This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 10317C

Towards Containerized HPC
Applications at Exascale

PRESENTED BY
Andrew J. Younge

Sandia National Laboratories

' '
ajyoung@sandia.gov
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
E 4 S F orum 2 O 2 O Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract
DE-NA0003525.

Outline

=Container background
*Introduction to Supercontainers
*Building HPC Containers
*Running HPC Containers
=Conclusion

What is a Container?

necessary to execute single process or task

= Encapsulates the entire software ecosystem (minus the kernel)

= OS-level virtualization mechanism
= Different than Virtual Machines
= Think "chroot” on steroids, BSD Jails
= Dependent on host OS, which is (usually) Linux
= Uses namespaces (user, mount, pid, etc)

|
= Unit of software which packages up all code and dependencies B |

= Docker is the leading container runtime
= Used extensively in industry/cloud enterprise
= Foundation for Kubernetes and Google cloud
= Supported in Amazon AWS cloud

High Performance Computing

= DOE has a long history of investment in HPC

= Stockpile Stewardship & simulation-based science

= ASCI Red — first Teraflop Supercomputer
= Red Storm - 100 Tflops and MPP
= Summit/Sierra - 200 Pflops

= Bulk synchronous parallel computing ~ HPC
= 1 application spanning thousands of CPUs concurrently
= Large-scale capability simulations
= Also many capacity workloads

= HPC represents the pinnacle of computing today

= Mission workloads computational requirements demand scale
= Tightly coupled BSP simulation codes typically use MPI for communication
= Many workload ensembles quickly expanding to ML/DL/AI

The Cloudy relationship with HPC

= Public cloud computing is often prohibitive
= Cost — expensive to run millions of CPU hours
= Security — Can we trust public clouds?

= However, HPC is not traditionally as flexible as “the cloud”
= Shared resource models
= Static software environments
= Requires modification of many COTS tools

= Containers have become a primary cloud deployment model

= What about Containers in HPC?
= Can we support containers in HPC in the same way as clouds do? Yes and No
= Does this model fit for _both HPC and emerging workloads across DOE? Yes and No
= Can we adapt our current programming environments into container images? Yes

HPC Container Vision

Support HPC software development and testing on laptops/workstations
= Create working container builds that can run on supercomputers
= Minimize dev time on supercomputers

= Scale containers to leadership-class supercomputing resources

= Developers specify how to build the environment AND the application
= Users/analysts just import and run on a supercomputer
= Many containers, but with different manifests target platforms & deployments.
= Not bound to vendor release cycles, sysadmin regs, etc

Enable full-scale software ecosystems = E4S

= Performance matters
= Use mini-apps to “shake out” container implementations on HPC
= Expand to exascale workloads & applications
= Enable features to support emerging workflows (ML/DL/in-situ analytics)

\

Z \
AsSC

ECP Supercontainers

= Joint DOE effort - LANL, LBNL, LLNL, Sandia, U. of Oregon

= Ensure container runtimes will be scalable, interoperable, and well integrated across DOE ‘
= Enable container deployments from laptops to Exascale

= Assist Exascale applications and facilities leverage containers most efficiently
= Activities conducted in the context of interoperability k
= Portable solutions

= Optimized E4S container images for each machine type SUPERCONTAINERS

= Containerized ECP that runs on Astra, A21, El-Capitan, ...
= Work for multiple container implementations

= Not picking a “winning” container runtime
= Multiple DOE facilities at multiple scales

= Three-fold approach
= Scalable R&D activities
= Collaboration with related ST and AD projects
= Training, Education, and Support

Building HPC Container Images

Have to start from somewhere...

E4S: Extreme-scale Scientific Software Stack

O Curated release of ECP ST products based on Spack [http://spack.io] package
manager
Spack binary build caches for bare-metal installs
= x86_ 64, ppcb4le (IBM Power 9), and aarch64 (ARMG64)

O Container images on DockerHub and E4S website of pre-built binaries of ECP ST

products
O Base images and full featured containers (GPU support)
O GitHub recipes for creating custom images from base images

= GitLab integration for building E4S images
©® E4S validation test suite on GitHub https://e4s.io
® E4S VirtualBox image with support for container runtimes

® Docker, Singularity, Shifter, Charliecloud

= AWS image to deploy E4S on EC2

Credit: Sameer Shende (U of Oregon)

E4S Container Images Available

= Providing E4S container images on Dockerhub
= https://hub.docker.com/u/ecpeds

= Multiple ISAs
= x86_064, ppcb4le, and aarch64

= Multiple OS distros
= Centos, UBI (Red Hat), and Ubuntu images

= Enabling containerized CI in Gitlab (see T. Gamblin’s talk)

= Additional GPU support incoming

ﬂ' docker

There is a container performance-portability continuum

Portability

Performance

How do we strike the right balance?

