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2 Introduction

Errors in lidar measurements stem both from the (1) line-of-sight velocity readings, nos, themselves and (2)
modeling approaches for reconstruction of the velocity vector

Modern lidars show nos biases 0.2-m/s and std. dev. 0.20-m/s [1] depending primarily on the
inhomogeneities within the measurement volume (i.e. — turbulence, mean gradients, non-uniform backscatter)

Two largely unquantified sources of measurement error are embedded
in the region of interest (ROI)
• Solid interference - due to solid returns from boresight or ground surface

bias error

• Amplitude noise - due primarily to shot noise in modern lidar [2], depends
on the range-resolved intensity of the backscatter [3] random error

First line of attack toward reducing these errors is quality
assurance/quality control (QAQC) processing
• Godwin et al. (2012) — bias correction vulnerable to a large degree of

subjectivity in defining certain thresholds [4]

• Herges and Keyantuo (2019) — bias correction still partially subjective,
bilateral filtering smooths amplitude fluctuations [5]
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3 I Methodology

Three-step process implemented to create uncertainty model
1. Generate a database of synthetic lidar spectra with known ground truth quantities of interest (QoIs) and artificial

contamination
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4 Methodology

Three-step process implemented to create uncertainty model
1. Generate a database of synthetic lidar spectra with known ground truth quantities of interest (QoIs) and artificial

contamination

2. Mimic data path of actual lidar returns by calculating QoIs with QAQC code
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For any QoIs, we now have a database of the correspondence between the shape of the
input spectra and any deviation in the output QoI from its original input value.
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5 I Methodology

Three-step process implemented to create uncertainty model
1. Generate a database of synthetic lidar spectra with known ground truth quantities of interest (QoIs) and artificial

contamination

2. Mimic data path of actual lidar returns by calculating QoIs with QAQC code

3. Train models to produce a posteriori estimates of QoI uncertainty remaining after QAQC for any observed spectral shape
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6 Methodology

Three-step process implemented to create uncertainty model
1. Generate a database of synthetic lidar spectra with known ground truth quantities of interest (QoIs) and artificial

contamination

2. Mimic data path of actual lidar returns by calculating QoIs with QAQC code

3. Train models to produce a posteriori estimates of QoI uncertainty remaining after QAQC for any observed spectral shape
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Supervised machine learning regression via neural networks:
• Architecture: two layers of perceptrons with 12 nodes each
• Transfer function: sigmoid symmetric
• Objective: mean-square error
• Algorithm: Levenberg-Marquardt
• Training cases: 800 — 2600; testing cases: 150 - 250
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7 Experimental Setup

Facility

- Scaled Wind Farm Technology (SWiFT) facility in Lubbock, Texas, USA

Characterization of the atmospheric conditions in [8], recent benchmarking activities given in [9]

Lidar

O Continuous-wave DTU SpinnerLidar [10] rear-mounted on WTGa1

O Focus = 105 m from WTGa1 along the axis of the turbine rotor

O A rosette pattern is completed in 2 s and consists of 984 measurement
locations, some below ground

Example Case

O Single scan taken in the morning of July 5, 2017 with U hub = 6 m/s in an
unstable ABL

Lidar scan

geometry

4-beam Windar

•;•

WTGal

(Images from [9])
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8 Results — Example Spectra

Rosette scan pattern of the 984 measurement locations
with three selected spectra:
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9 Results — Full-Field Error Maps

Bias error:
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• Partial solid return magnitudes:

• Ground: Ern biases as negative as -0.62 m/s, or 13%
• Boresight: ea biases as negative as -0.18 m/s, or 6.6%

• Remainder of scan field: negligible bias (error magnitude < 0.05 m/s)
• Some unexpected scatter remains throughout the field, which suggests that the

training of the error model could be refined
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10 I Results — Full-Field Error Maps

Note:

Random error (at 95% confidence):

Logarithmic scaling
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• As with the bias errors, random uncertainties are somewhat
influenced by partial solid returns

• The more significant influence, however, is proximity to the wake
region
. ern maximum of ±0.11 m/s (±2.5% of vm)
• eo_ maximum ±0.12 m/s (±13% of va)
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11 Results — Full-Field Error Maps

Random error (at 95% confidence):
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• As with the bias errors, random uncertainties are somewhat

influenced by partial solid returns

• The more significant influence, however, is proximity to the wake

region
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12 I Conclusions and Future Work

New uncertainty quantification method developed leveraging machine learning (ML) for nacelle-mounted lidar

Uncertainty quantification is spatially dependent

o Bias correction for measurements pointed near ground/boresight < 0.62 m/s (13%)

o Random uncertainties in the wake region up to +0.11 m/s (±2.5%) at 95% confidence

Ongoing work:

o Bypass QAQC code's QoI estimator and replace with ML



Thank you!

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering Solutions

of Sandia, LLC, a wholly owned subsidiary of Honeywell International inc.,
for the U.S. Department of Energy's National Nuclear Security Administration

under contract DE-NA0003525.

0 Sandia
National

  Laboratories

© 2020



14 I References

1. Courtney, M., R. Wagner, and P. Lindelöw, Testing and comparison of lidars for profile and turbulence measurements in wind energy. IOP

Conference Series: Earth and Environmental Science, 2008. 1.

2. Pella, A. and C.B. Hasager, Remote sensingfor wind energy. 2011.

3. Liu, Z., et al., Estimating random errors due to shot noise in backscatter lidar observations. Applied optics, 2006. 45(18): p. 4437-4447.

4. Godwin, K., S. De Wekker, and G. Emmitt, Retrieving winds in the suace layer over land using an airborne Doppler lidar. Journal of

Atmospheric and Oceanic Technology, 2012. 29(4): p. 487-499.

5. Herges, T. and P. Keyantuo. Robust Lidar Data Processing and Qualio Control Methods Developed for the Sir iFT Wake S teering Experiment. in

Journal of Physics: Conference Series. 2019. IOP Publishing.

6. Beresh, S.J., Comparison of PIV data using multiple configurations and processing techniques. Experiments in fluids, 2009. 47(6): p. 883.

7. Mudholkar, G.S. and A.D. Hutson, The epsilon—skew—normal distribution for anaking near-normal data. Journal of statistical planning and

inference, 2000. 83(2): p. 291-309.

8. Kelley, C.L. and B.L. Ennis, SfriFT site atmospheric characterkation. 2016, Sandia National Lab.(SNL-NM), Albuquerque, NM (United

States).

9. Doubrawa, P., et al., Multimodel validation of single wakes in neutral and stratffied atmospheric conditions. Wind Energy, 2020.

10.Mikkelsen, T., et al., A spinner-integrated wind lidar for enhanced wind turbine control. Wind Energy, 2013. 16(4): p. 625-643.
11. Rye, Barry J., and R Michael Hardesty. Discrete spectral peah estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the

Cramer-Rao lower bound. IEEE transactions on geoscience and remote sensing 31.1 (1993): 16-27.


