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Abstract. This paper reports on experiences gained and practices adopted
when using the latest features of OpenMP to port a variety of HPC ap-
plications and mini-apps based on different computational motifs (Berke-
leyGW, WDMApp/XGC, GAMESS, GESTS, and GridMini) to accelerator-
based, leadership-class, high-performance supercomputer systems at the
Department of Energy. As recent enhancements to OpenMP become
available in implementations, there is a need to share the results of ex-
perimentation with them in order to better understand their behavior
in practice, to identify pitfalls, and to learn how they can be effectively
deployed in scientific codes. Additionally, we identify best practices from
these experiences that we can share with the rest of the OpenMP com-
munity.

Keywords: OpenMP - Device Offload - Application Experiences.

* Supported by Exascale Computing Project (ECP) OpenMP Hackathon hosted by
SOLLVE and NERSC [29].



2 B.Chapman et al.

Keywords: OpenMP - Device Offload - Application Experiences.

1 Introduction

In this paper we continue the exploration of OpenMP usage in HPC applications
(GAMESS, GESTS, and GridMini) in Section 2. We conclude in Section 3 and
provide acknowledgments in Section 4.

2 Application Experiences

2.1 GAMESS

2.1.1 Application Overview GAMESS is a general electronic structure soft-
ware package comprising of a variety of quantum mechanical (QM) methods [6].
GAMESS is primarily written in Fortran and parallelized using both pure MPI
(14, 12] and hybrid MPI/OpenMP [23, 24]. A high-performance C++/CUDA
library, namely LibCChem, has been recently developed to accelerate GAMESS
on GPUs. Alternatively, GAMESS Fortran is directly offloaded to GPUs using
OpenMP. In this section, offloading strategies of the Hartree-Fock (HF) method,
which is an essential step of ab initio methods, will be discussed.

2.1.2 Application Motif A HF computation requires i) evaluation of N*
electron repulsion integrals (ERIs) as shown in eq. (1), ii) formation of N2-
element Fock matrix, iii) Fock matrix diagonalization for eigen energies and
vectors. Here, N is the system size, usually represented by the number of Gaus-
sian basis functions ¢, (7). In GAMESS, a basis function can be characterized
by a few parameters, including the so-called angular momentum, which is an
integer starting from 0 upwards, used here for sorting ERIs.

(|ro) = / / dry dra (1) (11 )1~ 65, (r2) o (1), (1)

To provide the optimal performance for ERI evaluation, three different in-
tegral algorithms have been implemented in GAMESS, including a) Rotated-
axis [25, 28, 21, 1], b) Electron repulsion Integral Calculator (ERIC) [13], and c)
Rys quadrature [19, 11, 27]. Depending on the characteristics of basis functions,
different ERI algorithms are selected at runtime (Figure 1a).

In this work, we focus on i) offloading the Rys quadrature kernel from full
GAMESS package, ii) examining OpenMP offloading compiler support using a
Fortran mini-app of rotated-axis integral code, and iii) analyzing performance
of a C++ integral kernel from GAMESS-LibCChem. The first two efforts were
carried out on Ascent/Summit, while the latter was performed on NERSC’s
CoriGPU.
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2.1.3 OpenMP parallelization strategy In the OpenMP HF implementa-
tion targeting CPUs [2, 22], there is a large workload imbalance between threads.
This imbalance is handled by using dynamic loop scheduling and loop collapsing
(c.f. lines 2 and 3, Figure 1la). To adapt this code to the SIMT architecture
in GPUs, the ERI codes were restructured based on their optimal algorithms
as discussed in [4]. However, this code can be improved by sorting the integrals
with respect to basis function angular momentum and the inherent permuta-
tional symmetry of the integrals into different classes (e.g. R 1112, R 1121 in
Figure 1c). In this study, a particular class, the 1121-kernel is presented in Fig-
ure 1d and for further optimization see Figure le. The main bottleneck of the
1121-Rys kernel is to contract calculated ERIs (line 6 of Figure 1d) with density
for six Fock matrix elements using atomic operations (lines 12 — 14). To reduce
such synchronization overhead, in Figure le, ERIs are evaluated in chunk (lines
4 —7), which are then contracted with density to update the Fock matrix in a
separated GPU parallel region (lines 10 — 17). Data exchange between quartet
evaluation and Fock update are managed by the target data directive (lines 1
and 18).

