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Abstract

Candida auris is a recently described multidrug-resistant pathogenic fungus that is
increasingly responsible for healthcare associated outbreaks across the world.
Bloodstream infections of this fungus cause death in up to 70% of the cases.
Aggravating this scenario, C. auris’ disease-promoting mechanisms are poorly
understood. Fungi release extracellular vesicles (EVs) carrying a broad range of
molecules including proteins, lipids, carbohydrates, pigments, and RNA, many of which
are virulence factors. Here, we carried out a comparative molecular characterization of
C. auris and C. albicans EVs and evaluated their capacity to modulate effector
mechanisms of host immune defense. Using proteomics, lipidomics, and
transcriptomics, we found that C. auris released EVs with payloads that were
significantly different from EVs released by C. albicans. EVs released by C. auris
potentiated the adhesion of this yeast to an epithelial cell monolayer, while EVs from C.
albicans had no effect. C. albicans EVs primmed macrophages for intracellular yeast
killing, whereas C. auris EVs promoted survival of the fungal cells. Moreover, EVs from
both C. auris and C. albicans induced the activation of bone marrow-derived dendritic
cells. Altogether, our findings show distinct profiles and properties of EVs released by C.
auris and by C. albicans, and highlight the potential contribution of C. auris EVs to the

pathogenesis of this emerging pathogen.

Importance
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Candida auris is a recently described multi-drug resistant pathogenic fungus that is
responsible for outbreaks across the globe, particularly in the context of nosocomial
infections. Its virulence factors and pathogenesis are poorly understood. In the current
work, we tested the hypothesis that extracellular vesicles (EVs) released by C. auris is a
disease-promoting factor . In this manuscript, we described the production of EVs by C.
auris and compared their biological activities against the better-characterized EVs from
C. albicans. C. auris EVs have immunoregulatory properties, of which some are
opposite of C. albicans EVs. We also explored the cargo and structural components of
those vesicles and found that they are remarkably distinct than EVs from its

phylogenetic relative Candida albicans.

Introduction

Candida auris is a recently described pathogenic fungus that has emerged as a serious
cause of healthcare associated infections across the world (1). Therefore, it is
considered a global threat by the US Center for Disease Control and Prevention (2).
The biological challenges for combatting C. auris include the fungus’ capacity to form
resilient biofilms and to resist multiple antifungal drugs (3). C. auris kills 30-70% of the
infected individuals (4). Although we have deep knowledge regarding the disease-
promoting mechanisms deployed by other Candida species, relatively little is known
about C. auris. We have recently compared the molecular profiles of two C. auris
isolates vs. Candida albicans by integrating proteins, lipids, and metabolites of these
yeast cells, and demonstrated that C. auris has an elevated expression of pathways
related to drug resistance and virulence, such as sterol metabolism and drug

resistance-related transporters (5).
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Disease development is a combination of fungal virulence factors and the affected
host’s ability to efficiently control the fungal growth, and extracellular vesicles (EVs) play
a role in both of these factors. EVs are lipid bilayered structures released by a broad
variety of uni- or multicellular organisms (6). Fungal EVs from Cryptococcus
neoformans were first described in 2007 (7) and they have since been shown as an
important mechanism for molecular export in a variety of fungal species. EVs produced
by fungi carry many biologically active molecules, including virulence factors and
regulators, indicating that they could activate the innate immune system and influence
disease development (8-16). In vitro, fungal EVs impact phagocyte activity, promoting
an increase in cytokine levels, modulating phagocytosis and regulating macrophage
polarization (8-10, 14, 16, 17). Together, these data strongly suggest that fungal EVs
activate the immune response. Indeed, Galleria mellonella larvae are protected by pre-
treatment with EVs from C. albicans, C. neoformans and Aspergillus flavus (9, 18, 19).
Recently, we demonstrated that immunization of mice with EVs from C. albicans confers

full protection against systemic candidiasis (11).

However, the outcome of fungal EV and host response depends on the model
investigated. For instance, yeast EVs released from co-cultures of dendritic cells (DCs)
and Malassezia sympodialis induce the production of TNF-L] and higher levels of IL-4 by
PBMC from patients with atopic eczema, when compared to control PBMC, displaying
an allergic reaction (20, 21). C. neoformans and Sporothrix brasiliensis EVs are
associated with virulence and disease progress in murine models, respectively (22, 23).
We hypothesize that the multiple activities attributed to fungal EVs could be dependent

on their composition, which at least partially differs according to the species investigated
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(9, 21, 24-29). Thus, a more complete analysis on EVs composition could open new

views for understanding fungal diseases.

Here, we performed a detailed characterization of EVs released by two distinct strains
of C. auris (MMC1 and MMC2, which are highly resistant and susceptible to
fluconazole, respectively) (5) and C. albicans. Differences in size and sterol/protein
ratios were observed. Using integrated multi-omics (proteomics, lipidomics and,
transcriptomics) analysis we compared EVs and whole cells of C. auris and C. albicans
and demonstrated significant compositional differences that could impact pathogenesis.
Developing functional assays, we demonstrated that C. auris EVs influence adhesion to
epithelial cells and activation of dendritic cells. Together our results show that C. auris
produces EVs with a distinct composition in comparison with C. albicans, and C. auris

EVs modulate host cell defense mechanisms.

