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Abstract  

Automatic garbage collection (GC) prevents certain kinds of bugs and reduces programming over-

head. GC techniques for sequential programs are based on reachability analysis. However, testing

reachability from a root set is inadequate for determining whether an actor is garbage because an un-

reachable actor may send a message to a reachable actor. Instead, it is sufficient to check termination

(sometimes also called quiescence): an actor is terminated if it is not currently processing a message

and cannot receive a message in the future. Moreover, many actor frameworks provide all actors with

access to file I/0 or external storage; without inspecting an actor's internal code, it is necessary to

check that the actor has terminated to ensure that it may be garbage collected in these frameworks.

Previous algorithms to detect actor garbage require coordination mechanisms such as causal message

delivery or nonlocal monitoring of actors for mutation. Such coordination mechanisms adversely

affect concurrency and are therefore expensive in distributed systems. We present a low-overhead

reference listing technique (called DRL) for termination detection in actor systems. DRL is based

on asynchronous local snapshots and message-passing between actors. This enables a decentralized

implementation and transient network partition tolerance. The paper provides a formal description

of DRL, shows that all actors identified as garbage have indeed terminated (safety), and that all

terminated actors—under certain reasonable assumptions—will eventually be identified (liveness).
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• Introduction

The actor model [1, 2] is a foundational model of concurrency that has been widely adopted
for its scalability: for example, actor languages have been used to implement services at
PayPal [19], Discord [27], and in the United Kingdom's National Health Service database [18].
In the actor model, stateful processes known as actors execute concurrently and communicate
by sending asynchronous messages to other actors, provided they have a reference (also called
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a mail address or address in the literature) to the recipient. Actors can also spawn new

actors. An actor is said to be garbage if it can be destroyed without affecting the system's

observable behavior.

Although a number of algorithms for automatic actor GC have been proposed [10, 13, 24,

25, 28, 30], actor languages and frameworks currently popular in industry (such as Akka [4],

Erlang [5], and Orleans [8]) require that programmers garbage collect actors manually. We

believe this is because the algorithms proposed thus far are too expensive to implement in

distributed systems. In order to find applicability in real-world actor runtimes, we argue

that a GC algorithm should satisfy the following properties:

1. (Low latency) GC should not restrict concurrency in the application.

2. (High throughput) GC should not impose significant space or message overhead.

3. (Scalability) GC should scale with the number of actors and nodes in the system.

To the best of our knowledge, no previous algorithm satisfies all three constraints. The

first requirement precludes any global synchronization between actors, a "stop-the-world"

step, or a requirement for causal order delivery of all messages. The second requirement

means that the number of additional "control" messages imposed by the algorithm should
be minimal. The third requirement precludes algorithms based on global snapshots, since

taking a global snapshot of a system with a large number of nodes is infeasible.

To address these goals, we have developed a garbage collection technique called DRL for

Deferred Reference Listing. The primary advantage of DRL is that it is decentralized and

incremental: local garbage can be collected at one node without communicating with other

nodes. Garbage collection can be performed concurrently with the application and imposes

no message ordering constraints. We also expect DRL to be reasonably efficient in practice,

since it does not require many additional messages or significant actor-local computation.

DRL works as follows. The communication protocol (Section 4) tracks information, such

as references and message counts, and stores it in each actor's state. Actors periodically

send out copies of their local state (called snapshots) to be stored at one or more designated

snapshot aggregator actors. Each aggregator periodically searches its local store to find a
subset of snapshots representing terminated actors (Section 6). Once an actor is determined

to have terminated, it can be garbage collected by, for example, sending it a self-destruct

message. Note that our termination detection algorithm itself is location transparent.

Since DRL is defined on top of the actor model, it is oblivious to details of a particular

implementation (such as how sequential computations are represented). Our technique is

therefore applicable to any actor framework and can be implemented as a library. Moreover,

it can also be applied to open systems, allowing a garbage-collected actor subsystem to

interoperate with an external actor system.

The outline of the paper is as follows. We provide a characterization of actor garbage in

Section 2 and discuss related work in Section 3. We then provide a specification of the DRL

protocol in Section 4. In Section 5, we describe a key property of DRL called the Chain

Lemma. This lemma allows us to prove the safety and liveness properties, which are stated in

Section 6. We then conclude in Section 7 with some discussion of future work and how DRL

may be used in practice. To conserve space, all proofs have been relegated to the Appendix.

• Preliminaries

An actor can only receive a message when it is idle. Upon receiving a message, it becomes

busy. A busy actor can perform an unbounded sequence of actions before becoming idle.

In [3], an action may be to spawn an actor, send a message, or perform a (local) computation.

We will also assume that actors can perform effects, such as file I/O. The actions an actor

performs in response to a message are dictated by its application-level code, called a behavior.
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• Figure 1 A simple actor system. The first configuration leads to the second after C receives the
message m, which contains a reference to E. Notice that an actor can send a message and "forget"
its reference to the recipient before the message is delivered, as is the case for actor F. In both
configurations, E is a potential acquaintance of C, and D is potentially reachable from C. The only
terminated actor is F because all other actors are potentially reachable from unblocked actors.

Actors can also receive messages from external actors (such as the user) by becoming

receptionists. An actor A becomes a receptionist when its address is exposed to an external

actor. Subsequently, any external actor can potentially obtain A's address and send it a

message. It is not possible for an actor system to determine when all external actors have

"forgotten" a receptionist's address. We will therefore assume that an actor can never cease

to be a receptionist once its address has been exposed.

An actor is said to be garbage if it can be destroyed without affecting the system's

observable behavior. However, without analyzing an actor's code, it is not possible to know

whether it will have an effect when it receives a message. We will therefore restrict our

attention to actors that can be guaranteed to be garbage without inspecting their behavior.

According to this more conservative definition, any actor that might receive a message in the

future should not be garbage collected because it could, for instance, write to a log file when

it becomes busy. Conversely, any actor that is guaranteed to remain idle indefinitely can

safely be garbage collected because it will never have any effects; such an actor is said to be

terminated. Hence, garbage actors coincide with terminated actors in our model.

Terminated actors can be detected by looking at the global state of the system. We say

that an actor B is a potential acquaintance of A (and A is a potential inverse acquaintance

of B) if A has a reference to B or if there is an undelivered message to A that contains a

reference to B. We define potential reachability to be the reflexive transitive closure of the

potential acquaintance relation. If an actor is idle and has no undelivered messages, then it

is blocked; otherwise it is unblocked. We then observe that an actor is terminated when it is

only potentially reachable by blocked actors: Such an actor is idle, blocked, and can only

potentially be sent a message by other idle blocked actors. Conversely, without analyzing

actor code we cannot safely conclude that an actor is terminated if it is potentially reachable

by an unblocked actor. Hence, we say that an actor is terminated if and only if it is blocked

and all of its potential inverse acquaintances are terminated.