= Portable container images can be moved form
one resource deployment to another with ease

= Reproducibility is possible
= Everything (minus kernel) is self-contained
= Traceability is possible via build manuscripts
= No image modifications

= Performance can suffer - no optimizations
= Can’t build for AVX512 and run on Haswell

= Unable to leverage latest GPU drivers

Performant container images can run at near-
native performance compared to natively build
applications

Requires targeted builds for custom hardware
— Specialized interconnect optimizations
— Vendor-proprietary software

Host libraries are mounted into containers
— Load system MPI library (glibc issues!?)
— Match accelerator libs to host driver

Not portable across multiple systems

I D s | S

Spack environments help with building containers

= We recently started providing base images with Spack preinstalled. ‘
= Very easy to build a container with some Spack packages in it:
FROM spack/centos:7 [Base image with Spack
spack-docker-demo/ . in PATH
Dockerfile —»WORKDIR /build
vaml COPY spack.yaml . Copy in spack.yaml
SPRCIC) RUN spack install Then run spackinstall

spack:

& Build with docker build. Specs:

docker - hdf5 @1.8.16 . .

r Run with Singularity — openmpi fabrics=libfabric List of packages to install,
- nalu

\sj (or some other tool)

with constraints |

Credit: Todd Gamblin (LLNL)

A Containerized Cl Pipeline eleases

= As a developer | want to generate container builds from code pull-regquests so

that containers are 115ed to test & denlov new code on taraet HPC, machines.

Gitlab

I\ :
I\
. |
!
Contirfuous Integration
[Build l’ Test I Deploy
i :
!

IBM

Spack Binary Mirror Heterogeneous Build Farm
Internal Network

Focus on OCl-spec Container Images

= Container runtime diversity does not mean diversity in container image types! ‘
= Directed focus only on Open Container Initiative (OCI) images

= Effectively build from Docker v2.2 format
= Uses Dockerfiles

= Follows community-driven image conventions

= Can be built with several modern container runtimes
= Docker, Podman, Buildah, ...

= Can be run on several HPD container runtimes
= Singularity, Shifter, Charliecloud, SARUS, ...

= Can be stored across many DOE container registry services:

= Gitlab, OpenShift, Harbor, ... o P E CONTAINER I

. . . INITIATIVE
= Allow for ECP to integrate and share containers across wider connnuiiny

= Deploy ECP software in the cloud?

https://github.com/opencontainers/image-spec

Custom OC| Image Labels

= HPC apps require special system libraries
= CrayMPI linked in at runtime

e

IFTE
FROM centos:7 SHIFTER

LABEL org.supercontainers.mpi=mpich
LABEL org.supercontainers. glibc=2.17

RUN yum —y update && \

= Fix: Leverage OCIl-compatible image LABELs yum —y install geec make gec—gfortran \

= Insert directly in Dockerfile

= Embedding metadata into spec

= Labels specify expectations from the host

gcc—c++ wget curl

RUN B=mpich.org/static /downloads && V=3.2 && \
wget $B/$V/mpich—$V. tar.gz && \
tar xf mpich—$V.tar.gz && \
cd mpich—$V && \

= HPC container runtime intercepts labels, makes appro /configure && \
= Specify MPI version, Glibc expectation, etc

* Implemented prototype solution in Shifter

= Working with OCI container community

Credit: Shane Canon (LBNL)

make && \
make 1nstall

ADD helloworld.c /src/helloworld.c

RUN mpicc —o /bin/hello /src/helloworld.c

I
Label Values Comment | |
org.supercontainers.mpi {mpich,openmpi} Required MPI support, ABI compatibility
org.supercontainers.gpu {cuda,opencl,rocm, etc} Required GPU library support
org.supercontainers.glibc | Semantic version: XX.YY.Z | Specific version of GLIBC

