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4 Albany Land Ice

• Land ice modeling using first-order
approximation of Stokes flow for
glaciers and ice sheets

• Ice sheet velocity is modeled as
system of steady state equations

• The velocity equations are coupled
to dynamic equations for ice
thickness and temperature

• ALI interfaces with E3SM through
the MPAS framework (MALI)



5 Modernizing Albany Land Ice

One of the ongoing goals of the Albany Land Ice project is to run the solver on
high end GPU computing clusters such as Summit

Work had been done previously to port the velocity problem assembly for GPUs

This summer, we extended this work to the enthalpy problem assembly and the
boundary condition evaluation

i

i

1
While the main goal of this project is to get the fully coupled problem working on
GPUs, it is also the goal to achieve a high degree of performance portability 1
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6 Performance Portability

Improvements to raw processing power has slowed considerably, giving rise to
specialized computing architectures such as GPUs, FPGAs, and some CPUs

Writing GPU code requires learning an entirely new programming model and
maintaining a performant GPU code in parallel with CPU code is infeasible

Domain experts shouldn't have to be exposed to performance concerns
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7 GPU Performance - Memory Hierarchy

Device memory is further broken up
into global, shared, and local
memory

Moving data from global memory
into share or local memory typically
is an expensive operation

Thread blocks are designed to load
data from global memory in
contiguous blocks

Efficient access of global memory is
referred to as "coalesced"
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Implementation Details



9 Albany

Albany is an object-oriented,
parallel, C++ code for discretizing
and solving PDEs

Uses finite element method on
unstructured grids

Utilizes a number of libraries from
the Trilinos project

Albany constructs a system and
then hands it to Trilinos to solve
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io Volume Refactor

Intermediate data structures
converted to Kokkos views for
accessibility on device

Evaulators were parallelized across
number of cells in a workset

Volume evaluators were either
completely data parallel, or at least
data parallel with respect to a cell

Readability was preserved for ease
of future implementation

void Dissipation<EvalT,Traits>::

evaluateFields(typename Traits::EvalData workset) {

for (std::size_t cell = 0; cell < workset.numCells; ++cell)

for (std::size_t qp = 0; qp < numWs; ++qp)

diss(cell,qp) = 1.0./scyr * 4.9 * mu(cell,qp) * epsilonsq(cell,qp);

KOKKOS_INLINE_FUNCTION

void Dissipation<EvalT,Traits>::

operator() (const int &cell) const {

for (int qp = 0; qp < numirs; ++qp) {

diss(cell,qp) = 1.0/scyr * 4.0 * mu(cell,qp) * epsilonsq(cell,qp);

1

void Dissipatior<EvalT,Traits>::

evaluateFields(typename Traits::EvalData workset)

Kokkos::parallel_for(Dissipation_Policy(0, workset.numCells), *this);



n Boundary Condition Refactor

Boundary index information
originally stored as array of
structures

Replaced with structure of Kokkos
views for device access

This structure enables coalesced
access of boundary information

Boundary fields are not coalesced
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12 GPU-Friendly Boundary Data

Boundary fields had the same layout
as volume fields and were accessed
using the side set mapping

Matching the boundary field layout
to side set mapping layout results in
coalesced access for both

Access to the volume field is not
coalesced but happens only once
instead of many times
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13 GPU-Friendly Boundary Data (continued)

Albany separates work into smaller worksets when problem size is very large

In order to handle this, the boundary mapping structure was split into a global
structure and a local structure.

The global structure contains all boundary data for all worksets

The local structure contains Kokkos subviews specific to a given workset

i

i
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1

This also helps avoid a performance corner case when initializing a mesh by I
minimizing Kokkos view initializations 1



Performance Results



15 Experiment Setup

We solved the enthalpy problem on a variable resolution (1k to 10km) mesh of
the Greenland ice sheet

The following node configurations were used for performance testing

• 4x Nvidia V100 GPUs per node

• Dual-socket POWER9 CPU with 40 cores per node (20 cores per socket)

• Dual-socket Haswell CPU with 32 cores per node (16 cores per socket)

• Single-socket Knight's Landing CPU with 64 cores per node

Three branches of code were profiled: Original, Volume, Volume+BCs

Each branch of code was built using either CUDA, OpenMP, or Serial Kokkos
backends



16 Performance Speedup

CUDA-original CUDA-volume Speedup

Total Fill Time 183.12 seconds 3.8 seconds 48.2x

Serial-original CUDA-volume Speedup

Total Fill Time 16.75 seconds 3.8 seconds 4.4x

Serial-original CUDA-BCs Speedup

Total Fill Time 16.75 seconds 2.79 seconds 6x

KNL-original KNL-volume Speedup

Total Fill Time 28.12 seconds 20.14 seconds 1.4x

lirM Serial-original KNL-volume Speedup

Total Fill Time 32.4 seconds 20.14 seconds 1.6x

0



17 I Strong Scaling
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18 Volume Evaluator Profiling

(Placeholder) Final presentation will have table with
volume evaluator performance profiling
measurements

i

i

1
1
I

Volume evaluators are bandwidth bound when problem size per MPI rank is
Isufficiently large, become latency bound as number of nodes increases



19 Boundary Evaluator Profiling

(Placeholder) Final presentation will have table with
boundary condition evaluator performance profiling
measurements

Boundary condition evaluators are, as expected, latency bound due to small
volume of data to be processed. Regardless, there is still performance
improvement over host-side processing



20 Performance - Timing Breakdown

• Save and Load State categories are evaluators that prepare data for I/0
operation, can't be ported to GPU, but can potentially be made unnecessary

• Evaluate and Interpolate are the categories that needed to be ported to GPU
for this problem
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21 Future Work

The work done for the enthalpy boundary condition evaluation is going to be
extended to the velocity problem

Utilize hierarchical parallelism or CUDA/Kokkos graphs to schedule multiple
latency bound kernels to run concurrently

Solving the system still needs work to be fully supported by GPUs. This involves
porting of code in Trilinos and will be the next major step towards full end-to-
end GPU solves


