **a)** 75% mol NaCl, 25% mol UCl₃; **b)** 50% mol NaCl, 50% mol UCl₃; **c)** 25% mol NaCl, 75% mol UCl₃. Experimental scatter data is from Katyshev et al. (1983). The error bars show 5% uncertainty from the experimental data.


The relatively poor fit to the density of NaCl-KCl-UCl₃ molten salts imply a need for ternary interaction terms in the non-ideal part of the density of mixing. In order to accommodate the ternary interaction affects, we added a first order temperature dependent term, ρ_{ex_tern} , as shown in Equation 6 which will be the last non-ideal mixing term in Eqn. 5 in the modeling.

$$\rho_{ex_tern} = x_A x_B x_C (A_t + B_t T) \quad \text{Equation 6}$$

A_t and B_t are ternary interaction parameters in NaCl-KCl-UCl₃ liquid mixture. Further fit calculations resulted in $A_t = -13.96$ and $B_t = 0.0080$. With the addition of the ternary term, the error from reference data improved to be 3.6%. The parameter A_t is almost an order magnitude higher than the binary interaction parameter A_j . This is due to ternary multiplication of mole fractions, which are less than 1. Nonetheless, the density at $x_{\text{KCl}} = 0.75$ in Fig 6.c had the similar error (17.8%) to the binary interpolation results. If one would like to have a more accurate model, it is best to include more complicated ternary interaction terms or a different model. For the

engineering design purposes, both Muggianu binary interpolation results and results with ternary interaction parameter will provide necessary information.

Fig. 6. KCl-NaCl-UCl₃ molten salt mixture ternary density between KCl- **a)** 75% mol NaCl, 25% mol UCl₃; **b)** 50% mol NaCl, 50% mol UCl₃; **c)** 25% mol NaCl, 75% mol UCl₃ after addition of the ternary interaction term in the non-ideal mixing term. Experimental scatter data is from Katyshev et al. (1983). The error bars show 5% uncertainty from the experimental data.

Quality Assurance (QA) of the physical properties required for supporting safety and licensing of MSRs is a critical component. An extensive literature review has been conducted revealing that for each individual system presented, the data originates from a single research group over limited compositional space. Furthermore, generally no mention of QA is presented. While this does not preclude the use of the data-sets reproduced and modeled in this work, it does require application of a QA assessment. One strategy is experimental corroboration between research groups. It is therefore recommended that adequate, supporting measurements should be made over matching temperature-composition space for each system to validate the existing data. In addition, more expansive measurements will be required for a comprehensive experimental understanding of the fundamental pseudo-binary and pseudo-ternary systems as well as measurements for validated extrapolations into multicomponent space. These future measurements should be conducted with a documented QA program.

5. Conclusion

Molten salt density extrapolations have been performed for the KCl-NaCl-YCl₃ and KCl-NaCl-UCl₃ systems using the Redlich-Kister model. The density of molten salt mixtures is composed of an ideal and a non-ideal part modeled with temperature and composition dependent Redlich-Kister polynomials. The nonideal density has been characterized with binary system interaction parameters. These interaction parameters have been calculated in the binaries of the NaCl-KCl-YCl₃ and NaCl-KCl-UCl₃ systems using regression methods and used in the density extrapolation for the pseudo-ternary systems. While NaCl-KCl, NaCl-YCl₃ and KCl-YCl₃ binary and NaCl-KCl-YCl₃ ternary molten phases exhibit ideal density behavior, NaCl-UCl₃, KCl-UCl₃ and NaCl-KCl-UCl₃ molten salts show some negative deviation from ideality. The density estimation procedure using Muggianu interpolation method achieved overall agreement within 11 % of the experimental densities available in the literature. The agreement improved within 4% within the reference because of the addition of ternary interaction parameter.

This work represents the first in a series of publications to demonstrate the approach and associated uncertainties for extrapolating into multicomponent space the thermophysical properties of MSR relevant molten salts based on the pure and pseudo-binary systems. The parameters and models will constitute the MSTDB. The overall goal is to use the MSTDB for modeling thermophysical and thermodynamic behavior of multicomponent salts as a tool to aid in making licensing decisions as well as the design and operation of MSRs. There is currently work in progress towards viscosity, thermal conductivity and heat capacity estimation employing the method outlined here as well as a companion effort to develop the thermodynamic database MSTDB-TC.