Podman for Un-privileged Container Builds

= Build containers directly on HPC nodes
= DOing SO W/ DOCker reqUireS rOOt podman build -t "gitlab.sandia.gov/atse/astra:1.2.4" .
= Need user functionality for building containers

= Leverage user namespaces for building
containers

= Podman and Buildah to provide container
builds funqtionality while maintaining user- Sodman push gitlab.sandia.gov/atse/ astrait 2.4
level permissions
= User Nnamespaces l
= Set uid/gid mappers
= TBD Overlay & FUSE for mount

singularity build atse-astra-1.2.4.sif docker://gitlab.sandia.gov/atse/astra:1.2.4

= Next: Enhanced E4S builds for ECP

Pedretti, Younge, et. al, Chronicles of Astra: Challenges and Lessons from the First Petascale Arm Supercomputer , to appear in SC20

Running Containers at scale

Petascale? Exascale?

HPC Container Runtimes

= Docker is not good fit for running HPC workloads
= Building with Docker on my laptop is ok
= Security issues, no HPC integration

= Several different container options in HPC
]S
>

SHIFTER \ J Nhﬂiﬁlmec,bﬂjd

= All 3 HPC container runtimes are usable in HPC today!

= Each runtime offers different designs and OS mechanisms
= Storage & mgmt of images
= User, PID, Mount namespaces
= Security models
= OCI vs Docker vs Singularity images
= [mage signing, validation, registries, etc

HPC container runtimes are rapidly emerging at DOE sites 1

fs\ ALCF fs\ LLNL

~ Theta: Singularity — Sierra/Lassen: Singularity (trial)
~ Aurora: Singularity (TBD) — Linux clusters: Singularity

— El Capitan: Singularity (2023)

& - LANL

Charliecloud — Trinity: Charliecloud
— Linux clusters: Charliecloud
— Crossroads: Charliecloud (2021)

fs\ OLCF

— Summit: Singularity (trial)
— Frontier: Singularity (2022)

@
.Q NERSC rs\ Sandia
. — Cori: Shifter — Astra: Singularity, Charliecloud, & Podma
— Perlmutter: Shifter or Singularity (2020) @ — Linux clusters: Singularity

Many sites are rolling out container runtimes for users.

We are developing resources to facilitate consistent, performant deployment across sites.

“HPC container runtimes have minimal or no performance impact”

HPCG benchmark
102
= LANL team confirms all HPC container ‘

runtimes perform well 101 -
= Performance delta < 1% @ 512 nodes

= “we hypothesize that the performance impact
of containerization itself is nil.”

= Memory consumption may differ

100 - -

99 |-

98 -

= Pick a container runtime, any runtime!
= More about features and experience

97 ——— bare metal
—s— Charliecloud
Shifter
CL - Singularity

= Need to confirm experiments to e S T T T R S

1 2 4 8 16 32 64 128 256 512

EanCa|e hode count

FLOPS percent of median bare metal

From: Alfred Torrez, Tim Randles, and Reid Priedhorsky, “HPC Container Runciiics i1iuve
Minimal or No Performance Impact”, IEEE CANOPIE-HPC Workshop @ SC19, Nov 2019.

10000 A

Time (seconds)

1000 -

Case Study |: SNL ATDM App

SPARC HIFIRE-L1 Native v Container

‘H__. Native

S, - = -Containe

. |

-, -

Points:
S, « Supporting SPARC containerized build &
deployment
S, » Deployed on Astra with Singularity
g * Near-native performance using a container
« Container faster due to testing new
optimizations for TX2
« Testing HIFIRE-1 Experiment (MacLean et

al. 2008)
128 (7168 256 (14336 512 (28572 1024 (57344
|) (l)\lodes (cores) () () « UNCLASSIFIED problem

Younge, et. al, (U) Practice and Experience with Containers and ARM64 on Astra, NNSA/AWE JOWOG 34

Vendor Engagement is a continual activity
Starting working with Vendors & HW providers to enable container deployment

Solutions must be both functional AND performant!
= Scale is critical to success
= Handle the growing heterogeneity in the HPC marketplace

Working with vendors to provide optimized base container images
= How do | build a my container to use CrayPE tools?
= How do | use the latest GPU toolchain for my exa-app in a container?

