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Bross, David H


Abstract

A new method for computing anharmonic thermophysical properties for adsorbates
on metal surfaces is presented. Classical Monte Carlo phase space integration is per-
formed to calculate the partition function for the motion of a hydrogen atom on Cu(111).
A minima-preserving neural network potential energy surface is used within the inte-
gration routine. Two different sampling schema for generating the training data are
presented, and two different density functionals are used. The results are benchmarked
against direct state counting results using discrete variable representation. The phase
space integration results are in excellent quantitative agreement with the benchmark
results. Additionally, both the discrete variable representation and the phase space
integration results confirm that the motion of H on Cu(111) is highly anharmonic. The
results were applied to calculate the free energy of dissociative adsorption of Hy and
the resulting Langmuir isotherms at 400, 800 and 1200 K in a partial pressure range
of 0-1 bar. It shows that the anharmonic effects lead to significantly higher predicted

surface site fractions of hydrogen.

Introduction

Microkinetic modeling is an increasingly popular and effective way to simulate catalytic pro-
cesses and optimize catalyst design and operating conditions.? At a minimum, a microkinetic
mechanism must be thermodynamically consistent.? Thermodynamic consistency requires
reaction equilibrium constants, which in turn requires accurate free energies of adsorbates.
In all but the rarest cases, adsorbate free energies cannot be obtained easily experimentally.
Instead, theoretical methods are utilized to obtain partition functions of the adsorbates,
from which their thermophysical properties, such as the enthalpy increment, entropy, and
heat capacity, can be derived.

Arguably the most common model for adsorbate partition functions is the harmonic os-

cillator (HO) model, also known as the 2D lattice model.? The harmonic oscillator model



is particularly suitable for tightly bound species. However, the HO approximation is in
poor agreement with experimental data; for example, it tends to underestimate adsorbate
entropy.? For weakly bound (e.g. physisorbed) species, which have low diffusion barriers,
an alternative model is the free translator (FT), also known as the 2D gas model.” Col-
lectively, the harmonic oscillator and the free translator models represent idealized limits
(infinite barriers and no barriers, respectively) and do not accurately describe most systems
at finite temperatures. Recent studies®” show that anharmonic motion (which, in this case,
arises from finite barriers) is important for accurate entropies and thence free energies in
heterogeneous catalysis.

The recently developed hindered translator (HT) model® bridges the gap between the HO
and the FT models with an analytical expression for the potential energy surface (PES) that
is sinusoidal in two degrees of freedom parallel to the surface. It provides a more accurate re-
sult while still being comparatively easy to implement. An alternative way to bridge the gap
is with complete potential energy sampling (CPES),? introduced by Jergensen and Grénbeck
in 2017, which has shown to perform similarly to the hindered translator model. CPES treats
in-plane adsorbate motion as a classical continuous system and is more general than the hin-
dered translator model, as it takes into account the detailed energy landscape. Jgrgensen
and Gronbeck later presented Monte Carlo complete potential energy sampling (MCPES),1°
a computational method for calculating molecular entropy in zeolites. In MCPES, the parti-
tion function includes anharmonic contributions to all transitional degrees of freedom of the
molecule in the zeolite and is obtained semiclassically, by integration of the potential energy
surface.

The HO, FT, HT and CPES free energy approximations for adsorbates on flat surfaces
were benchmarked against more accurate free energies directly computed from first-principles
for monatomic adsorbates in a study by Bajpai et al.!! It was found that the commonly used
analytical models, HO, FT, and HT, often do not properly capture adsorbate free energies,

and that their performance depends on the shape and separability of the PES. Moreover,



the Bajpai et al. study found that a classical treatment for in-plane motion such as CPES
can be used to evaluate the free energies of monatomic adsorbates accurately, except at low
temperatures.

Potential energy sampling based methods are therefore promising for accurate free en-
ergies of arbitrary adsorbates at high temperatures. In this study we use a sampling based
approach to obtain the coupled, anharmonic partition function of a hydrogen atom on a
Cu(111) surface. Specifically, the three translational degrees of freedom are all treated as
coupled and anharmonic. We use a classical phase space integral representation for the
anharmonic partition function and solve it with Monte Carlo (MC) sampling.

The MC sampling is exact (in the classical limit), given a sufficient number of sampling
points. In principle, it is possible to perform the direct sampling using density functional
theory (DFT); in practice, however, direct DF'T sampling is impractical. A suitably dense
sampling may require hundreds of thousands of discrete energy evaluations, which could be
computationally prohibitive using DFT. Instead, we develop an accurate surrogate potential
energy surface using machine learning methods. This machine learning surrogate PES can be
evaluated quickly during the integration process with negligible loss in accuracy, compared
to DFT.

