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Abstract

A new method for computing anharmonic thermophysical properties for adsorbates

on metal surfaces is presented. Classical Monte Carlo phase space integration is per-

formed to calculate the partition function for the motion of a hydrogen atom on Cu(111).

A minima-preserving neural network potential energy surface is used within the inte-

gration routine. Two different sampling schema for generating the training data are

presented, and two different density functionals are used. The results are benchmarked

against direct state counting results using discrete variable representation. The phase

space integration results are in excellent quantitative agreement with the benchmark

results. Additionally, both the discrete variable representation and the phase space

integration results confirm that the motion of H on Cu(111) is highly anharmonic. The

results were applied to calculate the free energy of dissociative adsorption of H2 and

the resulting Langmuir isotherms at 400, 800 and 1200 K in a partial pressure range

of 0-1 bar. It shows that the anharmonic effects lead to significantly higher predicted

surface site fractions of hydrogen.

Introduction

Microkinetic modeling is an increasingly popular and effective way to simulate catalytic pro-

cesses and optimize catalyst design and operating conditions.1 At a minimum, a microkinetic

mechanism must be thermodynamically consistent.2 Thermodynamic consistency requires

reaction equilibrium constants, which in turn requires accurate free energies of adsorbates.

In all but the rarest cases, adsorbate free energies cannot be obtained easily experimentally.

Instead, theoretical methods are utilized to obtain partition functions of the adsorbates,

from which their thermophysical properties, such as the enthalpy increment, entropy, and

heat capacity, can be derived.

Arguably the most common model for adsorbate partition functions is the harmonic os-

cillator (HO) model, also known as the 2D lattice model.3 The harmonic oscillator model
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is particularly suitable for tightly bound species. However, the HO approximation is in

poor agreement with experimental data; for example, it tends to underestimate adsorbate

entropy.4 For weakly bound (e.g. physisorbed) species, which have low diffusion barriers,

an alternative model is the free translator (FT), also known as the 2D gas model.5 Col-

lectively, the harmonic oscillator and the free translator models represent idealized limits

(infinite barriers and no barriers, respectively) and do not accurately describe most systems

at finite temperatures. Recent studies6,7 show that anharmonic motion (which, in this case,

arises from finite barriers) is important for accurate entropies and thence free energies in

heterogeneous catalysis.

The recently developed hindered translator (HT) model8 bridges the gap between the HO

and the FT models with an analytical expression for the potential energy surface (PES) that

is sinusoidal in two degrees of freedom parallel to the surface. It provides a more accurate re-

sult while still being comparatively easy to implement. An alternative way to bridge the gap

is with complete potential energy sampling (CPES),9 introduced by Jørgensen and Grönbeck

in 2017, which has shown to perform similarly to the hindered translator model. CPES treats

in-plane adsorbate motion as a classical continuous system and is more general than the hin-

dered translator model, as it takes into account the detailed energy landscape. Jørgensen

and Grönbeck later presented Monte Carlo complete potential energy sampling (MCPES),10

a computational method for calculating molecular entropy in zeolites. In MCPES, the parti-

tion function includes anharmonic contributions to all transitional degrees of freedom of the

molecule in the zeolite and is obtained semiclassically, by integration of the potential energy

surface.

The HO, FT, HT and CPES free energy approximations for adsorbates on flat surfaces

were benchmarked against more accurate free energies directly computed from first-principles

for monatomic adsorbates in a study by Bajpai et al.11 It was found that the commonly used

analytical models, HO, FT, and HT, often do not properly capture adsorbate free energies,

and that their performance depends on the shape and separability of the PES. Moreover,
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the Bajpai et al. study found that a classical treatment for in-plane motion such as CPES

can be used to evaluate the free energies of monatomic adsorbates accurately, except at low

temperatures.

Potential energy sampling based methods are therefore promising for accurate free en-

ergies of arbitrary adsorbates at high temperatures. In this study we use a sampling based

approach to obtain the coupled, anharmonic partition function of a hydrogen atom on a

Cu(111) surface. Specifically, the three translational degrees of freedom are all treated as

coupled and anharmonic. We use a classical phase space integral representation for the

anharmonic partition function and solve it with Monte Carlo (MC) sampling.

The MC sampling is exact (in the classical limit), given a sufficient number of sampling

points. In principle, it is possible to perform the direct sampling using density functional

theory (DFT); in practice, however, direct DFT sampling is impractical. A suitably dense

sampling may require hundreds of thousands of discrete energy evaluations, which could be

computationally prohibitive using DFT. Instead, we develop an accurate surrogate potential

energy surface using machine learning methods. This machine learning surrogate PES can be

evaluated quickly during the integration process with negligible loss in accuracy, compared

to DFT.