Methods

Cell lines: Two well characterized C. auris clinical isolates (MMC1 and MMC2) were
acquired from Montefiore Medical Center (NY, USA) (5). C. albicans strain (ATCC
#90028), RAW 264.7 macrophages (ATTC #TIB-71) and HeLa cells (ATTC #CCL-2)
were obtained from ATCC. Yeast cells were cultivated in YPD broth and seeded onto
Sabouraud agar plates. For each experiment, colonies were inoculated in Sabouraud
broth for 24 h at 30 °C before use. RAW 264.7 and HelLa cell lines were cultivated up to
the 10" passage in DMEM supplemented with 10% FBS and 1% non-essential amino

acids.
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EVs isolation: One colony of each strain of C. auris or C. albicans was inoculated in 10
mL of Sabouraud broth for 24 h at 30 °C, and then expanded in 200 mL of fresh
medium. After an additional 24 h at 37 °C, the cells were centrifuged. The supernatant
was filtered and concentrated 40 fold using an Amicon system with a 100-KDa
molecular weight cutoff membrane. The concentrate was centrifuged twice at 150.000 x
g at 4 °C for 1 hour, with a PBS washing step between each centrifugation step. The EV
pellets were suspended in filtered PBS for most of the experiments, and in 50 mM

ammonium bicarbonate for proteomic and lipidomic analyses.

Transmission Electron Microscopy: EVs pellets were fixed in 2.5% glutaraldehyde
and 3 mM MgClz in 0.1 M sodium cacodylate buffer, pH 7.2 overnight at 4 °C. Samples
were then rinsed with buffer and post-fixed in 0.8% potassium ferrocyanide reduced 1%
osmium tetroxide in the buffer for 1 h on ice in the dark. After a 0.1 M sodium
cacodylate buffer rinse, the samples were incubated at 4 °C overnight in the same
buffer. Samples were rinsed with 0.1 M maleate buffer, en bloc stained with 2% uranyl
acetate (0.22 ym filtered, 1 h, dark) in 0.1 M maleate, dehydrated in a graded series of
ethanol and embedded in Eponate 12 (Ted PElla) resin. Samples were polymerized at
37 °C for 2 days and at 60 °C overnight. Thin sections, 60 to 90 nm, were cut with a
diamond knife on a Reichert-Jung Ultracut E ultramicrotome and picked up with formvar
coated copper slot grids. Grids were stained with 2% uranyl acetate in 50% methanol,
followed by lead citrate, and observed with a Phillips CM120 transmission electron
microscope at 80 kV. Images were captured with an AMT XR80 high-resolution (16-bit)

8 Mpixel camera.
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Protein and ergosterol quantification: Protein and sterols were quantified using BCA
Protein Assay (Thermo) and Amplex Red Cholesterol Assay (Thermo) kits, respectively.
Both contents were expressed as a function of the number of yeast cells present in

each culture at harvest time.

Hydrodynamic size distribution of extracellular vesicles by Dynamic light
scattering: EVs were suspended in PBS and their hydrodynamic size distributions were
measured in a BI-90 Plus Particle Size Analyzer (Brookhaven Instruments) at room
temperature as described (30). Vesicle preparations were first centrifuged at 13,000
rpm for 5 minutes to remove any larger particles and aggregates. One hundred
microliters of sample were loaded into disposable cuvette (Eppendorf 952010077) and
analyzed by DLS. The average size distribution was calculated from duplicates of ten

individual measurements.

Isolation and sequencing of extracellular vesicles RNAs: The RNA molecules were
isolated with the miRNeasy mini kit (Qiagen) according to the manufacturer’s protocol,
that enables the purification of molecules from 18 nt up to messenger RNAs. This
allowed us to obtain not only the small RNA-enriched fractions but also molecules
longer than >200 nt. The RNA profile was assessed in an Agilent 2100 Bioanalyzer
(Agilent Technologies). The purified RNA, from three independent biological replicates,
was used for RNA-seq library construction using TruSeq small RNA kit (lllumina)
according to the manufacturer's recommendations with a slight modification. During the
acrylamide gel size selection, we excised the band ranging from 18 nt to >200 nt in
length. The sequencing was performed with the lllumina HiSeq 2500 platform, TruSeq

SBS Kit v3-HS 50 cycles kit (lllumina).



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

In silico data analysis: The RNA-seq analysis was performed with CLC Genomics
Workbench© software version 20. The C. auris B8441 genome used for mapping was
obtained from the NCBI database (GCA_002759435.2). The alignment was performed
as follows: additional 100-base upstream and downstream sequences; 10 minimum
number of reads; 2 maximum number of mismatches; -2 nonspecific match limit, and
minimum fraction length of 0.8 for the RNA mapping. The minimum reads similarity
mapped on the reference genome was 80%. Only uniquely mapped reads were
considered in the analysis. The libraries were normalized per million and the expression
values for the transcripts were registered in TPM (Transcripts per Million). For the
NcRNA the database used was the ncRNA from the Candida genome database:
C_auris_B8441 version_sXX-mYY-rZZ_other_features_no_introns.fasta.gz. For the
MRNA identification in the EVs, we combined the differential expression with reads
coverage, so we performed the map reads to reference (C_auris_B8441 version_s01-
mO01-r10_genomic and C_auris_B8441 version_s01-m01-
rl0_other_features_plus_intergenic) using the following parameters: No masking,
match score (1), mismatch cost (2), linear insertion cost (3), deletion cost (3), length
fraction (0.6), similarity fraction (0.8) and global alignment. To consider the full-length
MRNAs we selected those with expression value (TPM) higher than 100 and also 5x
transcript coverage. Gene Ontology analysis was performed using the DAVID

annotation tool (31).

Lipidomics and proteomics analyses of extracellular vesicles: Sample processing
and analysis were carried out as described (32, 33). Briefly, samples were submitted to

simultaneous Metabolite, Protein and Lipid Extraction (MPLEX) (34). Extracted lipids
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were dried in a vacuum centrifuge and dissolved in methanol before analysis by liquid
chromatography-tandem mass spectrometry (LC-MS/MS) on a Velos Orbitrap mass
spectrometer (Thermo Fisher). Lipid species were identified and manually inspected for
validation based on head group and fatty acyl chain fragments using LIQUID (35). The

intensities of each lipid species were extracted using MZmine 2.0 (36).