Acknowledgment

The authors would like to express their gratitude to Dr. Kaitlin Johnson, Dr. Dianne Ezell, Ryan Gallagher, Robert Lefebvre, Shane Henderson (ORNL), Dr. Melissa Rose (ANL) and Dr. David Andersson (LANL) for their support and insightful discussions. The authors would like to thank Dr. Ben Lamm and Dr. Joanna McFarlane of Oak Ridge National Laboratory for technical reviews. This research is sponsored by the US Department of Energy Office of Nuclear Energy Nuclear Energy Advanced Modeling and Simulation program and the Molten Salt Reactor Campaign.

ORCID

Can Agca: <https://orcid.org/0000-0003-1427-7812>

Jake W. McMurray: <https://orcid.org/0000-0001-5111-3054>

References

Betzler, B.R., Heidet, F., Feng, B., Rabiti, C., Sofu, T., Brown, N.R., 2019. Modeling and simulation functional needs for molten salt reactor licensing. *Nucl. Eng. Des.* 355, 110308. <https://doi.org/10.1016/j.nucengdes.2019.110308>

Chartrand, P., Pelton, A.D., 2001. Thermodynamic evaluation and optimization of the LiF-NaF-KF-MgF₂-CaF₂ system using the modified quasi-chemical model. *Metall. Mater. Trans. A* 32, 1385–1396. <https://doi.org/10.1007/s11661-001-0228-1>

Chrenková, M., Daněk, V., Silný, A., Kremenetsky, V., Polyakov, E., 2003. Density and viscosity of the (LiF-NaF-KF)_{eut}-KBF₄-B₂O₃ melts. *J. Mol. Liq.* 102, 213–226. [https://doi.org/10.1016/S0167-7322\(02\)00063-6](https://doi.org/10.1016/S0167-7322(02)00063-6)

Cibulková, J., Chrenková, M., Vasiljev, R., Kremenetsky, V., Boča, M., 2006. Density and Viscosity of the (LiF + NaF + KF)_{eut} (1) + K₂TaF₇ (2) + Ta₂O₅ (3) Melts. *J. Chem. Eng. Data* 51, 984–987. <https://doi.org/10.1021/je050490g>

Cooper, E.F., Asfour, A.F.A., 1991. Densities and kinematic viscosities of some C₆-C₁₆ n-alkane binary liquid systems at 293.15 K. *J. Chem. Eng. Data* 36, 285–288. <https://doi.org/10.1021/je00003a008>

Degueldre, C., Joyce, M.J., 2020. Evidence and uncertainty for uranium and thorium abundance: A review. *Prog. Nucl. Energy* 124, 103299. <https://doi.org/10.1016/j.pnucene.2020.103299>

Desyatnik, V.N., Katyshev, S.F., Raspopin, S.P., Chervinskii, Y.F., 1976. Density, Surface-Tension and Viscosity of Melts Of Uranium Trichloride-Potassium-Chloride System. *Zhurnal Fiz. khimii* 50, 2522–2525.

Desyatnik, V.N., Katyshev, S.F., Raspopin, S.P., Chervinskii, Y.F., 1975. Density, surface tension, and viscosity of uranium trichloride-sodium chloride melts. *Sov. At. Energy* 39, 649–651. <https://doi.org/10.1007/BF01121527>

Greenwood, M.S., Betzler, B.R., Qualls, A. Lou, Yoo, J., Rabiti, C., 2020. Demonstration of the Advanced Dynamic System Modeling Tool TRANSFORM in a Molten Salt Reactor Application via a Model of the Molten Salt Demonstration Reactor. *Nucl. Technol.* 206, 478–504. <https://doi.org/10.1080/00295450.2019.1627124>

Guo, C., Du, S., Li, J., Lu, H., Zhao, L., Tang, D., 1989. Density and Viscosity of NdF₃-LiF-BaF₂ Molten Salt. *J. Chinese Rare Earth Soc.* 7, 7–11.

