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UNIFORM SUBSPACE CORRECTION PRECONDITIONERS FOR DISCONTINUOUS

GALERKIN METHODS WITH hp-REFINEMENT

WILL PAZNER AND TZANIO KOLEV

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

Abstract. In this paper, we develop subspace correction preconditioners for discontinuous Galerkin (DG)

discretizations of elliptic problems with hp-refinement. These preconditioners are based on the decomposition
of the DG finite element space into a conforming subspace, and a set of small nonconforming edge spaces.

The conforming subspace is preconditioned using a matrix-free low-order refined technique, which in this

work we extend to the hp-refinement context using a variational restriction approach. The condition number
of the resulting linear system is independent of the granularity of the mesh h, and the degree of polynomial

approximation p. The method is amenable to use with meshes of any degree of irregularity and arbitrary

distribution of polynomial degrees. Numerical examples are shown on several test cases involving adaptively
and randomly refined meshes, using both the symmetric interior penalty method and the second method of

Bassi and Rebay (BR2).

1. Introduction

High-order discontinuous Galerkin (DG) methods have seen significant recent interest in a wide range of
application areas [12, 26, 54]. One advantageous feature of the DG method is its flexibility, allowing for
the natural handling of irregular (nonconforming) meshes and variable polynomial degrees, thus making it
well-suited for hp-adaptive refinement [48, 55]. However, one challenging aspect of hp-refined DG methods
is the iterative solution of the resulting ill-conditioned system of linear equations. Many past works have
developed and analyzed solvers and preconditioners for DG discretizations of elliptic problems, including
multigrid methods [29, 33], and domain decomposition methods [3, 9, 25], among others. However, much
of the work on solvers for DG has focused on low-order elements, and some of the results hold only in the
case of h-refinement alone. In the case of general hp-refinement, the presence of hanging vertices, highly
graded meshes, and variable polynomial degrees makes the construction of efficient preconditioners more
challenging.

Efficient solvers for discontinuous Galerkin discretizations of elliptic problems with hp-refinement are rel-
evant to a large number of applications. Examples include diffusion-based preconditioning of high-order
transport problems [35] and the pressure Poisson equation arising from projection methods for the incom-
pressible Navier–Stokes equations [31, 50]. The condition number of the resulting system scales like p4/h2

(cf. [5]), thus necessitating the development of efficient preconditioners for DG discretizations of diffusion
problems. Additionally, these applications, and others, are highly amenable to adaptive mesh refinement
and the use variable polynomial degrees, and so it is important that the preconditioners remain effective on
spaces with nonconforming refinements and variable polynomial degrees.

In this work, we take a subspace correction approach, where an effective preconditioner on the conforming
subspace of the DG finite element space is combined with a simple smoother, also based on a space decom-
position, defined in terms of Gauss–Lobatto nodal points. Similar ideas were developed for low-order DG
methods in [29], and for high-order DG methods on conforming meshes in [9, 45]. In the case of conforming
meshes or h-refinement only, a simple point Jacobi smoother is sufficient to obtain uniform bounds on the
preconditioned system. However, in the case of hp-refinement, the conforming subspace does not provide as
good of an approximation to the DG finite element space (as quantified by a Jackson-type estimate), necessi-
tating more powerful block smoothers, which take the form of block Jacobi methods. These block smoothers
correspond to a subspace decomposition that is generated using a simple algorithm, and which depends on
the irregularity of the mesh and the distribution of polynomial degrees. The resulting preconditioned system
has condition number independent of the mesh size, polynomial degree, and penalty parameter.
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Past work on solvers for hp-DG methods include multilevel methods and domain decomposition methods.
In [5], a class of domain decomposition preconditioners for hp-DG discretizations was analyzed, where the
condition number of the resulting system is bounded by ηp2H/h, where H is the coarse mesh size, and
η is the DG penalty parameter. Subsequently, in [2], optimal spectral bounds of p2H/(qh) were estab-
lished, where q is the coarse grid polynomial degree. Additionally, domain decomposition methods for DG
methods on complicated domains featuring small features and microstructures were developed in [4], and
non-overlapping additive Schwarz methods for DG discretizations on polytopic meshes were considered in
[6]. A multilevel approach related to the current work was developed in [17], where a minimal conforming
subspace (corresponding to a low-order H1 finite element space) was used on graded (1-irregular) meshes
to obtain uniform bounds on the condition number of the preconditioned system. This work was extended
in [16] using a low-order preconditioner that is defined on nested dyadic grids. This is in contrast to the
present work, where a low-order preconditioner is formed using a variational restriction strategy. Multigrid
methods for DG discretizations were developed in [33]. The extension to meshes with local refinement was
considered in [39]. In [8], multigrid algorithms for hp-DG methods were considered, and the dependence of
the convergence factor on the type of multigrid cycle and number of smoothing steps was studied. Algebraic
multigrid methods for DG methods were developed in [13] and [7], and were shown to converge uniformly
with respect to the mesh size and polynomial degree.

The structure of this paper is as follows. In Section 2, we introduce the symmetric interior penalty DG
discretization for the model problem, and enumerate several useful known results. In Section 3, we define a
novel space decomposition that is analyzed within the abstract framework of additive Schwarz methods. This
analysis depends on approximation results for an Oswald-type averaging operator that maps from the DG
finite element space to its conforming subspace. An algorithm to generate the subspace decomposition based
on the mesh irregularity is described. At the end of Section 3 we also discuss a matrix-free preconditioners
for the conforming problem based on a low-order refined methodology. Finally, in Section 4, we present
numerical results on both adaptively and randomly refined meshes, conforming the theoretical properties of
the preconditioner. We end with conclusions in Section 5.

2. Discontinuous Galerkin discretization

Consider the model Poisson problem

(1)
−∆u = f in Ω,

u = 0 on ∂Ω,

on the spatial domain Ω ⊆ R2. Let T denote a mesh of the domain Ω consisting of non-overlapping
quadrilateral elements denoted κ. We will consider the cases of both regular (conforming) meshes (i.e.
those without hanging nodes) and irregular (nonconforming) meshes. Let κ̂ denote the reference element
κ̂ = [0, 1]2. For given p, let Qp(κ̂) denote the space of bivariate polynomials of degree at most p in each
variable. For each element κ ∈ T , we associate a mapping Tκ : κ̂ 7→ κ, and a polynomial degree pκ Define
the DG finite element space by

(2) Vh = {vh ∈ L2(Ω) : vh|κ ◦ Tκ ∈ Qpκ(κ̂) for all κ ∈ T }.
In what follows, we will assume that the mesh is quasi-uniform, and that the ratio of polynomial degrees in
elements sharing a common edge remains bounded.

Remark 1. In this work, we assume that the mesh T consists only of quadrilateral elements. Much of the
analysis depends on properties of the Gauss–Lobatto points (cf. Section 2.2), which are defined for meshes
consisting of tensor-product elements. Many of the results are independent of dimension, and also hold for
hexahedral elements. However, the generalization of the preconditioners to meshes consisting of simplex
elements remains nontrivial.

Let Γ denote the mesh skeleton, given by the set of all mesh faces. Let e ∈ Γ denote an interface bordering
elements κ− and κ+, and let n−e (resp. n+

e ) denote the unit vector normal to e pointing outward from κ−

(resp. κ+). Let φ ∈ Vh be given. Then, φ−e (resp. φ+
e ) is used to denote the trace of φ on e from within κ−

(resp. κ+) We define the average and jump of φ at this interface by

{φ}e =
1

2
(φ−e + φ+

e ), JφKe = φ−e n
−
e + φ+

e n
+
e .
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Typically, the edge e in question will be clear from the context, and so we will often drop the subscripts e.
Given these definitions, we discretize (1) using the symmetric interior penalty DG method [10, 11]. The

finite element problem is: find uh ∈ Vh such that, for all test functions vh ∈ Vh,

(3) A(uh, vh) =

∫

Ω

fvh dx,

where the bilinear form A(· , ·) is defined by

(4) A(uh, vh) =

∫

Ω

∇huh · ∇hvh dx−
∫

Γ

{∇huh} · JvhK ds−
∫

Γ

{∇hvh} · JuhK ds+

∫

Γ

σJuhK · JvhK ds.