A handcrafted form inspired by the quadratic approximation is used to construct the

potential energy surrogate. This functional form, the minima-preserving neural network

(MP-NN), requires the Hessian matrix and the optimized position of the adsorbate at each

minimum. The only features that are required in this machine learning method are the

distances of the hydrogen atom from each minimum. This machine learning method does

not require elemental information, which distinguishes it from the more commonly used

fingerprinting methods. For example, the most frequently used methods involve either us-

ing handcrafted mathematical expressions to describe local environments of atoms, such as

Behler-Parrinello (BP) symmetry functions,12 or using convolutional layers involving dis-

tances and atom features, such as lattice convolutional neural networks (LCNN).13 Appli-
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cations of machine learning for atomistic potential energy surfaces is a rapidly developing

field, and a thorough review is outside the scope of the present work. Please refer to review

studies such as Refs. 14, 15 and 16.

We consider the performance of the MP-NN surrogate potential energy surface in phase

space integration (PSI) in evaluating the partition function and compare our result to the

common approximations, HO, FT, and HT. We quantify the effect of anharmonicity, looking

at the anharmonic correction factor f , analogous to how anharmonicity effects have been

quantified for vibrational modes of gas-phase species.17 Furthermore, we directly derive the

entropy, enthalpy increment, and heat capacity from the partition function. Lastly, we

calculate the standard-state Gibbs free energy and plot the resulting Langmuir isotherms for

H2(g) dissociative adsorption, and compare to the standard models.

Methods

Electronic Structure Theory

Density Functional Theory (DFT) calculations were performed with the plane-wave code

Quantum ESPRESSO.18–20 Two different functionals were used in conjunction with two

different methods for generating training data (described in greater detail in the next sec-

tion). In the first set of calculations, the Perdew-Burke-Ernzerhof functional21 was used

with Grimme’s D3 corrections22 including three-body Axilrod-Teller-Muto corrections,23,24

PBE-D3(ABC). PAW pseudopotentials generated using the “atomic” code by Dal Corso25,26

were used.

The optimized lattice constant with the PBE-D3(ABC) functional was found to be 3.58

Å. The H-Cu(111) system was modeled using a 4-layer Cu(111) slab with a 3 × 3 unit cell

and a 17 Å vacuum between the H atop and the bottom of the repeated image. All the

Cu surface atoms were held fixed in their bulk geometry while the H atom was relaxed on

the surface using the LBFGS algorithm in the Atomic Simulation Environment (ASE),27
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with a maximum force convergence criterion of 0.01 eV/Å along all directions. Energies

were calculated with a plane-wave cutoff of 60 Ry and a (6×6×1) k-point grid, criteria at

which the H adsorption energy was converged to within 0.09 eV. The Marzari-Vanderbilt

smearing method,28 with a smearing width of 0.005 Ry, was used. Spin polarization was not

considered in the calculations. The fcc binding site was found to be the optimal position of

H on the Cu(111) surface. A finite-difference approximation was used to obtain the Hessian

matrix of the H atom in the fcc and the hcp binding sites.

The potential energy V (x,y,z) was calculated at total of 14,395 (x,y,z) positions of H

within the area of the rhombus-shaped primitive unit cell, shown in Figure 1. The z values

range from 0.5 Å below the optimal z value of H in the fcc position up to 3.5 Å above

it. The training data includes the four stationary points of H on the surface, the fcc, hcp,

bridge and atop sites. A small portion of the data, or 1,024 geometries, were distributed

over the whole constrained volume as a Sobol sequence.29 The remaining 13,367 geometries

were sampled from a multivariate normal (MVN) distribution with a covariance set to be

equal to the inverse Hessian matrix of the H atom in the fcc position. This procedure was

to ensure ample sampling close to the minimum energy, the highest Boltzmann weight area

(see the Supplemental Information for details).

In the second set of calculations, new training data were computed with the BEEF-vdW

functional30–32 using the libbeef package,33 which is automatically enabled in Quantum

ESPRESSO versions 6.6 and higher. We used SG15 Optimized Norm-Conserving Vanderbilt

(ONCV) pseudopotentials that were generated using the “ONCVPSP” code by Hamann.34–36

The optimized lattice constant of Cu was found to be 3.66 Å. The same procedure as for the

PBE-D3(ABC) functional was mostly followed with a few modifications. A smearing width

of 0.02 Ry was used and the H adsorption energy was converged to within 0.03 eV using the

60 Ry and a (6×6×1) k-point grid.

The BEEF-vdW training data consisted of 9,382 geometries within the primitive unit

cell area, where the z values range from 0.5 Å below the optimal z value of H in the fcc
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position up to 4.25 Å above it. This set contains the fcc, hcp, bridge and atop sites as well as

1,024 samples according to a Sobol sequence. Unlike the PBE-D3(ABC) set, the remaining

samples belong to two MVN distributions: 4,122 of the samples belong to an MVN centered

at the fcc position with the associated inverse-Hessian covariance, and 4,232 samples belong

to another MVN distribution centered at the hcp position with its corresponding inverse-

Hessian as a covariance matrix. Using two MVN sample sets is an attempt at more efficient

sampling for maximum PES surrogate accuracy close to the minimum energy positions. This

dual-minima approach is expected to be an improvement, especially in this case where the

hcp position was found to be effectively equivalent to the fcc position, with a less than 1

meV difference in potential energy between the two minima.