A handcrafted form inspired by the quadratic approximation is used to construct the
potential energy surrogate. This functional form, the minima-preserving neural network
(MP-NN), requires the Hessian matrix and the optimized position of the adsorbate at each
minimum. The only features that are required in this machine learning method are the
distances of the hydrogen atom from each minimum. This machine learning method does
not require elemental information, which distinguishes it from the more commonly used
fingerprinting methods. For example, the most frequently used methods involve either us-
ing handcrafted mathematical expressions to describe local environments of atoms, such as
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Behler-Parrinello (BP) symmetry functions,!? or using convolutional layers involving dis-

tances and atom features, such as lattice convolutional neural networks (LCNN).® Appli-



cations of machine learning for atomistic potential energy surfaces is a rapidly developing
field, and a thorough review is outside the scope of the present work. Please refer to review
studies such as Refs. 14, 15 and 16.

We consider the performance of the MP-NN surrogate potential energy surface in phase
space integration (PSI) in evaluating the partition function and compare our result to the
common approximations, HO, FT, and HT. We quantify the effect of anharmonicity, looking
at the anharmonic correction factor f, analogous to how anharmonicity effects have been
quantified for vibrational modes of gas-phase species.!” Furthermore, we directly derive the
entropy, enthalpy increment, and heat capacity from the partition function. Lastly, we
calculate the standard-state Gibbs free energy and plot the resulting Langmuir isotherms for

H,(g) dissociative adsorption, and compare to the standard models.

Methods

Electronic Structure Theory

Density Functional Theory (DFT) calculations were performed with the plane-wave code
Quantum ESPRESSO.'®2° Two different functionals were used in conjunction with two
different methods for generating training data (described in greater detail in the next sec-
tion). In the first set of calculations, the Perdew-Burke-Ernzerhof functional?! was used
with Grimme’s D3 corrections?? including three-body Axilrod-Teller-Muto corrections, 2324
PBE-D3(ABC). PAW pseudopotentials generated using the “atomic” code by Dal Corso?*2°
were used.

The optimized lattice constant with the PBE-D3(ABC) functional was found to be 3.58
A. The H-Cu(111) system was modeled using a 4-layer Cu(111) slab with a 3 x 3 unit cell
and a 17 A vacuum between the H atop and the bottom of the repeated image. All the

Cu surface atoms were held fixed in their bulk geometry while the H atom was relaxed on

the surface using the LBFGS algorithm in the Atomic Simulation Environment (ASE),?"



with a maximum force convergence criterion of 0.01 eV/ A along all directions. Energies
were calculated with a plane-wave cutoff of 60 Ry and a (6x6x1) k-point grid, criteria at
which the H adsorption energy was converged to within 0.09 eV. The Marzari-Vanderbilt
smearing method,?® with a smearing width of 0.005 Ry, was used. Spin polarization was not
considered in the calculations. The fcc binding site was found to be the optimal position of
H on the Cu(111) surface. A finite-difference approximation was used to obtain the Hessian
matrix of the H atom in the fcc and the hep binding sites.

The potential energy V(x,y,z) was calculated at total of 14,395 (x,y,z) positions of H
within the area of the rhombus-shaped primitive unit cell, shown in Figure 1. The z values
range from 0.5 A below the optimal z value of H in the fcc position up to 3.5 A above
it. The training data includes the four stationary points of H on the surface, the fcc, hep,
bridge and atop sites. A small portion of the data, or 1,024 geometries, were distributed
over the whole constrained volume as a Sobol sequence.?? The remaining 13,367 geometries
were sampled from a multivariate normal (MVN) distribution with a covariance set to be
equal to the inverse Hessian matrix of the H atom in the fcc position. This procedure was
to ensure ample sampling close to the minimum energy, the highest Boltzmann weight area
(see the Supplemental Information for details).

In the second set of calculations, new training data were computed with the BEEF-vdW
functional®®3? using the LIBBEEF package,® which is automatically enabled in Quantum
ESPRESSO versions 6.6 and higher. We used SG15 Optimized Norm-Conserving Vanderbilt
(ONCV) pseudopotentials that were generated using the “ONCVPSP” code by Hamann. 3436
The optimized lattice constant of Cu was found to be 3.66 A. The same procedure as for the
PBE-D3(ABC) functional was mostly followed with a few modifications. A smearing width
of 0.02 Ry was used and the H adsorption energy was converged to within 0.03 eV using the
60 Ry and a (6x6x1) k-point grid.