Proteins were dissolved in in 100 pl of 50 mM NH4HCO3 containing 5 mM dithiothreitol
and 8 M urea, and incubated for 15 minutes at 37 °C. Reduced thiol groups were
alkylated with a final concentration of 10 mM iodoacetamide (from a 400 mM stock
solution) incubated for 30 at room temperature. The reaction was quenched by adding
500 mM dithiothreitol to a final concentration of 20 mM. Samples were diluted 8 fold with
50 mM NH4HCOs containing 1 mM CaClz, and digested with overnight at 37 °C with 2
Mg sequencing-grade trypsin (Promega). Samples were desalted with solid-phase
extraction C18 spin columns (Ultramicrospin columns, C18, 3- to 30-ug capacity; Nest
Group), as previously described (Ref:

https://journals.asm.org/doi/epub/10.1128/mSphere.00085-15).

Resulting peptides were dissolved in water and loaded into a C18 trap column (4 cm by
100 uym inner diameter [ID], packed in-house with 5 ym C18; Jupiter). Chromatography
was carried out on a capillary column (70 cm x 75 ym ID packed with C18, 3-uym
particles) using a gradient of acetonitrile (mobile phase B) in water (mobile phase A),
both supplemented with 0.1% formic acid. The elution was carried out at 300 nL/min
with the following gradient: 19 min, 8% B; 60 min, 12% B; 155 min, 35% B; 203 min,
60% B; 210 min, 75% B; 215 min, 95% B; 220 min, 95% B. Eluting samples were

analyzed online with a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific).
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Full scan spectra were collected in a window of 400 to 2,000 m/z with a resolution of
70,000 at m/z 400. The 12 most intense parent ions were submitted to high-energy
collision dissociation (32% normalized collision energy) at a resolution of 17,500.
Dynamic exclusion was set to fragment each parent ion once and excluding them for 45

SecC.

Peptides were identified using MaxQuant (v.1.5.5.1) (37) by searching against the C.
albicans SC5314 and C. auris sequences from Uniprot Knowledge Base (downloaded
December 6, 2017). Intensity-based absolute quantification (iBAQ) method was used for
guantification (38). The iBAQ values for individual proteins were normalized against the
total sum of all proteins, resulting in the relative protein copy number (percentage from
total). C. auris and C. albicans proteins were considered orthologs with 240% amino
acid sequence similarity (39). Heatmap and clustering were performed with
MultiExperiment Viewer (MeV) (40) or R software and Complex Heatmap package (41).
For calculating fold changes and plotting the heatmaps, missing values were filled with
half of the minimum value of the dataset. Function-enrichment analysis was done with
DAVID (42), using default parameters. Bubble graphs were plot using Minitab

v.19.2020.1.

Adhesion assay to epithelial monolayers: Hela cells were seeded on coverslips
placed in 24-wells plates and incubated for 24 h at 37 °C. Cell monolayers were pre-
incubated with C. auris or C. albicans EVs (10 pg/mL of protein) for 1 h and challenged
with respective yeasts (pre-stained with NHS-Rhodamine for 30 minutes at 30 °C under
shaking) for 1 h in a ratio of 20 yeast cells per HeLa cell. NHS-Rhodamine staining does

not change yeast cell growth rates or other cellular characteristics (data not shown).



226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

After extensive washing with PBS to remove non-adherent yeast, the cells were fixed
with formalin and mounted with mounting media containing DAPI. Images were taken
using a fluorescence microscope (Zeiss Imager Z1) and the adhesion was measured by
the ratio between NHS-Rhodamine-positive cells divided by DAPI-positive cells for each
field, using ImageJ. At least 8 fields containing approximately 400 epithelial cells per

field from each slide were counted.

Analysis of bone marrow-derived dendritic cells (BMDC) activation by
extracellular vesicles: BMDC were differentiated as described (43). Briefly, bone
marrow cells were isolated from male C57BL/6 mice (approved protocol #2014-0501) by
flushing both tibias and femurs with RPMI supplemented with 10% of fetal bovine serum
(FBS). Bone marrow cells were cultivated for 10 days at 37 °C in the presence of GM-
CSF (Peprotech) (43). Cultures were fed with media containing GM-CSF at days 3, 6
and 8. BMDC phenotype was evaluated on day 10 by the surface exposure of CD11c
and MHCII. At day 10 of differentiation, BMDC were incubated with 1 and 10 ug/mL
(protein) of EVs from C. auris and C. albicans for 24 h at 37 °C and 5% CO.. After this
period, cytokines IL-6, IL-10, IL-12p70, TNF-a, and TGF- were measured in the culture
supernatants using ELISA. BMDC were labeled with antibodies (a-CD11c, a-MHCII, a-

CD80 and, a-CD86) to evaluate their purity and activation state using flow cytometry.

Modulation of effector functions of macrophages by extracellular vesicles:
Phagocytosis — RAW 264.7 macrophages were plated onto 96-well plates and
incubated for 24 h at 37 °C. Cells were then incubated with EVs from C. albicans or C.
auris (10 pg/mL of protein) for 1 h until challenge with the respective yeast cell at 1:2

(macrophage : yeast) for 1 h. Plates were washed to remove extracellular yeast cells
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and then lysed with sterile water for CFU analysis. Killing —Bone marrow cells were
harvested from C57BL/6 mice as detailed above and incubated with RPMI medium
containing 10% of fetal bovine serum and 20% of L929 supernatant at 37 °C. On the
fourth day, new medium containing L929 supernatant was added to the culture. On the
seventh day of cultures, the cells had matured to differentiated macrophages, confirmed
by the expression of F4/80 and absence of LY6C. BMDM were plated in 96-well plates
and incubated at 37 °C for 24 h. Cells were incubated with EVs for 4 h at 37 °C until the
challenge with yeast cells at 10:1 (macrophage:yeast) for 24 h at 37 °C. Cells were

lysed and the suspensions plated onto Sabouraud plates for CFU counting.