Enable new capabilities for controlling HPC software stack management [facilities]
= Release testing, Rollback debugging, and cross-system software synchronization

Fix some previous container issues moving forward
= Can we stop runtime library hot-swapping?
= Can we avoid glibc compatibility issues indefinitely?

)

Arzonn; A

3 OAK RIDGE
- Nati¢ nal Labor: tory

r)_ U.s. DEPARTH 7 0F
% ENERGY

Ol B W JINCTTIER
0 s o
AMDZ1

Containers and Reproducibility?

= Reproducibility is a cornerstone of science!

= Consistent results across studies aimed at answering the
same scientific question

= Critically important in conducting computational science today

= DOE/NNSA must extend the lifecycle without underground testing \

= Rely on modeling and simulation apps to perform this task
= Incorporate a multitude of physics and engineering models
= Executed on leadership-class supercomputers

= Long-term studies take years
= Any particular simulation may not seem important at the time
= Later analysis may prove to demonstrate value in an old simulation
= Need to reproduce & reevaluate runs many months or years later!

= Containerized builds can help future reproducibility efforts

= Containers alone are not the answer
= Can be part of the solution

uccess

Conclusion

= Containers will be a viable software deployment model for the

first Exascale platforms

= Demonstrated value of container models

= Deployments in testbeds to production Petascale
= Modern DevOps approach with containers useful

= Supercontainers = Container enablement at Exascale
= Enable efficient build and execution of container images

= Simplify HPC application development via modern DevOps

= E4S will prove-out containerized SW deployments at Exascale

= Support next generation Al & ML apps

= Containers can increase software flexibility in HPC
= Could be the new-default mechanism for software deployment?

=(C)

P

FROIECT

\
Z\

H[A50C

Acknowledgements:
Kevin Pedretti (1422)
Si Hammond (1422)
Jim Laros (1422)
Anthony Agelastos (9326)
Stephen Olivier (1423)
Justin Lamb (9326)
Jay Lofstead (1423)
Aron Warren (9327)
Erik Illescas (9327)
Ron Brightwell (1423)
Mike Heroux (1400)

Collaborators:

Shane Canon (NERSC)
Todd Gamblin (LLNL)
Reid Priedhorsky (LANL)
Sameer Shende (Oregon)
Todd Munson (ANL)

Angel Beltre (Binghamton)
Greg Kurtzer (CtrllQ)
Eduardo Arango (Red Hat)

Questions?

ajyounge.com - ajyoung@sandia.gov

—1

Hewlett Packard
Enterprise

s
| -
g

| 2.3 PFLOPs peak
>5000 TX2 ARM CPUs, ~150k cores
‘885 TB/s memory bandwidth peak
332 TB memory

1.2 MW

,,,,
i

ATSE & Collaboration with HPE, OpenHPC, and ARM

Advanced Tri-lab Software Environment = ATSE a r’ Hewlett Packard “§
- Enterprise .
Many pieces to the software stack puzzle
HPE's HPC Software Stack e
« HPE Cluster Manager o | |
+ HPE MPI (+ XPMEM) S "oAcpplcatonsute :
Tools . !
Arm Math Routines }

 Arm HPC Compilers
 Arm Math Libraries
* Allinea Tools

Open source tools - OpenHPC
e Slurm, OpenMPI, etc

Mellanox-OFED & HPC-X
RedHat 7.x for aarch64 - TOSS

LLNL | Sandia

0SS

MLNX | ScMD

Arm

HPE

System Software Stack Testing & Debugging

= Astra ATSE programming environment release consists of:
= TOSS base operating system + Mellanox InfiniBand stack
= {2 compilers} * {3 mpi implementations} * {~25 libraries} = 150 packages
= Each release packaged as a container for testing and archival purposes

Astra ATSE Astra ATSE Astra ATSE Astra ATSE

1.2.0 1.2.1 1.2.2 1.2.3

Test release in
container first

Conrtailiiriler Contailiiher Container
Then roll out release | STRA STRA A RA SEL
on system natively 4 \
= ATSE Container use cases:

= Release testing: Enables full applications to be built and run at scale (2048+ nodes) before rolling out
natively

= Rollback debug: If issues are identified, ability to easily go back to a prior software release and test

= Cross-system synchronization: Move full user-level software environments between systems. |n one
instance, this allowed an Astra InfiniBand library bug to be debugged off platform on another Arm cluster.

