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Introduction

Errors in lidar measurements stem both from the (1) line-of-sight velocity readings, v;,s, themselves and (2)
modeling approaches for reconstruction of the velocity vector

Topic of this
Modern lidars show v, biases ~< 0.2-m/s and std. dev. ~< 0.20-m/s [1] depending primarily on the
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inhomogeneities within the measurement volume (1.e. — turbulence, mean gradients, non-uniform backscatter)

Two largely unquantified sources of measurement error are embedded PS
in the region of interest (ROI) 4 2

o . . Y
* Solid interference - due to solid returns from boresight or ground surface A Oy Raw spectrum

= bias error P /77@%/7 / i
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* Amplitude noise - due primarily to shot noise in modern lidar [2], depends v i
on the range-resolved intensity of the backscatter [3] = random error ‘

First line of attack toward reducing these errors is quality
assurance/quality control (QAQC) processing

* Godwin ez al. (2012) — bias correction vulnerable to a large degree of
subjectivity in defining certain thresholds [4]

* Herges and Keyantuo (2019) — bias correction still partially subjective, Noise floor

bilateral filtering smooths amplitude fluctuations [5] sl Rendom error Vios

Bias error» &



Methodology

Three-step process implemented to create uncertainty model

1. Generate a database of synthetic lidar spectra with known ground truth quantities of interest (Qols) and artificial

contamination
PSD
A
Mogor
Mipor \
Mopor Shape param. | Synthetic spectra | Raw spectra — | [ciarmcaned \ A\
m generation 5 Sror T Ssotia t Snoise Noise floor =
3Rro1 o,
Psolid | \
| \
Onoise i R
e /// e S
1( Vios~M1R0I )
i i G ; mo 2 F
Scaled epsilon-skew-normal distribution [7]: Spo; = —RU= ¢ “\"2RoI (t¥m3goy)
My poV2T
Inverse function: Ssolid = Psolid
sot 1+(Wi0s—Vsolid)/Wsolid
Randomized instances of noise (>400 per case): Snoise = normrnd (0, 0,pise) for each bin




4 I Methodology

Three-step process implemented to create uncertainty model
s

2. Mimic data path of actual lidar returns by calculating Qols with QAQC code
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For any Qols, we now have a database of the correspondence between the shape of the
input spectra and any deviation in the output Qol from its original input value.
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Methodology

Three-step process implemented to create uncertainty model
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Train models to produce a posteriori estimates of Qol uncertainty remaining after QAQC for any observed spectral shape
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Methodology

Three-step process implemented to create uncertainty model
s

A

3. Train models to produce a posteriori estimates of Qol uncertainty remaining after QAQC for any observed spectral shape

)

| Sl

Supervised machine learning regression via neural networks:
* Architecture: two layers of perceptrons with 12 nodes each

* Transfer function: sigmoid symmetric
*  Objective: mean-square error
* Algorithm: Levenberg-Marquardt

* Training cases: 800 — 2600; testing cases: 150 - 250

Test case\error

Metric | rms error
(m/s)
S 0.0129
&y 0.0245
ém 0.00846
&5 0.00762

T Ol B 00000 |



Experimental Setup

Facility
° Scaled Wind Farm Technology (SWilFT) facility in Lubbock, Texas, USA

° Characterization of the atmospheric conditions in [8], recent benchmarking activities given in [9]

Lidar
° Continuous-wave DTU SpinnerLidar [10] rear-mounted on WTGal
> Focus = 105 m from WTGal along the axis of the turbine rotor

° A rosette pattern is completed in 2 s and consists of 984 measurement
locations, some below ground

Example Case
o Single scan taken in the morning of July 5, 2017 with Unyp = 6 m/sin an
unstable ABL

Lidar scan
geometry

(Images from [9])
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Results — Full-Field Error Maps

Bias error:
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* Partial solid return magnitudes:
*  Ground: &, biases as negative as -0.62 m/s, or 13%
* Boresight: £; biases as negative as -0.18 m/s, or 6.6%
* Remainder of scan field: negligible bias (error magnitude < 0.05 m/s)
* Some unexpected scatter remains throughout the field, which suggests that the
training of the error model could be refined




10 | Results — Full-Field Error Maps

Random error (at 95% confidence):
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* As with the bias errors, random uncertainties are somewhat
influenced by partial solid returns
* The more significant influence, however, is proximity to the wake
region
» &, maximum of +0.11 m/s (£2.5% of vy,)
» &, maximum +0.12 m/s (£13% of v,)




11 | Results — Full-Field Error Maps

Random error (at 95% confidence):
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* As with the bias errors, random uncertainties are somewhat * Verification of the model versus theory
influenced by partial solid returns
* The more significant influence, however, is proximity to the wake
region
» &, maximum of +0.11 m/s (£2.5% of vy,)

» &, maximum +0.12 m/s (£13% of v,)



12 I Conclusions and Future Work

New uncertainty quantification method developed leveraging machine learning (ML) for nacelle-mounted lidar

Uncertainty quantification 1s spatially dependent
° Bias correction for measurements pointed near ground/botesight < 0.62 m/s (13%)

> Random uncertainties in the wake region up to £0.11 m/s (£2.5%) at 95% confidence

Ongoing work:
> Bypass QAQC code’s Qol estimator and replace with ML
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