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e Stress Intensity Factors (SIFs) drive crack growth.

 SIFs are accurately calculated in 3-D continuum element models
 Computationally expensive

* Shell element models are computationally cheaper, but cannot model
3-D crack growth.

e “Line-weld” elements are used in shell element models to represent
welds.

* We seek a low-fidelity crack growth model that maps stresses in shell
elements to SIFs using Symbolic Regression (SR).
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1. FRANC3D used to insert and grow
cracks into model mesh.
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2. Reads displacements and
material properties from Abaqus

3. Uses M-integral to compute SIFs

SIF results along crack front
determine crack kink angle

5. Cracks are propagated in kink
angle direction
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6. Repeat steps 2-5 until crack grows,_>¢

through 80% of thickness
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* Machine Learning: Computers
using data to create predictive
models

* Genetic Programming:
Evolution of computer programs
based on fithess

* Symbolic Regression: Searches
space of mathematical
functions to fit equation to
inputted data
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e Data artificially generated from
equation f(x) = 3 *sin(x) + 2

* Allowed equation operators: +, —, X, +,
sin, oS

* Trained bingo until error tolerance <
le-4, stack size = 40, population size =
100, max generations = 50

* OQutput equation:
f(x) =3 *sin(x) + 2
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* Experimental data
e Possible noise or small error .

* Overfitting
* Model fits equation to noise
* Not generalization
* Performs poorly on test data 5

e |llustrated when noise is
randomly added to data

* Tradeoff between complexity
and interpretability "

—— Complexity: 12
—— Complexity: 6

10 12
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* NASA-produced, open-source _ I
. . i i
symbolic regression software Y. "~
using evolutionary algorithms (% . ot N
® / sian "
 Parallel island evolution strategy slandA 2 “““‘a\%
can be used with MPI . . T~/ e® \
. r"‘” Pe. " )‘“
* Island evolution strategy allows - PN |
. . . . / N & a Island D
for periodic migration of models g o > /}/
’ y e ~
between islands M,WB‘“\\_\\ . i
A
& ’ /
Island C

Dynamic Island Model Base on Spectral Clustering in Genetic

Algorithm ;
(Qinxue Meng et al. 2018) E)) ]
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Define BCs so

displacements

in both models
IS similar

Overview

BC combination

Max allowable BC>

displacements

Sobol’
sensitivity
analysis on BCs
effect on max
principal stress

Crack insertion
and growth in
continuum
element model
using
FRANC3D

SIFs and crack size data

R

Symbolic
regression
using Bingo

BC combinations

Shell element
model is
simulated using
determined
boundary
conditions

|

Line weld stresses

future work

Interprettable,
closed form
solution to
describe data

Line weld stress mapping is left for

| ﬂﬁ}) )
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C-Channel:
 Welded to a plate
* Flange length: 50.8 mm in
y-direction
* Constant thickness of
3.048 mm
* Plate:
e 254 mm in z-direction
e 203.2 mm in x-direction
e 3.048mm in y-direction
 Weld Thickness: 3.048mm
* |dealized as one solid
material with no heat-
affected zone from weld [j®)>
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e 180 different BC combinations

* Number of discrete displacements applied to surfaces dependent on
sensitivity

 0.05 mm initial crack size
e Much lower than what non destructive evaluation would detect

* Crack inserted perpendicular to MPS at location on weld surface with
greatest MPS

* Crack grown to 80% thickness of weld or about 2.4 mm at crack steps
of 0.24 mm

* Smaller crack step sizes show minimal difference on output

* Important values used in symbolic regression model: SIF, MPS, crack
geometry, initial crack orientation, crack growth path

| (ﬂﬁ )w
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* Some cracks grow downward
into the plate

* Not likely behavior in practice
because of the weld boundary

* The crack growth path

* Plane fit to points of all crack
fronts after initial crack insertion

o
(3

SR

AVAVAVAYA

TAVAVA

AN

T
YAV

Y

* Thickness

 Defined as the distance from crack
insertion to where the crack would
break through the surface

AV AAVATAC AT AV AN S
PPN

Downward growing crack. qu)))




U i manesne Different Crack Growth Directions
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i — Bingo Model For SIFs

K; (a a . ,\)
. =f(=,-, A, 7
o+/TT*a f c’t’ 2

* a: crack depth

* ¢: half crack width

* t: thickness relative to crack growth path

e g: maximum principal stress at point of crack insertion
1= (%Y, 2)

2 = (X2,¥2,22)

* 71,: normal unit vector of crack at insertion

=)

)

* ,: normal unit vector of plane fit through all crack front points
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* Model from Pareto front with
operations that made sense

* i.e. some models had equations
with components of the form x* 0.10 |

011197 s—w»

e Of the lower complexity models, ...
performed best on test dataset

0.08

Fithess

* Mean absolute error: 0.0543

0.07 -

%061 AFLL‘@_‘—'—‘_‘_‘_‘

0.05 A T T T T T T T T
0.0 2.5 2.0 1.5 10.0 12.5 15.0 17.5 20.0

Complexity




_ Gradient Boosting

* Boosting
* Using an ensemble of "weak” learners that together create a strong one.

* Gradient Boosting
e Each "weak” learner is found from the error of the previous learner

* Prediction [Js found with: >M_ L3(O) where [} (O is each function
found through symbollc regressmn using the results from
[A(0 = O- 2’7% 1 (O




Subtract First Model
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e Second Model

* Trained on residual error of f; on train dataset.
e Similar selection method as first model
* Fitness: 0.0482

a
p=lylt
f, = —0.1657 p+/|z| — 0.1657(p(p * pP)¥)°2> 4+ 0.176
* Third Model

* Trained on residual error of f; + f>
* Fitness: 0.0466

£y = z+/|y|(z2 — 0.933)
T z(z—1)+1
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* Fourth model did not improve
overall model.

 Test error is below training error,
may be a result of fewer
datapoints and thus fewer
chances of large outliers.

* 80% train, 20% test randomly
split

0.056 4

0.054 4

0.052 4

Mean Absolute Error

0.048 4

—e— Test Error
—e— Train Error

1 2 3 4
Number of Functions
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* Raju-Newman Semi-Elliptical

]73:
Surface Problem
* Gradient Boosting with SR can NeEGia = 1
automate this process M, =1.13 — 0.09 (_a_>
C
My=—0.54 + —25
0.2+ <i>
C
M;=0.5~— + 14 (1 - i>24
0.65 + —
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* Symbolic regression can give interpretable results of how each input
affects the output

* Models for SIFs given MPS and crack geometry found to be much
easier for SR than line-weld stresses to MPS

* Gradient boosting can be used with SR to improve the overall model
when more complex equations are expected

e Use gradient boosting with SR to revisit classical fracture mechanics
SIF solutions

* Simpler geometry could be beneficial for finding physically
interpretable results
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