Statistical analyses: All experiments were performed at least 3 independent times,
unless stated otherwise. Data sets were analyzed using One-way ANOVA, and Dunnett
multi comparison post-test using GraphPad Prism 8. All p values lower than 0.05 were

considered significant.

Results

Morphological characterization of C. auris extracellular vesicles

EVs were isolated from the supernatant of C. albicans and C. auris cultures and then
analyzed by transmission electron microscopy (TEM). As reported previously, EVs from
C. albicans are round and bilayered particles (Figure 1A) (9). Similar results were
observed for EVs from both C. auris isolates (Figure 1B and 1C), consistent with the
reported morphology of other fungal EVs (7, 9, 12, 16, 20, 23, 25, 44). EVs were also

analyzed by dynamic light scattering (DLS) to evaluate their global size. The size of EVs
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isolated from C. albicans and C. auris MMC2 were very similar, ranging from 50 and 70
nm and the second population between 170-250 nm (Figure 1A and 1C). C. auris
MMC1 produced EVs of larger hydrodynamic size, ranging from 100 to 150 and the

second population between 280 and 370 nm (Figure 1B).

A B C

C. albicans C. auris - MMC1 C. auris - MMC2

100

75 75 75

3 50 3 50 3 50
S 2 2
25 25 25
0 — 1 ] - : 0 0 : A :
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Effective Diameter (nm) Effective Diameter (nm) Effective Diameter (nm)

Figure 1. C. auris releases EVs. Transmission electron micrographs and dynamic light
scattering measurements of EVs from C. albicans (A) and C. auris isolates MMC1 (B)
and MMC2 (C). Two independent EVs isolations were analyzed by both methods with
similar results. The figure shows representative results of each analysis. Scale bars =

100 nm

Protein and ergosterol content of C. auris extracellular vesicles



283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

The amount of protein (Fig. 2A) and ergosterol (Fig. 2B) were determined and
normalized by the number of yeast cells in culture at the EV harvest time. Both C. auris
strains secreted similar amounts of protein in EVs, but the amounts were 3-4 times
lower compared to C. albicans. Likewise, the amounts of EVs ergosterol was 3-6 times
lower in C. auris strains than in C. albicans. C. auris MMC2 strain EVs had the lowest
amount of ergosterol, being 3 times lower compared to MMC1 (Figure 2B). As
ergosterol is a ubiquitous molecule present in EVs membranes, we normalized the
protein content by the amount of ergosterol in each strain as a way to measure possible
differential protein loads among isolates. MMC2 had a higher protein/ergosterol ratio

than either MMC1 or C. albicans.
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Figure 2. Protein and sterol content in C. auris and C. albicans extracellular
vesicles (EVs). Protein (A) and sterol (B) concentrations were measured in EVs
suspensions from C. auris and C. albicans and normalized by the number of cells
present in the fungal cultures at the harvest time. (C) Protein to ergosterol concentration
ratios. All graphs represent means and standard error of the mean, relative to 4
independent EVs isolations. *p < 0.05; **p < 0.01 by One-way ANOVA followed by

Tukey’s multiple comparison test.
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RNA content of C. auris extracellular vesicles

We performed next-generation sequencing from both MMC1 and MMC2 EVs to
investigate their RNA profiles, and compared against C. albicans EV-RNA. The analysis
was performed applying a minimum of 40% nucleotide similarities between the
orthologues. The first observation is that the RNA composition between MMC1 and
MMC?2 are very similar and most of the molecules identified in C. auris EVs were
NncRNAs. The most represented ncRNA in C. auris in both strains are fragments of
tRNAs (Table S1, Figure 3A). In C. albicans the tRNAs are also the most represented
NncRNAs, and the snoRNAs are the second class of ncRNA in EVs, and this enrichment
is not observed in C. auris (Figure 3B). For the tRNA fragments there was an
enrichment for the 3’ or 5’ end of the tRNAs however no enrichment in the central
portion of the tRNA was observed (Figure S1). Due to the library preparation, in the size
selection step we cut the fragments related not only to the small fraction but also longer
molecules, allowing the isolation of MRNAs as well. The RNA-seq analysis led to the
identification of 57 mMRNAs in C. auris and 32 in C. albicans. The top 10 most abundant
transcripts from each species are summarized in Table 1 and all the mRNAs are listed
in the Table S2. The transcript antisense to ribosomal RNA, Tarl was the most enriched
in C. albicans EVs, followed by the mRNA coding cell division control protein 42
homolog and other transcripts related to cell cycle (Table S2). For C.auris the enriched
transcripts were peptidyl-prolyl cis-trans isomerase, rapamycin-binding protein,
translation elongation factor 1 subunit beta, E3 ubiquitin-activating protein and MFS

family membrane transporter (Table S2). To validate the presence of full-length mRNAs



324  we selected only transcripts with reads coverage greater than 10x. It is possible to

325 observe that we obtained reads mapping along the entire transcript, as for example, the
326 Tarl mRNA (Figure S2). In addition, it is also possible to observe that the transcript is
327 enriched only in C. albicans, no reads are mapping the Tarl transcript in C. auris MMC1
328 and MMC2 strains (Figure S2). Overall, our results showed that C. auris EV carry RNA,

329 as demonstrated for other fungi (45-47).
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331 Figure 3. EV from C. auris carry RNA. (A) Comparison between ncRNAs enriched in
332 the C. auris EVs compared C. albicans EVs. (B) Heatmap representing the differentially
333 expressed ncRNA in the EVs comparing C. auris and C. albicans (FDR <1% and fold

334 change FC 10-fold). The expression levels are visualized using a gradient color
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represent the logFC.