The BEEF-vdW training data consisted of 9,382 geometries within the primitive unit

cell area, where the z values range from 0.5 A below the optimal z value of H in the fcc



position up to 4.25 A above it. This set contains the fcc, hep, bridge and atop sites as well as
1,024 samples according to a Sobol sequence. Unlike the PBE-D3(ABC) set, the remaining
samples belong to two MVN distributions: 4,122 of the samples belong to an MVN centered
at the fcc position with the associated inverse-Hessian covariance, and 4,232 samples belong
to another MVN distribution centered at the hcp position with its corresponding inverse-
Hessian as a covariance matrix. Using two MVN sample sets is an attempt at more efficient
sampling for maximum PES surrogate accuracy close to the minimum energy positions. This
dual-minima approach is expected to be an improvement, especially in this case where the

hcp position was found to be effectively equivalent to the fcc position, with a less than 1

meV difference in potential energy between the two minima.

h

o

Figure 1: H in the fcc binding site of a Cu(111) surface and the periodic primitive unit cell
area that contains all training positions.

Surrogate Potential Energy Surface

As described in the introduction, the present approach uses a surrogate potential energy
surface: Vi(x,y,z) =~ V(x,y, z), which is constructed using the training set of x = (z,y, 2)
geometries and corresponding DFT energies described in the previous section. In other
words, the training set is {(x), V(x@W))} for j = 1,..., N, where N=14,394 for the PBE-
D3(ABC) case and N=9,380 for the BEEF-vdW case. We removed the training sample
corresponding to the fcc minimum from the PBE-D3(ABC) set, and two samples corre-

sponding to the fcc and hep minima from the BEEF-vdW set. This was done to ensure that



the training sample transformation, described later in this section, is well-defined, avoiding
division by zero. As for the parametric form of the surrogate V(z,y, z), we employ neural
networks (NNs) within PYTORCH machine learning framework, with special adjustments to
ensure accuracy of the surrogate near the fcc and the hep binding sites of hydrogen on the
surface. Because the Boltzmann weighting will be dominated by the lowest energy configu-
rations, we wish to ensure that the surrogate is most accurate in the proximity of the various
minima. Accordingly, we introduce the minima-preserving neural network (MP-NN) surro-
gate. The MP-NN surrogate is inspired by the quadratic approximation near a minimum
o = (20, Yo, 20). Given the minimum V' (x() and the Hessian H(x,), consider a surrogate of

a form

Vi(x) = V(o) + %(w — o) H (o) (z — )@ 0. (1)

By construction, V() has a minimum V' (x,) at «,, and has a positive definite Hessian.
In order to restrict our surrogate to the form given in Eq. (1), we strive to learn the general

function g(x), and transform the training samples according to

70 = 20) _ g

g(@Y) = 10g{

V(@) = V(o) } @)
)

%(m(j) —x)TH(xo)(x) — x

and, using the transformed training set {(zV), g(£%)))} for j = 1,..., N, we learn the
multiplicative correction factor exponent as a neural network g(x) = NN(z). In the case of

two minima, :v(()l) and .’13(()2)

, we construct surrogates of form (1) for each of them individually
using only training evaluations within a certain distance from the corresponding minimum,
arriving at Vs(l)(a:) and V,? (x), each being accurate near the appropriate minima. Then we

obtain the final MP-NN form of the surrogate as a linear combination of these two surrogates:



efd(w,wéi))/e

W; () =
( ) e—d(m,m(gl))/e+e—d(£c,sc(()2))/€ (3)

Vit (@) = wi(z) VY (@) + wa(z) V) ()

S

where d(a;,wéi)) within the weight w;(x) is the Euclidean distance of the point & from
the ¢-th minimum (i = 1,2), and € is a small positive ‘smoothing’ factor. This distance-
weighted form ensures the transition from the region near one minimum to a region near
another minimum, with the corresponding surrogates switching their importance in the linear
combination. The cost is a slight deterioration of minimum constraints, but small € and large
distance between minima reduces this effect. The sketch of the MP-NN surrogate form is
illustrated in Figure 2. The overall surrogate is a weighted linear combination (WLC) of
two separately trained surrogates. Each of the two identical paths in Figure 2 represents a
surrogate corresponding to a minimum, indicating operations of shifting input, training a NN
and exponentiating it as a correction to a quadratic, before a vertical shift. The operations
are equivalent to transforming the training input/output pairs according to Eq. (2).