CONCUR 2020
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3 Related Work

Global Termination

Global termination detection (GTD) is used to determine when all processes have terminated

[17, 16]. For GTD, it suffices to obtain global message send and receive counts. Most GTD

algorithms also assume a fixed process topology. However, Lai gives an algorithm in [14]

that supports dynamic topologies such as in the actor model. Lai's algorithm performs

termination detection in "waves", disseminating control messages along a spanning tree

(such as an actor supervisor hierarchy) so as to obtain consistent global message send and

receive counts. Venkatasubramanian et al. take a similar approach to obtain a consistent

global snapshot of actor states in a distributed system [25]. However, such an approach does

not scale well because it is not incremental: garbage cannot be detected until all nodes in

the system have responded. In contrast, DRL does not require a global snapshot, does not

require actors to coordinate their local snapshots, and does not require waiting for all nodes

before detecting local terminated actors.

Reference Tracking

We say that an idle actor is ,simple garbage if it has no undelivered messages and no other

actor has a reference to it. Such actors can be detected with distributed reference counting

[31, 6, 20] or with reference listing [21, 30] techniques. In reference listing algorithms, each

actor maintains a partial list of actors that may have references to it. Whenever A sends B

a reference to C, it also sends an info message informing C about B's reference. Once B

no longer needs a reference to C, it informs C by sending a release message; this message

should not be processed by C until all preceding messages from B to C have been delivered.

Thus an actor is simple garbage when its reference listing is empty.

Our technique uses a form of deferred reference listing, in which A may also defer sending

info messages to C until it releases its references to C. This allows info and release

messages to be batched together, reducing communication overhead.

Cyclic Garbage

Actors that are transitively acquainted with one another are said to form cycles. Cycles of

terminated actors are called cyclic garbage and cannot be detected with reference listing

alone. Since actors are hosted on nodes and cycles may span across multiple nodes, detecting

cyclic garbage requires sharing information between nodes to obtain a consistent view of the

global topology. One approach is to compute a global snapshot of the distributed system [13]

using the Chandy-Lamport algorithm [9]; but this requires pausing execution of all actors on

a node to compute its local snapshot.

Another approach is to add edges to the actor reference graph so that actor garbage

coincides with passive object garbage [24, 29]. This is convenient because it allows existing

algorithms for distributed passive object GC, such as [23], to be reused in actor systems.

However, such transformations require that actors know when they have undelivered messages,

which requires some form of synchronization.

To avoid pausing executions, Wang and Varela proposed a reference listing based technique

called the pseudo-root algorithm. The algorithm computes approximate global snapshots and
is implemented in the SALSA runtime [30, 28]. The pseudo-root algorithm requires a high
number of additional control messages and requires actors to write to shared memory if they

migrate or release references during snapshot collection. Our protocol requires fewer control

messages and no additional actions between local actor snapshots. Wang and Varela also

explicitly address migration of actors, a concern orthogonal to our algorithm.
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Our technique is inspired by MAC, a termination detection algorithm implemented in

the Pony runtime [10]. In MAC, actors send a local snapshot to a designated cycle detector

whenever their message queue becomes empty, and send another notification whenever it

becomes non-empty. Clebsch and Drossopoulou prove that for systems with causal message

delivery, a simple request-reply protocol is sufficient to confirm that the cycle detector's view

of the topology is consistent. However, enforcing causal delivery in a distributed system

imposes additional space and networking costs [11, 7]. DRL is similar to MAC, but does not

require causal message delivery, supports decentralized termination detection, and actors

need not take snapshots each time their message queues become empty. The key insight is

that these limitations can be removed by tracking additional information at the actor level.

An earlier version of DRL appeared in [22]. In this paper, we formalize the description of

the algorithm and prove its safety and liveness. In the process, we discovered that release

acknowledgment messages are unnecessary and that termination detection is more flexible
than we first thought: it is not necessary for GC to be performed in distinct "phases" where

every actor takes a snapshot in each phase. In particular, once an idle actor takes a snapshot,

it need not take another snapshot until it receives a fresh message.

• A Two-Level Semantic Model

Our computation model is based on the two level approach to actor semantics [26], in which

a lower system-level transition system interprets the operations performed by a higher, user-

facing application-level transition system. In this section, we define the DRL communication

protocol at the system level. We do not provide a transition system for the application

level computation model, since it is not relevant to garbage collection (see [3] for how

it can be done). What is relevant to us is that corresponding to each application-level

action is a system-level transition that tracks references. We will therefore define system-

level configurations and transitions on system-level configurations. We will refer to these,

respectively, as configurations and transitions in the rest of the paper.

4.1 Overview

Actors in DRL use reference objects (abbreviated refobs) to send messages, instead of using

plain actor addresses. Refobs are similar to unidirectional channels and can only be used

by their designated owner to send messages to their target; thus in order for A to give B a

reference to C, it must explicitly create a new refob owned by B. Once a refob is no longer

needed, it should be deactivated by its owner and removed from local state.

The DRL communication protocol enriches each actor's state with a list of refobs that

it currently owns and associated message counts representing the number of messages sent

using each refob. Each actor also maintains a subset of the refobs of which it is the target,
together with associated message receive counts. Lastly, actors perform a form of "contact

tracing" by maintaining a subset of the refobs that they have created for other actors; we

provide details about the bookkeeping later in this section.

The additional information above allows us to detect termination by inspecting actor

snapshots. If a set of snapshots is consistent (in the sense of [9]) then we can use the "contact

tracing" information to determine whether the set is closed under the potential inverse

acquaintance relation (see Section 5). Then, given a consistent and closed set of snapshots,

we can use the message counts to determine whether an actor is blocked. We can therefore
find all the terminated actors within a consistent set of snapshots.

CONCUR 2020
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• Figure 2 An example showing how refobs are created and destroyed. Below each actor we list all
the "facts" related to z that are stored in its local state. Although not pictured in the figure, A
also obtains facts Active(x) and Active(y) after spawning actors B and C, respectively. Likewise,
actors B, C obtain facts Created(x), Created(y), respectively, upon being spawned.

In fact, DRL satisfies a stronger property: any set of snapshots that "appears terminated"

in the sense above is guaranteed to be consistent. Hence, given an arbitrary closed set of

snapshots, it is possible to determine which of the corresponding actors have terminated.

This allows a great deal of freedom in how snapshots are aggregated. For instance, actors

could place their snapshots in a global eventually consistent store, with a garbage collection

thread at each node periodically inspecting the store for local terminated actors.

Reference Objects

A refob is a triple (x, A, B), where A is the owner actor's address, B is the target actor's
address, and x is a globally unique token. An actor can cheaply generate such a token by
combining its address with a local sequence number, since actor systems already guarantee

that each address is unique. We will stylize a triple (x, A, B) as x : A —0 B. We will also

sometimes refer to such a refob as simply x, since tokens act as unique identifiers.