Proteomics analysis of extracellular vesicles

We performed a liquid chromatography tandem mass spectrometry (LC-MS/MS)-based
proteomic analysis to compare the protein profiles across both species. We utilized a
threshold of 40% of homology at amino acid level between the species to consider them
homologs (Table S3). The divergent peptide sequences prevent to directly compare
peak areas between the two species since the sequence divergency might cause the
peptides to not have same signal response in the mass spectrometer. Therefore, we
calculated the relative copy number of proteins per sample (% from total) to compare
between the two species. In addition to compare the EV proteins from both species, we
also compared the EVs data with the proteomics analysis of whole cells (39), which
were prepared and run in parallel. We observed striking differences between the whole
cells and EVs for each of the 3 strains (Figure 4A). We performed hierarchical clustering
to separate groups of proteins based on their abundance profile. Cluster 1, which
contains proteins commonly enriched in EVs from C. auris and C. albicans compared to
their respective cells, were enriched in proteins from starch and sucrose metabolism,
protein processing in the endoplasmic reticulum, MAP kinases, and amino sugar and
nucleotide sugar metabolism (Figure 4A). C. albicans, but not C. auris EVs, were
enriched in abundant cellular proteins, such as ribosomal proteins and proteins from the
central carbon and amino acid metabolisms (Cluster 2 in Figure 4A). EVs from both

species were depleted of proteins from functions such as ribosomal biogenesis,
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proteasome, DNA replication, RNA degradation, and sterol biosynthesis (Clusters 3-5 in

Figure 4A). Within the ten most abundant proteins in whole cells, only enolase 1 and

pyruvate decarboxylase had high amounts in EVs (C. albicans) (Figure 4B). None of the

top 10 most abundant whole-cell proteins were abundant in C. auris EVs (Figure 4B).

On the other hand, the top 10 most abundant EVs proteins were present only in small

amounts in whole cells (Figure 4B), suggesting a highly selective process to upload

proteins into EVSs.
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Figure 4. Comparative proteomic analysis of extracellular vesicles and whole

cells from C. albicans and C. auris. Proteomic data of whole cells and extracellular

vesicles were submitted to intensity-based absolute quantification (iBAQ) and converted
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to relative copy numbers before comparing across different samples. (A) Heatmaps and
hierarchical clustering were performed with MeV and function enrichment of each
cluster was performed with DAVID. (B) Profiles of the 10 most abundant whole-cell
(WC) and extracellular vesicles (EVs) proteins. Cell samples correspond to three

independent cultures and EVs samples correspond to 4 independent EVs isolations.

Among all the proteins detected in EVs, 393 were considered differentially abundant
when comparing C. auris (both strains) with C. albicans. We performed hierarquical
clusters of the differential abundant proteins, followed by functional-enrichment analysis.
To provide information on the number of proteins in each enriched, we showed the
pathway enrichment results as bubble graphs. In this layout, the enrichment fold
change and p-values are plot in X and Y axes, respectively, while the circle sizes
present the number of proteins and the colors, the clusters they belong to. The number
of differentially abundant proteins corresponded to 33% of the detected proteins, so the
abundance of the remaining 66% was similar among the species. The heatmap in figure
5A shows all the major differentially abundant EVs proteins among the evaluated
organisms. The heatmap was divided into three clusters based on differences of protein
abundance between EVs from C. auris and C. albicans. Out of the 393 proteins on the
heatmap, 42 proteins (~10%) were more abundant in C. auris than C. albicans (Cluster
2, Figure 5). This group of proteins was enriched in proteins from the starch and
sucrose metabolism and protein processing in the endoplasmic reticulum (Figure 5B).
As mentioned above, C. albicans EVs had higher amounts of metabolic proteins

(Cluster 3, Figure 5A-B). C. albicans EVs had higher amounts of TCA cycle proteins
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(figure 5B), which is the opposite of what was found in whole cells (39). This result
further supports the presence of a selective mechanism for sorting proteins into the

EVs.
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Figure 5. Proteomics analysis of EVs from C. auris. EVs from both Candida species
were submitted to protein extraction and analysis. The heatmap (A) shows the
abundance of proteins differentially abundant in EVs from both species of Candida. The
heatmap was clustered using the hierarchical method. (B) Function-enrichment analysis
of different clusters of proteins from panel A. The enrichment of pathways was done
with DAVID. The graph represents the relationship between p-values and fold
enrichment. The colors of the circles represent the different clusters they are enriched
in, while the size, the number of proteins from each pathway. EVs samples correspond

to 4 independent EVs isolations.

Lipidomics analysis of extracellular vesicles
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We performed a lipidomics analysis to compare the lipid profile of C. auris and C.
albicans EVs (Figure 6A-B). All detected species of diacylglycerols (DG) and
triacylglycerols (TG) were more abundant in EVs from C. albicans, whereas the majority
of glycerophospholipids were enriched in the C. auris isolates, including
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG)
and phosphatidylserine (PS) species (Figure 6A). Conversely, phosphatidic acid (PA)
and phosphatidylinositol (PI) species were more abundant in C. albicans (Figure 6A).
The pattern of sphingolipids was also distinct when the Candida EVs were compared.
Two major species of conserved hexosylceramides (HexCer) were found in EVs from C.
albicans and C. auris (Figure 6B), corresponding to the same distribution characterized
in their respective yeast extracts recently reported by our group (5). Consistent with
that, HexCer species bearing Cer(d18:1/24:0(20H)) and Cer(d20:0/18:0) were more
abundant in C. albicans EVs. Non-acylated sphingoid bases sphinganine Cer(d18:0/0:0)
and sphingosine Cer(d18:1/0:0) were more abundant in C. auris MMC2 (Table S4). We
also found unusual free ceramide species with acetate as the acyl group (Figure 6C),
known as C2-ceramides, which were more abundant in C. auris MMC1. Remarkably,
Cer(d18:1/2:0) comprises 7.9% of the mass spectrometry signal for all identified lipids in
the positive ion mode analysis of C. auris MMCL1 EVs, but only 0.6% and 0.2% of the C.
auris MMC2 and C. albicans EVs, respectively (Figure 6C). We compared the relative
intensities of Cer(d18:1/2:0) to the whole cell data from our recent publication(5). We
found an enrichment of 25, 67, and 109 folds of this lipid species in EVs compared to