Two different training schema are considered. In the first approach, “surrogate 1”7, which
is used for the PBE-D3(ABC) functional, the NN architecture that plays the role of the
multiplicative correction (see Figure 2) was set to have 3 hidden layers with 111 units for
each, using a Rectified Linear Unit (ReLU) activation function. The NN is trained via
Adam optimization,3” using 5,000 epochs with learning rate 0.01 and a batch size of 200.
For the second training scheme, “surrogate 2”, which is used for the BEEF-vdW training
data, the NN architecture was set to have 3 hidden layers with 1,111 units for each, using
a hyperbolic tangent activation function. Similar to the previous case, the NN is trained
via Adam optimization, using 5,000 epochs with learning rate 0.01 and a batch size of
200. In other words, the second training approach has 10x more units. The other salient

difference between the two approaches is with respect to the generation of the training data
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Figure 2: The overall architecture of the MP-NN surrogate, as a weighted linear combination
(WLC) of minima-preserving surrogates in the form of NN-based multiplicative corrections
to a quadratic function. M indicates a multiplication, while X-shift and V-shift indicate
input and output shifts, respectively. In the present work, the two minima for which neural
networks are created are the fcc and hep.

itself. For the PBE-D3(ABC) functional, only the fcc minimum was considered for the MVN
distribution. For the BEEF-vdW functional, both the fcec and the hep minima were explicitly
considered. As will be demonstrated in the Results section, including the neighborhoods
of both minima in the training scheme and increasing the number of units improves the
performance, relative to the first case. Note that the MP-NN surrogate can be reformulated
and applied to any coordinates or features. While here we demonstrate it for the Cartesian
coordinates, it can easily be adapted to work with transformed coordinates or features, such
as, e.g., Behler-Parrinello symmetry functions, as long as the minima locations and the

corresponding Hessians are transformed to be rewritten with respect to the new coordinates.
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Direct State Counting

Direct state counting of the three degrees of freedom was used to obtain a reference set of
thermodynamic functions. Explicit eigenvalues were obtained for the three degrees of free-
dom (z,y, z) of the adsorbate relative to the surface using a discrete variable representation
(DVR) method.®® A direct symmetric eigensolver from LAPACK was implemented in a local
version of NITROGEN?? package for the dense eigensolve. The direct count of eigenstates
from 2D scans of x,y translation along the surface, as well as 1D translation away from
the surface in z, were solved via DVR basis functions that corresponded to Cartesian ba-
sis functions in these coordinates. The x,y-surface was calculated on a rectangular grid of
93 x 81 grid points spanning 2.531 angstroms in x and 2.1919 angstroms in y using the
PBE-D3 (ABC) MP-NN surrogate. The BEEF-vdW based surrogate used 93 x 81 grid
points that spanned 2.588 angstroms in z and 2.2412 angstroms in y. These =,y grids had
periodic boundary conditions enforced through a Fourier DVR basis functions that main-
tained translational invariance at the endpoints. The z coordinate was relaxed on the z,y
surface. The 1D DVR of the z coordinate was scanned from 0.1 angstrom to 2.0 angstroms
above the surface with 1,000 grid points on both surrogates. Convergence tests were carried
out on grids with up to double the number of grid points. The changes to the density of
states from larger grids were minimal and the resulting partition functions at the highest
calculated temperature differed by less than 1.0 x 107°. The product of the resulting z,y
and z states were used in thermodynamic summation to compute the quantum mechanical

thermodynamic functions, see Equations (15-17) below for details.

Monte Carlo Phase Space Integration

The statistical analysis begins with the classical Hamiltonian for 3D translation of the ad-

sorbate species relative to the catalyst surface:
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2 2 2
xT p z
p_+_y+p_

H(pg,py,p2, 2, Y, 2) =

where p; is the momentum in the i** direction, m is the mass, and (x,y,2) are the positions
of the center of mass of the H atom on the Cu(111) surface. The corresponding classical
partition function for this system is the Boltzmann factor of the Hamiltonian, integrated
over the momentum and position. The momentum integral is a Gaussian integral, which
can be solved separately from the potential part. Due to the periodicity of the surface, the
limits of integration are restricted to the area of the unit cell and the finite distance above

the surface. The resulting classical partition function is:

. 9 knT 3/2 22 Y2 T2
qclassmal _ % / / / 67’8 V(z,y,z) dx dy dZ, (5)
Z1 Y1 1

where § = 1/(kgT) and kg is the Boltzmann constant, x, 22, y1, y2 are the integration limits
of the repeatable unit cell area, and z; and z, are the limits in the direction perpendicular
to the surface. The potential energy in Equation (5) is not approximated with an analytical
expression but rather is computed directly from the surrogate potential; consequently, the

integral is evaluated numerically via Monte Carlo integration:

2 k T)*? 0 &
qclassmal (ﬂ-m B ZG*BVS x,Y,2) (6)

Here, €2 represents the total volume of the sampled region, and N is the number of sampled
configurations. The Monte Carlo PSI (Equation 6) was performed on the MP-NN surrogate

with the integration convergence parameter
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which calculates the change in gclassical

upon adding 5 new geometries to the set where ggq
is the partition function without the five most recently added geometries (that are included
N @pew). This parameter is checked every 5 new geometries for each temperature 7', which

in this study encompasses 31 T' values in the range 290-1400 K. The convergence criterion

was set to ¢ < 1.0x1076.