When an actor A spawns an actor B (Fig. 2 (1, 2)) the DRL protocol creates a new refob

x : A —0 B that is stored in both A and B's system-level state, and a refob y : B —0 B in

B's state. The refob x allows A to send application-level messages to B. These messages are

denoted app(x, R), where R is the sett of refobs contained in the message that A has created
for B. The refob y corresponds to the self variable present in some actor languages.

If A has active refobs x : A —0 B and y : A —0 C, then it can create a new refob z : B —0 C

by generating a token z. In addition to being sent to B, this refob must also temporarily

be stored in A's system-level state and marked as "created using y" (Fig. 2 (3)). Once B

receives z, it must add the refob to its system-level state and mark it as "active" (Fig. 2 (4)).

Note that B can have multiple distinct refobs that reference the same actor in its state; this

can be the result of, for example, several actors concurrently sending refobs to B. Transition

rules for spawning actors and sending messages are given in Section 4.3.

Actor A may remove z from its state once it has sent a (system-level) inf o message
informing C about z (Fig. 2 (4)). Similarly, when B no longer needs its refob for C, it

can "deactivate" z by removing it from local state and sending C a (system-level) release
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• Figure 3 A time diagram for actors A, B, C, demonstrating message counts and consistent
snapshots. Dashed arrows represent messages and dotted lines represent consistent cuts. In each cut

above, B's message send count agrees with C's message receive count.

message (Fig. 2 (5)). Note that if B already has a refob z : B —0 C and then receives another

z' : B —0 C, then it can be more efficient to defer deactivating the extraneous z' until z is

also no longer needed; this way, the release messages can be batched together.

When C receives an info message, it records that the refob has been created, and when

C receives a release message, it records that the refob has been released (Fig. 2 (6)). Note

that these messages may arrive in any order. Once C has received both, it is permitted to

remove all facts about the refob from its local state. Transition rules for these reference

listing actions are given in Section 4.4.

Once a refob has been created, it cycles through four states: pending, active, inactive, or

released. A refob z : B —0 C is said to be pending until it is received by its owner B. Once
received, the refob is active until it is deactivated by its owner, at which point it becomes
inactive. Finally, once C learns that z has been deactivated, the refob is said to be released.

A refob that has not yet been released is unreleased.

Slightly amending the definition we gave in Section 2, we say that B is a potential

acquaintance of A (and A is a potential inverse acquaintance of B) when there exists an

unreleased refob x : A —0 B. Thus, B becomes a potential acquaintance of A as soon as x is

created, and only ceases to be an acquaintance once it has received a release message for

every refob y : A B that has been created so far.

Message Counts and Snapshots

For each refob x : A —0 B, the owner A counts the number of app and info messages sent

along x; this count can be deleted when A deactivates x. Each message is annotated with the

refob used to send it. Whenever B receives an app or info message along x, it correspondingly

increments a receive count for x; this count can be deleted once x has been released. Thus

the memory overhead of message counts is linear in the number of unreleased refobs.

A snapshot is a copy of all the facts in an actor's system-level state at some point in

time. We will assume throughout the paper that in every set of snapshots Q, each snapshot

was taken by a different actor. Such a set is also said to form a cut. Recall that a cut is

consistent if no snapshot in the cut causally precedes any other [9]. Let us also say that Q is

a set of mutually quiescent snapshots if there are no undelivered messages between actors

CONCUR 2020
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in the cut. That is, if A E Q sent a message to B E Q before taking a snapshot, then the

message must have been delivered before B took its snapshot. Notice that if all snapshots in

Q are mutually quiescent, then Q is consistent.

Notice also that in Fig. 3, the snapshots of B and C are mutually quiescent when their

send and receive counts agree. This is ensured in part because each refob has a unique token:

If actors associated message counts with actor names instead of tokens, then B's snapshots
at to and t3 would both contain Sent(C, 1). Thus, B's snapshot at t3 and C's snapshot at to
would appear mutually quiescent, despite having undelivered messages in the cut.

We would like to conclude that snapshots from two actors A, B are mutually quiescent if

and only if their send and receive counts are agreed for every refob x : A —0 B or y : B —0 A.

Unfortunately, this fails to hold in general for systems with unordered message delivery. It

also fails to hold when, for instance, the owner actor takes a snapshot before the refob is

activated and the target actor takes a snapshot after the refob is released. In such a case,

neither knowledge set includes a message count for the refob and they therefore appear to

agree. However, we show that the message counts can nevertheless be used to bound the

number of undelivered messages for purposes of our algorithm (Lemma 12).

Definitions

We use the capital letters A, B, C, D, E to denote actor addresses. Tokens are denoted x, y, z,
with a special reserved token null for messages from external actors.

A fact is a value that takes one of the following forms: Created(x), Released(x),

CreatedUsing(x, y), Active(x), Unreleased(x), Sent(x, n), or Received(x, n) for some

refobs x, y and natural number n. Each actor's state holds a set of facts about refobs and

message counts called its knowledge set. We use 0, 0 to denote facts and 4., 4f to denote

finite sets of facts. Each fact may be interpreted as a predicate that indicates the occurrence

of some past event. Interpreting a set of facts .1. as a set of axioms, we write .1. H 0 when 0 is

derivable by first-order logic from 43 with the following additional rules:

- If (An E N, Sent(x, n) E (1.) then 43 H Sent(x, 0)

- If (An E N, Received(x, n) E 43.) then 43 H Received(x, 0)

- If (t. H Created(x) A —Released(x) then 4) H Unreleased(x)

- If 13. H CreatedUsing(x, y) then 43 H Created(y)

For convenience, we define a pair of functions incSent(x,.1)), incRecv(x,.1)) for incrementing

message send/receive counts, as follows: If Sent(x, n) E (1' for some n, then incSent(x,.1)) =

(.1. \ {Sent (x, n)}) U {Sent (x, n + 1)}; otherwise, incSent(x, I.) = .1.0 {Sent (x, 1)}. Likewise

for incRecv and Received.

Recall that an actor is either busy (processing a message) or idle (waiting for a message).

An actor with knowledge set .I. is denoted [13] if it is busy and (I') if it is idle.

Our specification includes both system messages (also called control messages) and

application messages. The former are automatically generated by the DRL protocol and

handled at the system level, whereas the latter are explicitly created and consumed by

user-defined behaviors. Application-level messages are denoted app(x, R) . The argument x

is the refob used to send the message. The second argument R is a set of refobs created by

the sender to be used by the destination actor. Any remaining application-specific data in

the message is omitted in our notation.

The DRL communication protocol uses two kinds of system messages. info(y, z, B) is a

message sent from an actor A to an actor C, informing it that a new refob z : B —0 C was

created using y : A —0 C . release(x, n) is a message sent from an actor A to an actor B,
informing it that the refob x : A —0 B has been deactivated and should be released.
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A configuration (( p, ))x is a quadruple (a, p, x) where: a is a mapping from actor

addresses to knowledge sets; µ is a mapping from actor addresses to multisets of messages;

and p, x are sets of actor addresses. Actors in dom(a) are internal actors and actors in x are

external actors; the two sets may not intersect. The mapping µ associates each actor with

undelivered messages to that actor. Actors in p are receptionists. We will ensure p C dom(a)

remains valid in any configuration that is derived from a configuration where the property

holds (referred to as the locality laws in [12]).