Here, ∇hφ denotes the broken gradient of φ, defined elementwise over T . The parameter σ must be chosen
sufficiently large in order to ensure that the resulting discretization is stable [11]. In particular, at each
interface, we take σ = η p2

e/he, where pe = max{pκ− , pκ+}, and he = min{hκ− , hκ+}, where hκ denotes the
mesh size of the element κ [55]. The parameter η is known as the penalty parameter, and is chosen to satisfy
η ≥ η0 > 0 for some η0. An explicit formula for η0 was given in [49], where it was also noted that the
conditioning of the resulting linear system degrades for larger values of η. One of the goals of this work is
to develop preconditioners for this system whose convergence is independent of the choice of η.

Remark 2. There are many alternative DG discretizations for elliptic problems, including the local DG
(LDG) method [27], the compact DG (CDG) method [47], the method of Bassi and Rebay (BR2) [12], among
others. For simplicity, we focus on the symmetric interior penalty (SIPDG) method, but the preconditioners
developed here are also applicable to these alternative methods. Numerical examples using the BR2 method
are presented in Section 4.4.

Remark 3. In what follows, we will use the notation a . b to mean that a ≤ Cb, where C is a constant
that is independent of the mesh size, polynomial degree, and penalty parameter, but which may depend on
the level of irregularity of the mesh, and on the ratio of polynomial degrees in neighboring elements. We will
write a & b to mean b . a, and a ≈ b to mean that both a . b and b . a.

2.1. DG norms and estimates. We define the mesh-dependent DG norm ‖ · ‖DG by

(5) ‖vh‖2DG = ‖∇hvh‖20 +
∑

e∈Γ

‖σ1/2JvhK‖20,e.

The bilinear form A(· , ·) satisfies the following continuity and coercivity bounds [5].

Lemma 1. For all vh, uh ∈ Vh,

A(uh, vh) . ‖uh‖DG‖vh‖DG,(6)

A(uh, uh) & ‖uh‖2DG.(7)

We additionally have the following useful eigenvalue estimates [5].

Lemma 2. For any uh ∈ Vh,

‖uh‖20 . A(uh, uh) .
∑

κ∈T
η
p4
κ

h2
κ

‖uh‖20,κ.

The following simple result is a slight refinement of Lemma 2.

Lemma 3. For any uh ∈ Vh,

A(uh, uh) .
∑

κ∈T

p4
κ

h2
κ

‖uh‖20,κ +
∑

e∈Γ

η
p2
e

he
‖JuhK‖20,e.

Furthermore, for any wh ∈ Vh with JwhK = 0,

A(uh − wh, uh − wh) .
∑

κ∈T

p4
κ

h2
κ

‖uh − wh‖20,κ +
∑

e∈Γ

η
p2
e

he
‖JuhK‖20,e.

Proof. The first statement follows from Poincaré’s inequality, and the second statement follows from linearity
of the jump. �
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2.2. Gauss–Lobatto basis. A key ingredient in the construction of preconditioners for the DG discretiza-

tion will be the use of the Gauss–Lobatto nodal basis. Given polynomial degree pκ, let ξ̂i ∈ κ̂, 1 ≤ i ≤ (p+1)2

denote the tensor-product Gauss–Lobatto points. For each element κ, the points ξκ,i are defined as the image

of ξ̂i under the mapping Tκ, i.e. ξκ,i = Tκ(ξ̂i). For each such point, we define the basis function φκ,i as the
unique element of Vh such that

φκ,i(ξκ′,i′) =

{
1, if (κ′, i′) = (κ, i),

0, otherwise.

The set of functions {φκ,i} forms a basis for the space Vh. For a given element κ ∈ T , let B(κ) denote the
set of Gauss–Lobatto nodes lying on ∂κ, and let I(κ) denote the set of nodes lying in the interior of κ. It is
well-known that the discrete L2 norm associated with the Gauss–Lobatto quadrature nodes and weights is
equivalent to the (exactly integrated) L2 norm [19, 20, 22]. As a consequence, we have the following closely
related result from [9].

Lemma 4 ([9, Lemma 3]). Take any vh ∈ Vh. Let vκ,i(x) = vh(ξκ,i)φκ,i(x). Then,

‖vh‖20 ≈
∑

κ,i

‖vκ,i‖20.

We can easily show the following result.

Corollary 1. Let vh ∈ Vh, and write vh =
∑
j vj, such that for any node ξκ,i, the value vj(ξκ,i) is nonzero

for at most one function vj. Then,

‖vh‖20 ≈
∑

j

‖vj‖20.

Proof. By Lemma 4, ∑

j

‖vj‖20 ≈
∑

j

∑

κ,i

‖vj(ξκ,i)φκ,i‖20 =
∑

κ,i

‖vκ,i‖20 ≈ ‖vh‖20. �

We will also make use of the following trace and inverse trace inequalities from [18].

Lemma 5 ([18, Lemma 3.2]). Let vh ∈ Vh be given. Then,

(8) ‖vh‖20,∂κ .
p2
κ

hκ
‖vh‖20,κ.

Now, suppose that vh vanishes at all interior Gauss–Lobatto nodes of an element κ, i.e. vh(ξ) = 0 for all
ξ ∈ I(κ). Then,

(9) ‖vh‖20,κ .
hκ
p2
κ

‖vh‖20,∂κ.

3. Preconditioning and space decomposition

3.1. Parallel subspace corrections. The preconditioner for the DG discretization will be constructed
using the framework of parallel subspace corrections (additive Schwarz methods), which has been studied
in great detail in numerous works [30, 34, 53, 56, 57, 58]. In this section we briefly describe the abstract
framework, and enumerate some results that will be useful in what follows.

Let W be a vector space with inner product (· , ·). Let A : W → W be a symmetric positive-definite
linear operator, and let A(· , ·) denote the induced inner product, i.e. A(u, v) = (Au, v). The space W is

decomposed into a sum of subspaces, W =
∑J
i=0Wi. For each i, define the L2 projection Qi by

(Qiw,wi) = (w,wi) for all wi ∈Wi,

and define the elliptic projection Pi by

A(Piw,wi) = A(w,wi) for all wi ∈Wi.

Let Ai denote the restriction of A to Wi. We note the useful identity

(10) AiPi = QiA.
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The preconditioned system P is defined by

P =

J∑

i=0

Pi =

(
J∑

i=0

A−1
i Qi

)
A.

In some circumstances, the subspace Wi may be sufficiently large that A−1
i (and hence Pi) is impractical to

compute. In this case, we may replace each A−1
i with an approximation Ri to obtain the preconditioner

B =

J∑

i=0

RiQi.

The corresponding approximate projections are denoted Ti = RiQiA, and the preconditioned operator is

written T =
∑J
i=0 Ti = BA. Our main goal will be to estimate the iterative condition number of the

preconditioned operator, defined as the ratio of extremal eigenvalues, κ(T ) = λmax(T )/λmin(T ), which will
determine the speed of convergence when using the conjugate gradient method. The main tool in our analysis
of the subspace correction preconditioner will be the following useful identity (cf. [53, 56, 58]).

Lemma 6. For any w ∈W we have the identity

(11) A(T−1w,w) = inf
wi∈Wi∑
wi=w

J∑

i=0

A(T−1
i wi, wi),

and, since Pi restricted to the subspace Wi equals the identity operator, we have the special case for exact
projections

(12) A(P−1w,w) = inf
wi∈Wi∑
wi=w

J∑

i=0

A(wi, wi).

3.2. Conforming and boundary subspaces. In this section we describe the subspace decomposition for
the DG finite element space Vh. Let VC denote the conforming subspace of Vh, i.e. VC = Vh∩H1(Ω). Let VB
(where B here stands for boundary) denote the set of functions vb such that vb(ξκ,i) = 0 for all ξk,i ∈ B(κ)
for all elements κ ∈ T . That is to say, a function vb ∈ VB vanishes at every interior Gauss–Lobatto node of
every element in the mesh. It is clear that Vh = VB + VC .