Thermophysical Properties

For the present work, the three most relevant thermophysical properties that are obtained
from the partition function are the enthalpy increment, [H(7T) — Hy); entropy, S(7'); and

heat capacity at constant pressure, C,(7'):

[H —Ho] ., 0
S 0
7= Tor In(g) + In(q), (9)
Cp o O 9

where the explicit temperature dependence is omitted for brevity. If, rather than using
an analytical expression for ¢(T), the partition function were to be obtained by classical
integration (or, for that matter, by quantum summation of rovibronic levels), the most
frequent approach to computing the thermophysical properties would be to find the first and
second derivatives of ¢(7") via numeric finite difference approximations, using suitable finite
increments 07", and computing the partition function at temperature 7', as well as at least

four more points, T" — 26T, T'— 6T, T + 6T, and T + 26T. A significant complication in

13



this finite-difference approach is determination of 07"; this process typically requires trial and
error, since the increment has to be sufficiently small as to produce a fully converged result
for the derivatives, but not so small as to create numerical problems (for example, resulting
in ¢(T) —q(T — 0T) differences that are of the same order of magnitude or even smaller than
the convergence error in ¢(7") itself).

An alternative (and more elegant) approach is to develop analytical expressions for the
derivatives. In the case of quantum internal partition functions ¢ (7"), which are ob-

tained by summation of discrete rovibronic levels, m of which are bound, it can be shown

that the pertinent expressions are:*°
Yo = Zgz e~ B(Ei—Eo) (11)
=0
21 = Z 6(E7, - Eo) gi Q_B(Ei_EO) (12)
=0
Yy = Z [B(E: — Eo)]* g; e P10) (13)
=0
qquantum — EO (14)
H _ H quantum E E
RT RT %
Squantum <E> 21
_ 1 quantumy) _ L 4 11(3) 16
T = g (™) = S n() (16)
O}(}uantum B <E2> <E> 2 B 22 El 2 (17)
R (RT)? RT ) % Yo )

where Ej is the zero point energy, E; and g¢; are the energy and degeneracy of the "
rovibronic level, Y is the sum of Boltzmann factors over all m + 1 bound rovibronic levels,
and X; and Y, are sums similar to g, but each term in the sum is additionally weighted
by the energy and by the square of the energy (in units of kgT') of each level, respectively.
Note also that the ratio 3, /3, corresponds to the average internal energy (£)/(RT), while
¥5/X corresponds to the average of the square of the internal energy (E?)/(RT)? The

ST includes the special case of representing n degrees of internal motion by n uncoupled
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quantum harmonic oscillators (HO).

In contrast, if the partition function is obtained not by summation of quantum levels but
rather via classical integration of the phase space over n degrees of freedom, as in Equation
(6), then the resulting analytical expressions for the contributions corresponding to those

degrees of internal motion are:

. 2w m kpT)"
classical _ ( T mhnB ) ]0 (21)
[H o HO]Classical n Il
T 27, (22)
Sclassical n ]1 (27’(’ m k,BT)n/Q
= — 4+ — 1 2
R a2 "™ o 0 (23)
Cclassical n T I 2
p 2 1
—r 42 (= 24
R 21, ([0) (24)

where the x; are the coordinates in the general case. The SI includes the special case
of representing n degrees of internal motion by n uncoupled classical harmonic oscillators
(HO).

Finally, the classical partition function g®#ial(T) obtained via Equation (6) (or equiv-
alently Equation (21)) is multiplied by the ratio of the quantum partition function to the

classical partition function for the harmonic oscillator model, g™ /ggfassical This “semi-

41,42 is de-

classical” correction, frequently referred to as the Pitzer-Gwinn appoximation,
scribed in the SI, which also includes equations for the quantum corrected thermophysical
properties.

As stated in the Introduction, the ultimate goal in determining the partition function

15



is to convert the derived thermophysical properties into a Gibbs free energy as a function
of temperature: G°(T) = H°(T) — T'S°(T') (the superscript indicates that the properties
are at standard-state, as is required to calculate a reaction equilibrium constant, K.,). In
order to compute the free energy, we also need a reference heat of formation, A ;H°(298K).
The approach to determining AyH°(298K) for H on Cu(111) is based upon the method-
ology outlined in Ref. 43 and 44. A reference binding energy of -2.43 eV was taken from

literature.*>47 See SI for further details.