Container

29 _ Case Study 2: Nalu CFD

Nalu - Container vs. Native - Strong Scaling

7,000 : 1.200
=, 000 SESS : == 1.150
O 5 000 -
%\ 1.100
(] m—
£ 4,000 E——————+——— 1
= 1.050
< 3,000
% ;
= 1.000
o 2,000
=
1.000 0.950
0 0.900
0 2 4 6 8 10 12 14 16 18 20
Nodes

Nalu: A generalized unstructured massively parallel

low Mach CFD flow code designed to support)) .
energy applications of interest —+—Native —x—Container Ratio

Agelastos, Younge, et. al, (U) Quantifying Metrics to Evaluate Containers for Deployment and Usage of NNSA Production Applications, NECDC 2018

Container Speedup

Case Study 3: Reinforcement Learning Algorithms

* An evolutionary approach for multi-objective optimization
« Evolutionary Algorithms are gradient-free population-based methods

* EA benefits from parallelization and does not require GPU acceleration

« Population of agents is generated and attempts a problem in parallel
* High performance agents are used for next population generation

Astra has been ideal for experimenting with EA

We are using Astra for scaling of ASTool

- Coevolves an agent’s decision making
policy and body

Built Singularity container
» Ubuntu 16.04, NumPy, PyBullet, ...

- Simple to use and modify
500 nodes - 7.5 hours

Credit: https://designrl.github.io/

Takeaway: Containers help support Emerging HPC workloads like Reinforcement Learning

Kubernetes is coming...

kubernetes

» Containers are changing the software
ecosystem for application deployment

= Container orchestration tools are now
mainstream
= \/ERY different than traditional HPC

* No batch job scheduler, no jobs, just services and and
orchestrator

» Study Opportunities container
orchestration frameworks in HPC
» Performance, Usability, and Constraints

» Orchestration and batch?
» Separate solutions deployed today
= Orchestration _and_ batch!

Credit: Angel Beltre (Binghamton University)

Application Pod Al

Flannel

==

/" /| AwlcaionPod
' iniband .. _ | ______ N ____ Infiniband U
device |78 device

\
[Host Linux Kernel D;\
0,

/
. \[Host Linux Kerne

'J

M
%\,

| Applcation Pod |

Bare Metal Docker Swarm Kubernetes

......... S e
§ N o &

|
|
'
'
| ‘
|
)
|
|
'
)
|

Position |: Heterogeneity is the Future of HPC... |

I
SUEHEREE I ELE1IA2018 |

= HPC workloads are becoming more diverse

, , _ PRODUCTIVE COMPUTATIONAL SCIENCE
= |t's not just BSP simulations any more IN THE ERA OF EXTREME HETEROGENEITY

= Data is a cornerstone in ML, analytics, ...

= And HPC hardware will be more diverse
= “Era of predictable [hardware] improvements is ending.”

= Expecting custom aggregated components at the system
level

= How will system software cope and support
system-level heterogeneity?
= How will programmers be efficient in such a landscape?

= Will abstractions help or hinder performance?

Report for

- We n eed m O re AP I S " DOE ASCR Basic Research Needs Workshop on Extreme Heterogeneity

January 23-25, 2018

Position 2: ... and so is the Cloud

= The hyperscalers are finally paying attention to HPC ‘

= “The physical network topology does affect performance; particularly important is the
performance of MPI Allreduce, grouped by splitting the mesh by a subset of the dimensions,
which can be very efficient [5] [6] if each such group is physically connected.” — Shazeer et al
Google Brain, Mesh-TensorFlow: Deep Learning for Supercomputers.

= As learning techniques grow in scale, HPC becomes more important.

= HPC cannot compete with the hyperscalers
= Let’s stop trying and start integrating
= That doesn’t mean adopting Cloud as-is
= That doesn’t dissolving HPC either

= The closer HPC and cloud paradigms get, the better we all are
= Encourage open source infrastructure
= Collaborative partnerships

= Avoid boutique solutions without sacrificing performance

