
Towards Containerized HPC
Applications at Exascale

PRESENTED BY

Andrew J. Younge

Sandia National Laboratories

ajyoung@sandia.gov

E4S Forum 2020

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology Et Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract

DE-NA0003525.

SAND2020-10317C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Outline

Container background

Introduction to Supercontainers

Building HPC Containers

Running HPC Containers

Conclusion

What is a Container?

Unit of software which packages up all code and dependencies
necessary to execute single process or task

Encapsulates the entire software ecosystem (minus the kernel)

OS-level virtualization mechanism
Different than Virtual Machines

Think "chroot" on steroids, BSD Jails

Dependent on host OS, which is (usually) Linux

Uses namespaces (user, mount, pid, etc)

Docker is the leading container runtime
Used extensively in industry/cloud enterprise

Foundation for Kubernetes and Google cloud

Supported in Amazon AWS cloud

High Performance Computing

DOE has a long history of investment in HPC
Stockpile Stewardship & simulation-based science
ASCI Red — first Teraflop Supercomputer

Red Storm - 100 Tflops and MPP

Summit/Sierra - 200 Pflops

Bulk synchronous parallel computing — HPC
1 application spanning thousands of CPUs concurrently
Large-scale capability simulations

Also many capacity workloads

HPC represents the pinnacle of computing today

Mission workloads computational requirements demand scale
Tightly coupled BSP simulation codes typically use MPI for communication
Many workload ensembles quickly expanding to ML/DL/AI

The Cloudy relationship with HPC

Public cloud computing is often prohibitive
Cost — expensive to run millions of CPU hours
Security — Can we trust public clouds?

However, HPC is not traditionally as flexible as "the cloud"
Shared resource models
Static software environments
Requires modification of many COTS tools

Containers have become a primary cloud deployment model

What about Containers in HPC?
Can we support containers in HPC in the same way as clouds do?
Does this model fit for _both_ HPC and emerging workloads across DOE?

Yes and No
Yes and No

Can we adapt our current programming environments into container images? Yes

HPC Container Vision \
Ell-----t

ARSE'
Support HPC software development and testing on laptops/workstations
Create working container builds that can run on supercomputers
Minimize dev time on supercomputers

1Scale containers to leadership-class supercomputing resources
I

Developers specify how to build the environment AND the application -
Users/analysts just import and run on a supercomputer
Many containers, but with different manifests target platforms & deployments.
Not bound to vendor release cycles, sysadmin reqs, etc

Enable full-scale software ecosystems = E4S

Performance matters
Use mini-apps to "shake out" container implementations on HPC I
Expand to exascale workloads & applications
Enable features to support emerging workflows (ML/DL/in-situ analytics)

ECP Supercontainers

Joint DOE effort - LANL, LBNL, LLNL, Sandia, U. of Oregon

Ensure container runtimes will be scalable, interoperable, and well integrated across DOE
Enable container deployments from laptops to Exascale

Assist Exascale applications and facilities leverage containers most efficiently

Three-fold approach
Scalable R&D activities

Collaboration with related ST and AD projects

Training, Education, and Support

Activities conducted in the context of interoperability
Portable solutions
Optimized E4S container images for each machine type SUPERCONTAINERS ■
Containerized ECP that runs on Astra, A21, EI-Capitan,

Work for multiple container implementations 1E1
Not picking a "winning" container runtime

emir
Multiple DOE facilities at multiple scales EXRSCRLE COMPUTING PROJECT

$
Building HPC Container Images

Have to start from somewhere...

E4S: Extreme-scale Scientific Software Stack

Curated release of ECP ST products based on Spack [http://spack.io] package

manager

Spack binary build caches for bare-metal installs

x86_64, ppc64le (IBM Power 9), and aarch64 (ARM64)

Container images on DockerHub and E4S website of pre-built binaries of ECP ST

products

CDBase images and full featured containers (GPU support)
(IDGitHub recipes for creating custom images from base images

GitLab integration for building E4S images

w E4S validation test suite on GitHub https://e4s.io
0E4S VirtualBox image with support for container runtimes

i'm Docker, Singularity, Shifter, Charliecloud

AWS image to deploy E4S on EC2

E4S

Credit: Sameer Shende (U of Oregon)

E4S Container Images Available

Providing E4S container images on Dockerhub
https://hub.docker.com/u/ecpe4s

Multiple ISAs I
x86_64, ppc641e, and aarch64

Multiple OS distros
Centos, UBI (Red Hat), and Ubuntu images

Enabling containerized CI in Gitlab (see T. Gamblin's talk)

Additional GPU support incoming

-ay-docker hub

1

There is a container performance-portability continuum

Portability
Performance

How do we strike the right balance?