Hames, A.L., Paulenova, A., Willit, J.L., Williamson, M.A., 2018. Phase Equilibria Studies of the LiCl-KCl-UCl₃ System. *Nucl. Technol.* 203, 272–281.
<https://doi.org/10.1080/00295450.2018.1448673>

Hillert, M., 1980. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. *Calphad* 4, 1–12. [https://doi.org/10.1016/0364-5916\(80\)90016-4](https://doi.org/10.1016/0364-5916(80)90016-4)

Holm, J.L., 1971. Excess Volumes of Mixing in Liquid Binary Alkali Halide Mixtures. *Acta Chem. Scand.* 25, 3609–3615. <https://doi.org/10.3891/acta.chem.scand.25-3609>

Hwang, C.-A., Holste, J.C., Hall, K.R., Ali Mansoori, G., 1991. A simple relation to predict or to correlate the excess functions of multicomponent mixtures. *Fluid Phase Equilib.* 62, 173–189. [https://doi.org/10.1016/0378-3812\(91\)80009-K](https://doi.org/10.1016/0378-3812(91)80009-K)

Iwadate, Y., Ohkubo, T., Michii, T., Matsuura, H., Kajinami, A., Takase, K., Ohtori, N., Umesaki, N., Fujita, R., Mizuguchi, K., Kofuji, H., Myochin, M., Misawa, M., Itoh, K., Fukunaga, T., 2014. Pulsed Neutron Diffraction Study of Molten CsCl-NaCl-YCl₃: Approaches from Fundamentals to Pyrochemical Reprocessing, in: Molten Salts Chemistry and Technology, Wiley Online Books. John Wiley & Sons, Ltd, Chichester, UK, pp. 449–458. <https://doi.org/10.1002/9781118448847.ch6f>

Janz, G.J., 1988. Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data. *J. Phys. Chem. Ref. Data* 17.

Jerden, J., 2019. Molten Salt Thermophysical Properties Database Development: 2019 Update, ANL/CFCT-19/6. Argonne, IL (United States). <https://doi.org/10.2172/1559846>

Kattner, U.R., 1997. The thermodynamic modeling of multicomponent phase equilibria. *JOM* 49,

14–19. <https://doi.org/10.1007/s11837-997-0024-5>

Katyshev, S.F., Dubinin, B. V, Desyatnik, V.N., 1983. Density and surface tension of melts in the system NaCl-KCl-UCl₃. *J. Appl. Chem. USSR* 56, 2000–2002.

Kubíková, B., Boča, M., Mlynáriková, J., Gurišová, V., Šimurda, M., Netriová, Z., Korenko, M., 2016. Physicochemical Properties of the (LiF + CaF₂)_{eut} + LaF₃ System: Phase Equilibria, Volume Properties, Electrical Conductivity, and Surface Tension. *J. Chem. Eng. Data* 61, 1395–1402. <https://doi.org/10.1021/acs.jced.5b00536>

Kubíková, B., Mlynáriková, J., Wu, S., Mikšíková, E., Priščák, J., Boča, M., Korenko, M., 2020. Physicochemical Investigation of the Ternary (LiF + MgF₂)_{eut} + LaF₃ Molten System. *J. Chem. Eng. Data* 65, 4815–4826. <https://doi.org/10.1021/acs.jced.0c00315>

LeBlanc, D., 2010. Molten salt reactors: A new beginning for an old idea. *Nucl. Eng. Des.* 240, 1644–1656. <https://doi.org/10.1016/j.nucengdes.2009.12.033>

Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. *Q. Appl. Math.* 2, 164–168. <https://doi.org/10.1090/qam/10666>

Li, B., Dai, S., Jiang, D., 2019. First-Principles Molecular Dynamics Simulations of UCl_n–NaCl (n = 3, 4) Molten Salts. *ACS Appl. Energy Mater.* 2, 2122–2128. <https://doi.org/10.1021/acsaem.8b02157>

Luo, Q., Zhai, C., Sun, D., Chen, W., Li, Q., 2019. Interpolation and extrapolation with the CALPHAD method. *J. Mater. Sci. Technol.* 35, 2115–2120. <https://doi.org/10.1016/j.jmst.2019.05.016>

Magnusson, J., Memmott, M., Munro, T., 2020. Review of thermophysical property methods applied to fueled and un-fueled molten salts. *Ann. Nucl. Energy* 146, 107608. <https://doi.org/10.1016/j.anucene.2020.107608>

Marquardt, D.W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. *J. Soc. Ind. Appl. Math.* 11, 431–441. <https://doi.org/10.1137/0111030>

McMurray, J., Johnson, K., Agca, C., Betzler, B., Kropaczek, D., Besmann, T., Andersson, D., Ezell, N.D., 2021. Roadmap for thermal property measurements of Molten Salt Reactor

systems, ORNL/SPR-2020/1865. Oak Ridge, TN (United States).

