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Advanced low-temperature plasma (LTP) and corona ignition can be a
key enabler of multi-mode combustion strategies
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Late LTP: Higher flame speeds from LTP-generated
O-atom leads to enhanced SI flame propagation

rates (i.e., higher dilution tolerance)

Plasma & Corona Ignition System
• Produces reactive species (O, 03) and

increases mixture reactivity
• Enhances ignition kernel growth and flame

propagation rate

rEarly LTP: 03 from LTP-generated O-atom enables
controllable compression ignition
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Nanosecond repetitive pulsed discharge promote radical formation
and unconstrained streamer discharge produces multiple ignition sites

Low-energy electrons
lead to gas heating
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Current focus is on 3 distinct ignition systems: Spark, Corona, & LTP
NRI-au: Nano-second Repetitive Pulsed Discharge

ACIS: Advanced Corona Ignition System

BDI: Barrier Discharge Ignition

Nano-second

repetitive pulsed

ignition system
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Transient Low-temperature Plasma: Inductive Coil Spark:

TPS pulse generator_

Peak voltage of 17 kV

Pulse width — 10 ns

Frequency 100 kHz
i
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Short-pulse glow-phase ignition

NRPD

Image: TPS

ACIS

✓

Image: Tenneco

Localized thermal plasma

Image: Wikipedia

RF Corona: High-energy,
repetitive multi-point

streamers initiate gas heating



Hardware & operating conditions  Emission analyzers

Ignition system

Engine Speed [rpm]

IMEPg [bar]
Displaced volume [liter]

Compression Ratio

intake Pressure [kPa]

Exhaust Pressure [kPa]

intake Temperature [°C]

Equivalence ratio

Residual gas fraction [%]

Spark Timing

Main SOl [CA]

Spark, plasma, corona

1300

3.5 bar
0.55

13:1

53 — 78

105

42

0.59 — 1

17.5 — 22.3

-52 — -15

-330

c02/03102

HC

NOx

Fuel RD587 gasoline

• RON 92.1

• Octane sensitivity 7.3

Liquid Density @15 °C [g/L]

LHV [MJ/kg]

H/C ratio

O/C ratio

Research Octane Number

748

41.9

0.033

92.1

Flame Arrestor

RD587 gasoline + pr,
a.

air mixture

Ci
rc
ul
at
io
n 

Octane Sensitivity 7.3 Cisintimf



Engine performance @3.5 bar IMEPg,

1300 rpm: ACIS, BDI

No notable lean-limit extension with BDI
• Intake pre-strikes not used (others observed these

improve stability)

ACIS lean-limits extended from 4) = 0. 73 to
= O. 68

• Peak ITE increased from 32.5% to 33.8%
• Longer discharges & higher voltages needed for

lean mixtures
• 1.0-point ITE improvement from shorter initial

burn durations
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ACIS pulse duration affects heat release rate (HRR) behavior but limits
the primary voltage to avoid breakdown
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• ST depends on cylinder density
• To accommodate longer pulse durations, the pulse voltage must accordingly be

lowered to avoid breakdown/arcing due to lower in-cylinder density



Engine performance @3.5 bar IMEPg,

1300 rpm: NRPD

NRPD lean-limit never reached (best value: 4) = O. 65)
• Igniter was a non-resistor spark plug
• Peak ITE increased from 32.5% to 34.4%
• Lean-stability limit was never reached during the

limited test window
• For leanest mixtures, stability improved w/ increased

pulse number

• — 0.5-point ITE improvement from shorter initial burn
durations

Faster initial burn rates with LTP ignition translated

into extended lean stability limits relative to spark

CRF
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Higher NRPD pulse numbers facilitate early heat release by supplying
additional energy that help in kernel expansion

— 10 pulses, COV = 10.0%
— —20 pulses, COV = 4.5%

---30 pulses, COV = 1,7% A

t ;

-40 -20 0 20 40

Crank Angles [0]

Engine tests reinforce static-cell observation that
the most critical ignition parameter is the initial
kernel size and not plasma chemistry

ucer
106B52 or
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Optical Ignition

Calorimeter

Fill/Evacuate

Thermocouple

Static-cell tests indicate multiple pulses
with NRPD help in kernel expansion



Engine performance @3.5 bar IMEPg,

1300 rpm: ACIS, BDI, NRPD
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Emissions @3.5 bar IMEPg, 1300 rpm:

ACIS, BDI, NRPD

• HC emissions slightly increases for NRPD at lean limit

• Similar CO and HC emissions irrespective of ignition

systems, except for the ACIS resulting from faster early

burn rates

• Overall NOx reduced from NRPD and ACIS by 30%
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Faster early burn rates observed with ACIS and NRPD ignition
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Spark, COV = 9.0%, ST = -52"

NRPD, COV = 1 3% ST = -40"

ACIS, COV = 1.7%, ST = -30" _

ci) = 0.69 -

-60 -40 -20 0

Crank Angles [0]
20

CRF

40

End-gas auto-ignition from all igniters

Residual heating from modest positive valve

overlap (-34°)

Similar heat release rate until -10° aTDC despite
substantial variation in ST

4-prong ACIS offers unconstrained streamer
growth with multiple ignition sites

• ACIS produces largest ignition kernel volumes

• Need to validate using ignition kernel imaging

Higher number of NRPD pulses supplied
additional energy for kernel expansion



Summary
ACIS and NRPD extends lean limit
• Both ACIS (4) = 0.68) and NRPD (4) = 0.65) extend lean

stability limit compared to inductive spark (4) = 0.73)
• Peak ITE increases from 32.5% for spark ignition to 33.8% for

ACIS and 34.5% for NRPD

• Lean stability limit was not reached during the limited test
window for NRPD, suggests possibility of improvement
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Engine operation heavily relies on optimum pulsing strategy
• Increased pulse number for NRPD and increased pulse duration for the ACIS was

highly effective for improving cyclic stability for the leanest mixtures (4) < 0.7)
• In-cylinder density limits the use of longer pulse durations for ACIS

Larger ignition volumes produce the fastest early kernels, while
continual discharges sustain early kernel flame fronts

• ACIS discharges produce large early flame kernel volumes
• NRPD effectively add discharge energy to the kernel volume
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Future work

Optical imaging of ignition kernels
o Crank angle resolved intensified imaging of spark, plasma,

and corona ignition to better understand the ignition physics

o Explore the effect of EGR dilution tolerance
o Compare different pulsing strategy
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Preliminary study shows BDI producesc0
-72, adequate 03 necessary for stable combustion

i o 03 generation depends on cylinder pressure anda)

0 
0c applied voltage
0 

) 
o Small amount, 10 — 30 ppm 03, could significantly alter

6 charge reactivity

o Target 30 ppm 03 = 30 pulses = 3 bursts of 10 pulses



Future work

Current monitoring
can detect onset of
arcing/breakdown
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Feedback loop detect breakdown/arcing

• Decrease # of pulses
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Strategy # 2
Pulse to pulse voltage variation

► Use less voltage in
subsequent pulses
and adjust dwell
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