Portable container images can be moved form
one resource deployment to another with ease

Reproducibility is possible
Everything (minus kernel) is self-contained

Traceability is possible via build manuscripts

No image modifications

Performance can suffer - no optimizations
Can't build for AVX512 and run on Haswell

Unable to leverage latest GPU drivers

• Performant container images can run at near-
native performance compared to natively build
applications

• Requires targeted builds for custom hardware

- Specialized interconnect optimizations

- Vendor-proprietary software

• Host libraries are mounted into containers

- Load system MPI library (glibc issues!?)

- Match accelerator libs to host driver

• Not portable across multiple systems

I Spack environments help with building containers
We recently started providing base images with Spack preinstalled.
Very easy to build a container with some Spack packages in it:

spack-docker-demo/

Dockerfile

spack.yaml

* Build with docker build .
docker

re Run with Singularity

Vari (or some other tool)

 ►

FROM spack/centos:7

WORKDIR /build
COPY spack.yaml .
RUN spack install

spack:
specs:

— hdf5 @1.8.16
— openmpi fabrics=libfabric
— nalu

IM

Base image with Spack
in PAT H

Copy in spack.yaml
Then run spack install

List of packages to install,
with constraints

Credit: Todd Gamblin (LLNL)

A Containerized CI Pipeline releases

As a developer I want to generate container builds from code pull requests so
that cnntninprs Prei 11Reid tn tp.gt denInv npw cndp nn tampt HPC machinp.s

Spack Binary Mirror

Gitlab

Git Repo

►

Contirit.Jous Integration

Cont iner
Re• istry

Heterogeneous Build Farm

Wont 146W/wit

Focus on OCI-spec Container Images

Container runtime diversity does not mean diversity in container image types!

Directed focus only on Open Container Initiative (OCI) images

Effectively build from Docker v2.2 format
Uses Dockerfiles
Follows community-driven image conventions

Can be built with several modern container runtimes
Docker, Podman, Buildah,

Can be run on several HPD container runtimes
Singularity, Shifter, Charliecloud, SARUS,

Can be stored across many DOE container registry services:
Gitlab, OpenShift, Harbor, ... OPEN CONTAINERINITIATIVE

Allow for ECP to integrate and share containers across wider coluillulilLy
Deploy ECP software in the cloud?

https://github.com/opencontainers/image-spec

Custom OCI Image Labels

FROM centos :7

HPC apps require special system libraries LABEL org. supercontainers .mpi=mpich

CrayMPl linked in at runtime

Fix: Leverage OCI-compatible image LABELs
Insert directly in Dockerfile

Embedding metadata into spec

Labels specify expectations from the host
HPC container runtime intercepts labels, makes appro

Specify MPI version, Glibc expectation, etc

Implemented prototype solution in Shifter

Working with OCI container community

Credit: Shane Canon (LBNL)

LABEL org.supercontainers.glibc=2A7

RUN yum —y
yum —y

SHIFTER

update &&
install gcc make gcc—gfortran
gcc—c++ wget curl

RUN B=tripich.org/ static /downloads && V=3_2
wget $B/$11/Inpich—$V. tar . gz &&
tar xf inpich—$V. tar . gz &&
cd mpich—$V &&
./ configure &&
rnake &&
make install

ADD helloworld .c /src /helloworld .c

RUN mpicc —o /bin/ hello /src /helloworld .c

Label Values Comment
orgsupercontainers.mpi
org.supercontainers.gpu
org.supercontainers.glibc

ftnpich,opentnpil
{cuda,opencl,rocm, etc}
Semantic version: XX.YY.Z

Required MPI support, ABI compatibility
Required GPU library support
Specific version of GLIBC

Podman for Un-privileged Container Builds

Build containers directly on HPC nodes
Doing so w/ Docker requires root

Need user functionality for building containers

Leverage user namespaces for _building_
containers

Podman and Buildah to provide container
builds functionality while maintaining user-
level permissions
User namespaces

Set uid/gid mappers

TBD Overlay & FUSE for mount

Next: Enhanced E4S builds for ECP

podman build -t "gitlab.sandia.gov/atse/astra:1.2.4" .