Figure 1: H in the fcc binding site of a Cu(111) surface and the periodic primitive unit cell
area that contains all training positions.

Surrogate Potential Energy Surface

As described in the introduction, the present approach uses a surrogate potential energy

surface: Vs(x, y, z) ≈ V (x, y, z), which is constructed using the training set of x = (x, y, z)

geometries and corresponding DFT energies described in the previous section. In other

words, the training set is {(x(j), V (x(j)))} for j = 1, . . . , N , where N=14,394 for the PBE-

D3(ABC) case and N=9,380 for the BEEF-vdW case. We removed the training sample

corresponding to the fcc minimum from the PBE-D3(ABC) set, and two samples corre-

sponding to the fcc and hcp minima from the BEEF-vdW set. This was done to ensure that

7



the training sample transformation, described later in this section, is well-defined, avoiding

division by zero. As for the parametric form of the surrogate Vs(x, y, z), we employ neural

networks (NNs) within PyTorch machine learning framework, with special adjustments to

ensure accuracy of the surrogate near the fcc and the hcp binding sites of hydrogen on the

surface. Because the Boltzmann weighting will be dominated by the lowest energy configu-

rations, we wish to ensure that the surrogate is most accurate in the proximity of the various

minima. Accordingly, we introduce the minima-preserving neural network (MP-NN) surro-

gate. The MP-NN surrogate is inspired by the quadratic approximation near a minimum

x0 = (x0, y0, z0). Given the minimum V (x0) and the Hessian H(x0), consider a surrogate of

a form

Vs(x) = V (x0) +
1

2
(x− x0)

TH(x0)(x− x0)e
g(x−x0). (1)

By construction, Vs(x) has a minimum V (x0) at x0, and has a positive definite Hessian.

In order to restrict our surrogate to the form given in Eq. (1), we strive to learn the general

function g(x), and transform the training samples according to

x̃(j) = x(j) − x0

g(x̃(j)) = log

{
V (x(j))− V (x0)

1
2
(x(j) − x0)TH(x0)(x(j) − x0)

} (2)

and, using the transformed training set {(x̃(j), g(x̃(j)))} for j = 1, . . . , N , we learn the

multiplicative correction factor exponent as a neural network g(x) = NN(x). In the case of

two minima, x(1)
0 and x

(2)
0 , we construct surrogates of form (1) for each of them individually

using only training evaluations within a certain distance from the corresponding minimum,

arriving at V (1)
s (x) and V (2)

s (x), each being accurate near the appropriate minima. Then we

obtain the final MP-NN form of the surrogate as a linear combination of these two surrogates:
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wi(x) =
e−d(x,x

(i)
0 )/ε

e−d(x,x
(1)
0 )/ε + e−d(x,x

(2)
0 )/ε

V joint
s (x) = w1(x)V (1)

s (x) + w2(x)V (2)
s (x)

(3)

where d(x,x
(i)
0 ) within the weight wi(x) is the Euclidean distance of the point x from

the i-th minimum (i = 1, 2), and ε is a small positive ‘smoothing’ factor. This distance-

weighted form ensures the transition from the region near one minimum to a region near

another minimum, with the corresponding surrogates switching their importance in the linear

combination. The cost is a slight deterioration of minimum constraints, but small ε and large

distance between minima reduces this effect. The sketch of the MP-NN surrogate form is

illustrated in Figure 2. The overall surrogate is a weighted linear combination (WLC) of

two separately trained surrogates. Each of the two identical paths in Figure 2 represents a

surrogate corresponding to a minimum, indicating operations of shifting input, training a NN

and exponentiating it as a correction to a quadratic, before a vertical shift. The operations

are equivalent to transforming the training input/output pairs according to Eq. (2).

Two different training schema are considered. In the first approach, “surrogate 1”, which

is used for the PBE-D3(ABC) functional, the NN architecture that plays the role of the

multiplicative correction (see Figure 2) was set to have 3 hidden layers with 111 units for

each, using a Rectified Linear Unit (ReLU) activation function. The NN is trained via

Adam optimization,37 using 5,000 epochs with learning rate 0.01 and a batch size of 200.