2.1.4 Results Relative timing of the new (Figure le) and the original (Fig-
ure 1d) offloading schemes for the 1121-kernel is studied using water cluster of
16 — 128 molecules. The cc-pVDZ basis set is used for all water clusters intro-
ducing 54 —570K quartets for computation and Fock digestion. The 1121-kernel
wall time of (H30)g, is recorded while varying the number of quartets computed
concurrently, which is NSIZE«+80 % 128, the number of teams (NTEAMS) and
threads per team (NTHREAD). The optimal wall time is usually achieved with
a small number of threads, large number of team and medium value of chunk
size (Fig. 2).

Table 1. Wall time (s) and speedup of new offloading implementation (Figure le).
relative to the original one (Figure 1d)

NQUART Scheme 1d Scheme 1le Speedup

(H30),, 54,274 0.30 0.41 0.73
(H50)s, 263,075 0.73 0.51 1.43
(H,0)q, 1,256,691  2.94 1.00 2.94
(H20)4, 2,095,639  4.82 1.75 2.75
(H30)45 3,118,724  6.97 2.56 2.72
(H20),,, 4,322,306 9.49 3.69 2.57
(H30), 95 5,727,480 12.40 4.80 2.58

Stacking optimal series, i.e., those contain minimum wall time data point,
showing that the 1121-kernel can be evaluated in 1.00 (s) with medium chunk
size NSIZE 80, NTEAMS 160, and NTHREAD 8. In comparison with the
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a) b) <)
do ish=1,nshell 1 !$omp target teams distribute 1 ! computing each ERI class
!$omp parallel do parallel do using Rys o
schedule(dynamic) collapse(2) 2 do isp=1,n-sp 2 !Somp target teams distribute
do jsh=1,ish 3 call sp(isp) parallel do
do ksh=1,ish 4 enddo 3 doilll2=1,n.1112
do lsh=1,ksh 5  !$omp target teams distribute 4 call r-1112(i1112)
Ichoose ERI package parallel do 5  enddo
if (do_sp) call sp 6 do ispd=1,nspd 6 !$omp target teams distribute
if (do_spd) call spd 7 call spd(ispd) parallel do
if (do_eric) call eric 8 enddo 7 doill2l=1,n.1121
if (do_rys) call rys 9  1Somp target teams distribute 8 call r.1121(i1121)
enddo parallel do 9 enddo
enddo 10 do ieric=1,n_eric 10 !$omp target teams distribute
enddo 11 call eric (ieric) parallel do
!'$omp end parallel do 12 enddo 11 do i1122=1,n-1122
enddo 13 1Somp target teams distribute 12 call r-1122(i1122)
parallel do 13 enddo
14  do irys=1,n_rys 14
15 call rys(irys)
16 enddo
d) e) f)
1$omp target teams distribute 1 1$omp target data map(alloc: 1  subroutine eri_mini
quart (ichunkstart:ichunkend)) 2 do ish=1,nshell
!$omp parallel do 2 do ichunk = 1, nchunk_-1121 3 do jsh=1,ish
do i=1,n.1121 3 I evaluating in chunk 4 do ksh=1,ish
! evaluating quartet i-th 4 !$omp target teams distribute 5 do Ish=1,ksh
call r_1121_int (quart(i)) parallel do 6 call shellquart
! fock matrix contraction 5 do i=ichunkstart,ichunkend 7 call fock-mat
do k=1,6 6 call r_1121_int_-mod( 8 enddo
I$omp atomic quart(ichunkstart:ichunkend)) 9 enddo
fock (k)=fock(k) & 7 enddo 10 enddo
+ quart(i)+den (k) 8  IFock matrix contraction 11 enddo
enddo 9 !$omp target teams distribute 12 end subroutine eri_mini
enddo parallel do 13 subroutine shellquart
10 do i=ichunkstart,ichunkend 14 call setcrd (rmat,p,t,q)
11 do k=1,6 15 call ri12loop(r12,r34)
12 1$omp atomic 16 call fmt(fgrid,xgrid)
13 fock (k)=fock(k) & 17 call jtype(gmat,rmat,p,t,q,
14 +quart(i)«den (k) r12,r34 fgrid ,xgrid)
15 enddo 18 end subroutine shellquart
16 enddo
17 enddo
18  1Somp end target data