Configurations are denoted by lc, ko, etc. If an actor address A (resp. a token x),

does not occur in K, then the address (resp. the token) is said to be fresh. We assume a

facility for generating fresh addresses and tokens.

In order to express our transition rules in a pattern-matching style, we will employ
the following shorthand. Let a, [.1)]A refer to a mapping a' where ai(A) = [(1)] and a =

Iclom(c ) \ {A}• Similarly, let [A < m] refer to a mapping where m e iil(A) and ir =e 

clom(1.6 VA} {A p,I(A) {m}}. Informally, the expression a, [4]A refers to a set of actors
containing both a and the busy actor A (with knowledge set 1.); the expression [A < m]

refers to the set of messages containing both it and the message m (sent to actor A).

The rules of our transition system define atomic transitions from one configuration to

another. Each transition rule has a label l, parameterized by some variables Y that occur in

the left- and right-hand configurations. Given a configuration K, these pararneters functionally
/(ro

determine the next configuration W. Given arguments z7, we write lc K
, 
to denote a

semantic step from K to Kt using rule 44

We refer to a label with arguments l(77) as an event, denoted e. A sequence of events
is denoted 7r. If = , en then we write K1 when ki W. If

there exists 7T such that K W, then W is derivable from K. An execution is a sequence

of events el, , en such that so kJ. r`>• Kn, where ko is the initial configuration

(Section 4.2). We say that a property holds at time t if it holds in kt.

4.2 Initial Configuration

The initial configuration ko consists of a single actor in a busy state:

[1']l l V{E},
where .13 = { Act ive(x : A —0 E), Created(y : A —0 A), Act ive(y : A —0 A)}. The actor's

knowledge set includes a refob to itself and a refob to an external actor E. A can become a

receptionist by sending E a refob to itself. Henceforth, we will only consider configurations

that are derivable from an initial configuration.

4.3 Standard Actor Operations

Fig. 4 gives transition rules for standard actor operations, such as spawning actors and sending

messages. Each of these rules corresponds a rule in the standard operational semantics of

actors [3]. Note that each rule is atomic, but can just as well be implemented as a sequence

of several smaller steps without loss of generality because actors do not share state — see [3]

for a formal proof.

The SPAWN event allows a busy actor A to spawn a new actor B and creates two re-

fobs x : A —0 B, y : B —0 B. B is initialized with knowledge about x and y via the facts

Created(x), Created(y). The facts Act ive(x), Active(y) allow A and B to immediately

begin sending messages to B. Note that implementing SPAWN does not require a synchroniz-

ation protocol between A and B to construct x : A —0 B. The parent A can pass both its

CONCUR 2020
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SPAWN(X, A, B)

(( a, [43].4 (( a, [4)U {Active(x : A —0 B)}]A, [1*3

where x,y,B fresh

and kli = {Created(x : A —0 B), Created(y : B —0 B), Active(y : B —0 B)}

SEND(X, y, ,4 A, B , 0)

(( a,[4:,]A ))x (( a,[incSent(x,,D)U l [B a app(x , R)] ))f;

where # and i' fresh and n = = = 101
and (1) Active(x : A —0 B) and Vi < n, (I) H Active(yi : A —0 Ci)

and R={zi:B-0Cili< n} and = {CreatedUsing(yi,zi) i < n}

RECEIVE (x , B , R)

(( a, (fls [B < aPP(x R)] ))i;( (( a, [incRecv(x , 43) U ine l µ g

where ill = {Active(z) z E

IDLE(A)

(( a, [4:1]A ))I;‹ (( a, (4))A ))1;

• Figure 4 Rules for standard actor interactions.

address and the freshly generated token x to the constructor for B . Since actors typically

know their own addresses, this allows B to construct the triple (x, A, B). Since the spawn

call typically returns the address of the spawned actor, A can also create the same triple.

The SEND event allows a busy actor A to send an application-level message to B containing

a set of refobs zi, , zn to actors C= C1, , Cn — it is possible that B = A or Cz = A for

some i. For each new refob ;, we say that the message contains ;. Any other data in the

message besides these refobs is irrelevant to termination detection and therefore omitted. To

send the message, A must have active refobs to both the target actor B and to every actor

C1, , Cn referenced in the message. For each target Ci, A adds a fact CreatedUsing(yi, zi)

to its knowledge set; we say that A created zi using yi. Finally, A must increment its Sent

count for the refob x used to send the message; we say that the message is sent along x.
The RECEIVE event allows an idle actor B to become busy by consuming an application

message sent to B . Before performing subsequent actions, B increments the receive count

for x and adds all refobs in the message to its knowledge set.

Finally, the IDLE event puts a busy actor into the idle state, enabling it to consume

another message.

4.4 Release Protocol

Whenever an actor creates or receives a refob, it adds facts to its knowledge set. To remove

these facts when they are no longer needed, actors can perform the release protocol defined
in Fig. 5. All of these rules are not present in the standard operational semantics of actors.
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SENDINFO (y , z, A, B, C)

(( 0,0 U —> a,[incSent(y,(D)L4 it,[C < info(y, z, B)]

where = {CreatedUsing(y : A —0 C, z : B —0 C)}

INFO (y, z, B, C)

(( a, (4))c I w, [C a inf o(y, z, B)] ))1; —> (( a, (incRecv(y,(D)U T)C

where kIf = {Created(z : B —0 C)}

SENDRELEASE(x, A, B)

(( [(I' U 41A /-1 (( a, [42'],4 [B a release(x, n)]

where = {Active(x : A —0 B), Sent(x, n)}

and Ay, CreatedUsing(x, y) E

RELEASE(x, A, B)

(( a, (4))/3 < release(x, n)] (( a, U {Released(x)})s

only if (I) H Received(x, ri)

COMPACTION(x, B, C)

(( (l' W)c —> (( a, (flc ))x

where qf = {Created(x : B —0 C), Released(x : B —0 C), Received(x, n)} for some n E N

or = {Created(x : B —0 C),Released(x : B —0 C)} and Vn E N, Received(x,n)

SNAPSHOT(A, (I))

(( a, (flA l (( a, (4))A /-1

• Figure 5 Rules for performing the release protocol.

The SENDINFO event allows a busy actor A to inform C about a refob z : B —0 C that it

created using y; we say that the info message is sent along y and contains z. This event

allows A to remove the fact CreatedUsing(y, z) from its knowledge set. It is crucial that

A also increments its Sent count for y to indicate an undelivered info message sent to

C: it allows the snapshot aggregator to detect when there are undelivered info messages,
which contain refobs. This message is delivered with the INFO event, which adds the fact

Created(z : B —0 C) to C's knowledge set and correspondingly increments C's Received

count for y.