Results and Discussion

Surrogate Potential Energy Surface Construction

The surrogate PES construction for the PBE-D3(ABC) data includes 14,394 points as a
combination of multivariate normal samples centered at the fcc site, Sobol sequence, as well
as samples at the hcp, bridge and atop sites, as described in the Methods section. The one
sample at the global minimum (fcc) was omitted from training in order for the transformation
in Eq. (2) to be well-defined. Figure 3 demonstrates the surrogate energy evaluated at z-value
corresponding to the fcc site, as a function of x and y coordinates. This 2D slice in potential
energy space nicely illustrates the limitations of the two common analytical approaches. The
local PES around the fcc is clearly neither harmonic nor flat, thereby confirming that neither
the HO nor the FT model is appropriate, respectively. Instead, there is a broad range of
energetically accessible area, confined within the repulsive walls of the atop sites.

In principle, for computing thermodynamic properties in the canonical ensemble, the
global accuracy of the MP-NN surrogate PES is not as important as the accuracy of the

—B/KT since the main target of interest

approximation integrand of the Boltzmann factor, e
is the partition function evaluation, i.e. the integration in Eq. (6). Figure 4 demonstrates
the surrogate PES accuracy for various values of T', showing an overall relative root-mean-

square error (RMSE) under 8% across a range of 7. Note the overall accuracy improvement

16



with increasing T": this is due to the fact that the integrand in Eq. (6) becomes less sharp

near its maxima (i.e., near energy minima), and small errors in the surrogate PES are less

significant.

x (R) x (&)

Figure 3: The MP-NN surrogate PES evaluated at the z-slice corresponding to the fec
minimum of a) surrogate 1, which was obtained using a single MVN set with the PBE-
D3(ABC) functional, and b) surrogate 2, which was obtained using two MVN sets with the
BEEF-vdW functional.
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Figure 4: Partition function integrand approximation for surrogate 1, which was obtained
using a single MVN sampling set (with the PBE-D3(ABC) functional), for a range of T
values.

For the BEEF-vdW functional, where two sets of MVN samples (centered at both min-
ima) were included, in addition to a Sobol sequence and samples at the bridge and atop sites.
Here we removed two samples, corresponding to the exact fcc and hep sites, in order for the
transformation in Eq. (2) to be well-defined and not harm the training accuracy. Figure 5
shows that similar to the PBE-D3(ABC) case, the BEEF-vdW-based surrogate PES tends
to be more accurate with larger values of T'. The overall performance of the BEEF-vdW sur-
rogate is better, even though for the BEEF-vdW functional we used fewer DFT evaluations
(N=9,380) compared to the PBE-D3(ABC) case (N=14,934). We attribute this superiority
to the improved sampling scheme: the BEEF-vdW functional was sampled according to an
MVN near both local minima, fcc and hep sites, whereas the PBE-D3(ABC) functional only

accounted for the fcc site.
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Figure 5: Partition function integrand approximation for surrogate 2, which was obtained
using two MVN sampling sets (with the BEEF-vdW functional), for a range of T values.

Thermophysical Properties

The NITROGEN?® program interfaced with the PBE-D3(ABC) based MP-NN surrogate
PES yielded the wavenumbers 880.9 cm™!, 881.1 cm ™! and 1084.8 ecm™! for the H atom in
the fcc position. Interfaced with the BEEF-vdW based surrogate PES the program yielded
the wavenumbers 793.674 cm ™!, 795.640 cm ™! and 1076.139 cm~!. These wavenumbers were
used in the HO model as well as for the z degree of freedom in the HT and FT partition
functions. The resulting DVR partition function is plotted in Figure 6 (black stars).

These DVR results represent benchmark values for the partition function and thence
thermophysical properties of H on Cu(111). Note: in referring to these results as “benchmark”
for thermophysical properties, we are not asserting that the DFT functionals are themselves
of benchmark accuracy in terms of the binding energy at OK; rather, we mean that, given

an underlying potential energy surface, the DVR results are an accurate benchmark for
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comparison with methods of obtaining partition functions (e.g. hindered translator, phase
space integration, and other methods).

The phase space integration over each MP-NN surrogate PES was performed at 31 evenly
spaced temperature values between 290-1400 K. To satisfy the convergence criterion ¢ <
1.0x107% (Equation 7) for all T, surrogate 1 required 4,848,591 geometries in the sampling
space with the primitive unit cell area (1/9th of a 3x3 unit cell area), which required a run
time of 2h 1m 46s on 1 CPU core. For surrogate 2, 4,843,036 geometries were required, and
the integration run time was 3h 10m 34s on 1 CPU core. An integration convergence study
is included in the Supporting Information. Note that the PSI calculation using surrogate
2 required a slightly longer run time. The longer run time is expected, since surrogate 2
used 10x more units per hidden layer, even though it used fewer training samples. The
training samples, i.e. the actual DFT evaluations are orders of magnitude more expensive
compared to the time required for the NN training and its evaluation to achieve integration
convergence. Therefore, the computational efficiency is almost exclusively determined by the
amount of DFT single-point calculations required to generate the training data. As such, the
surrogate 2 approach of sampling MVN near both minima is computationally more efficient,
as it leads to a more accurate surrogate PES with fewer samples. Full convergence study of
the surrogate as the number of samples grows is provided in the Supporting Information.