Fig. 1. (a) CPU OpenMP implementation , (b) refactoring ERI codes based on optimal
algorithm, (c) further sorting for the Rys quadrature algorithm, (d) detail of 1121-Rys
kernel; and (e) separation of ERI evaluation and digestion, f) Fortran mini-app ERI
code and its SHELLQUART kernel.

a) NSIZE=40 b) NSIZE=200 <) Optimal parameter

x NTEAMS= 20
NTEAMS= 40
NTEAMS= 80
247« NTEAMS=120
-8~ NTEAMS=160
x NTEAMS=200

Wall clock time (s)

Number of threads per team

Fig.2. a,b) variation of the 1121-kernel wall time with respect to NTEAMS,
NTHREAD and NSIZE. Optimal series for each chunk size is in bold green; ¢) stacking
of optimal series extracted from various chunk sizes.

original algorithm, separating atomic updates introduce a speedup of 2.5z (Ta-
ble 1).
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2.1.5 Fortran mini-app A Fortran mini-app was extracted from the rotated-
axis algorithm (Figure 1f) to be portable to a variety of computer clusters and
explore GPU compilers from different vendors. This Fortran mini-app has been
compiled on various hardware and compilers (Table 2). The explicit interface
is not required for the offloading region for IBM compiler, while it was needed
for NVIDIA’s HPC SDK 21.2 compiler. However this issue was resolved with
HPC SDK 21.3. Despite the fact that the ERI code was well modularized and
worked well on CPU, using compilers for offloading to GPU with the automatic
inlining option (e.g., using —qinline) did not show noticeable performance im-
provements. On the other hand, manually inlining implementation greatly im-
proves the performance. A noteworthy observation was made that a runtime
out-of-memory on the device was encountered, which was resolved by moving
some subroutine arguments to modules (e.g., STCRD, R12LOOP, FMT, and
JTYPE).

Table 2. Summary of various compilers used for the mini-app.

Compiler Systems Declare target for Compiler flags
external subroutine
IBM Ascent No clause -gsmp=omp -qoffload -02
NVIDIA
HPC

SDK 21.2 CoriGPU Explicit interface ~ -Mextend -tp=skylake -Mcuda=cc70
-ta=tesla:cc70 -fast -mp=gpu

2.1.6 C++4-mini-app A C++ mini-app was extracted from LibCChem and
ported to GPU using CUDA and OpenMP. The kernel was wrapped into a
Google Benchmark [15] application that is configured using CMake [20]. Google
Benchmark can adjust the number of iterations depending on single kernel ex-
ecution time and measurement noise to output a reliable result. CMake and
preprocessor provide flags handling of the compiler required for C++, CUDA,
or OpenMP in a single source directory with multiple build directories, one for
each compiler.

Table 3. Mini-Mini-App performance results in seconds.