3.2.1. Conforming approximation. Let uh ∈ Vh be given. We are interested in approximating uh by a
conforming function uc ∈ VC . We will make use of an interpolation operator Qh : Vh → VC that is often
referred to as the Oswald operator (cf. [18, 44], among others). The operator Qh is defined as follows.
Consider a nodal Gauss–Lobatto basis for the conforming space VC . In the case of h-refinement, the nodal
points on a nonconforming edge are chosen to be the corresponding Gauss–Lobatto nodes of the coarse
element. In the case p-refinement, the nodal points on an element interface are chosen to be the corresponding
Gauss–Lobatto nodes of the element with lower polynomial degree. Note that in the case of hp-refinement,
the conforming nodal points are no longer a subset of the DG nodal points. Instead, the nodes on an hp-
interface are chosen to be the coarse element Gauss–Lobatto nodes corresponding to the lowest polynomial
degree of any element containing the given edge. Then, any conforming function uc ∈ VC is well-defined
given its value at all conforming nodal points ξ. Let uh ∈ Vh be given. We define Qhuh(ξ) to be the average
value of uh(ξ) over all elements κ containing the node ξ,

Qhuh(ξ) =
1

card{κ ∈ T : ξ ∈ κ}
∑

κ3ξ
uh|κ(ξ).

If the mesh T is conforming, then it is possible to show the following important hp approximation property
of Qh:

(13) ‖vh − Qhvh‖20 ≤ C
∑

e∈Γ

hκ
p2
κ

‖JvhK‖20,e.

This result was shown for conforming meshes and uniform polynomial degree in [18]. The case of noncon-
forming meshes and uniform polynomial degree was considered in [40]. The case of conforming meshes and
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e

p = 2

κ0
p = 1 κ1

...

p = 1 κn

2 4 8 16 32
10−1

101

103

105

107

‖uh − uc‖20
‖JuhK‖20,e

‖uh − uc‖20
‖∇huh‖20 + ‖JuhK‖20,e

1

4

n

Approximation estimates for the Oswald operator

Figure 1. Left: example of problematic case for estimates of type (13). A large high-
order element (p = 2) borders n low-order (p = 1) elements. The value of any conforming
function at the nonconforming interface e is determined by its values at the two indicated
nodes. Right: numerically computed best value of the constants in estimates (13) and (14)
for this case.

variable polynomial degree was considered in [38]. Additionally, similar results were shown for one-irregular
meshes with variable polynomial degree using an auxiliary mesh technique in [37, 59, 60].

However, in the case of general nonconforming meshes with variable polynomial degrees, estimates of the
form (13) are not satisfactory and so one of the contributions of this paper is to propose a more precise
estimate, see (14) below, that will be critical in the preconditioner analysis.

To see why (13) is not sufficient in the general hp case, consider the simple mesh shown in Figure 1. Let
f be a given biquadratic function, and define uh ∈ Vh by pointwise interpolation of f at the Gauss–Lobatto
nodes. Since the left element has degree p = 2, we have uh|κ0

= f . On the remaining elements, uh is given
by piecewise bilinear interpolation of this function, and so the pointwise error will scale as 1/n2, where n is
the number of refined elements on the right. As a result, we see that

‖JuhK‖20,e . 1/n4.

Let uc = Qhuh ∈ Vc. Notice that if we refine the elements on the right (i.e. increase n), the error on the
interface ‖uh − uc‖0,e remains unchanged because uc is always determined by its values at the two black
nodes indicated in the diagram. We attempt to estimate the constant in the inequality (13). We have

C ≥ p2
e

he

‖uh − uc‖20
‖JuhK‖20,e

&
p2
e

he
n4‖uh − uc‖20

& n4‖uh − uc‖20,e ≈ n4,

where the second-to-last step follows from the inverse trace inequality. We see that the constant in this
inequality degrades very quickly with the number of nonconforming refinements in the hp case. This estimate
is verified numerically by computing the minimum value of C such that that inequality (13) holds for this
particular configuration. The values are shown in Figure 1, illustrating the degradation of the constant C
with increasing refinements.

To address this issue, we bound the difference ‖uc − uc‖20 by both ‖∇uh‖20 and
∑
e∈Γ

he
p2e
‖JuhK‖20,e. The

numerical computations in Figure 1 indicate that the resulting modified estimates remain constant with
increasing refinements. This is confirmed by the following lemma, which is closely related to the Jackson-
type estimates of [17].
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Lemma 7. Let uh ∈ Vh, and let uc = Qhuh ∈ VC . Then,

(14) ‖uh − uc‖20 .
∑

κ

h2
κ

p4
κ

‖∇uh‖20,κ +
∑

e∈Γ

he
p2
e

‖JuhK‖20,e.

Proof. Let uh ∈ Vh be given. We construct a function ũ ∈ Vh element-by-element as follows. If a nodal point
ξκ,i does not lie on a nonconforming edge (i.e. it is an interior node, ξκ,i ∈ I(κ), or it lies on a conforming
edge), then we set ũ(ξκ,i) = uh(ξκ,i). It remains to define ũ on the nonconforming edges of the mesh. Let e
denote a nonconforming edge, bordering coarse element κ0, and fine elements κ1, . . . , κn. Let pe = mini pκi ,
and let ξj denote the pe + 1 Gauss-Lobatto nodes on e (these are the conforming nodal points defined at
the beginning of Section 3.2.1). Then, let ũκ0,e is chosen to be the degree-pe polynomial that interpolates
uh|κ0

at the points ξj . For i > 0, if pκi = pe, then ũ|κi,e = uh|κi,e. However, if pκi > pe, we choose ũ|κi,e
to be a degree-pe interpolant as follows. Note that fewer than pe + 1 of the points ξj lie within e ∩ κi. We
select interpolation points ζi,j that consist of those nodal points ξj that lie within e∩κi, supplemented with
additional Gauss-Lobatto points to obtain pe + 1 distinct points lying within e∩κi. Then, ũκi,e is chosen to
interpolate uh|κi at the pe + 1 points ζi,j .

By this definition, we have ũ|κ(ξ) = u|κ(ξ) for all conforming nodal points ξ. Consequently, Qhũ =
Qhuh = uc. However, for any nonconforming interface, ũ|e has degree no higher than pe. Therefore, we can
apply the arguments of [38, Proposition 5.2] and [40, Theorem 2.3] to show that

‖ũ− uc‖20 .
∑

e∈Γ

he
p2
e

‖JũK‖20,e.

Additionally, we have

‖uh − uc‖20 . ‖uh − ũ‖20 + ‖ũ− uc‖20 . ‖uh − ũ‖20 +
∑

e∈Γ

he
p2
e

‖JũK‖20,e.

By accuracy of the polynomial interpolant,

‖uh − ũ‖20 =
∑

κ

‖uh − ũ‖20,κ .
∑

κ

h2
κ

p4
κ′
‖∇uh‖20,κ,

where pκ′ is the minimum polynomial degree of all elements κ′ neighboring κ (note that we make that
assumption that the ratio of polynomial degrees on neighboring elements is bounded, and so pκ′ ≈ pκ).

It remains to estimate the term
∑
e∈Γ

he
p2e
‖JũK‖20,e. On a given edge e, we have

‖JũK‖0,e = ‖JũK− JuhK + JuhK‖0,e = ‖ũ− − ũ+ − u−h + u+
h + u−h − u+

h ‖0,e
≤ ‖ũ− − u−h ‖0,e + ‖ũ− − u−h ‖0,e + ‖JuhK‖0,e.

