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Advanced low-temperature plasma (LTP) and corona ignition can be a
key enabler of multi-mode combustion strategies

Late LTP: Higher flame speeds from LTP-generated
O-atom leads to enhanced Sl flame propagation
rates (i.e., higher dilution tolerance)
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Nanosecond repetitive pulsed discharge promote radical formation
and unconstrained streamer discharge produces multiple ignition sites

Low-energy electrons
lead to gas heating
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Current focus is on 3 distinct ignition systems: Spark, Corona, & LTP
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Hardware & operating conditions

Emission analyzers

a

co,/co/o,
Ignition system Spark, plasma, corona ”
Engine Speed [rpm] | 1300
IMEPg [bar] 3.5 bar NOXx
Displaced volume [liter] | 0.55 Spaﬂr
Compression Ratio 13:1 Central GDI-
Intake Pressure [kPa] 53-78 | -
Exhaust Pressure [kPa] 105 ‘ ;
Intake Temperature [°C] 42 y
Equivalence ratio 0.59-1 E‘i‘é’é |
Residual gas fraction [%] | 17.5-22.3 l
Spark Timing -52 --15 I D I
Main SOI [CA] -330
| Liquid Density @15 °C [g/L] 748
Fuel RD587 gasoline LHV [M)/kg] 41.9
* RON92.1 T e
@ * Octane sensitivity 7.3 Research Octane Number 92.1
[ Octane Sensitivity 7.3
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Engine performance @3.5 bar IMEPg,

1300 rpm: ACIS, BDI

No notable lean-limit extension with BDI
* Intake pre-strikes not used (others observed these

improve stability)

ACIS lean-limits extended from ¢ = 0.73 to

d = 0.68

 Peak ITE increased from 32.5% to 33.8%
* Longer discharges & higher voltages needed for

lean mixtures

e ~1.0-point ITE improvement from shorter initial

burn durations
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ACIS pulse duration affects heat release rate (HRR) behavior but limits
the primary voltage to avoid breakdown
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ST depends on cylinder density
 To accommodate longer pulse durations, the pulse voltage must accordingly be
@ lowered to avoid breakdown/arcing due to lower in-cylinder density u
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Engine performance @3.5 bar IMEPg, & | $ spark
1300 rpm: NRPD Bo MaRas
NRPD lean-limit never reached (best value: ¢ = 0.65) 3 ¢
* Igniter was a non-resistor spark plug 8 30 T
* Peak ITE increased from 32.5% to 34.4% £ e A
* Lean-stability limit was never reached during the ‘ A e ¢
limited test window i o
* For leanest mixtures, stability improved w/ increased
pulse number
e ~0.5-point ITE improvement from shorter initial burn
durations 24
0:40
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iligh sensifvity
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Engine tests reinforce static-cell observation that
the most critical ignition parameter is the initial Static-cell tests indicate multiple pulses
@] kernel size and not plasma chemistry with NRPD help in kernel expansion g
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Emissions @3.5 bar IMEPg, 1300 rpm:

ACIS, BDI, NRPD

 HC emissions slightly increases for NRPD at lean limit
e Similar CO and HC emissions irrespective of ignition
systems, except for the ACIS resulting from faster early

burn rates
e Overall NOx reduced from NRPD and ACIS by 30%
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Faster early burn rates observed with ACIS and NRPD ignition
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End-gas auto-ignition from all igniters

Residual heating from modest positive valve
overlap (~34°)

Similar heat release rate until -10° aTDC despite
substantial variation in ST

4-prong ACIS offers unconstrained streamer
growth with multiple ignition sites

e ACIS produces largest ignition kernel volumes
* Need to validate using ignition kernel imaging

Higher number of NRPD pulses supplied
additional energy for kernel expansion



Summary 3 o o
O 34r A NRPD
ACIS and NRPD extends lean limit % il c-J gg:s
* Both ACIS (¢ = 0.68) and NRPD (¢ = 0.65) extend lean E
stability limit compared to inductive spark (¢ = 0.73) |5 321 .o
* Peak ITE increases from 32.5% for spark ignition to 33.8% for % 31 ] n
ACIS and 34.5% for NRPD g 30 ‘A |
* Lean stability limit was not reached during the limited test E se s o7 020 0f ©5E 08 055

window for NRPD, suggests possibility of improvement | | ¢
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Engine operation heavily relies on optimum pulsing strategy

24 00 © “ © © 7 e« |ncreased pulse number for NRPD and increased pulse duration for the ACIS was
| 0 1 . . . . . epe .
..l . % | highly effective for improving cyclic stability for the leanest mixtures (¢ < 0.7)
AN e oo |n-cylinder density limits the use of longer pulse durations for ACIS
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Larger ignition volumes produce the fastest early kernels, while

continual discharges sustain early kernel flame fronts

 ACIS discharges produce large early flame kernel volumes
@ * NRPD effectively add discharge energy to the kernel volume
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Future work

Optical imaging of ignition kernels

o Crank angle resolved intensified imaging of spark, plasma,
and corona ignition to better understand the ignition physics

o Explore the effect of EGR dilution tolerance

o Compare different pulsing strategy
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10 pulses » £

56 0.55L @ 1 bar = Preliminary study shows BDI produces
= g o
° = adequate O; necessary for stable combustion
§ 4| o g o 0O, generation depends on cylinder pressure and
E 4 S applied voltage

ol ©, ©o Small amount, 10 — 30 ppm O, could significantly alter

2 0O charge reactivity

0 o Target 30 ppm O; = 30 pulses = 3 bursts of 10 pulses
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Future work

Current monitoring
can detect onset of
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