Language Compiler Variant CPU Kernel GPU Kernel
CUDA nvee 2003.0 43.0

CUDA nvee localmem 1934.0 50.8
OpenMP clang 2657.0 54.3
OpenMP CCE 2023.0 75.7
OpenMP gce 5885.0 2054.9

OpenMP nve error
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For the Cori GPU system, Table 3 shows the Google Benchmark CPU time
per iteration (including waiting for results to arrive in the CPU) and the GPU
kernel-only time as measured by NVIDIA’s nvprof. The CUDA version has a
“localmem” variant which uses temporary __shared__ arrays containing copies
of the working set of a single block, but otherwise calls the same (inlined) ker-
nel. The OpenMP source does not have an equivalent to the localmem variant
because required data-initialization of team-local memory in OpenMP are incom-
patible with clang’s SPMD-mode and would cause a major performance penalty.
For OpenMP, Clang performed the best, slightly behind the CUDA version, fol-
lowed by CCE. The execution time when compiled with gcc was not competitive.
NVIDIA’s HPC SDK 21.3 compiler (formerly PGI) either failed with a compiler
error or produced a crashing executable (-00 or -01).

2.1.7 Challenges and lessons learned To adapt the GPU SIMT model, the
Hartree-Fock code was restructured so that integrals of the same class are com-
puted concurrently. The bottleneck was found to be atomic updates in the Fock
matrix contraction (Figure 1d), which were further optimized by using them in
a separate target region(Figure le), in which data exchange between parallel
regions are retained on GPU and governed by the target data directive. The
kernel performance was also found to vary strongly with respect to the number
of teams, threads per team and amount of data loaded to GPU for computa-
tion. The results show that utilizing NTEAMS=160 and NTHREAD=8 to be
processed at a time yields desirable performance. The rotated-axis mini-app was
offloaded with the basic target constructs and tested on various systems, and
shown that “out-of-memory” runtime error can be resolved by using modules.
The C++ mini-app was ported to GPU using CUDA and OpenMP, with the
kernel wrapped into a Google Benchmark application configured using CMake.
It was found that gcc-compiled OpenMP kernel did not show competitive tim-
ing. NVIDIA’s HPC SDK 21.3 compiler either failed with a compiler error or
produced a crashing executable.

2.2 GESTS

2.2.1 Application Overview GESTS (GPUs for Extreme Scale Turbulence
Simulations) is a pseudo-spectral Direct Numerical Simulation (DNS) code used
to study the fundamental behavior of turbulent flows [17]. The presence of disor-
derly fluctuations over a wide range of scales in three-dimensional (3D) space and
time poses stringent resolution requirements [30], especially if localized events
of high intensity [31] must be captured accurately. However, large scale pseudo-
spectral simulations are dominated by communication costs, which become an
even greater burden versus computation when codes are ported to heterogeneous
platforms whose principal strengths are in computational speed.

In recent work on Summit, we addressed these challenges by developing a
batched asynchronous algorithm [26] to enable overlapping computations, data
copies and network communication using CUDA, which enabled problem sizes
as large as 6 trillion grid points.
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Fig. 3. Left/(a): Decomposition of an N*® solution domain among P MPI processes
into slabs of data of size N x N x N/P. Right/(b): Further decomposition of a slab
into np smaller sub-volumes, each of size N X N/np x N/P.

Here we discuss the development of a portable implementation using ad-
vanced asynchronous OpenMP features on the GPUs, in order to enable even
larger problem sizes using newer exascale architectures like Frontier.

2.2.2 Application Motif We focus on three-dimensional Fast Fourier Trans-
forms (3D FFT) which are crucial to the GEST code. To benefit from the archi-
tecture of emerging platforms with large CPU memory and multiple accelerators
we use a one-dimensional (slabs) domain decomposition as shown in Figure 3a.
This helps reduce communication costs as fewer MPI processes are involved [26]
although point-to-point message sizes are larger. Within each plane in a slab,
1D FFTs in two directions (here  and y) are performed readily using highly
optimized GPU libraries (cuFFT or rocFFT), while the FFT in the third (z)
direction requires an all-to-all global transpose that re-partitions the data into,
say, © —z planes. However if N is very large (up to 18,432 in [26]) a complete slab
may not fit into the smaller GPU memory. We address this by dividing each slab
into np smaller sub-volumes, as in Figure 3b. In effect, batches of data formed
from the sub-volumes are copied to the GPU, computed on, and copied back;
while operations on different portions may overlap with one another. For exam-
ple, as the code proceeds from left to right, GPU computation on a sub-volume
colored in blue, host-to-device copy for another in red (or device-to-host in green)
and non-blocking all-to-all on another in brown can occur asynchronously.