Again using accuracy of the interpolant and the trace inequality (8), we obtain

he
p2
e

‖ũ± − u±h ‖20,e . ‖ũ− uh‖20,k± .
h2
e

p4
e

‖∇uh‖,

and so
∑

e∈Γ

he
p2
e

‖JũK‖20,e .
∑

κ

h2
κ

p4
κ

‖∇uh‖20,κ +
∑

e∈Γ

he
p2
e

‖JuhK‖20,e,

from which the conclusion (14) follows. �

Now, we consider some special cases in which the stronger estimates of the form (13) hold. The following
lemmas are generalizations of the hp estimates from [18] to the case of nonconforming meshes. Let ν denote
a vertex of the mesh T , and let Kν denote the set of all elements κ ∈ T containing ν as a vertex. A vertex
is called hanging if it is contained in an element of which it is not a vertex (i.e. ν ∈ κ where κ /∈ Kν). A
vertex is called regular if it not hanging. That is, a vertex ν is regular if for each κ such that ν ∈ κ, we
have κ ∈ Kν . For a given vertex ν, for each element κ ∈ Kν , there exists a Gauss–Lobatto node ξκ,i that is
coincident with ν. Let Ξν denote the set of all such Gauss–Lobatto nodes coincident with ν.
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Lemma 8. Let uh ∈ Vh be given, and let vb = uh − Qhuh. Let ν be a regular vertex. Then,

∑

κ

∑

ξκ,i∈Ξν

‖vb(ξκ,i)φκ,i‖20,κ .
∑

e3ν

he
p2
e

‖JuhK‖20,e.

Proof. Applying the inverse trace inequality (9) twice, we obtain

‖vb(ξκ,i)φκ,i‖20,κ .
h2
κ

p4
κ

‖vb(ξκ,i)φκ,i‖20,ν .

Recall that Qhuh is defined by

Qhuh(ν) =
1

card(Kν)

∑

κ′∈Kν
uh|κ′(ν),

and so

vb|κ(ν) = uh|κ(ν)− 1

card(Kν)

∑

κ′∈Kν
uh|κ′(ν),

which can be written as, for appropriate choice of coefficients αe,

vb|κ(ν) =
∑

e3ν
αeJuhKe.

By the trace inequality (8), we have

‖JuhKe‖20,ν .
p2
e

he
‖JuhK‖20,e,

and the desired result follows. �

Lemma 9. Let e be a conforming edge (i.e. no hanging vertex lies in the interior of e, denoted
◦
e), and

suppose that pκ− = pκ+ , where κ− and κ+ are the two elements containing e. Let uh ∈ Vh be given, and let
vb = uh − Qhuh. Then,

∑

κ∈{κ−,κ+}

∑

ξκ,i∈◦e

‖vb(ξκ,i)φκ,i‖20,κ .
he
p2
e

‖JuhK‖20,e.

Proof. Let ξi ∈ ◦e denote a Gauss–Lobatto node lying on the interior of e, and let φ± denote the corresponding
basis functions. Then, Qhuh(ξi) = 1

2 (u−h (ξi) + u+
h (ξi)) and so v±b (ξi) = ± 1

2JuhK(ξi). By Lemma 4 and the
inverse trace inequality,

∑

κ∈{κ−,κ+}

∑

ξκ,i∈◦e

‖vb(ξκ,i)φκ,i‖20,κ ≈
∑

κ∈{κ−,κ+}

∑

ξκ,i∈◦e

‖JuhK(ξκ,i)φκ,i‖20,κ

≈
∑

κ∈{κ−,κ+}

∑

ξκ,i∈◦e

he
p2
e

‖JuhK(ξκ,i)φκ,i‖20,e ≈
he
p2
e

‖JuhK‖20,e. �

We will call a vertex ν of the mesh T an hp-vertex if ν is a hanging vertex, and the elements containing
ν do not all have the same polynomial degree. In the case that an edge does not contain any hp-vertices, we
can apply the result of Karakashian and Pascal [40] to obtain the following result.

Lemma 10. Let e denote an edge that does not contain any hp-vertices. Let uh ∈ Vh be given, and let
vb = uh − Qhuh. Then,

∑

κ3e
‖vb‖20,k .

he
p2
e

‖JuhK‖20,e.

Remark 4. In practice, we observe that certain nonconforming interfaces not included in the above three
cases also satisfy estimate (13). In particular, this is observed for interfaces for which the coarse element
has polynomial degree no higher than any of the fine elements containing the given face. This is corroborated
by numerical examples shown in Section 4, however it is not implied as a consequence of the above estimates.



SUBSPACE CORRECTION PRECONDITIONERS FOR DG METHODS WITH hp-REFINEMENT 9

3.3. Preconditioning. Let PC denote elliptic projection onto VC , and likewise let PB denote elliptic pro-
jection onto VB . We will show that the additive Schwarz system

P = PB + PC

is uniformly well-conditioned with respect to h, p, and η. First, we show that the decomposition Vh = VB+VC
is stable.

Lemma 11. Let uh ∈ Vh, and write uh = ub + uc, where uc = Qhuh. Then,

A(ub, ub) . A(uh, uh)

and
A(uc, uc) . A(uh, uh).

Proof. By the estimates in Lemma 7 and Lemma 3, we have

A(uh − uc, uh − uc) .
∑

κ∈T

p4
κ

h2
κ

‖uh − Qhuh‖20,κ +
∑

e∈Γ

η
p2
κ

hκ
‖JuhK‖20,e

. ‖∇huh‖20,κ +
∑

e∈Γ

η
h

p2
‖JuhK‖20,e

≈ ‖uh‖2DG . A(uh, uh),

proving the first assertion. The second assertion follows by writing uc = (uh−uc)+uc and using the triangle
inequality. �

Theorem 1. The iterative condition number of P satisfies

κ(P ) = λmax(P )/λmin(P ) ≈ 1.

Proof. Since both PB and PC are projections, we have λmax(P ) ≤ 2. To establish the bound for the minimum
eigenvalue of P , we use identity (12) from Lemma 6,

A(P−1vh, vh) = inf
vh=vb+vc

(A(vb, vb) +A(vc, vc)) .

Lemma 11 shows that VB + VC is a stable decomposition of Vh, i.e. for all vh ∈ Vh, there exist vb ∈ VB ,
vc ∈ VC such that vh = vb + vc and

A(vb, vb) +A(vc, vc) . A(vh, vh).

Consequently, we have
A(P−1vh, vh) . A(vh, vh),

and the desired result follows. �

The spaces VB and VC are themselves large, and the computation of PB and PC requires the inversion of
the bilinear forms obtained by restricting A to the subspaces, which are denoted AB and AC , respectively.
This cost is clearly prohibitive, and so we seek to replace PB and PC with approximations TB and TC .
On the conforming space VC , note that AC corresponds to a standard H1-conforming discretization, and
so we may replace A−1

C with a uniform preconditioner for the conforming problem. In this work, we use a
low-order refined matrix-free preconditioner, which is described in greater detail in Section 3.4. In principle,
any uniform preconditioner for AC may be used, and in the remainder of this section we will assume that
A(T−1

C uc, uc) ≈ A(uc, uc) for all uc ∈ VC .
The projection PB onto the boundary space VB is approximated using a further space decomposition. We

decompose the space VB as the sum of yet-to-be-defined subspaces

(15) VB = VE + VJ , VE =
∑

e

Ve, VJ =
∑

j

Vj ,

and define the corresponding approximate projection TB by

(16) TB = TE + TJ , TE =
∑

e

Pe, TJ =
∑

j

Pj .

We begin by defining the space VJ . The subscript J is used to indicate that the approximate projection TJ
onto VJ will be a simple point Jacobi method. For this reason, it is advantageous to choose VJ to be as large
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e

T V
(0)
e V

(1)
e = Ve

Figure 2. Example of the creation of the subspaces Ve on a non-conforming mesh with
variable polynomial degrees. The subspaces are spanned by the basis functions correspond-
ing to the indicated nodes. Note that nodes that are coincident with regular mesh vertices
are omitted.

as possible while still obtaining a stable decomposition. Let VJ consist of any degree of freedom coincident
with a regular mesh vertex, lying on the interior of a conforming edge with uniform polynomial degrees, or
lying on an edge which contains no hp-vertices (see the definitions in Section 3.2.1). In other words, VJ is
designed to consist of those degrees of freedom for which the stronger approximation estimate (13) holds for
the Oswald operator Qh. As noted in Remark 4, the conditions above are not exhaustive, and in practice
VJ can be chosen to also include those degrees of freedom lying on edges for which the coarse element has
polynomial degree no higher than any of the neighboring fine elements. For the jth degree of freedom in the
space VJ , let Vj denote the corresponding one-dimensional subspace, so that VJ can be written as the direct
sum Vj =

∑
j Vj .