When an actor A no longer needs x : A —0 B for sending messages, A can deactivate x

with the SENDRELEASE event; we say that the release is sent along x. A precondition of

this event is that A has already sent messages to inform B about all the refobs it has created
using x. In practice, an implementation may defer sending any info or release messages

to a target B until all A's refobs to B are deactivated. This introduces a trade-off between

the number of control messages and the rate of simple garbage detection (Section 5).
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IN(A, R)

((alia))x —>((aii-1,[A4app(null, gi•Jx'

where A E p and R = {xi : A —0 Bi, . • • : A —0 13,•,} and xi, • • • ,
and {Bi, , dom(a) C p and x = {B1, . . . , \ dom(a)

fresh

OUT(x, B,

( a l [B < apP(x, g l guP'

where B E x and R = {xi : B —0 . . . , : B —0 Cn} and p' = , Cri} dom(a)

RELEASEOUT(x, B)

(( a l [B a release(x, T)] gu{B} (( l ))Xu{B}

INFOOUT(y, z, A, B, C)

(( a l it [C a info(y, z, A, B)] ))Pxu{c} —> (( a l li))Xu{c}

• Figure 6 Rules for interacting with the outside world.

Each release message for a refob x includes a count n of the number of messages sent

using x. This ensures that release(x, n) is only delivered after all the preceding messages

sent along x have been delivered. Once the RELEASE event can be executed, it adds the

fact that x has been released to B's knowledge set. Once C has received both an info and

release message for a refob x, it may remove facts about x from its knowledge set using

the COMPACTION event.

Finally, the SNAPSHOT event captures an idle actor's knowledge set. For simplicity, we

have omitted the process of disseminating snapshots to an aggregator. Although this event

does not change the configuration, it allows us to prove properties about snapshot events at
different points in time.

4.5 Composition and Effects

We give rules to dictate how internal actors interact with external actors in Fig. 6. The IN

and OUT rules correspond to similar rules in the standard operational semantics of actors.

Since internal garbage collection protocols are not exposed to the outside world, all

release and info messages sent to external actors are simply dropped by the RELEASEOUT

and INFOOUT events. Likewise, only app messages can enter the system. Since we cannot

statically determine when a receptionist's address has been forgotten by all external actors,

we assume that receptionists are never terminated. The resulting "black box" behavior of

our system is the same as the actor systems in [3]. Hence, in principle DRL can be gradually

integrated into a codebase by creating a subsystem for garbage-collected actors.

The IN event allows an external actor to send an application-level message to a receptionist

A containing a set of refobs R, all owned by A. Since external actors do not use refobs, the

message is sent using the special null token. All targets in R that are not internal actors

are added to the set of external actors.
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CreatedUsinex2, x3)

CreatedUsing(xi, X2)

(1)

App(Y,{x3})

Created(xi)

• Figure 7 An example of a chain from B to x3.

CreatedUsing xi, x2

(2)

App(Y,{x3})
,

i
i
:info(x2, x3

Created(xi)

The OUT event delivers an application-level message to an external actor with a set of
refobs R. All internal actors referenced in R become receptionists because their addresses

have been exposed to the outside world.

4.6 Garbage

We can now operationally characterize actor garbage in our model. An actor A can potentially

receive a message in n if there is a sequence of events (possibly of length zero) leading from

K to a configuration K1 in which A has an undelivered message. We say that an actor is

terminated if it is idle and cannot potentially receive a message.

An actor is blocked if it satisfies three conditions: (1) it is idle, (2) it is not a receptionist,

and (3) it has no undelivered messages; otherwise, it is unblocked. We define potential

reachability as the reflexive transitive closure of the potential acquaintance relation. That

is, A1 can potentially reach An if and only if there is a sequence of unreleased refobs

(x1 : A1 —0 A2), ... , (x„ : An_1 —0 An); recall that a refob x : A —0 B is unreleased if its

target B has not yet received a release message for x.

Notice that an actor can potentially receive a message if and only if it is potentially

reachable from an unblocked actor. Hence an actor is terminated if and only if it is only

potentially reachable by blocked actors. A special case of this is simple garbage, in which an

actor is blocked and has no potential inverse acquaintances besides itself.

We say that a set of actors S is closed (with respect to the potential inverse acquaintance

relation) if, whenever B E S and there is an unreleased refob x : A —0 B, then also A E S.

Notice that the closure of a set of terminated actors is also a set of terminated actors.

• Chain Lemma

To determine if an actor has terminated, one must show that all of its potential inverse

acquaintances have terminated. This appears to pose a problem for termination detection,

since actors cannot have a complete listing of all their potential inverse acquaintances

without some synchronization: actors would need to consult their acquaintances before

creating new references to them. In this section, we show that the DRL protocol provides a

weaker guarantee that will nevertheless prove sufficient: knowledge about an actor's refobs

is distributed across the system and there is always a "path" from the actor to any of its

potential inverse acquaintances.

Let us construct a concrete example of such a path, depicted by Fig. 7. Suppose that A1

spawns B, gaining a refob x1 : A1 —0 B. Then A1 may use x1 to create x2 : A2 —0 B, which

A2 may receive and then use x2 to create x3 : A3 —0 B.

CONCUR 2020



11:14 Concurrent Termination Detection

At this point, there are unreleased refobs owned by A2 and A3 that are not included

in B's knowledge set. However, Fig. 7 shows that the distributed knowledge of B, A1, A2
creates a "path" to all of B's potential inverse acquaintances. Since A1 spawned B, B knows

the fact Created(xi). Then when A1 created x2, it added the fact CreatedUsing(xi, x2) to

its knowledge set, and likewise A2 added the fact CreatedUsing(x2, x3); each fact points to

another actor that owns an unreleased refob to B (Fig. 7 (1)).

Since actors can remove CreatedUsing facts by sending info messages, we also consider

(Fig. 7 (2)) to be a "path" from B to A3. But notice that, once B receives the info message,

the fact Created(x3) will be added to its knowledge set and so there will be a "direct path"

from B to A3. We formalize this intuition with the notion of a chain in a given configuration

(( a l ))X:

0. Definition 1. A chain to x : A —0 B is a sequence of unreleased refobs (x1 : A1 B), • • • ,
(xn : An B) such that:
▪ a(B) H Created(xi : A1 B);
▪ For all i < n, either a(Ai) H CreatedUsing(xj, xi+i) or the message [B a info(xi, xi+i)]

is in transit; and
A▪ , — A and xn = x.

We say that an actor B is in the root set if it is a receptionist or if there is an application

message app(x, R) in transit to an external actor with B E targets(R). Since external actors

never release refobs, actors in the root set must never terminate.