2.2.3 OpenMP implementation strategy In the “batched” scheme de-
scribed above, when FFTs in y need to be computed, a sub-volume of data
consisting of N x N/P lines of size N/np need to be copied. Essentially, for each
value of y (between 1 to N) and z (between 1 to N/P) a copy needs to be per-
formed for N/np elements in the innermost dimension () of length N. Efficient
strided data transfers between the CPU and GPU are thus important. Simple
approaches such as packing on the host prior to transfer, or performing multiple
copies one line at a time are inefficient, because of an extra data-reordering oper-
ation on the CPU and the overhead of numerous smaller copies respectively [26].
Instead, we make use of two different approaches depending on the complexity
of the strided memory accesses.
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For simple strided copies where strides are small and in the innermost di-
mension only, we can use omp_target_memcpy_rect which copies a specified sub-
volume inside a larger array on the host to a smaller buffer on the device or vice
versa. This OpenMP 4.5 routine is similar to cudaMemcpy2d but asynchronous
execution will be supported only in OpenMP 5.1. We are using OpenMP tasks
as a workaround.

(a) zero-copy (b) detach

TARGET ENTER DATA MAP (to:d_buf)
DEPEND(IN:indep) DEPEND(OUT:tdep)
NOWAIT

TASK DEPEND (out:var) DETACH (event)
TARGET DATA USE_DEVICE_PTR(a)
FFTExecute (a, forward, stream)

FFTExecute (a, inverse, stream)
END TARGET DATA

TARGET TEAMS DISTRIBUTE
PARALLEL DO COLLAPSE(4)

SN

©

DEPEND(INOUT:tdep) NOWAIT 6 cudaStreamAddCallback (stream,
IS_.DEVICE_PTR(h_buf)
do yg=1,nt ptr_cp, C_LOC(event), 0)
do z=1,mz 7 END TASK
do yl=1,my 8
do x=1,N o  TARGET UPDATE TO(b) ®
y = myx*(yg—1)+yl DEPEND(inout:b) NOWAIT
d_buf(x,y,z) = h-buf(x,z,yl,yg) 10
end do 11 TARGET TEAMS DISTRIBUTE
end do DEPEND(IN:var) NOWAIT
end do 12 a(:y, : :) =a(, & :)/N
end do 13 END TARGET TEAMS DISTRIBUTE

END TARGET TEAMS DISTRIBUTE
PARALLEL DO

subroutine callback (stream, status, event)
call omp_fulfill_event(f_event)
end subroutine callback

TARGET EXIT DATA MAP(from:d_buf)
DEPEND(IN:tdep)
DEPEND(OUT:outdep) NOWAIT

Fig.4. (a) Asynchronous OpenMP implementation of the zero-copy kernel for un-
packing data from the pinned host array (h_buf) to the device array (d_buf). Here for
an N? problem my = mz = N/nt where nt is MPI process count. (b) Interoperability
between non-blocking FFT libraries and OpenMP tasks using DETACH while ensuring
correct asynchronous execution.

For more complex stride patterns, like those in unpacking operations where
strided read and write memory access are required to transpose data in the
second and third dimension as shown in line 9 of Figure 4a, a zero-copy ker-
nel [3] is appealing. In this approach, GPU threads are used to initiate many
small transfers between pinned memory on the host and the device memory.
The array on the host is made device accessible using the IS_DEVICE_PTR clause.
However, since using GPU compute resources for data copies may slow down
other computations, we use the zero-copy approach only when complex stride
patterns are involved.