Now, we define the spaces Ve. For every edge e ∈ Γ define a (potentially empty) subspace Ve according
to the following process:

• V (0)
e is given as the span of all basis functions φκ,i /∈ VJ whose corresponding Gauss–Lobatto node
ξκ,i lies on the edge e.

• V (i+1)
e is defined as the span of all basis functions φκ,i ∈ VB , φκ,i /∈ VJ such that Jφκ,iK · JvK 6≡ 0 for

some v ∈ V (i)
e .

• The iteration terminates when V
(i+1)
e = V

(i)
e , at which point we set Ve = V

(i)
e .

An example of this process is illustrated in Figure 2. For any pair of spaces Ve and Ve′ , either Ve = Ve′ or
Ve ∩ Ve′ = {0}, and in such a case we may simply omit one of the two spaces. So, without loss of generality,
we may assume that the spaces Ve are disjoint. Furthermore, Ve ∩VJ = {0} for all e by construction, and so
the decomposition VB =

∑
e Ve +

∑
j Vj is in fact a direct sum.

Remark 5. The process described above is guaranteed to terminate, however the spaces Ve could, in principle,
be quite large. In practice, this occurs only in pathological cases, and in realistic cases these spaces remain
relatively small. Furthermore, we observe in the numerical results in Section 4.3 that for 1-irregular meshes,
the dimension of the spaces Ve remain bounded with increasing refinements.

As a consequence of this choice of subspaces, we have the following result concerning the stability of the
decomposition.

Lemma 12. Let uh ∈ Vh be given, and let vb = uh − Qhuh ∈ VB. Let vb =
∑
e ve +

∑
j vj be the unique

representation of vb in the subspace decomposition (15). Then,

(17)
∑

κ

p4
κ

h2
κ

∑

j

‖vj‖20,κ .
∑

κ

∑

e′∈∂κ

p2
κ

hκ
‖JuhK‖20,e′ ,
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and

∑

e′∈Γ

p2
e′

he′


∑

e

‖JveK‖20,e′ +
∑

j

‖JvjK‖20,e′


 .

∑

e′∈Γ

p2
e′

he′
‖JuhK‖20,e′ .

Proof. The first assertion follows from the definition of the spaces Vj and by Lemmas 8, 9, and 10.
We now prove the second assertion. By the trace inequality (8),

(18)
∑

e′∈∂κ

p2
κ

hκ

∑

j

‖vj‖20,e′ .
∑

j

p4
κ

h2
κ

‖vj‖20,κ.

Using (17),

(19)
∑

j

∑

κ

p4
κ

h2
κ

‖vj‖20,κ .
∑

κ

∑

e′∈∂κ

p2
κ

hκ
‖JuhK‖20,e′ .

Note that ‖vj‖20,e′ = ‖JvjK‖20,e′ , and so combining (18) and (19) gives

∑

e′∈∂κ

p2
κ

hκ

∑

j

‖JvjK‖20,e′ .
∑

κ

∑

e′∈∂κ

p2
κ

hκ
‖JuhK‖20,e′ .

Let vJ =
∑
j vj and vE =

∑
e ve. Note that as a consequence of Corollary 1, we have

∑

e′∈Γ

p2
e′

he′
‖JvJK‖20,e′ .

∑

e′∈Γ

p2
e′

he′
‖JuhK‖20,e′

By the triangle inequality, writing vE = vb − vJ and noting that JvbK = JuhK,
∑

e′∈Γ

p2
e′

he′
‖JvEK‖20,e′ .

∑

e′∈Γ

p2
e′

he′

(
‖JvbK‖20,e′ + ‖JvJK‖20,e′

)
.
∑

e′∈Γ

p2
e′

he′
‖JuhK‖20,e′ .

Furthermore, by definition of the subspaces Ve, we have, for e1 6= e2, Jve1K · Jve2K = 0. Therefore,

∑

e′

p2
e′

he′

∑

e

‖JveK‖20,e′ =
∑

e′

p2
e′

he′
‖JvEK‖20,e′ ,

and the second statement follows. �

We also have the following lower bounds on T−1
E and T−1

J .

Lemma 13.

(20) A(T−1
E vE , vE) & A(vE , vE) for all vE ∈ VE ,

and

(21) A(T−1
J vJ , vJ) & A(vJ , vJ) for all vJ ∈ VJ .

Proof. To prove (20), we use the finite overlap property of the spaces Ve. For each subspace Ve, define the
subdomain Ωe ⊆ Ω as the union of all elements κ ∈ T such that ve|κ 6≡ 0 for some ve ∈ Ve. Each element κ
is contained in a number of subdomains Ωe bounded by the number of edges of κ.

We then have

A(vE , vE) ≈ ‖vE‖2DG =
∑

κ∈T
‖∇vE‖20,κ +

∑

e′∈Γ

‖σ1/2JvEK‖20,e′ .

Note that ‖∇ve‖20,κ = 0 if κ /∈ Ωe, and so by the finite overlap property,

‖∇vE‖20,κ =
∥∥∥
∑

e

∇ve
∥∥∥

2

0,κ
.
∑

e

‖∇ve‖20,κ,

and so ∑

κ∈T
‖∇vE‖20,κ .

∑

κ∈T

∑

e

‖∇ve‖20,κ.
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Additionally, since Jve1K · Jve2K = 0 for e1 6= e2, we have
∑

e′∈Γ

‖σ1/2JvEK‖20,e′ =
∑

e′∈Γ

∑

e

‖σ1/2JveK‖20,e′ .

We conclude that

A(vE , vE) .
∑

e

(∑

κ∈T
‖∇ve‖20,κ +

∑

e′∈Γ

‖σ1/2JveK‖20,e′
)

=
∑

e

‖ve‖2DG .
∑

e

A(ve, ve),

and so, by Lemma 6,

A(T−1
E vE , vE) =

∑

e

A(ve, ve) & A(vE , vE).

To prove (21), we use an argument from [9]. Write vJ =
∑
j vj . From the eigenvalue estimate (Lemma

2), we have

A(vJ , vJ) .
∑

κ∈T
η
p4
κ

h2
κ

‖vJ‖20,κ ≈
∑

κ∈T
η
p4
κ

h2
κ

∑

j

‖vj‖20,κ.

Using the inverse trace inequality and noting that ‖vj‖20,e = ‖JvjK‖20,e, we see

∑

κ∈T
η
p4
κ

h2
κ

∑

j

‖vj‖20,κ .
∑

κ∈T
η
p2
κ

hκ

∑

j

‖vj‖20,∂κ =
∑

κ∈T
η
p2
κ

hκ

∑

j

‖JvjK‖20,∂κ .
∑

j

‖vj‖2DG.

Then, by Lemma 6,

A(T−1
J vJ , vJ) =

∑

j

A(vj , vj) &
∑

j

‖vj‖2DG & A(vJ , vJ),

proving (21). �

We are now ready to show that TB satisfies the following bounds.

Lemma 14.

(22) A(T−1
B vb, vb) & A(vb, vb) for all vb ∈ VB ,

and

(23) A(T−1
B (vh − Qhvh), vh − Qhvh) . A(vh − Qhvh, vh − Qhvh) for all vh ∈ Vh.

Proof. We begin by proving the lower bound (22). By Lemma (6), Lemma (13), and the triangle inequality,
we see, for vb = vE + vJ ,

A(T−1
B vb, vb) & A(T−1

E vE , vE) +A(T−1
J vJ , vJ)

& A(vE , vE) +A(vJ , vJ)

≥ A(vb, vb),

proving (22).
Now we turn to the upper bound (23). This is equivalent to showing that

∑
e Ve +

∑
j Vj is a stable

decomposition of Ran(I − Qh). Let vh be given, and let vb = vh − Qhvh. By Lemma 3,

A(T−1
B vb, vb) .