For the second training scheme, “surrogate 2”, which is used for the BEEF-vdW training

data, the NN architecture was set to have 3 hidden layers with 1,111 units for each, using

a hyperbolic tangent activation function. Similar to the previous case, the NN is trained

via Adam optimization, using 5,000 epochs with learning rate 0.01 and a batch size of

200. In other words, the second training approach has 10x more units. The other salient

difference between the two approaches is with respect to the generation of the training data
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Figure 2: The overall architecture of the MP-NN surrogate, as a weighted linear combination
(WLC) of minima-preserving surrogates in the form of NN-based multiplicative corrections
to a quadratic function. M indicates a multiplication, while X-shift and V-shift indicate
input and output shifts, respectively. In the present work, the two minima for which neural
networks are created are the fcc and hcp.

itself. For the PBE-D3(ABC) functional, only the fcc minimum was considered for the MVN

distribution. For the BEEF-vdW functional, both the fcc and the hcp minima were explicitly

considered. As will be demonstrated in the Results section, including the neighborhoods

of both minima in the training scheme and increasing the number of units improves the

performance, relative to the first case. Note that the MP-NN surrogate can be reformulated

and applied to any coordinates or features. While here we demonstrate it for the Cartesian

coordinates, it can easily be adapted to work with transformed coordinates or features, such

as, e.g., Behler-Parrinello symmetry functions, as long as the minima locations and the

corresponding Hessians are transformed to be rewritten with respect to the new coordinates.
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Direct State Counting

Direct state counting of the three degrees of freedom was used to obtain a reference set of

thermodynamic functions. Explicit eigenvalues were obtained for the three degrees of free-

dom (x, y, z) of the adsorbate relative to the surface using a discrete variable representation

(DVR) method.38 A direct symmetric eigensolver from LAPACK was implemented in a local

version of NITROGEN39 package for the dense eigensolve. The direct count of eigenstates

from 2D scans of x, y translation along the surface, as well as 1D translation away from

the surface in z, were solved via DVR basis functions that corresponded to Cartesian ba-

sis functions in these coordinates. The x, y-surface was calculated on a rectangular grid of

93 × 81 grid points spanning 2.531 angstroms in x and 2.1919 angstroms in y using the

PBE-D3 (ABC) MP-NN surrogate. The BEEF-vdW based surrogate used 93 × 81 grid

points that spanned 2.588 angstroms in x and 2.2412 angstroms in y. These x, y grids had

periodic boundary conditions enforced through a Fourier DVR basis functions that main-

tained translational invariance at the endpoints. The z coordinate was relaxed on the x, y

surface. The 1D DVR of the z coordinate was scanned from 0.1 angstrom to 2.0 angstroms

above the surface with 1,000 grid points on both surrogates. Convergence tests were carried

out on grids with up to double the number of grid points. The changes to the density of

states from larger grids were minimal and the resulting partition functions at the highest

calculated temperature differed by less than 1.0 × 10−5. The product of the resulting x, y

and z states were used in thermodynamic summation to compute the quantum mechanical

thermodynamic functions, see Equations (15–17) below for details.

Monte Carlo Phase Space Integration

The statistical analysis begins with the classical Hamiltonian for 3D translation of the ad-

sorbate species relative to the catalyst surface:
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H(px, py, pz, x, y, z) =
p2x
2m

+
p2y
2m

+
p2z
2m

+ V (x, y, z) (4)

where pi is the momentum in the ith direction, m is the mass, and (x,y,z) are the positions

of the center of mass of the H atom on the Cu(111) surface. The corresponding classical

partition function for this system is the Boltzmann factor of the Hamiltonian, integrated

over the momentum and position. The momentum integral is a Gaussian integral, which

can be solved separately from the potential part. Due to the periodicity of the surface, the

limits of integration are restricted to the area of the unit cell and the finite distance above

the surface. The resulting classical partition function is:

qclassical =
(2πmkBT )3/2

h3

∫ z2

z1

∫ y2

y1

∫ x2

x1

e−β V (x,y,z) dx dy dz, (5)

where β = 1/(kBT ) and kB is the Boltzmann constant, x1, x2, y1, y2 are the integration limits

of the repeatable unit cell area, and z1 and z2 are the limits in the direction perpendicular

to the surface. The potential energy in Equation (5) is not approximated with an analytical

expression but rather is computed directly from the surrogate potential; consequently, the

integral is evaluated numerically via Monte Carlo integration:

qclassical ≈ (2πmkBT )3/2

h3
Ω

N

N∑
i=1

e−βVs(x,y,z) (6)

Here, Ω represents the total volume of the sampled region, and N is the number of sampled

configurations. The Monte Carlo PSI (Equation 6) was performed on the MP-NN surrogate

with the integration convergence parameter
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c ≡
∣∣∣∣qclassicalold − qclassicalnew

qclassicalold

∣∣∣∣ (7)

which calculates the change in qclassical upon adding 5 new geometries to the set where qold

is the partition function without the five most recently added geometries (that are included

in qnew). This parameter is checked every 5 new geometries for each temperature T , which

in this study encompasses 31 T values in the range 290-1400 K. The convergence criterion

was set to c < 1.0×10−6.