The results of the PSI method are shown in Figure 6 (solid black line). Also included in
Figure 6 are the two common analytical models for the limiting cases, harmonic oscillator
(red dash-dot line) and free translator (blue dashed line), as well as the hindered translator
model of Sprowl et al. (yellowed dotted line). It should be noted that when calculating
the FT partition function (which is proportional to the area), the partition function would
not actually be confined to a single unit cell, but rather it would be calculated assuming
a much larger area (for example, using V%3, analogous to 3D gas volume at 1 bar), as it
only holds when the translational energy levels are separated by energies much smaller than

the available thermal energy (kT), as discussed in Ref 8. This larger area would lead to a
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Figure 6: The partition function per cell for a hydrogen atom on Cu(111) at 290-1400 K,
evaluated using the phase space integration (PSI) of the MP-NN surrogate PES, the free
translator (FT), the 3D harmonic oscillator (HO), the hindered translator (HT'), and discrete
variable representation (DVR). a) shows the results for surrogate 1, which was obtained with
a single MVN set, and b) shows the results for surrogate 2, which was obtained with two
MVN sets.

substantially larger partition function. To facilitate a more direct comparison, however, we
chose to use the same unit cell area for the FT, HT, PSI and DVR models (the HO model
is independent of area).

The hindered translator model is qualitatively correct over the temperature range of
interest. It is worth noting that the hindered translator model includes a correction for the
zero-point energy contribution due to overestimation at lower temperatures as discussed in
Ref. 8, but it is not important at the temperature range applied here (>300 K). Indeed, at the
lower temperatures, the simpler model is in quantitative agreement with the benchmark DVR
calculations. At higher temperatures, however, it significantly overpredicts the partition
function. The PSI method, in contrast, is in excellent agreement with the DVR results
over the entire temperature range. In all cases, we observe that the PSI method is between

the tight-binding limit (HO) and weak binding limit (FT), and that the adsorbate becomes

increasingly anharmonic as the temperature increases.
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Figure 7: The anharmonic correction factor evaluated with PSI and direct state counting for
both surrogate PES. A value of f=1 would be perfectly harmonic.

Since the standard approach to computing the partition function of H on Cu(111) typi-
cally would be to use the harmonic oscillator model, it is useful to consider how the DVR and
PSI methods compare to the pure HO result. The anharmonic correction factor, f = q/quo,
is plotted in Figure 7. Qualitatively, we observe that the PSI slightly overpredicts the anhar-
monicity at lower temperatures, and it slightly underpredicts the anharmonicity at higher
temperatures. Overall, however, the discrepancy between PSI and DVR is small, and the

PSI approach is in excellent agreement with the benchmark data.
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Figure 8: a) Helmholtz free energy F, b) entropy S/R, c¢) enthalpy increment
(H(T) — H(0)) /RT, and d) heat capacity C,/R, versus temperature for surrogate 2.

Figure 8 presents the Helmholtz free energy, F' = —kgT In(q), as well as the three ther-
mophysical properties, derived from the partition function evaluated at 1/9th monolayer
coverage: 3D translational entropy (no concentration-dependent terms included), S/R; en-
thalpy increment, [H(T") — H(0)]/RT; and heat capacity at constant pressure, C,/ R, for sur-
rogate 2. Since both surrogates give qualitatively the same model profiles, as demonstrated
in Figure 6, we only present the thermophysical properties for the surrogate constructed
from the more feasible sampling method here. An analogous figure for surrogate 1 can be
found in the Supporting Information. Additionally, the Supporting Information contains a
comparison to finite difference results at various finite increments 67". Of particular interest

is the Figure 8b, the entropy S/R. Here we observe that the anharmonic PSI (along with
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the benchmark DVR) results are effectively halfway between the lower (HO) and upper (FT)
limits, and slightly lower than predicted by the HT model. For the enthalpy increment, Fig-
ure 8c, the HO model is too low but otherwise predicts the correct temperature dependence,
whereas the F'T model significantly underestimates the temperature dependence. The PSI
approach slightly underpredicts the enthalpy increment and heat capacity, but is overall in

better agreement with the DVR results than the HO and the F'T models.
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Figure 9: a) The standard-state Gibbs free energy of reaction A,G° of dissociative adsorption
of Hy, obtained with PST of each surrogate PES, compared with the corresponding HO and
FT models. The remaining three subplots show the Langmuir adsorption isotherms obtained
using PSI, the HO and the FT approximations on both surrogates at b) 400 K, ¢) 800 K,
and d) 1200 K.