In OpenMP, asynchronous execution can be achieved using the TASK clause
for work on the host, NOWAIT for device kernels and data copies, and DEPEND to en-
force the necessary synchronization between different tasks. However, when non-
blocking libraries such as cuFFT or rocFFT are called from inside an OpenMP
task, the desired asynchronism breaks down. Figure 4b illustrates the issue via a
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1D FFT code fragment, in which Task A calls the non-blocking libraries to com-
pute the transforms, Task B performs a host-to-device data copy, whereas Task
C multiplies the result by a scalar. It is important to note here that the FFT
library function is called from the host but device arrays need to be passed in
to it. This is achieved using the USE_DEVICE_PTR clause which tells the OpenMP
runtime to pass the device pointer of the array, to the library call. In OpenMP
5.1 usage of the USE_DEVICE_PTR with a Fortran pointer is depreciated, but the
USE_DEVICE_ADDR clause can be used equivalently instead. Without the high-
lighted gray lines, the host thread that is executing task A will launch the FFT
kernels to the GPU. Since these library calls are non-blocking, control will return
immediately to the host thread, which proceeds to end the task. As a result, the
device kernels launched may not have completed, or even started running, when
Task A is considered “complete”. The subsequent release of dependency between
Tasks A and C allows the latter to start prematurely, leading to incorrect an-
swers.

Correct execution can be ensured using the OpenMP 5.0 DETACH clause,
with cudaStreamAddCallback, as shown in Figure 4b. Now as the host thread
launches the FFTs, it introduces a callback function (where ptr_cb is a pointer
to it) into the stream in which the FFTs are executing. The host thread then
detaches itself from task A to proceed with other operations. Once the FFTs
finish executing on the device, the callback function is invoked which “fulfills”
the event and completes task A, releasing the dependency and thus allowing
Task C to execute correctly with the intended data. We also understand that
OpenMP interop clause introduced in the 5.1 standard can help overcome this
issue as well. However, so far we have chosen to use DETACH as it is part of the
5.0 standard and is expected to be supported by the compilers earlier.

2.2.4 Summary and future work We have briefly addressed some key chal-
lenges encountered in developing a portable implementation of extreme scale 3D
FFTs using OpenMP to target GPUs. Efficient strided data copies are performed
using Zero-copy kernels and omp_target memcpy_rect. Although full compiler
support for it is not yet available, the OpenMP 5.0 feature DETACH is expected to
resolve an issue of interoperability between non-blocking GPU library calls and
OpenMP tasks. Future work will include testing the DETACH approach and using
it to develop a batched asynchronous 3D FFT code (and eventually pseudo-
spectral simulation of turbulence) capable of problem sizes beyond that recently
achieved on Summit. Timing data over a range of problem sizes will be reported
separately when available.

2.3 GridMini

2.3.1 Application Overview Lattice Quantum Chromodynamics (LQCD) [16]
is a computational framework that allows scientists to simulate strong interac-
tions between the subatomic particles called quarks and gluons. LQCD provide
crucial theoretical input to nuclear and high energy physics research, but its high
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computational demand limits the precision of the numerical results it can obtain.
LQCD software has been written and optimized for many different computer ar-
chitectures, including many/multi-core CPUs [9] and NVIDIA GPUs [10], to
access as many computing resources as possible. Recently there has also been
significant effort getting some of the major LQCD code bases to run on In-
tel and AMD GPUs. Portable programming models and frameworks such as
Kokkos, HIP and SyCL have been investigated [18, 7], and implementations for
production-grade software are under way. Here we evaluate use of OpenMP as a
portable programming model for Grid [8], a new lattice QCD library written in
modern C++. Since Grid is a fairly large library, with multi-level abstractions,
we use a mini-app based on Grid, GridMini °, to evaluate several OpenMP
features that are needed to support LQCD computing, including the target
directive and associated data management clauses.