Thermophysical Properties

For the present work, the three most relevant thermophysical properties that are obtained

from the partition function are the enthalpy increment, [H(T ) − H0]; entropy, S(T ); and

heat capacity at constant pressure, Cp(T ):

[H −H0]

RT
= T

∂

∂T
ln(q), (8)

S

R
= T

∂

∂T
ln(q) + ln(q), (9)

Cp
R

= T 2 ∂2

∂T 2
ln(q) + 2T

∂

∂T
ln(q), (10)

where the explicit temperature dependence is omitted for brevity. If, rather than using

an analytical expression for q(T ), the partition function were to be obtained by classical

integration (or, for that matter, by quantum summation of rovibronic levels), the most

frequent approach to computing the thermophysical properties would be to find the first and

second derivatives of q(T ) via numeric finite difference approximations, using suitable finite

increments δT , and computing the partition function at temperature T , as well as at least

four more points, T − 2δT , T − δT , T + δT , and T + 2δT . A significant complication in

13



this finite-difference approach is determination of δT ; this process typically requires trial and

error, since the increment has to be sufficiently small as to produce a fully converged result

for the derivatives, but not so small as to create numerical problems (for example, resulting

in q(T )− q(T − δT ) differences that are of the same order of magnitude or even smaller than

the convergence error in q(T ) itself).

An alternative (and more elegant) approach is to develop analytical expressions for the

derivatives. In the case of quantum internal partition functions qquantum(T ), which are ob-

tained by summation of discrete rovibronic levels, m of which are bound, it can be shown

that the pertinent expressions are:40

Σ0 =
m∑
i=0

gi e
−β(Ei−E0) (11)

Σ1 =
m∑
i=0

β(Ei − E0) gi e
−β(Ei−E0) (12)

Σ2 =
m∑
i=0

[β(Ei − E0)]
2 gi e

−β(Ei−E0) (13)

qquantum = Σ0 (14)

[H −H0]
quantum

RT
=
〈E〉
RT

=
Σ1

Σ0

, (15)

Squantum

R
=
〈E〉
RT

+ ln(qquantum) =
Σ1

Σ0

+ ln(Σ0) (16)

Cquantum
p

R
=
〈E2〉

(RT )2
−
(
〈E〉
RT

)2

=
Σ2

Σ0

−
(

Σ1

Σ0

)2

, (17)

where E0 is the zero point energy, Ei and gi are the energy and degeneracy of the ith

rovibronic level, Σ0 is the sum of Boltzmann factors over all m+ 1 bound rovibronic levels,

and Σ1 and Σ2 are sums similar to Σ0, but each term in the sum is additionally weighted

by the energy and by the square of the energy (in units of kBT ) of each level, respectively.

Note also that the ratio Σ1/Σ0 corresponds to the average internal energy 〈E〉/(RT ), while

Σ2/Σ0 corresponds to the average of the square of the internal energy 〈E2〉/(RT )2. The

SI includes the special case of representing n degrees of internal motion by n uncoupled
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quantum harmonic oscillators (HO).

In contrast, if the partition function is obtained not by summation of quantum levels but

rather via classical integration of the phase space over n degrees of freedom, as in Equation

(6), then the resulting analytical expressions for the contributions corresponding to those

degrees of internal motion are:

I0 =

∫
x1

∫
x2

...

∫
xn

e−β V (x1,x2,...,xn) dx1dx2...dxn (18)

I1 =

∫
x1

∫
x2

...

∫
xn

β V (x1, x2, ..., xn) e−β V (x1,x2,...,xn) dx1dx2...dxn (19)

I2 =

∫
x1

∫
x2

...

∫
xn

[β V (x1, x2, ..., xn)]2 e−β V (x1,x2,...,xn) dx1dx2...dxn (20)

qclassical =
(2πmkBT )n/2

hn
I0 (21)

[H −H0]
classical

RT
=
n

2
+
I1
I0

(22)

Sclassical

R
=
n

2
+
I1
I0

+ ln

[
(2πmkBT )n/2

hn
I0

]
(23)

Cclassical
p

R
=
n

2
+
I2
I0
−
(
I1
I0

)2

(24)

where the xi are the coordinates in the general case. The SI includes the special case

of representing n degrees of internal motion by n uncoupled classical harmonic oscillators

(HO).

Finally, the classical partition function qclassical(T ) obtained via Equation (6) (or equiv-

alently Equation (21)) is multiplied by the ratio of the quantum partition function to the

classical partition function for the harmonic oscillator model, qquantumHO /qclassicalHO . This “semi-

classical” correction, frequently referred to as the Pitzer-Gwinn appoximation,41,42 is de-

scribed in the SI, which also includes equations for the quantum corrected thermophysical

properties.

As stated in the Introduction, the ultimate goal in determining the partition function
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is to convert the derived thermophysical properties into a Gibbs free energy as a function

of temperature: G◦(T ) = H◦(T ) − TS◦(T ) (the superscript indicates that the properties

are at standard-state, as is required to calculate a reaction equilibrium constant, Keq). In

order to compute the free energy, we also need a reference heat of formation, ∆fH
◦(298K).

The approach to determining ∆fH
◦(298K) for H on Cu(111) is based upon the method-

ology outlined in Ref. 43 and 44. A reference binding energy of -2.43 eV was taken from

literature.45–47 See SI for further details.