ATSE Programming Environment

(Ts

S7E'
_ Cs' UCX

Srr TOSS Runtime Libra es
Client

RMC Tri-Lab Operating

syste sffia cro Osmerospraccpe
Lustre MOFED

podman push gitlab.sandia.gov/atse/astra:1.2.4

singularity build atse-astra-1.2.4.sif docker://gitlab.sandia.gov/atse/astra:1.2.4

Pedretti, Younge, et. al, Chronicles of Astra: Challenges and Lessons from the First Petascale Arm Supercomputer , to appear in SC20

Running Containers at scale

Petascale? Exascale?

I HPC Container Runtimes
Docker is not good fit for running HPC workloads
Building with Docker on my laptop is ok

Security issues, no HPC integration

Several different container options in HPC

SHIFTER

All 3 HPC container runtimes are usable in HPC today!

Each runtime offers different designs and OS mechanisms
Storage & mgmt of images

User, PID, Mount namespaces

Security models

OCI vs Docker vs Singularity images

Image signing, validation, registries, etc

SHIFTER

HPC container runtimes are

LSJ ALCF

- Theta: Singularity

- Aurora: Singularity (TBD)

CS OLCF

- Summit: Singularity (trial)

- Frontier: Singularity (2022)

4h NERSC
• - Cori: Shifter

rapidly emerging at DOE sites

- Perlmutter: Shifter or Singularity (2020)

lSJ

LLNL

- Sierra/Lassen: Singularity (trial)

- Linux clusters: Singularity

- El Capitan: Singularity (2023)

LANL

- Trinity: Charliecloud

- Linux clusters: Charliecloud

- Crossroads: Charliecloud (2021)

Sandia
- Astra: Singularity, Charliecloud, & Podma

- Linux clusters: Singularity

Many sites are rolling out container runtimes for users.

We are developing resources to facilitate consistent, performant deployment across sites.

"HPC container runtimes have minimal or no performance impact"

LANL team confirms all HPC container
runtimes perform well
i Performance delta < 1% @ 512 nodes

• "we hypothesize that the performance impact
of containerization itself is nil."

Memory consumption may differ

Pick a container runtime, any runtime!
More about features and experience

Need to confirm experiments to
Exascale

F
L
O
P
S
 p
e
r
c
e
n
t
 o
f
 m
e
d
i
a
n
 b
a
r
e
 m
e
t
a
l

102

101

100

99

98

97

96

HPCG benchmark

bare metal

—s— Charliecloud

Shifter

—•— Singularity
I I
1 2 4 8 16 32

node count

64 128

From: Alfred Torrez, Tim Randles, and Reid Priedhorsky, "HPC Container RunLiiiic.) I ILAVC

Minimal or No Performance Impact", IEEE CANOPIE-HPC Workshop @ SC19, Nov 2019.

256 512

10000 —

T
i
m
e
 (
se
co
nd
s)

1000 -

Case Study I : SNL ATDM App

128 (7168)

SPARC FliFiRE-L1 Native v Container

256 (14336) 512 (28572)
Nodes (cores)

••••-••• Native

- -Containe

1024 (57344)

Points:
• Supporting SPARC containerized build &

deployment
• Deployed on Astra with Singularity
• Near-native performance using a container

• Container faster due to testing new
optimizations for TX2

• Testing HIFiRE-1 Experiment (MacLean et
al. 2008)
• UNCLASSIFIED problem

Younge, et. al, (U) Practice and Experience with Containers and ARM64 on Astra, NNSA/AWE JOWOG 34

Vendor Engagement is a continual activity
Starting working with Vendors & HW providers to enable container deployment

Solutions must be both functional AND performant!
Scale is critical to success

Handle the growing heterogeneity in the HPC marketplace

Working with vendors to provide optimized base container images
How do l build a my container to use CrayPE tools?

How do l use the latest GPU toolchain for my exa-app in a container?