the whole cells in C. auris MMC1, C. auris MMC2 and C. albicans, respectively.
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Recently, we reported that C. auris had higher expression of a variety of
phospholipases compared to C. albicans (5), therefore, we took a closer look at their
products, lysophospholipids(48). C. auris MMC2 EVs had a consistent higher
abundance of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE)
species compared to C. auris MMC1 and C. albicans (Figure 6D).
Lysophosphatidylglycerol (LPG) species, being PG(18:0/0:0), PG(18:1/0:0), and
PG(18:2/0:0) more abundant in C. auris MMC2, C. albicans and C. auris MMC1,

respectively (Figure 6D).

Fatty acids (FA) chains were detected in all organisms and ranged in size from 14 to 24
carbons, and arachidonic acid was detected, esterified to phosphatidylethanolamine
(PE(18:2/20:4)), consistently in both C. auris isolates. Arachidonic acid was not

abundant in the evaluated strain of C. albicans in the tested conditions (Table S4).
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Figure 6. Lipid profile of C. auris and C. albicans EVs. Vesicles from both Candida

species were submitted to lipid extraction and analysis by LC-MS/MS. (A) Heatmap of



444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

the relative abundances of EVs lipids from both Candida species. (B) Relative intensity
of hexosylceramides. (C) Relative intensity of Cer(d18:1/2:0) was compared between
EVs and yeast cells among all Candida species. (D) Relative abundance of
lysophospholipids In C. auris and C. albicans EVs. Data were analyzed by one-way
ANOVA followed by Tukey’s multiple comparison test. Different letters among bars

represent p < 0.05. EVs samples correspond to 4 independent EVs isolations.

Abbreviations: Cer, ceramide; DG, diacylglycerol; PA, phosphatidic acid; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI,

phosphatidylinositol; PS, phosphatidylserine; TG, triacylglycerol.

Effects of extracellular vesicles on the yeast adhesion to epithelial cells

Adhesion to epithelial surfaces is an important feature displayed by pathogenic species
of Candida as an early stage of colonization of host tissues (49-52). We evaluated
whether C. albicans or C. auris EVs had an impact on the adhesion of C. auris or C.
albicans to HeLa epithelial cells monolayers. Pre-incubation of HelLa cells with C. auris
MMC1 EVs increased the adhesion of this yeast. The same was not seen for MMC2 or
for C. albicans, as the pre-treatment with their EVs did not affect the adhesion of yeast
to HelLa cells (Figure 7). This result shows how EVs from different strains of the same

species can induce distinct host cells phenotypes.
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Figure 7. The effect of extracellular vesicle (EVS) pretreatment on the adhesion of
yeast cells to epithelial monolayers. HelLa cells were pre-treated, or not, with EVs (10
pg/mL of protein) for 1 h before challenging with the respective yeast cells. After
incubating for 1 h, monolayers were washed, and slides were analyzed under a
fluorescence microscope (see Methods for details). (A) Quantification of adhering yeast
cells. (B) Fluorescence image of C. auris MMCL1 adhesion to HeLa cells. Nuclei were

stained with DAPI (blue), whereas the yeasts were stained with NHS-Rhodamine (red).

The graph shows average and standard errors relative to 2 independent experiments
made with distinct EV preparations. *p < 0.05 by one-way ANOVA followed by Dunnet

test.

Effect of extracellular vesicles on phagocytosis and killing by macrophages
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EVs from certain fungi can affect the way yeast cells are internalized and killed by
macrophages (8, 13-16, 53). We tested whether EVs from C. auris or C. albicans would
be able to modulate the uptake or clearance of yeast cells by macrophages. The
incubation with EVs from either C. albicans or C. auris had no significant effect on the
phagocytosis of yeast cells by macrophages (Figure 8A). However, whereas EVs pre-
incubation enhanced macrophages’ ability to kill C. albicans, EVs from C. auris MMC2
but not MMC1, enhanced yeast cell proliferation within the macrophages (Figure 8B).
This points to differing roles for EVs among species regarding some of the effector

functions of macrophages.
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Figure 8. Phagocytosis and killing by macrophages. (A) RAW 264.7 macrophages
were incubated with EVs for 1 h and then challenged with yeast cells in the ratio of 1:2
(macrophage:yeast) for 1 h. After this period, extracellular yeast cells were washed off
and macrophages were lysed and plated onto Sabouraud for CFU counting. (B) Bone
marrow-derived macrophages were incubated with EVs for 4 h and then challenged with
yeast in the ratio of 10:1 (macrophages:yeast) for 24 h. The macrophages were then

lysed and plated onto Sabouraud for CFU counting. Graphs show averages and
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preparations. *p < 0.05 by paired T-test.