∑

e

(∑

κ

p4
κ

h2
κ

‖ve‖20,κ +
∑

e′

η
p2
e′

he′
‖JveK‖20,e′

)
+
∑

j

∑

κ

η
p4
κ

h2
κ

‖vj‖20,κ.(24)

By Lemma 12, we have

(25)
∑

e

∑

e′

η
p2
e′

he′
‖JveK‖20,e′ +

∑

j

∑

κ

η
p4
κ

h2
κ

‖vj‖20,κ .
∑

e′

η
p2
e′

he′
‖JvbK‖20,e′

and by Corollary (1),

(26)
∑

e

∑

κ

p4
κ

h2
κ

‖ve‖20,κ ≈
∑

κ

p4
κ

h2
κ

∥∥∥
∑

e

ve

∥∥∥
2

0,κ
.
∑

κ

p4
κ

h2
κ

‖vb‖20,κ.
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Inserting (25) and (26) into (24), noting that (I − Qh)vb = vb and applying Lemma 7,

A(T−1
B vb, vb) .

∑

κ

p4
κ

h2
κ

‖vb‖20,κ +
∑

e′

η
p2
e′

he′
‖JvbK‖20,e′

.
∑

k

‖∇vb‖20,κ +
∑

e′

η
p2
e′

he′
‖JvbK‖20,e′

= ‖vb‖2DG . A(vb, vb),

proving the claim. �

Finally, by means of these results, we may prove that the resulting preconditioned system T = TB + TC
is uniformly well conditioned with respect to the mesh size, polynomial degree, and penalty parameter η.

Theorem 2. The preconditioned system T = TB + TC is uniformly well-conditioned, i.e.

κ(T ) = λmax(T )/λmin(T ) ≈ 1,

independent of mesh size, polynomial degree, and penalty parameter η.

Proof. By Lemma 6, we have

A(T−1uh, uh) = inf
ub+uc=uh

(
A(T−1

B ub, ub) +A(T−1
C uc, uc)

)

≤ A(T−1
B (I − Qh)uh, (I − Qh)uh) +A(T−1

C Qhuh,Qhuh)

. A(uh − Qhuh, uh − Qhuh) +A(Qhuh,Qhuh)

. A(uh, uh),

using Lemmas 11 and 14. This establishes the upper bound.
For the lower bound, by Lemma 14 and the triangle inequality, we have

A(T−1uh, uh) = inf
ub+uc=uh

(
A(T−1

B ub, ub) +A(T−1
C uc, uc)

)

& inf
ub+uc=uh

(A(ub, ub) +A(uc, uc))

≥ A(uh, uh). �

3.4. Matrix-free preconditioners for the conforming problem. In the above analysis, the approximate
projection TC onto the conforming subspace VC = Vh∩H1(Ω) corresponds to a preconditioned system for the
standard H1-conforming finite element problem. As long as this preconditioned system is well conditioned,
i.e. it satisfies

AC(T−1
C uc, uc) ≈ AC(uc, uc) for all uc ∈ VC ,

where AC(· , ·) is the standard H1 bilinear form AC(u, v) =
∫

Ω
∇u · ∇v dx, then the result of Theorem 2

holds and the proposed preconditioner is efficient.
However, constructing a good preconditioner for the general hp-conforming problem is challenging, because

assembling the associated matrix can be costly at high polynomial degrees. Therefore, in this section we
propose matrix-free preconditioners for the conforming problem which are much more efficient at higher
orders. While such preconditioners have been previously considered in the case of h-refinement with a fixed
p, the extension to the general hp-refinement case is new and is one of the contributions of this paper.

Our approach is based on a low-order refined methodology [21, 43]. It is well known that a low-order
(p = 1) finite element discretization on a Gauss–Lobatto refined mesh is spectrally equivalent to the high-
order conforming discretization [20]. This equivalence is often also referred to as the finite element method–
spectral element method (FEM-SEM) equivalence [22]. Low-order refined preconditioners with parallel
subspace corrections have been used in the context of discontinuous Galerkin discretizations on conforming
meshes in [45]. However, in the case of nonconforming meshes or variable polynomial degrees, the low-order
refined meshes do not match at coarse element interfaces, and the refined spaces corresponding to different
polynomial degrees are not nested. An illustration of one such mesh is shown in Figure 3. For these reasons
it is not immediately clear how to construct an equivalent low-order refined discretization in either the case
of p-refinement or nonconforming meshes.



14 PAZNER AND KOLEV

p = 2

p = 3p = 4

p = 5

High-order mesh T Low-order refined mesh T̃

Figure 3. Example of high-order mesh T and corresponding low-order refined mesh T̃ ,
illustrating the resulting non-matching, non-nested interfaces.

In this work, we make use of the variational restriction perspective for nonconforming adaptive mesh
refinement [24]. Let P : VC → Vh denote the natural injection, which we call the conforming prolongation

operator. Let Â denote the matrix corresponding to the bilinear form Â(u, v) =
∫

Ω
∇hu · ∇hv dx. Note that

Â : Vh → Vh is a block diagonal matrix, since it is defined on the “broken” DG space Vh. Then, the matrix
AC : VC → VC corresponding to the conforming bilinear form AC is given by the variational restriction

AC = P ᵀÂP.

Let Âκ denote the diagonal block of Â corresponding to element κ. Let κ̃ denote the low-order refined
mesh of element κ, defined as the image under the element mapping Tκ of the Cartesian mesh whose vertices

are the pκ + 1 tensor-product Gauss–Lobatto nodes. Then, let Ãκ denote the matrix corresponding to
the bilinear (p = 1) finite element stiffness matrix on the low-order refined element mesh κ̃. The spectral

equivalence of low-order refined discretizations (cf. [20]) implies that Âκ is spectrally equivalent to Ãκ, i.e.

(27) uᵀÂκu ≈ uᵀÃκu for all u,

independent of the polynomial degree pκ. Let Ã be the block diagonal matrix whose diagonal blocks corre-

spond to the low-order refined elemental matrices Ãκ. Then, define ÃC by

ÃC = P ᵀÃP.

This definition gives us the following simple result.

Proposition 1. The low-order refined discretization ÃC is spectrally equivalent to the high-order conforming
discretization AC .

Proof. For any u ∈ VC we have, by (27) and setting v = Pu,

uᵀACu

uᵀÃCu
=

uᵀP ᵀÂPu

uᵀP ᵀÃCPu
=

vᵀÂv

vᵀÃCv
≈ 1. �

The advantage of the discretization ÃC is that the elemental matrices can be assembled in constant time
per degree of freedom, as opposed to the high-order discretization AC , for which naive implementations
require O(p2d) operations per degree of freedom (optimized implementations using sum factorizations can
reduce this cost to O(pd+1) operations per degree of freedom) [41, 43]. Then, any uniform matrix-based

preconditioner for ÃC can be used to precondition Ã. In particular, algebraic multigrid methods such as
BoomerAMG [36], which require an assembled matrix, can be applied easily. In this work, the approximate
projection TC is given by approximating A−1

C by one V-cycle of the BoomerAMG preconditioner applied to

ÃC .

Remark 6. The low-order refined discretization ÃC is of interest in and of itself. Let T̃ = {κ̃ : κ ∈ T }
denote the (non-matching) low-order defined mesh. In this context, the elements κ ∈ T will be referred to as

macroelements, which will be refined to obtain the mesh T̃ . Any high-order function vh ∈ Vh can be identified
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with a low-order refined function ṽh, which is given on each element κ by the low-order (p = 1) interpolant

at the Gauss–Lobatto nodes. Let Ĩ : vh 7→ ṽh denote this identification, and let Ṽh = Ĩ(Vh) denote the image

of Ĩ, which consists of piecewise p = 1 functions defined on the refined mesh T̃ that are continuous within
each macroelement κ, and potentially discontinuous across macroelements. We define the nonconforming

finite element space ṼC by

ṼC =
{
ṽh ∈ Ṽh : Ĩ−1(ṽh) ∈ H1(Ω)

}
,

that is, ṼC consists of all low-order refined functions ṽh, whose corresponding high-order function vh =

Ĩ−1(ṽh) is conforming. Then, the low-order refined ÃC can be seen to correspond to the bilinear form

Ã : ṼC × ṼC → R, Ã(ũh, ṽh) =
∫

Ω
∇hũh · ∇hṽh dx.