Results and Discussion

Surrogate Potential Energy Surface Construction

The surrogate PES construction for the PBE-D3(ABC) data includes 14,394 points as a

combination of multivariate normal samples centered at the fcc site, Sobol sequence, as well

as samples at the hcp, bridge and atop sites, as described in the Methods section. The one

sample at the global minimum (fcc) was omitted from training in order for the transformation

in Eq. (2) to be well-defined. Figure 3 demonstrates the surrogate energy evaluated at z-value

corresponding to the fcc site, as a function of x and y coordinates. This 2D slice in potential

energy space nicely illustrates the limitations of the two common analytical approaches. The

local PES around the fcc is clearly neither harmonic nor flat, thereby confirming that neither

the HO nor the FT model is appropriate, respectively. Instead, there is a broad range of

energetically accessible area, confined within the repulsive walls of the atop sites.

In principle, for computing thermodynamic properties in the canonical ensemble, the

global accuracy of the MP-NN surrogate PES is not as important as the accuracy of the

approximation integrand of the Boltzmann factor, e−E/kT , since the main target of interest

is the partition function evaluation, i.e. the integration in Eq. (6). Figure 4 demonstrates

the surrogate PES accuracy for various values of T , showing an overall relative root-mean-

square error (RMSE) under 8% across a range of T . Note the overall accuracy improvement
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with increasing T : this is due to the fact that the integrand in Eq. (6) becomes less sharp

near its maxima (i.e., near energy minima), and small errors in the surrogate PES are less

significant.

Figure 3: The MP-NN surrogate PES evaluated at the z-slice corresponding to the fcc
minimum of a) surrogate 1, which was obtained using a single MVN set with the PBE-
D3(ABC) functional, and b) surrogate 2, which was obtained using two MVN sets with the
BEEF-vdW functional.
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Figure 4: Partition function integrand approximation for surrogate 1, which was obtained
using a single MVN sampling set (with the PBE-D3(ABC) functional), for a range of T
values.

For the BEEF-vdW functional, where two sets of MVN samples (centered at both min-

ima) were included, in addition to a Sobol sequence and samples at the bridge and atop sites.

Here we removed two samples, corresponding to the exact fcc and hcp sites, in order for the

transformation in Eq. (2) to be well-defined and not harm the training accuracy. Figure 5

shows that similar to the PBE-D3(ABC) case, the BEEF-vdW-based surrogate PES tends

to be more accurate with larger values of T . The overall performance of the BEEF-vdW sur-

rogate is better, even though for the BEEF-vdW functional we used fewer DFT evaluations

(N=9,380) compared to the PBE-D3(ABC) case (N=14,934). We attribute this superiority

to the improved sampling scheme: the BEEF-vdW functional was sampled according to an

MVN near both local minima, fcc and hcp sites, whereas the PBE-D3(ABC) functional only

accounted for the fcc site.
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Figure 5: Partition function integrand approximation for surrogate 2, which was obtained
using two MVN sampling sets (with the BEEF-vdW functional), for a range of T values.

Thermophysical Properties

The NITROGEN39 program interfaced with the PBE-D3(ABC) based MP-NN surrogate

PES yielded the wavenumbers 880.9 cm−1, 881.1 cm−1 and 1084.8 cm−1 for the H atom in

the fcc position. Interfaced with the BEEF-vdW based surrogate PES the program yielded

the wavenumbers 793.674 cm−1, 795.640 cm−1 and 1076.139 cm−1. These wavenumbers were

used in the HO model as well as for the z degree of freedom in the HT and FT partition

functions. The resulting DVR partition function is plotted in Figure 6 (black stars).

These DVR results represent benchmark values for the partition function and thence

thermophysical properties of H on Cu(111). Note: in referring to these results as “benchmark”

for thermophysical properties, we are not asserting that the DFT functionals are themselves

of benchmark accuracy in terms of the binding energy at 0K; rather, we mean that, given

an underlying potential energy surface, the DVR results are an accurate benchmark for
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comparison with methods of obtaining partition functions (e.g. hindered translator, phase

space integration, and other methods).

The phase space integration over each MP-NN surrogate PES was performed at 31 evenly

spaced temperature values between 290–1400 K. To satisfy the convergence criterion c <

1.0×10−6 (Equation 7) for all T , surrogate 1 required 4,848,591 geometries in the sampling

space with the primitive unit cell area (1/9th of a 3×3 unit cell area), which required a run

time of 2h 1m 46s on 1 CPU core. For surrogate 2, 4,843,036 geometries were required, and

the integration run time was 3h 10m 34s on 1 CPU core. An integration convergence study

is included in the Supporting Information. Note that the PSI calculation using surrogate

2 required a slightly longer run time. The longer run time is expected, since surrogate 2

used 10x more units per hidden layer, even though it used fewer training samples. The

training samples, i.e. the actual DFT evaluations are orders of magnitude more expensive

compared to the time required for the NN training and its evaluation to achieve integration

convergence. Therefore, the computational efficiency is almost exclusively determined by the

amount of DFT single-point calculations required to generate the training data. As such, the

surrogate 2 approach of sampling MVN near both minima is computationally more efficient,

as it leads to a more accurate surrogate PES with fewer samples. Full convergence study of

the surrogate as the number of samples grows is provided in the Supporting Information.