Activation of dendritic cells by extracellular vesicles

We investigated the ability of C. auris to regulate dendritic cells by measuring 3
important signals for antigen presentation and activation of T cells, MHC-II, co-
stimulatory molecules (CD80 and CD86), and cytokines (54). BMDC were incubated for
24 h with C. auris or C. albicans EVs, and MHC-Il and co-stimulatory molecules were
measured by FACS, whereas cytokines were assayed by ELISA. We observed an
increase of surface markers associated with BMDC activation, which was similar to the
one induced by LPS. Despite that, MMC2 EVs induced a lower response, and all tested
EVs concentrations from C. auris and C. albicans were able to increase, in a dose-
dependent manner, the expression of MHCII, CD80, and CD86 on BMDC (Figure 9A-
C). BMDC treated with EVs from both Candida species did not produce IL-10, IL-12 or
TNF-a. However, BMDC stimulated with EVs from C. auris produced IL-6 similarly to C.
albicans (Figure 9D). In addition, inhibition of the basal production of TGF-8 by BMDC
was detected after the incubation with EVs from C. auris MMC1 and C. albicans (Figure

9E).
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Figure 9. Activation of BMDC by C. auris extracellular vesicles (EVs). BMDC were
incubated, or not with EVs from C. albicans and C. auris for 24 h and then analyzed by
flow cytometry (A-C) for the expression of MHC-II (A), CD80 (B) and CD86, or ELISA
(7D and 7E), for the production of IL-6 (D) and TGF-B (E). Graphs show mean and
standard error for 3 independent experiments made with distinct EV preparations. * = p

< 0.05 by ANOVA followed by Tukey.

Discussion

The literature reports two distinct populations of EVs from other species of Candida, a
smaller one ranging usually from 50-70 nm, and a larger group between 100 and 800
nm (9, 25, 44). We found that C. auris releases EVs encompassed by lipid bilayers with

size and shape consistent with those from other species. TEM showed that, as opposed
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to some species such as Histoplasma capsulatum (25) and Cryptococcus neoformans
(24), C. auris EVs lack electron-dense areas associated with pigmentation. The total
content of protein and ergosterol in EVs suspensions was higher in C. albicans than in
either C. auris strain when normalized by the number of producing cells. The ratio
between proteins and sterol excludes the number of cells from the analysis and C. auris

MMC2 had a ratio higher than C. albicans or C. auris MMCL1.

EVs RNAs have been characterized in C. neoformans, S. cerevisiae, P. brasiliensis, H.
capsulatum and C. albicans (45, 46). The most abundant transcripts of EVs from C.
auris MMC1 and MMC2 were associated with general metabolism, ribonuclease, and
ubiquitin activities or from uncharacterized genes. EVs mRNAs of C. albicans and C.
auris share common biological processes, such as cellular response to stress and
filamentous growth, indicating a conserved sorting mechanism (45). In other
eukaryotes, EVs mMRNAs can be translated into the recipient cell (55), although this
should be experimentally addressed for fungal EVs. The most abundant ncRNAs in EVs
from C. auris MMC1 and MMC2 were tRNAs and their fragments, similar to previously
described for C. albicans (~60%). These fragments of tRNA have been described in
EVs of diverse organisms, from unicellular parasites to human cells (56-58). In T
lymphocytes-derived EVs, the most abundant class of RNA characterized is tRNA
fragments, comprising 45% of all RNA identified in the EVs compared to the cell

content, and these fragments act by repressing immune activation in T cells (59).

The EVs proteomic profile was strikingly different from the cells they are derived from.
Whereas C. auris EVs were enriched in proteins from the starch and sucrose

metabolism and protein processing in the endoplasmic reticulum, C. albicans EVs had
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higher amounts of proteins from the central carbon metabolism, ribosomes, and amino
acid metabolism. We have previously shown that TCA cycle proteins were more
abundant in C. auris yeast cells than C. albicans (39), but we are now showing an
opposite phenotype in EVs, suggesting a selective sorting that could help control the
intracellular levels of specific metabolic enzymes. These differences suggest that the
EVs from C. albicans and C. auris are involved with distinct metabolic adaptations. In
terms of lipid composition, the relative abundance of lipids involved with energy storage,
as triacyl- and diacylglycerols (TG and DG), is remarkably higher in EVs from C.
albicans, when compared to the C. auris ones, reflecting the pattern found in their
originating yeast cells (5). The relative abundance of structural glycerophospholipids is
consistently higher in EVs from both isolates of C. auris, also reflecting the lipid profile
of their generating yeast cells (5). Although for some cases the lipid profile from C. auris
EVs resembled the yeast cell one, some lipids from the yeast cells were not present in
EVs, such as cardiolipins, which are mitochondrial markers. The amount of HexCer
correlated with the distribution in their respective cells, as previously showed by our
group (5). Considered initially as membrane structural components, HexCer were
described as virulence regulators in C. albicans and C. neoformans (60, 61). Their role
in EVs could be linked to membrane and lipid raft stability (62). However, recently, Xisto
and colleagues demonstrated that purified HexCer produced by the opportunistic fungus
Lomentospora prolificans induced an oxidative burst by and increased the antifungal

activity of macrophages (63).

To our knowledge, our findings report the first time that a C2-ceramide derivative has

been found in fungal EVs. In mammalian models, C2-ceramide has biological properties
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such as antitumoral activity inducing apoptosis and arresting cell cycle (64, 65). The
relative abundance of lysophospholipids was considerably higher in EVs from C. auris
than C. albicans, particularly in EVs from MMC2. This data suggests an intense activity
of lipid catabolic enzymes in C. auris, such as phospholipases. Some lysophospholipids
are biologically active on leukocytes, for instance, LPC released by apoptotic
neutrophils recruit monocytes from the bloodstream to promote clearance of apoptotic
bodies from tissues (66). Immunomodulatory properties of LPC were demonstrated for
other infection models and LPC could act as a virulence factor in C. auris infections (67,

68).