► Lemma 2 (Chain Lemma). Let B be an internal actor in lc. If B is not in the root set,
then there is a chain to every unreleased refob x : A —0 B. Otherwise, there is a chain to

some refob y : C —0 B where C is an external actor.

► Remark. When B is in the root set, not all of its unreleased refobs are guaranteed to have
chains. This is because an external actor may send B's address to other receptionists without
sending an info message to B.

An immediate application of the Chain Lemma is to allow actors to detect when they are

simple garbage. If any actor besides B owns an unreleased refob to B, then B must have a

fact Created(x : A —0 B) in its knowledge set where A B. Hence, if B has no such facts,

then it must have no nontrivial potential inverse acquaintances. Moreover, since actors can

only have undelivered messages along unreleased refobs, B also has no undelivered messages

from any other actor; it can only have undelivered messages that it sent to itself. This gives

us the following result:

► Theorem 3. Suppose B is idle with knowledge set 4., such that:
▪ 4) does not contain any facts of the form Created(x : A —0 B) where A 0 B; and
▪ for all facts Created(x : B —0 B) E 4b, also 4) Sent(x, n) A Received(x, n) for some n.

Then B is simple garbage.

• Termination Detection

In order to detect non-simple terminated garbage, actors periodically sends a snapshot of

their knowledge set to a snapshot aggregator actor. An aggregator in turn may disseminate

snapshots it has to other aggregators. Each aggregator maintains a map data structure,

associating an actor's address to its most recent snapshot; in effect, snapshot aggregators
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maintain an eventually consistent key-value store with addresses as keys and snapshots as

values. At any time, an aggregator can scan its local store to find terminated actors and

send them a request to self-destruct.

Given an arbitrary set of snapshots Q, we characterize the finalized subsets of Q in this

section. We show that the actors that took these finalized snapshots must be terminated.

Conversely, the snapshots of any closed set of terminated actors are guaranteed to be finalized.

(Recall that the closure of a set of terminated actors is also a terminated set of actors.) Thus,

snapshot aggregators can eventually detect all terminated actors by periodically searching

their local stores for finalized subsets. Finally, we give an algorithm for obtaining the

maximum finalized subset of a set Q by "pruning away" the snapshots of actors that appear

not to have terminated.

Recall that when we speak of a set of snapshots Q, we assume each snapshot was taken

by a different actor. We will write .1)A E Q to denote A's snapshot in Q; we will also write
A E Q if A has a snapshot in Q. We will also write Q I- 0 if .1) I- O. for some .I. E Q.

0. Definition 4. A set of snapshots Q is closed if, whenever Q H Unreleased(x : A —0 B)

and B E Q, then also A E Q and ( I. A H Active(x : A —0 B).

0. Definition 5. An actor B E Q appears blocked if, for every Q H Unreleased(x : A —0 B),

then 43A, .T.13 E Q and 43A H Sent(x, n) and 1.13 H Received(x, n) for some n.

0. Definition 6. A set of snapshots Q is finalized if it is closed and every actor in Q appears

blocked.

This definition corresponds to our characterization in Section 4.6: An actor is terminated
precisely when it is in a closed set of blocked actors.

0. Theorem 7 (Safety). If Q is a finalized set of snapshots at time t f then the actors in Q

are all terminated at t f.

We say that the final action of a terminated actor is the last non-snapshot event it

performs before becoming terminated. Notice that an actor's final action can only be an
IDLE, INFO, or RELEASE event. Note also that the final action may come strictly before an

actor becomes terminated, since a blocked actor may only terminate after all of its potential

inverse acquaintances become blocked.
The following lemma allows us to prove that DRL is eventually live. It also shows that

an non-finalized set of snapshots must have an unblocked actor.

0. Lemma 8. Let S be a closed set of terminated actors at time t f. If every actor in S took

a snapshot sometime after its final action, then the resulting set of snapshots is finalized.

0. Theorem 9 (Liveness). If every actor eventually takes a snapshot after performing an

IDLE, INFO, or RELEASE event, then every terminated actor is eventually part of a finalized

set of snapshots.

Proof. If an actor A is terminated, then the closure S of {A} is a terminated set of actors.

Since every actor eventually takes a snapshot after taking its final action, Lemma 8 implies

that the resulting snapshots of S are finalized. 411

We say that a refob x : A —0 B is unreleased in Q if Q I- Unreleased(x). Such a refob is

said to be relevant when B E Q implies A E Q and ict.A I- Act ive(x) and (I.A I- Sent (x, n)

and (DB H Received(x, n) for some n; intuitively, this indicates that B has no undelivered

messages along x. Notice that a set Q is finalized if and only if all unreleased refobs in Q are

relevant.
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Observe that if x : A —0 B is unreleased and irrelevant in Q, then B cannot be in any

finalized subset of Q. We can therefore employ a simple iterative algorithm to find the

maximum finalized subset of Q: for each irrelevant unreleased refob x : A —0 B in Q, remove

the target B from Q. Since this can make another unreleased refob y : B —0 C irrelevant,

we must repeat this process until a fixed point is reached. In the resulting subset Q', all

unreleased refobs are relevant. Since all actors in Q\Q' are not members of any finalized

subset of Q, it must be that Q' is the maximum finalized subset of Q.

• Conclusion and Future Work

We have shown how deferred reference listing and message counts can be used to detect

termination in actor systems. The technique is provably safe (Theorem 7) and eventually

live (Theorem 9). An implementation in Akka is presently underway.

We believe that DRL satisfies our three initial goals:

1. Termination detection does not restrict concurrency in the application. Actors do not

need to coordinate their snapshots or pause execution during garbage collection.

2. Termination detection does not impose high overhead. The amortized memory overhead of

our technique is linear in the number of unreleased refobs. Besides application messages,

the only additional control messages required by the DRL communication protocol are
inf o and release messages. These control messages can be batched together and

deferred, at the cost of worse termination detection time.

3. Termination detection scales with the number of nodes in the system. Our algorithm is

incremental, decentralized, and does not require synchronization between nodes.

Since it does not matter what order snapshots are collected in, DRL can be used as

a "building block" for more sophisticated garbage collection algorithms. One promising

direction is to take a generational approach [15], in which long-lived actors take snapshots

less frequently than short-lived actors. Different types of actors could also take snapshots at

different rates. In another approach, snapshot aggregators could request snapshots instead of

waiting to receive them.

In the presence of faults, DRL remains safe but its liveness properties are affected. If an

actor A crashes and its state cannot be recovered, then none of its refobs can be released and

the aggregator will never receive its snapshot. Consequently, all actors potentially reachable

from A can no longer be garbage collected. However, A's failure does not affect the garbage

collection of actors it cannot reach. In particular, network partitions between nodes will not

delay node-local garbage collection.

Choosing an adequate fault-recovery protocol will likely vary depending on the target

actor framework. One option is to use checkpointing or event-sourcing to persist GC state;

the resulting overhead may be acceptable in applications that do not frequently spawn actors
or create refobs. Another option is to monitor actors for failure and infer which refobs are

no longer active; this is a subject for future work.