It is straightforward to see (using the norm-equivalence of low-order refined functions), that the operator

Ã is bounded and coercive, with respect to the broken H1 norm, denoted ‖ · ‖1,h. Using techniques similar to
those of mortar element methods [14] together with a discrete Poincaré inequality, it is possible to bound the
approximation and consistency errors of the discretization to obtain the error estimate

‖ũh − u‖1,h . h1/2‖u‖1.
By the nonconforming Aubin-Nitsche lemma (cf. [15]), we can obtain the L2 estimate

‖ũh − u‖0 . h‖u‖2.
These estimates indicate that the discretization ÃC is of limited utility in terms of accuracy of the discrete
solution, however, because of Proposition 1, it will be quite useful for preconditioning the high-order problem.

4. Numerical results

4.1. Implementation and algorithmic details. The algorithms described in this paper have been imple-
mented in the framework for the MFEM finite element library [1, 42]. The main components of the solver
are:

(1) Efficient matrix-free evaluation of the high-order discontinuous Galerkin bilinear form A(· , ·).
(2) Assembly of the diagonal of the discontinuous Galerkin matrix (corresponding to the subspaces Vj),

and assembly of the diagonal blocks corresponding to the subspaces Ve.

(3) Assembly of the low-order refined conforming stiffness matrix ÃC .
(4) Assembly of the conforming prolongation operator P .

(5) Application of a uniform preconditioner (e.g. BoomerAMG) approximating Ã−1
C .

We now consider the number of operations required to perform these operations. In particular, we are
interested in the scaling with respect to polynomial degree. For operations which are local to a given
element or edge, the polynomial degree p will be used to refer to pκ or pe, respectively. Using matrix-free
sum-factorized operator evaluation, the evaluation of the high-order discontinuous Galerkin bilinear form
A(· , ·) can be performed element-by-element, requiring O(pd+1) = O(p3) operations and constant memory
per degree of freedom [41, 43, 46]. Additionally, the diagonal of the matrix can be assembled in the same
complexity. Since the spaces Ve are composed of degrees of freedom lying on edges, the size of Ve scales
like O(nepe), where ne is the number of edges that are included in Ve through the generating process. As a
result, the assembly and inversion of these local blocks can be computed in O(p3) operations, which is the
same scaling as operator evaluation. The low-order refined conforming stiffness matrix has O(1) nonzeros
per row, and therefore can be assembled in constant time per degree of freedom (i.e. O(p2) operations). The
number of nonzeros in the conforming prolongation operator scales as O(p2), and each nonzero entry can
be computed in constant time. Finally, the construction and application of the BoomerAMG preconditioner
also requires constant operations per degree of freedom.

In the numerical examples below, we will study the performance of the preconditioners developed in
this paper applied to several problems involving nonconforming mesh refinement and variable polynomial
degree. We consider the preconditioned system T = TB + TC , where TB is defined by (16) and denote the
corresponding preconditioner as B = BB + BC , such that T = BA. In addition to B, we also consider a

simplified preconditioner B̃ = JB + BC , where JB corresponds to a simple Jacobi method applied to the
subspace VB (that is, the edge spaces Ve are not used in the simplified preconditioner). This preconditioner
is known to be uniform for the case of conforming meshes with uniform polynomial degree [9, 45], however
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Figure 4. Solution and polynomial degrees for the L-shaped domain problem after 14
adaptive refinement steps.

the failure of estimates of the form (13) to hold in the hp-refinement case suggests that this preconditioner
will not perform well in situations similar to that shown in Figure 1. Finally, we will compare our results to
one V-cycle of the BoomerAMG algebraic multigrid method with Gauss-Seidel smoothing applied to the DG
system. Conjugate gradient iteration counts are reported using a relative tolerance of 10−8. In the examples
below, the penalty parameter η is fixed to be η = 100, with the exception of Section 4.4, in which we vary η
to study the impact of the penalty parameter on the preconditioner performance.

4.2. Adaptive refinement. We consider two examples of adaptively refined meshes and spaces. The first
problem is the standard L-shaped domain test [51, 52],

−∆u = 0 in Ω,

u = gD on ∂Ω,

where the Dirichlet boundary conditions are given by

gD(x) = r(x)2/3 sin

(
2θ(x)

3
+
π

3

)
,

where r and θ denote polar coordinates in R2. The exact solution to this problem has a singular gradient,
triggering refinements near the corner of the domain. The mesh, polynomial degrees, and solution after 14
adaptive refinement steps are shown in Figure 4.

We adaptively refine the mesh and polynomial degrees 20 times, beginning with a coarse mesh with 12
elements. The final mesh is 1-irregular, and consists of 138 elements, with a total of 5,207 degrees of freedom.
The conjugate gradient iteration counts for this problem are shown in Figure 5 and Table 1. We report the
iteration counts for the subspace correction preconditioner B = BB +BC , where TB is defined by (16), and
TC is given by one V-cycle of BoomerAMG applied to the low-order refined discretization of the conforming
problem. The corresponding low-order refined mesh is illustrated in Figure 7. Additionally, we show the

iteration counts for the simplified preconditioner B̃ = JB +BC , where JB is a point Jacobi method applied
to the subspace VB . This simplified preconditioner is expected to perform well on cases without problematic
hp-interfaces of the type illustrated in Figure 1. Finally, we also consider one V-cycle of BoomerAMG with
Gauss-Seidel smoothing applied to the DG problem. We notice that for the L-shaped domain test case,
because of the choice of h- and p-refinements, the first 18 refinements do not introduce problematic hp-

interfaces, and both the subspace correction preconditioner T and the simplified preconditioner T̃ result in
good performance that is essentially independent of refinement level. The last two AMR steps introduce

several problematic hp-interfaces, which result in degraded convergence for T̃ . After only a couple of AMR
steps, the BoomerAMG preconditioner applied to this problem results in large iteration counts.
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Table 1. Convergence results and subspace sizes for the L-shaped domain test prob-
lem. #Ve indicates the number of nontrivial subspaces Ve in the space decomposition (15).
max dim(Ve) indicates the dimension of the largest such subspace.

AMR
Step

# DOFs
Iters.

BB +BC

Iters.
JB +BC

Iters.
BoomerAMG

# Ve max dim(Ve)

0 63 24 24 25 0 —
1 84 25 25 28 0 —
2 121 27 27 36 0 —
3 174 30 30 60 0 —
4 223 30 30 72 0 —
5 268 31 31 69 0 —
6 319 32 32 87 0 —
7 662 34 33 184 6 12
8 1,014 32 32 207 6 12
9 1,359 33 33 218 6 12
10 1,683 33 33 226 6 12
11 2,025 33 33 227 6 13
12 2,367 33 33 234 6 13
13 2,709 33 33 223 6 13
14 3,042 32 32 223 6 13
15 3,384 32 32 223 6 13
16 3,752 35 35 209 2 13
17 4,098 33 33 193 0 —
18 4,422 34 34 194 0 —
19 4,805 33 57 191 2 15
20 5,207 35 71 198 8 25
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Figure 5. Conjugate gradient iteration counts for the L-shaped domain (left) and inter-
nal layer problem (right) adaptively refined problems. Comparison of subspace correction

preconditioner B = BB +BC , simplified preconditioner B̃ = JB + TC , and BoomerAMG.
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Figure 6. Solution and polynomial degrees for the internal layer problem after 20 adaptive
refinement steps.