Of perhaps greater interest than the derived thermophysical properties is the Gibbs free

energy. We look at the Gibbs free energy of reaction of the dissociative adsorption of Ho,
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Hy + 2% — 2Hx. In order to calculate the standard-state Gibbs free energy of reaction
(the standard state is necessary in relation to the reaction equilibrium constant), we need
to define a standard-state surface concentration. There is currently no universally accepted
standard state for adsorbates, but the surface site fraction #°=0.5 is commonly used and
proposed as a standard.*® We choose follow that convention for the standard state here,
since it is recommended for the Langmuir isotherm for a homolytic dissociative adsorption®
which we apply and plot in Figure 9. With a standard state of #°=0.5 defined, we can
calculate the standard-state entropy, S°, the concentration dependence of which is slightly
different depending on the model in question.*® This effect is discussed further in the SI.

The standard-state Gibbs free energy of reaction for the dissociative adsorption of Ho is
plotted in Figure 9. Because the PSI approach correctly predicts a greater value of entropy
for the adsorbed hydrogen atom, the corresponding free energy is consistently lower than
predicted by the HO approximation at all temperatures. Additionally, we observe that the
two functionals (and thus also the two MP-NN models) are in excellent agreement. The fact
that the two functionals are effectively indistinguishable suggests that they predict similar
curvature of the 3D potential energy surface. However, it is worth emphasizing that both
functionals used the same literature binding energy of -2.43 eV. If this binding energy were
taken from the corresponding DFT calculation instead, then the offset between the PBE-
D3(ABC) (surrogate 1) and the BEEF-vdW (surrogate 2) results would increase, reflecting
the additional difference in the binding energies. Collectively, the plots in Figures 8 and the
Gibbs free energy of reaction in Figure 9 show that the PSI approach gives thermophysical
properties and free energies that are substantially different than both commonly used limiting
cases. These results indicate significant effects on theoretically estimated thermodynamics
and rates of reactions involving H on Cu(111), especially reactions that involve both gas-
phase and surface species, where no cancellation of anharmonicity will occur.

Finally, with the free energy for dissociative adsorption of Hg, we can quantify how the

choice of the partition function for H on Cu(111) influences the resulting coverage in a mi-
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crokinetic model. Figure 9 illustrates the surface site fraction of H* using a simple Langmuir

isotherm: 0y = KequQ/ (1 + /KequQ), where K., is the equilibrium constant for dis-
sociative adsorption, and pa, 18 the partial pressure of hydrogen gas. While the Langmuir

48 more accurate, model

isotherm we use here describes adsorption adequately for many cases,
specific coverage equations could be obtained from equating chemical potentials as described
in Ref. 49. It is evident that the increased entropy for H* (relative to the HO model) directly
corresponds to higher coverage for a given temperature and pressure. In fact, for the ranges

of temperature and pressures considered, the PSI predicts on average a surface site fraction

that is 1.6-4.6 times as large as the HO model.

Conclusions

A new method is presented for creating surrogate potential energy surfaces for the translation
of an adsorbate on a catalytic surface. This method is designed to preserve accuracy nearest
to the global and local minima. This surrogate potential energy surface is used within discrete
variable representation calculations, which serve as benchmark values, as well as classical
phase space integration methods. The DVR and PSI methods are in excellent quantitative
agreement over the entire temperature range of interest. Together, the two models confirm
that the motion of H on Cu(111) is highly anharmonic. Conventional models, such as the
harmonic oscillator, will severely underpredict the entropy of adsorbates on catalytic surfaces.
This underprediction of adsorbate entropy will adversely impact microkinetic mechanisms,
leading to potentially lower surface coverage.

The present calculations all were performed in the low-coverage limit. Lateral interac-
tions were not considered. However, the approach presented in this work in principle could
be extended to include coverage dependence. Anharmonic, coverage-dependent partition
functions, building on this approach, are underway. Additionally, the current approach is

being extended to include polyatomic adsorbates. In addition to the three degrees of freedom
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for frustrated translation along the surface, two and three dimensional frustrated rotational
motion will be considered for linear and nonlinear adsorbates, respectively.

This work is part of a broader effort to provide accurate microkinetic mechanisms within
an automated computational chemistry framework. The minima-preserving neural network
and the phase space integration routines are provided as part of the ADTHERM package. "
The method is to be a part of the Sandia National Laboratories’ Exascale Catalytic Chem-
istry (ECC) computational framework for automated chemistry.® The results of these cal-
culations will be incorporated into the Active Thermochemical Tables (ATcT) of Argonne
National Laboratory®? as it expands to include thermophysical properties for adsorbates.
Finally, the improved thermodynamic properties will be included both in the database and

in the group rules used by the automatic microkinetics software for heterogeneous catalysis,

RMQ, 43,53-56
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