Another issue that can affect liveness is message loss: If any messages along a refob

x : A —0 B are dropped, then B can never be garbage collected because it will always appear

unblocked. This is, in fact, the desired behavior if one cannot guarantee that the message

will not be delivered at some later point. In practice, this problem might be addressed with
watermarking.
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A Appendix

A.1 Basic Properties

P. Lemma 10. If B has undelivered messages along x : A —0 B, then x is an unreleased refob.

Proof. There are three types of messages: app, info, and release. All three messages can

only be sent when x is active. Moreover, the RELEASE rule ensures that they must all be

delivered before x can be released. 4

i. Lemma 11.

— Once Createdusing(y : A —0 C, z : B —0 C) is added to A's knowledge set, it will not be

removed until after A has sent an info message containing z to C.

— Once Created(z : B —0 C) is added to C 's knowledge set, it will not be removed until

after C has received the (unique) release message along z.

— Once Released(z : B —0 C) is added to C 's knowledge set, it will not be removed until

after C has received the (unique) info message containing z.

Proof. Immediate from the transition rules. 4

0. Lemma 12. Consider a refob x : A —0 B. Let t1,t2 be times such that x has not yet been

deactivated at t1 and x has not yet been released at t2. In particular, t1 and t2 may be before

the creation time of x.

Suppose that at, (A) I- Sent(x, n) and at2 (B) I- Received(x, m) and, if ti < t2, that

A does not send any messages along x during the interval [t1, t2] . Then the difference

max(n — m, 0) is the number of messages sent along x before ti that were not received

before t2.

Proof. Since x is not deactivated at time t1 and unreleased at time t2, the message counts

were never reset by the SENDRELEASE or COMPACTION rules. Hence n is the number of

messages A sent along x before t1 and m is the number of messages B received along x

before t2. Hence max(n — m, 0) is the number of messages sent before t1 and not received

before t2. 4

A.2 Chain Lemma

0.- Lemma 2 (Chain Lemma). Let B be an internal actor in K . If B is not in the root set,

then there is a chain to every unreleased refob x : A —0 B. Otherwise, there is a chain to

some refob y : C —0 B where C is an external actor.

Proof. We prove that the invariant holds in the initial configuration and at all subsequent

times by induction on events K 4 K1 , omitting events that do not affect chains. Let

K = (( a I p, ))f; and Kf = (( a' I 1/' ))xl9,.
In the initial configuration, the only refob to an internal actor is y : A —0 A. Since A

knows Created(y : A —0 A), the invariant is satisfied.

In the cases below, let x, y, z, A, B , C be free variables, not referencing the variables used

in the statement of the lemma.

- SPAWN(x, A, B) creates a new unreleased refob x : A —0 B, which satisfies the invariant

because a'(B) I- Created(x : A —0 B).
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▪ SEND(x, A, B, 0) creates a set of refobs R. Let (z : B —0 C) E R, created using
y : A —0 C.

If C is already in the root set, then the invariant is trivially preserved. Otherwise, there
must be a chain (xi : Ai —0 C), . ,(xn : An —0 C) where xn = y and An = A. Then

xi, , xn, z is a chain in le, since ai(An) CreatedUsing(xn, z).

If B is an internal actor, then this shows that every unreleased refob to C has a chain in
W. Otherwise, C is in the root set in W. To see that the invariant still holds, notice that
z : B —0 C is a witness of the desired chain.

▪ SENDINFO (y, z, A, B, C) removes the CreatedUsing(y, z) fact but also sends inf o(y, z, B),
so chains are unaffected.

▪ INFO(y, z, B, C) delivers info(y, z, B) to C and adds Created(z : B —0 C) to its know-
ledge set.

Suppose z : B —0 C is part of a chain (x1 : Ai —0 C), , (x„ : An —0 C), i.e. xi = y and
xi+i = z and Ai+i = B for some i < n. Since cei(C) Created(xi+i : —0 C), we
still have a chain xi+i, . , xn in W.

▪ RELEASE(x, A, B) releases the refob x : A —0 B. Since external actors never release their
refobs, both A and B must be internal actors.

Suppose the released refob was part of a chain (xi : Ai —0 B), . . . , (xi, : An —0 B), i.e.
xi = x and Ai = A for some i < n. We will show that xi+i, , xn is a chain in W.

Before performing SENDRELEASE(X" Ai, B), Ai must have performed the INFO(xj, x2+1,
B) event. Since the info message was sent along xi, Lemma 10 ensures that the mes-

sage must have been delivered before the present RELEASE event. Furthermore, since xi±i

is an unreleased refob in lc/ Lemma 11 ensures that a' (B) Created(xj+i : Ai+i —0 B).

▪ IN(A, R) adds a message from an external actor to the internal actor A. This event can
only create new refobs that point to receptionists, so it preserves the invariant.

▪ Ourr(x, B, R) emits a message app(x, R) to the external actor B. Since all targets in R
are already in the root set, the invariant is preserved.

A.3 Termination Detection

Given a set of snapshots Q taken before some time t j, we write Qt to denote those snapshots
in Q that were taken before time t < t f. If .I)A E Q , we denote the time of A's snapshot
as t A.

0. Lemma 8. Let S be a closed set of terminated actors at time t f. If every actor in S took
a snapshot sometime after its final action, then the resulting set of snapshots is finalized.

Call this set of snapshots Q . First, we prove the following lemma.

P. Lemma 13. If Q Unreleased(x : A —0 B) and B E Q , then x is unreleased at tB.

Proof. By definition, Q Unreleased(x : A —0 B) only if Q Created(x) A —Released(x).
Since Q V Released(x), we must also have 4)B V Released(x). For Q Created(x), there
are two cases.

Case 1: (I. /3 Created(x). Since 412.B V Released(x), Lemma 11 implies that x is
unreleased at time tB.

Case 2: For some C E Q and some y, 43.c CreatedUsing(y, x). Since C performed its
final action before taking its snapshot, this implies that C will never send the info message
containing x to B.
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Suppose then for a contradiction that x is released at time tB. Since (I.B V Released(x),

Lemma 11 implies that B received an info message containing x before its snapshot. But

this is impossible because C never sends this message. -4

Proof (Lemma 8). By strong induction on time t, we show that Q is closed and that every

actor appears blocked.

Induction hypothesis: For all times e <t, if B E Qv and Q I- Unreleased(x : A —0 B), then
A E Q, Q I- Active(x), and Q I- Sent(x, n) and Q h Received(x,n) for some n.

Since Qo = (11, the induction hypothesis holds trivially in the initial configuration.

Now assume the induction hypothesis. Suppose that B E Q takes its snapshot at time t
with Q I- Unreleased(x : A —0 B), which implies Q h Created(x) A -illeleased(x).