2.3.2 Application Motif LQCD is a cartesian-grid based application, with a
four-dimensional hypercubic mesh representing space and time. Each grid point
represents a quark field variable, while the links between grid points approx-
imate the gluon field variables. The main computational algorithm in lattice
QCD is Markov Chain Monte Carlo simulations that are used to generate en-
sembles of background gluon fields. These gluon field ensembles are then used
to perform measurement calculations which then lead to physical results. In
both the Monte Carlo ensemble generation and measurement calculations, high-
dimensional complex sparse matrix inversions are needed, which are usually done
through iterative linear solvers such as conjugate gradient (CG). In CG, the
key computational kernel is high-dimensional matrix-vector multiplication, the
so-called Dslash operator in LQCD. There are several variants of the discrete
Dslash operator depending on the discretization schemes used, but in modern
lattice QCD simulations, all of them are very large sparse matrices, on or larger
than the order of 10' x 10'°. The arithmetic intensity for the Dslash operator
is about 1.7 flops per byte in double precision. Since we use red-black precondi-
tioning for CG, the arithmetic intensity is even lower, reduced to 0.85 flops per
byte. Therefore LQCD computation is highly memory bandwidth bound, and
the on-node performance of LQCD code depends on achieving as much memory
bandwidth as possible on the given architecture. Grid has been highly optimized
for many-core and multi-core CPUs with efficient SIMD vectorization, so our
work focuses on performance and portability on the GPUs.

2.3.3 OpenMP parallelization strategy Grid and GridMini support dif-
ferent architectures at the low level through C++ preprocessor macros, which
may invoke different implementations. Since LQCD parallelization is mostly
done to the for loops that iterate through lattice sites, an accelerator _for
macro is defined, along with function attribute macros that may expand to dif-
ferent architecture-dependent definitions. Different implementations are enabled

9 https://github.com/meifeng/GridMini
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through macros passed through the compiler flag -D. The OpenMP paralleization
for CPUs uses the standard omp parallel for directive, while for accelerator
offloading, omp target directives are used. A relevant code snippet is shown in

Listing 1.1.

1| #define naked_for(i,num,...) for ( uint64_t i=0;i<num;i++) { __VA_ARGS__ } ;

2| #define accelerator_inline __attribute__((always_inline)) inline

#ifdef OMPTARGET

4| #define accelerator_for(iterator,num,nsimd, ... ) \

5| { _Pragma("omp target teams distribute parallel for num_teams(nteams) thread_limit(gpu_threads)") \
6 naked_for (iterator, num, { __VA_ARGS__ }); }
7| #elif defined (GRID_OMP)

8| #define accelerator_for(iterator,num,nsimd, ... )

9| #endif

_Pragma("omp parallel for") naked_for(iterator, num, { __VA_ARGS__ });

11| //other code omitted

12 | accelerator_for(ss,me.size(),1,{

13 me[ss] = eval(ss,expr);
14 b

Listing 1.1. C++ macros that define the loop-level computation in GridMini.

A more tricky issue is the memory management, as Grid uses deeply nested
data structures. In the CUDA implementation, cudaMallocManaged is used as
the default dynamic memory allocator, so it is unnecessary to perform man-
ual data management. Previously [5], we successfully used cudaMallocManaged
together with OpenMP target offloading. But since it is CUDA specific, the
code cannot run on other GPU architectures. Recently we have successfully re-
placed cudaMallocManaged with manual data management through OpenMP
map clauses, but in order to do that, we have to explicitly expose the raw data
pointer. An example of this is shown in Listing 1.2.

1| auto xv=x.View(); auto yv=y.View(); auto zv=z.View(); //x,y,z are arrays of SU(3) matrices
2| #pragna omp declare mapper(decltype(xv) x) map(x._odata[0:x.size()]) map(x)
extern uint32_t gpu_threads
#pragma omp target enter data map(alloc:zv) map(to:xv) map(to:yv)
#pragma omp target teams distribute parallel for thread_limit(gpu_threads)
for(int64_t s=0;s<vol;s++) {
zv[s]l=xv[sl*yv([s];

w0~

¥

#pragma omp target exit data map (from:zv) map (delete:yv) map (delete:xv)

Listing 1.2. Manual data mapping in GridMini.