The results of the PSI method are shown in Figure 6 (solid black line). Also included in

Figure 6 are the two common analytical models for the limiting cases, harmonic oscillator

(red dash-dot line) and free translator (blue dashed line), as well as the hindered translator

model of Sprowl et al. (yellowed dotted line). It should be noted that when calculating

the FT partition function (which is proportional to the area), the partition function would

not actually be confined to a single unit cell, but rather it would be calculated assuming

a much larger area (for example, using V 2/3, analogous to 3D gas volume at 1 bar), as it

only holds when the translational energy levels are separated by energies much smaller than

the available thermal energy (kT ), as discussed in Ref 8. This larger area would lead to a
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Figure 6: The partition function per cell for a hydrogen atom on Cu(111) at 290-1400 K,
evaluated using the phase space integration (PSI) of the MP-NN surrogate PES, the free
translator (FT), the 3D harmonic oscillator (HO), the hindered translator (HT), and discrete
variable representation (DVR). a) shows the results for surrogate 1, which was obtained with
a single MVN set, and b) shows the results for surrogate 2, which was obtained with two
MVN sets.

substantially larger partition function. To facilitate a more direct comparison, however, we

chose to use the same unit cell area for the FT, HT, PSI and DVR models (the HO model

is independent of area).

The hindered translator model is qualitatively correct over the temperature range of

interest. It is worth noting that the hindered translator model includes a correction for the

zero-point energy contribution due to overestimation at lower temperatures as discussed in

Ref. 8, but it is not important at the temperature range applied here (>300 K). Indeed, at the

lower temperatures, the simpler model is in quantitative agreement with the benchmark DVR

calculations. At higher temperatures, however, it significantly overpredicts the partition

function. The PSI method, in contrast, is in excellent agreement with the DVR results

over the entire temperature range. In all cases, we observe that the PSI method is between

the tight-binding limit (HO) and weak binding limit (FT), and that the adsorbate becomes

increasingly anharmonic as the temperature increases.
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Figure 7: The anharmonic correction factor evaluated with PSI and direct state counting for
both surrogate PES. A value of f=1 would be perfectly harmonic.

Since the standard approach to computing the partition function of H on Cu(111) typi-

cally would be to use the harmonic oscillator model, it is useful to consider how the DVR and

PSI methods compare to the pure HO result. The anharmonic correction factor, f ≡ q/qHO,

is plotted in Figure 7. Qualitatively, we observe that the PSI slightly overpredicts the anhar-

monicity at lower temperatures, and it slightly underpredicts the anharmonicity at higher

temperatures. Overall, however, the discrepancy between PSI and DVR is small, and the

PSI approach is in excellent agreement with the benchmark data.
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Figure 8: a) Helmholtz free energy F , b) entropy S/R, c) enthalpy increment
(H(T )−H(0)) /RT , and d) heat capacity Cp/R, versus temperature for surrogate 2.

Figure 8 presents the Helmholtz free energy, F = −kBT ln(q), as well as the three ther-

mophysical properties, derived from the partition function evaluated at 1/9th monolayer

coverage: 3D translational entropy (no concentration-dependent terms included), S/R; en-

thalpy increment, [H(T )−H(0)]/RT ; and heat capacity at constant pressure, Cp/R, for sur-

rogate 2. Since both surrogates give qualitatively the same model profiles, as demonstrated

in Figure 6, we only present the thermophysical properties for the surrogate constructed

from the more feasible sampling method here. An analogous figure for surrogate 1 can be

found in the Supporting Information. Additionally, the Supporting Information contains a

comparison to finite difference results at various finite increments δT . Of particular interest

is the Figure 8b, the entropy S/R. Here we observe that the anharmonic PSI (along with
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the benchmark DVR) results are effectively halfway between the lower (HO) and upper (FT)

limits, and slightly lower than predicted by the HT model. For the enthalpy increment, Fig-

ure 8c, the HO model is too low but otherwise predicts the correct temperature dependence,

whereas the FT model significantly underestimates the temperature dependence. The PSI

approach slightly underpredicts the enthalpy increment and heat capacity, but is overall in

better agreement with the DVR results than the HO and the FT models.
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Figure 9: a) The standard-state Gibbs free energy of reaction ∆rG
◦ of dissociative adsorption

of H2, obtained with PSI of each surrogate PES, compared with the corresponding HO and
FT models. The remaining three subplots show the Langmuir adsorption isotherms obtained
using PSI, the HO and the FT approximations on both surrogates at b) 400 K, c) 800 K,
and d) 1200 K.