The second case we consider is a problem with an internal layer [28, 51]. We solve the problem

−∆u = f in Ω,

u = gD on ∂Ω,

where f and gD are chosen to give the exact solution

u(x) = atan (200(r(x)− 0.7)) ,

where r here denotes the distance from the point (−0.05,−0.05). This problem is characterized by a steep
gradient near the circle centered at (−0.05,−0.05) of radius 0.7. The results for this problem are shown
in Figure 5 and Table 2. In contrast to the previous test case, the adaptive refinement procedure in this
case results in a large number of difficult hp-interfaces, as indicated by the large number of nontrivial Ve
subspaces. As a consequence, the simplified preconditioner T̃ = JB = TC does not perform well for this
problem. On the other hand, the subspace correction preconditioner results in iteration counts that remain
bounded independent of the refinement level. We note that the number of nontrivial subspaces Ve increases
with refinement level, thus increasing the cost of the preconditioner. However, the majority of these subspaces
are quite small, and they can be processed independently and in parallel. For example, after 20 AMR steps,
there are 121 nontrivial Ve subspaces, of which the majority have dimension less than 10, and only 6 of which
have dimension greater than 20.

4.3. Random refinement. To test the robustness of the new preconditioner, we now consider a sequence
of nonconforming refinements made randomly. Starting with an initial mesh, each element is marked for
refinement with probability 0.5. It is possible to limit the degree of irregularity of the final mesh (i.e. to
ensure that an `-irregular mesh is obtained for given `) by propagating certain refinements. We consider
both the case of 1-irregular meshes and meshes with no limit on the degree of irregularity. After the final
mesh is obtained through this random refinement process, polynomial degrees are randomly assigned to each
element. We solve the problem

−∇ · (a∇u) = f,

where a(x) is a piecewise constant diffusion coefficient, which takes values of 1 and 20 according to a
numbering of the elements the initial coarse mesh. The coefficient and an example of a randomly refined
mesh are shown in Figure 8.

We study the convergence of the preconditioner for this problem using a combination of random and
uniform refinements, and considering both 1-irregular meshes, and arbitrary `-irregular meshes. The results
are presented in Table 3. To begin, we refine the mesh once randomly, and then twice uniformly. We note that
the conjugate gradient iterations remain roughly constant with each uniform refinement. Furthermore, the
maximum dimension of the edge subspaces Ve does not increase with uniform refinement. We also consider
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Table 2. Convergence results and subspace sizes for the internal layer test problem.
#Ve indicates the number of nontrivial subspaces Ve in the space decomposition (15).
max dim(Ve) indicates the dimension of the largest such subspace.

AMR
Step

# DOFs
Iters.

(BB +BC)
Iters.

(JB +BC)
Iters.

(BoomerAMG)
# Ve max dim(Ve)

0 64 21 21 23 0 —
1 124 32 32 38 0 —
2 196 36 36 46 0 —
3 279 38 57 72 13 8
4 354 44 57 105 13 12
5 448 46 69 128 22 12
6 502 43 70 135 22 12
7 806 48 92 140 36 16
8 958 47 101 185 39 20
9 1,229 43 137 212 42 22
10 1,602 43 203 255 53 24
11 1,846 40 218 255 58 22
12 2,086 42 205 316 63 22
13 2,365 45 267 364 72 28
14 2,421 47 281 398 72 31
15 2,547 42 209 274 76 24
16 2,892 42 310 323 84 27
17 3,256 49 451 378 93 27
18 3,805 44 279 350 111 27
19 4,253 45 357 391 121 33
20 4,401 45 274 294 121 34

Figure 7. Low-order refined meshes for the L-shaped domain and internal layer problems.

increasing levels of random refinement. We note that with increased random refinements (and increased
irregularity of the mesh), we observe a slight degradation in the quality of the preconditioner. Additionally,
the dimension of the spaces Ve is seen to grow rapidly with the irregularity of the mesh. However, if we
require that the mesh be 1-irregular, then the preconditioner performance and dimension of the spaces Ve
remains constant when performing random refinements.



20 PAZNER AND KOLEV

1

20

a

3

4

5

6

7

O
rd

er

Figure 8. Left: values of piecewise constant diffusion coefficient a. Right: example of
randomly generated nonconforming mesh with randomly assigned polynomial degrees.

Table 3. Convergence results for the random refinement test case with piecewise constant
diffusion coefficient.

Refinement # DOFs
Iters.

TB + TC

Iters.
JB + TC

Iters.
BoomerAMG

# Ve max dim(Ve)

Initial mesh 672 42 42 148 0 —

1 random 2,042 54 223 237 18 29
1 random, 1 uniform 8,168 59 247 298 28 19
1 random, 2 uniform 32,672 61 316 288 56 19

2 random (2-irregular) 5,402 63 441 322 51 65
2 random (1-irregular) 5,737 60 305 288 54 29

3 random (3-irregular) 13,149 79 673 399 115 106
3 random (1-irregular) 15,300 61 390 286 138 30

4.4. Dependence on penalty parameter. An attractive feature of the preconditioners developed in this
work is that the conditioning of the preconditioned system is independent of the value of the penalty pa-
rameter η. Generally, larger values of the penalty parameter result in systems that are worse-conditioned,
and more difficult to solve using standard preconditioners and multigrid methods [23, 49]. In this section,
we numerically study the dependence of the preconditioner on the choice of penalty parameter. The same
mesh is used as in Section 4.3, with one level of random refinements. Each element of the mesh is randomly
assigned a polynomial degree 5 ≤ pκ ≤ 9. The symmetric interior penalty parameter η is increased from
10 to 10,000 by factors of 10. The resulting iteration counts are shown in Figure 9. We note that the
preconditioned system T = TB + TC remains uniformly well-conditioned, independent of the choice of η,

whereas both the simplified preconditioner B̃ and BoomerAMG result in severely degraded convergence for
large values of η.

We also consider an alternative DG formulation, known as the second method of Bassi and Rebay (BR2)
[12]. The BR2 method proceeds by defining, for each edge e ∈ Γ, a lifting operator re : [L1(e)]2 → [Vh]2

given by

(28)

∫

Ω

re(ϕ) · τ dx = −
∫

e

ϕ · {τ} ds for all τ ∈ [Vh]2.

The BR2 bilinear form ABR is obtained by replacing the symmetric interior penalty term
∫

Γ
η
p2e
he

JuhK ·
JvhK ds with an alternative stabilization term of the form

∑
e

∫
Ω
ηre(JuhK) · re(JvhK) dx. This method has the
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Figure 9. Dependence of number of conjugate gradient iterations on choice of penalty

parameter. Left:
∫

Γ
η
p2e
he

JuhK · JvhK ds stabilization (symmetric interior penalty method).

Right:
∑
e

∫
Ω
ηre(JuhK) · re(JvhK) dx stabilization (BR2 method).

advantage that that the penalty parameter η can be chosen to be O(1), and the scaling by a factor of p2
e/he

is not required. However, the presence of the lifting operators re can result in degraded convergence for
multigrid methods [32]. It can be seen that the norm ‖ · ‖BR induced by the bilinear form ABR is equivalent
to the DG norm ‖ · ‖DG, independent of mesh size and polynomial degree [45]. Consequently, we expect the
preconditioner B = BB + BC to result in performance independent of the magnitude of BR2 penalization.
This agrees with the numerical results presented in Figure 9.

5. Conclusions

In this work we presented new preconditioners for discontinuous Galerkin methods applied to hp-refined
meshes. The preconditioners are based on a subspace decomposition, using a coarse space of H1-conforming
functions, together with subspaces corresponding to nonconforming interfaces. For the coarse space we
proposed a new matrix-free low-order refined preconditioner which is shown to be spectrally equivalent to
the high-order conforming problem. The nonconforming interface subspaces are generally small in size, and
can be processed independently in parallel. Analysis of the overall preconditioner shows that the condition
number of the resulting system is independent of the mesh size, polynomial degree, and penalty parameter.
Numerical examples are presented on both adaptively refined and randomly refined meshes. Comparisons to
alternative preconditioners, including a simplified preconditioner with diagonal correction, and an algebraic
multigrid preconditioner demonstrate the utility and benefits of the current approach.
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