Q h Created(x) implies that x was created before t f . Lemma 13 implies that x is also

unreleased at time tf, since B cannot perform a RELEASE event after its final action. Hence
A is in the closure of {B} at time tf, so A E Q.

Now suppose .13A V Active(x). Then either x will be activated after tA or x was

deactivated before tA. The former is impossible because A would need to become unblocked

to receive x. Since x is unreleased at time t 1 and tA < tf, the latter implies that there is

an undelivered release message for x at time t f. But this is impossible as well, since B is

blocked at tf.

Finally, let n such that .13B H Received(x, n); we must show that .13A H Sent(x, n). By

the above arguments, x is active at time tA and unreleased at time tB. Since both actors
performed their final action before their snapshots, all messages sent before tA must have

been delivered before tB. By Lemma 12, this implies .I.A H Sent(x,n). 4

We now prove the safety theorem, which states that if Q is a finalized set of snapshots,

then the corresponding actors of Q are terminated. We do this by showing that at each time

t, all actors in Qt are blocked and all of their potential inverse acquaintances are in Q.

Consider the first actor B in Q to take a snapshot. We show, using the Chain Lemma,

that the closure of this actor is in Q. Then, since all potential inverse acquaintances of B

take snapshots strictly after tB, it is impossible for B to have any undelivered messages

without appearing unblocked.

For every subsequent actor B to take a snapshot, we make a similar argument with an

additional step: If B has any potential inverse acquaintances in Qtp, then they could not

have sent B a message without first becoming unblocked.

0. Theorem 7 (Safety). If Q is a finalized set of snapshots at time tie then the actors in Q

are all terminated at tf.

Proof. Proof by induction on events. The induction hypothesis consists of two clauses that

must both be satisfied at all times t < tf.

- IH 1: If B E Qt and x : A —0 B is unreleased, then Q I- Unreleased(x).

- IH 2: The actors of Qt are all blocked.

Initial configuration. Since Qo = 0, the invariant trivially holds.

Snapshot(B, (DB). Suppose B E Q takes a snapshot at time t. We show that if x : A —0 B

is unreleased at time t, then Q I- Unreleased(x) and there are no undelivered messages

along x from A to B. We do this with the help of two lemmas
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0. Lemma 14. If Q H Unreleased(x : A —0 B), then x is unreleased at time t and there are

no undelivered messages along x at time t. Moreover, if tA > t, then there are no undelivered

messages along x throughout the interval [t,t,4].

Proof (Lemma). Since Q is closed, we have A E Q and <DA H Active(x). Since B appears

blocked, we must have .13A H Sent(x, n) and (1.B H Received(x, n) for some n.

Suppose tA > t. Since .13A H Active(x), x is not deactivated and not released at tA or

t. Hence, by Lemma 12, every message sent along x before tA was received before t. Since

message sends precede receipts, each of those messages was sent before t. Hence there are no

undelivered messages along x throughout [t, tA].

Now suppose tA < t. Since (DA H Active(x), x is not deactivated and not released at tA.

By IH 2, A was blocked throughout the interval [tA, t], so it could not have sent a release

message. Hence x is not released at t. By Lemma 12, all messages sent along x before tA

must have been delivered before t. Hence, there are no undelivered messages along x at

time t .

0- Lemma 15. Let xi : Ai —0 B, , xn : An —0 B be a chain to x : A —0 B at time t. Then

Q H Unreleased(x).

Proof (Lemma). Since all refobs in a chain are unreleased, we know Vi < n, (DB 17/

Released(xj) and so Q 17' Released(xi). It therefore suffices to prove, by induction on
the length of the chain, that Vi < n, Q Created(xj).

Base case: By the definition of a chain, at(B) Created(xi), so Created(xi) E t's•

Induction step: Assume Q H Unreleased(xj), which implies At E Q. Let tt be the time of

At's snapshot.

By the definition of a chain, either the message [B < info(xi,xi+i)] is in transit at time t,

or at(At) CreatedUsing(xi, xj+i). But the first case is impossible by Lemma 14, so we

only need to consider the latter.

Suppose tt > t. Lemma 14 implies that Ai cannot perform the SENDINFO(x" X2+1, B)

event during [t,ti]. Hence at, (Ai) I- CreatedUsing(x,,x,+1), so Q H Created(xi+i).

Now suppose tt < t. By IH 2, At must have been blocked throughout the interval

[t , t]. Hence Ai could not have created any refobs during this interval, so xi+1 must

have been created before ti. This implies at, (At) CreatedUsing(xi, xi+i) and therefore

Q H Created(xi+i).

Lemma 15 implies that B cannot be in the root set. If it were, then by the Chain
Lemma there would be a refob y : C —0 B with a chain where C is an external actor. Since
Q Unreleased(y), there would need to be a snapshot from C in Q - but external actors
do not take snapshots, so this is impossible.

Since B is not in the root set, there must be a chain to every unreleased refob x : A —0 B.
By Lemma 15, Q H Unreleased(x). By Lemma 14, there are no undelivered messages to

B along x at time t. Since B can only have undelivered messages along unreleased refobs
(Lemma 10), the actor is indeed blocked.

Send(x,il, z, A, B, 6). In order to maintain IH 2, we must show that if B E Qt then this

event cannot occur. So suppose B E Qt. By IH 1, we must have Q Unreleased(x : A —0 B),

so A E Q. By IH 2, we moreover have A 0 Qt - otherwise A would be blocked and unable

to send this message. Since B appears blocked in Q, we must have (DA H Sent(x,n) and

4)13 H Received(x, n) for some n. Since x is not deactivated at tA and unreleased at tB,

Lemma 12 implies that every message sent before tA is received before tB. Hence A cannot

send this message to B because tA > t > tB.
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In order to maintain IH 1, suppose that one of the refobs sent to B in this step is

z : B —0 C, where C E Qt. Then in the next configuration, CreatedUsing(y, z) occurs in

A's knowledge set. By the same argument as above, A E Q\ Qt and (DA h Sent(y, n) and

43c I- Received(y, n) for some n. Hence A cannot perform the SENDINFO(y, z, A, B, C) event

before tA, so .13A h CreatedUsing(y, z) and Q H Created(z).

Sendlnfo(y,z,A,B,C). By the same argument as above, A 0 Qt cannot send an inf o

message to B E Qt without violating message counts, so IH 2 is preserved.

SendRelease(x, A, B). Suppose that A V Qt and B E Qt. By IH 1, x : A —0 B is unre-

leased at time t. Since Q is finalized, liA h Active(x). Hence A cannot deactivate x and IH

2 is preserved.

In(A, R). Since every potential inverse acquaintance of an actor in Qt is also in Q, none of

the actors in Qt is a receptionist. Hence this rule does not affect the invariants.

Out(x, B, R). Suppose (y : B —0 C) E R where C E Qt. Then y is unreleased and

Q I- Unreleased(y) and B E Q. But this is impossible because external actors do not take

snapshots. .4
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