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+ I Albany Land Ice

* Land ice modeling using first-order
approximation of Stokes flow for
glaciers and ice sheets

* Ice sheet velocity is modeled as
system of steady state equations

* The velocity equations are coupled
to dynamic equations for ice
thickness and temperature

* ALI interfaces with E3SM through
the MPAS framework (MALI)



s | Modernizing Albany Land Ice

* One of the ongoing goals of the Albany Land Ice project is to run the solver on
high end GPU computing clusters such as Summit

* Work had been done previously to port the velocity problem assembly for GPUs

* This summer, we extended this work to the enthalpy problem assembly and the
boundary condition evaluation

 While the main goal of this project is to get the fully coupled problem working on
GPUes, it is also the goal to achieve a high degree of performance portability



Performance Portability %i

» Improvements to raw processing power has slowed considerably, giving rise to
specialized computing architectures such as GPUs, FPGAs, and some CPUs

» Writing GPU code requires learning an entirely new programming model and
maintaining a performant GPU code in parallel with CPU code is infeasible I

 Domain experts shouldn’t have to be exposed to performance concerns
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7 1 GPU Performance - Memory Hierarchy
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Implementation Detalils



o I Albany

» Albany is an object-oriented,
parallel, C++ code for discretizing
and solving PDEs

* Uses finite element method on
unstructured grids

» Utilizes a number of libraries from
the Trilinos project

» Albany constructs a system and
then hands it to Trilinos to solve
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Volume Refactor

* Intermediate data structures
converted to Kokkos views for

. e e . vold Dissipation<EvalT,Traits»::
aCCGSSIblllty On d_eVICG E\.'E].L_IatEFi‘EldS(: ename Traits::EvalData workset) {

cell = 8; cell < workset.numCells; ++cell)
size t gqp = 8; qp < numQPs; ++qp)
d15-.~(c~ll qp) = 1.&/scyr * 4.8 * mu{cell,qp) * epsilonSq(cell,qp);

* Evaulators were parallelized across
number of cells in a workset KOKKOS_INLINE FUNCTION

EvalT,Traits>::
= int &cell) const
int gp = 8; gp < numQPs; ++gp) {
dlss{_cell gp) = 1.8/scyr * 4.8 * mu(cell,qp) * epsilonSq(cell,qp);

* Volume evaluators were either
completely data parallel, or at least

N pid Dissipation<EvalT,Traits>::
data pal”allel W].th I'eSpeCt tO a Ce].]. Vi i <_ Traits::EvalData workset) {

s::parallel for(Dissipation Policy(®, workset.numCells}, *this);

* Readability was preserved for ease
of future implementation



11 | Boundary Condition Refactor

* Boundary index information

originally stored as array of |
originally e A ] - B

1 2 N
* Replaced with structure of Kokkos l
views for device access
» This structure enables coalesced
access of boundary information . . . . . . |
1 2 N
* Boundary fields are not coalesced




12 I GPU-Friendly Boundary Data

* Boundary fields had the same layout _ _ . _
as Volume ﬁelds and were accessed Old Boundary Field Side Set Mapping Volume Field
using the side set mapping

0
1
2
* Matching the boundary field layout -
to side set mapping layout results in 4
coalesced access for both
New Boundary Field Side Set Mapping Volume Field

» Access to the volume field is not
coalesced but happens only once
instead of many times
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13 I GPU-Friendly Boundary Data (continued)

» Albany separates work into smaller worksets when problem size is very large

* In order to handle this, the boundary mapping structure was split into a global
structure and a local structure.

* The global structure contains all boundary data for all worksets
* The local structure contains Kokkos subviews specific to a given workset

» This also helps avoid a performance corner case when initializing a mesh by
minimizing Kokkos view initializations



Performance Results



15 | Experiment Setup

* We solved the enthalpy problem on a variable resolution (1k to 10km) mesh of
the Greenland ice sheet

* The following node configurations were used for performance testing
* 4x Nvidia V100 GPUs per node
* Dual-socket POWER9 CPU with 40 cores per node (20 cores per socket)
* Dual-socket Haswell CPU with 32 cores per node (16 cores per socket)
* Single-socket Knight’s Landing CPU with 64 cores per node

* Three branches of code were profiled: Original, Volume, Volume+BCs

* Each branch of code was built using either CUDA, OpenMP, or Serial Kokkos
backends



Performance Speedup

_ CUDA-original CUDA-volume Speedup

Total Fill Time 183.12 seconds 3.8 seconds 48.2x

_ Serial-original CUDA-volume Speedup
Total Fill Time 16.75 seconds 3.8 seconds 4.4x
_ Serial-original CUDA-BCs Speedup
Total Fill Time 16.75 seconds 2.79 seconds
_ KNL-original KNL-volume Speedup
Total Fill Time 28.12 seconds 20.14 seconds 1.4x

_ Serial-original KNL-volume Speedup

Total Fill Time 32.4 seconds 20.14 seconds 1.6x



17 ‘ Strong Scaling
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18 I Volume Evaluator Profiling

(Placeholder) Final presentation will have table with
volume evaluator performance profiling
measurements

* Volume evaluators are bandwidth bound when problem size per MPI rank is
sufficiently large, become latency bound as number of nodes increases



19 I Boundary Evaluator Profiling

(Placeholder) Final presentation will have table with
boundary condition evaluator performance profiling
measurements

* Boundary condition evaluators are, as expected, latency bound due to small
volume of data to be processed. Regardless, there is still performance
improvement over host-side processing



20 I Performance - Timing Breakdown

* Save and Load State categories are evaluators that prepare data for I/O
operation, can’t be ported to GPU, but can potentially be made unnecessary

» Evaluate and Interpolate are the categories that needed to be ported to GPU
for this problem

with Save State
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1 | Future Work

* The work done for the enthalpy boundary condition evaluation is going to be
extended to the velocity problem

 Utilize hierarchical parallelism or CUDA/Kokkos graphs to schedule multiple
latency bound kernels to run concurrently

* Solving the system still needs work to be fully supported by GPUs. This involves
porting of code in Trilinos and will be the next major step towards full end-to-
end GPU solves