To examine the potential biological effects of EVs upon host cells and to compare
biological activities between species, we used amounts of EVs based on protein
concentration in the same range as used in other reports for host-pathogen studies (8,
9, 16, 17). Within this concentration range, EVs from other pathogenic fungi, were
proven to be biologically active in distinct models. Adhesion of yeast cells to epithelial
surfaces is an important mechanism of disease as an initial step for further tissue
damage and colonization of distinct sites in the host, including the bloodstream (52). C.
albicans can interact with surface adhesion molecules on epithelial cells (50, 51), so we
investigated whether EVs from both Candida species were able to modulate the
adhesion of yeast to epithelial monolayers in vitro. Although the tested strains were able
to adhere to the epithelial monolayer, a significant increase in adhesion was observed
when EVs from C. auris MMCL1 were added to the monolayer. Notably, C. neoformans
EVs fuse with brain microvascular endothelial cells, changing their permeability (22).

Since in our studies the epithelial cells were incubated with EVs prior to the challenge
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with yeast cells, it is possible that fusion with the epithelial cells could modify their
permeability and/or modulate the exposure of adhesion molecules, although further
experimentation is needed to address this hypothesis. Molecules involved with the
adhesion of C. albicans to epithelial cells have been described, such as C. albicans
ALs3p and Eaplp, and are potential players in the increase of adhesion induced by EVs

(69).

Fungal EVs can induce the activation of phagocytes, increasing phagocytosis, cytokine
production, and antigen presentation (8-10, 17). EVs isolated from both C. auris strains
did not modulate the uptake of yeast cells by macrophage cell lines as RAW, but EVs
from C. auris MMC2 inhibited the killing of yeast cells by BMDM. EVs from C. albicans
increased the killing of yeast cells by BMDM. EVs from other pathogenic fungi can
modulate phagocytosis and/or killing by macrophages, but our data shows that EVs
from only one of the C. auris isolates (MMC2) could inhibit the killing of the pathogen by
macrophages. This data suggests that EVs from the same species could promote
distinct changes in host cells. EVs from C. albicans followed the pattern played by most
fungal EVs, as they induced killing (8, 10, 14-16, 53). The incubation with EVs
stimulated BMDC to express important signals responsible for CD4+ T cells activation
such as MHCII, CD80 and CD86. The secretion of TNF-a, IL-10 and IL-12p70 by BMDC
was not detected at biologically relevant levels. However, EVs from both C. albicans
and C. auris induced the release of IL-6 by BMDC, while decreasing the basal
production of TGF-B. This suggests that EVs from C. albicans and C. auris MMC1
induce an inflammatory response in BMDC. Apart from previously reported (9), TNF-q,

IL-10 and IL-12p70 were not produced by BMDC stimulated with EVs. Different strain of
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C. albicans were used these studies, reinforcing the possibility that the biological activity

of EVs could be strain specific.

In summary, our results show that the emerging pathogen C. auris produces EVs that
are similar in size to other pathogenic fungi, but the content of these EVs distinctly
differs from what is known for C. albicans and these differences could explain the
phenotypic changes induced by these EVs in the cells from the host. In this regard, we
note that C. auris is a new fungal pathogen that has been proposed to have emerged
from the environment as a result of global warming (70). In contrast, C. albicans has an
ancient association with human hosts. Thus, the similarities in structure and content
between C. auris and C. albicans EVs probably reflect constraints common to fungal
cells and their physiology, while the differences reflect species-specific variables and

perhaps the result of differences in the time of adaptation to human hosts.
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Table 1. Gene ontology for RNAs enriched in EVs from C. auris and C. albicans

C. auris
Log,
. TPM FDR p-
Name Protein names mean fold value
change

CAALFM_C109220WA MFS domain-containing protein 1112.50 6.50 0.00%
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CAALFM_C112570CA
CAALFM_C207040WA

POX18
CAALFM_C111080WA

RBP1

MET1

STE24

RGS2
CAALFM_C204870CA

CAALFM_C114310WA
RGS2

Name

TAR1
CDC42
THRA4
THS1

PHHB

CAALFM_CRO02690WA
CAALFM_C107850CA
GCN20
CAALFM_C501410CA
POM152

MRPL8
CAALFM_C100200CA

Elongator subunit

HIT-type domain-containing
protein

Pox18p
6-phosphofructo-2-kinase
FK506-binding protein 1 (FKBP)
(EC 5.2.1.8) (Peptidyl-prolyl cis-
trans isomerase) (PPlase)
(Rapamycin-binding protein)
Uroporphyrinogen-IIl C-
methyltransferase

CAAX prenyl protease (EC
3.4.24.84)

GTPase-activating protein

THO complex subunit 2
Deoxycytidine monophosphate
deaminase

GTPase-activating protein

C. albicans

Protein names

Tarlp

Cell division control protein 42
homolog

Threonine synthase (EC 4.2.3.1)
Threonyl-tRNA synthetase (EC
6.1.1.3)
4a-hydroxytetrahydrobiopterin
dehydratase (EC 4.2.1.96)
CAP-Gly domain-containing protein

Anaphase promoting complex
subunit

Putative AAA family ATPase

ER membrane protein complex
subunit 1

Pom152p

Mitochondrial 54S ribosomal protein
YmL38

RRM domain-containing protein

1357.63
953.50

809.32
494.49

1586.55

1103.00

422.40

507.00
238.36

842.16
507.00

TPM
mean

14740.21
2280.43
1486.19
1624.40

1763.12

753.92
1198.57
1083.26

392.62

390.75

559.14

341.91

6.63
4.06

6.06
2.87

8.36

3.23

5.87

6.58
5.07

7.38
6.58

Log:

fold

change
-14.32

-3.90
-5.44
-5.15

-6.29

-4.94
-3.16
-3.31
-3.33
-3.55
-4.39
-3.17

0.00%
0.06%

0.00%
1.39%

0.00%

0.05%

0.00%

0.00%
0.00%

0.00%
0.00%

FDR p-
value

0.00%
0.01%
0.00%
0.00%

0.00%

0.00%
0.26%
0.05%
0.01%
0.00%
0.00%
0.00%