<https://doi.org/10.2172/1778081>

McMurray, J.W., Besmann, T.M., 2018. Thermodynamic Modeling of Nuclear Fuel Materials, in: Andreoni, W., Yip, S. (Eds.), *Handbook of Materials Modeling*. Springer International Publishing, Cham, pp. 1–29. https://doi.org/10.1007/978-3-319-50257-1_124-1

McMurray, J.W., Besmann, T.M., Ard, J., Fitzpatrick, B., Piro, M., Jerden, J., Williamson, M., Collins, B.S., Betzler, B.R., Qualls, A.L., 2018. Multi-Physics Simulations for Molten Salt Reactor Evaluation: Chemistry Modeling and Database Development, ORNL/SPR-2018/864. Oak Ridge, TN (United States). <https://doi.org/10.2172/1492183>

Mlynáriková, J., Boča, M., Mikšíková, E., Netriová, Z., 2017. Volume properties of the molten systems MF–K₂TaF₇ (MF = LiF, NaF and KF). *J. Therm. Anal. Calorim.* 129, 475–486. <https://doi.org/10.1007/s10973-017-6137-3>

Mochinaga, J., Irisawa, K., 1974. Phase Diagrams of YCl₃–KCl, YCl₃–NaCl, and YCl₃–KCl·NaCl Systems, and Densities of Their Molten Mixtures. *Bull. Chem. Soc. Jpn.* 47, 364–367. <https://doi.org/10.1246/bcsj.47.364>

Muggianu, Y.-M., Gambino, M., Bros, J.-P., 1975. Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 k. Choix d'une représentation analytique des grandeurs d'excès intégrales et partielles de mélange. *J. Chim. Phys.* 72, 83–88. <https://doi.org/10.1051/jcp/1975720083>

Qualls, A.L., 2018. Advanced Reactor Technology Program Molten Salt Reactor Campaign FY 2018 Summary, ORNL/SPR-2018/987. Oak Ridge, TN (United States). <https://doi.org/10.2172/1509566>

Redlich, O., Kister, A.T., 1948. Algebraic representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* 40, 345–348.

Robelin, C., Chartrand, P., Eriksson, G., 2007. A Density Model for Multicomponent Liquids Based on the Modified Quasichemical Model: Application to the NaCl-KCl-MgCl₂-CaCl₂ System. *Metall. Mater. Trans. B* 38, 869–879. <https://doi.org/10.1007/s11663-007-9090-x>

Rose, M., Thomas, S., 2021. Production and Chemical Analysis of NaCl-KCl-UCl₃ Salts,

ANL/CFCT-21/04. Argonne, IL (United States). <https://doi.org/10.2172/1773495>

Rose, M.A., Williamson, M.A., Willit, J., 2015. Investigation of residual anode material after electrorefining uranium in molten chloride salt. *J. Nucl. Mater.* 467, 576–581.
<https://doi.org/10.1016/j.jnucmat.2015.10.015>

Serp, J., Allibert, M., Beneš, O., Delpech, S., Feynberg, O., Ghetta, V., Heuer, D., Holcomb, D., Ignatiev, V., Kloosterman, J.L., Luzzi, L., Merle-Lucotte, E., Uhliř, J., Yoshioka, R., Zhimin, D., 2014. The molten salt reactor (MSR) in generation IV: Overview and perspectives. *Prog. Nucl. Energy* 77, 308–319.
<https://doi.org/10.1016/j.pnucene.2014.02.014>

Van Artsdalen, E.R., Yaffe, I.S., 1955. Electrical Conductance and Density of Molten Salt Systems: KCl–LiCl, KCl–NaCl and KCl–KI. *J. Phys. Chem.* 59, 118–127.
<https://doi.org/10.1021/j150524a007>

Williams, D.F., 2006a. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR), ORNL/TM-2006/12. United States. Department of Energy, Oak Ridge, TN. <https://doi.org/10.2172/885975>

Williams, D.F., 2006b. Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop, ORNL/TM-2006/69. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), Oak Ridge, TN (United States). <https://doi.org/10.2172/1360677>

Zhang, D., Liu, L., Liu, M., Xu, R., Gong, C., Zhang, J., Wang, C., Qiu, S., Su, G., 2018. Review of conceptual design and fundamental research of molten salt reactors in China. *Int. J. Energy Res.* 42, 1834–1848. <https://doi.org/10.1002/er.3979>