Of perhaps greater interest than the derived thermophysical properties is the Gibbs free

energy. We look at the Gibbs free energy of reaction of the dissociative adsorption of H2,
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H2 + 2 ∗ → 2H∗. In order to calculate the standard-state Gibbs free energy of reaction

(the standard state is necessary in relation to the reaction equilibrium constant), we need

to define a standard-state surface concentration. There is currently no universally accepted

standard state for adsorbates, but the surface site fraction θ◦=0.5 is commonly used and

proposed as a standard.48 We choose follow that convention for the standard state here,

since it is recommended for the Langmuir isotherm for a homolytic dissociative adsorption48

which we apply and plot in Figure 9. With a standard state of θ◦=0.5 defined, we can

calculate the standard-state entropy, S◦, the concentration dependence of which is slightly

different depending on the model in question.49 This effect is discussed further in the SI.

The standard-state Gibbs free energy of reaction for the dissociative adsorption of H2 is

plotted in Figure 9. Because the PSI approach correctly predicts a greater value of entropy

for the adsorbed hydrogen atom, the corresponding free energy is consistently lower than

predicted by the HO approximation at all temperatures. Additionally, we observe that the

two functionals (and thus also the two MP-NN models) are in excellent agreement. The fact

that the two functionals are effectively indistinguishable suggests that they predict similar

curvature of the 3D potential energy surface. However, it is worth emphasizing that both

functionals used the same literature binding energy of -2.43 eV. If this binding energy were

taken from the corresponding DFT calculation instead, then the offset between the PBE-

D3(ABC) (surrogate 1) and the BEEF-vdW (surrogate 2) results would increase, reflecting

the additional difference in the binding energies. Collectively, the plots in Figures 8 and the

Gibbs free energy of reaction in Figure 9 show that the PSI approach gives thermophysical

properties and free energies that are substantially different than both commonly used limiting

cases. These results indicate significant effects on theoretically estimated thermodynamics

and rates of reactions involving H on Cu(111), especially reactions that involve both gas-

phase and surface species, where no cancellation of anharmonicity will occur.

Finally, with the free energy for dissociative adsorption of H2, we can quantify how the

choice of the partition function for H on Cu(111) influences the resulting coverage in a mi-
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crokinetic model. Figure 9 illustrates the surface site fraction of H∗ using a simple Langmuir

isotherm: θH =
√
KeqpH2

/
(

1 +
√
KeqpH2

)
, where Keq is the equilibrium constant for dis-

sociative adsorption, and pH2
is the partial pressure of hydrogen gas. While the Langmuir

isotherm we use here describes adsorption adequately for many cases,48 more accurate, model

specific coverage equations could be obtained from equating chemical potentials as described

in Ref. 49. It is evident that the increased entropy for H∗ (relative to the HO model) directly

corresponds to higher coverage for a given temperature and pressure. In fact, for the ranges

of temperature and pressures considered, the PSI predicts on average a surface site fraction

that is 1.6–4.6 times as large as the HO model.

Conclusions

A new method is presented for creating surrogate potential energy surfaces for the translation

of an adsorbate on a catalytic surface. This method is designed to preserve accuracy nearest

to the global and local minima. This surrogate potential energy surface is used within discrete

variable representation calculations, which serve as benchmark values, as well as classical

phase space integration methods. The DVR and PSI methods are in excellent quantitative

agreement over the entire temperature range of interest. Together, the two models confirm

that the motion of H on Cu(111) is highly anharmonic. Conventional models, such as the

harmonic oscillator, will severely underpredict the entropy of adsorbates on catalytic surfaces.

This underprediction of adsorbate entropy will adversely impact microkinetic mechanisms,

leading to potentially lower surface coverage.

The present calculations all were performed in the low-coverage limit. Lateral interac-

tions were not considered. However, the approach presented in this work in principle could

be extended to include coverage dependence. Anharmonic, coverage-dependent partition

functions, building on this approach, are underway. Additionally, the current approach is

being extended to include polyatomic adsorbates. In addition to the three degrees of freedom
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for frustrated translation along the surface, two and three dimensional frustrated rotational

motion will be considered for linear and nonlinear adsorbates, respectively.

This work is part of a broader effort to provide accurate microkinetic mechanisms within

an automated computational chemistry framework. The minima-preserving neural network

and the phase space integration routines are provided as part of the AdTherm package.50

The method is to be a part of the Sandia National Laboratories’ Exascale Catalytic Chem-

istry (ECC) computational framework for automated chemistry.51 The results of these cal-

culations will be incorporated into the Active Thermochemical Tables (ATcT) of Argonne

National Laboratory52 as it expands to include thermophysical properties for adsorbates.

Finally, the improved thermodynamic properties will be included both in the database and

in the group rules used by the automatic microkinetics software for heterogeneous catalysis,

RMG.43,53–56
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• Thermophysical property equations for the quantum and classical harmonic oscillators

• Pitzer-Gwinn correction details

• Gibbs free energy and Langmuir adsorption isotherm calculation details

• wavenumber table for H in the Cu(111) fcc site

• surrogate convergence study

• integration convergence study

• hindered translator equation

• thermodynamic properties for surrogate 1

• tabulated thermodynamic properties
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