2.3.4 Results We use the SU(3)xSU(3) benchmark (main computation is
shown in Listing 1.2) to evaluate the GPU memory bandwidth, as this is highly
indicative of the performance we can achieve on the GPUs since our application
is memory-bandwidth bound. We compiled our code with LLVM /Clang++ built
from the main LLVM repository on 01/17/2021, with the compiling options s
td=c++14-g-fopenmp-fopenmp-cuda-mode-03-fopenmp-targets=nvptx64-n
vidia-cuda. We used gcc/8.3.0 and cuda/11.0.3. The results for achieved
GPU memory bandwidth of the NVIDIA V100 GPU on the NERSC’s CoriGPU
system as a function of the memory footprint are shown in Figure 5, where
we compare four different implementations. 11vm map refers to the implementa-
tion with manual map clauses and malloc memory allocator. 11vm managed uses
cudaMallocManaged without any manual data mapping. 11vm map+managed al-
locates memory with cudaMallocManaged, but also uses map to do data copying.




12 B.Chapman et al.
nvcc managed is the reference CUDA implementation with cudaMallocManaged,
compiled with the nvcec compiler.
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Fig.5. Measured GPU memory bandwidth on NVIDIA V100 (Cori) with the
SU(3)xSU(3) benchmark.

We find that the 11vm map implementation generally performs a little worse
than the 11vm managed version. But if we combine the managed memory alloca-
tor with manual data mapping, in the 11vm map+managed version, we obtain the
best performance, which even outperforms the native CUDA implementation. In
all these tests, 8 GPU threads per block is used, which gives the best perfor-
mance compared to 16, 32 and up to 512 threads per block. This is probably
due to the fact that the current data layout does not guarantee data coalescing.

3 Conclusions

The five applications presented in the paper(s) have different complexity and
computational motifs. As seen in the BerkeleyGW application, some optimiza-
tions required line-level profiling information. It is therefore desirable for all
OpenMP compilers to provide accurate symbolic debugging information without
impeding compiler optimizations. For the WDMApp/XGC application, the main
challenge was to tune a multi-level loop nest using OpenMP target offload con-
structs. Finding concurrency in applications and exploiting it using fine-grained
parallelism is important for achieving good performance. With different vendor
implementations, it becomes necessary for applications to be aware of equivalent
OpenMP directives that may not be equally performant. For example, a parallel
for construct was converted into a loop construct because this provided better
performance with the NVIDIA OpenMP compiler.



OpenMP Application Experiences IT 13

The lessons learnt by the GAMESS team during the hackathon were the
need to reduce overhead in atomic operations using chunks, strategies for target
data and offloading blocks of code, and selecting the optimal number of threads
per team. The GESTS application discussed the some of the current challenges
they are facing regarding the portable implementation of the extreme-scale 3D
FFTs, a Fortran code, using OpenMP, and reported on efficient strided data
copies. The detach clause is used to address the problem of synchronizing an
OpenMP kernel that uses the depend clause with a prior asynchronous CUDA
call. The GridMini application team has reported on their SU(3)xSU(3) bench-
mark in order to evaluate the GPU memory bandwidth, since the application is
memory-bandwidth bound. They found that cudaMallocManaged allocators can
be replaced with OpenMP unstructured maps for local host storage and that the
use of cudaMallocManaged with OpenMP gave the best performance.

The more successful application teams had mini-apps to experiment with
before porting the actual application. One major advantage of this approach is
isolation of experimental changes for easy debugging and reproducibility. Having
compiler experts at hand to help with ports is beneficial to applications, espe-
cially while resolving issues that appear in full-scale application runs but are
not reproducible in mini-apps. Most applications also reported issues between
OpenMP and vendor math libraries. It would be beneficial for applications if
there were prepackaged compatible math libraries with all OpenMP compilers.
Most of the applications were successfully able to use the OpenMP offload API
as well as see speedup, which is very encouraging for OpenMP adoption by
applications.
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