Enable new capabilities for controlling HPC software stack management [facilities]
Release testing, Rollback debugging, and cross-system software synchronization

Fix some previous container issues moving forward
Can we stop runtime library hot-swapping?

Can we avoid glibc compatibility issues indefinitely?

M

.4140A K RIDNath nal Labor.

re-tt(A)rtrticis.
404444101.01Mal444...--

ow"

4111MAI 4

1141111,

Containers and Reproducibility?

Reproducibility is a cornerstone of science!
Consistent results across studies aimed at answering the
same scientific question
Critically important in conducting computational science today

DOE/NNSA must extend the lifecycle without underground testing

Rely on modeling and simulation apps to perform this task
Incorporate a multitude of physics and engineering models
Executed on leadership-class supercomputers

Long-term studies take years
Any particular simulation may not seem important at the time
Later analysis may prove to demonstrate value in an old simulation
Need to reproduce & reevaluate runs many months or years later!

Containerized builds can help future reproducibility efforts

Containers alone are not the answer
Can be part of the solution

■

years
of Success

1
1

Conclusion

Containers will be a viable software deployment model for the
first Exascale platforms

Demonstrated value of container models
Deployments in testbeds to production Petascale
Modern DevOps approach with containers useful

Supercontainers = Container enablement at Exascale
Enable efficient build and execution of container images
Simplify HPC application development via modern DevOps

E4S will prove-out containerized SW deployments at Exascale
Support next generation Al & ML apps

Containers can increase software flexibility in HPC

Could be the new-default mechanism for software deployment?

ElE1)1=
EXAMCFN-E cat/puma PPCMCT Fl E

Acknowledgements:
Kevin Pedretti (1422)
Si Hammond (1422)
Jim Laros (1422)
Anthony Agelastos (9326)
Stephen Olivier (1423)
Justin Lamb (9326)
Jay Lofstead (1423)
Aron Warren (9327)
Erik Illescas (9327)
Ron Brightwell (1423)
Mike Heroux (1400)

Collaborators:
Shane Canon (NERSC)
Todd Gamblin (LLNL)
Reid Priedhorsky (LANL)
Sameer Shende (Oregon)
Todd Munson (ANL)
Angel Beltre (Binghamton)
Greg Kurtzer (CtrIIQ)
Eduardo Arango (Red Hat)

1

ajyounge.com - ajyoung@sandia.c-ov

cTk
"Per aspera ad astre

Hewlett Packard
Enterprise

RM SUPERCOMPUTER

2.3 PFLOPs peak
>5000 TX2 ARM CPUs, -150k cores
885 TB/s memory bandwidth peak

332 TB memory
1.2 MW

ATSE & Collaboration with HPE, OpenHPC, and ARM

• Advanced Tri-lab Software Environment = ATSE
• Many pieces to the software stack puzzle
• HPE's HPC Software Stack

• HPE Cluster Manager
• HPE MPI (+ XPMEM) Sysadmin 1

T
• Arm

ools

• Arm HPC Compilers
• Arm Math Libraries
• Allinea Tools

• Open source tools - OpenHPC
• Slurm, OpenMPl, etc

• Mellanox-OFED & HPC-X
• RedHat 7.x for aarch64 - TOSS

I-

arm Hewlett Packard
Enterprise

NNSAApplication Suite

Math Routines

-9-

Container

M

1

_1
Z
_1
_1

a

(/)

E
<

w
o_
I

1
1

System Software Stack Testing & Debugging

Astra ATSE programming environment release consists of:
TOSS base operating system + Mellanox lnfiniBand stack

{2 compilers} * {3 mpi implementations} * {-25 libraries} = 150 packages

Each release packaged as a container for testing and archival purposes

Ast ra ATSE
1.2.0

Test release in
container first

Then roll out release
on system natively

Ast ra ATSE
1.2.1

Ast ra ATSE
1.2.2

Ast ra ATSE
1.2.3

■

ATSE Container use cases:
Release testing: Enables full applications to be built and run at scale (2048+ nodes) before rolling out
natively

■ Rollback debug: If issues are identified, ability to easily go back to a prior software release and test

■ Cross-system synchronization: Move full user-level software environments between systems. In one
instance, this allowed an Astra InfiniBand library bug to be debugged off platform on another Arm cluster.

Agelastos, Younge, et. al, (
U
)
 Quantifying

etrics to Evaluate Containers for D
e
p
l
o
y
m
e
n
t
 a
n
d
 U
s
a
g
e
 o
f

's
uo

!_
ic

ol
ld

dv
 u
o
w
n
p
a
i
d
 v
s

K
O
Z
 D
C1
33

-

Mi
lW
a
n
e
=

Iv

ON

00

-t

NJ

ON

-t

00

Mean Wall Time (sec.)
_, Iv t..o -i. yi ss•

c. c. c. c. c. c. c.c• cp cp cp cp cp cp cp

I I

i ill lin l i //lin i li / i ,

•
 u
n
e
D
s

•
 u
o
.
.
n
s
 -
 e
i
t
n
e
N

•
S
A
 J
a
w
l
u
c
o
 -
 1
1
e

cp ci
:0 :0 C) C) _▪ . _▪ . i..)
ci ui ci ui ci ui
c) c) c) c) c) c) cpc: Jil.

Container Speedup

Case Study 3: Reinforcement Learning Algorithms

An evolutionary approach for multi-objective optimization
Evolutionary Algorithms are gradient-free population-based methods
EA benefits from parallelization and does not require GPU acceleration

Population of agents is generated and attempts a problem in parallel

High performance agents are used for next population generation

Astra has been ideal for experimenting with EA

We are using Astra for scaling of ASTool
Coevolves an agent's decision making
policy and body

Built Singularity container
Ubuntu 16.04, NumPy, PyBullet,
Simple to use and modify

500 nodes - 7.5 hours
Credit: https://designrl.github.io/

•

1

Takeaway: Containers help support Emerging HPC workloads like Reinforcement Learning

I Kubernetes is coming...
kubernetes

• Containers are changing the software
ecosystem for application deployment

• Container orchestration tools are now
mainstream
• VERY different than traditional HPC

• No batch job scheduler, no jobs, just services and and
orchestrator

• Study Opportunities container
orchestration frameworks in HPC
• Performance, Usability, and Constraints

• Orchestration and batch?
• Separate solutions deployed today
• Orchestration _and_ batch!

diF

41—[*
Device Pod

Application Pod
r/f

band

r/r

lnfini
device

It\

Host Linux KernelA

Application Pod

60

cno_ 50
0
—I 40-u_

T
46 20

10

0 30

Overlay
Flannel
network

SSH
connection

lnfiniband device

Device Pod }4

Host Linux Kernel

H PCG

Device Pod
,

4/ 4/

ti lnfiniband
device ..,

Application Pod

Host Linux Kernel

Application Pod

Credit: Angel Be(tre (Binghamton University)
0

Bare Metal Docker Swarm Kubernetes

Position I: Heterogeneity is the Future of HPC...

HPC workloads are becoming more diverse
It's not just BSP simulations any more

Data is a cornerstone in ML, analytics, ...

And HPC hardware will be more diverse
"Era of predictable [hardware] improvements is ending."

Expecting custom aggregated components at the system
level

How will system software cope and support
system-level heterogeneity?
How will programmers be efficient in such a landscape?

Will abstractions help or hinder performance?

We need more APIs...

Extreme Heterogeneity 2018

PRODUCTIVE COMPUTATIONAL SCIENCE

IN THE ERA OF EXTREME HETEROGENEITY

Report tor
DOE ASCR Basic Research Needs Workshop on Extreme Heterogeneity

January 23-25, 2018

Position 2: ... and so is the Cloud

The hyperscalers are finally paying attention to HPC
"The physical network topology does affect performance; particularly important is the
performance of MPI Allreduce, grouped by splitting the mesh by a subset of the dimensions,
which can be very efficient [5] [6] if each such group is physically connected."— Shazeer et al
Google Brain, Mesh-TensorFlow: Deep Learning for Supercomputers.

As learning techniques grow in scale, HPC becomes more important.

HPC cannot compete with the hyperscalers
Let's stop trying and start integrating
That doesn't mean adopting Cloud as-is

That doesn't dissolving HPC either

The closer HPC and cloud paradigms get, the better we all are
Encourage open source infrastructure

Collaborative partnerships

Avoid boutique solutions without sacrificing performance

