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— Abstract

Automatic garbage collection (GC) prevents certain kinds of bugs and reduces programming over-
head. GC techniques for sequential programs are based on reachability analysis. However, testing
reachability from a root set is inadequate for determining whether an actor is garbage because an un-
reachable actor may send a message to a reachable actor. Instead, it is sufficient to check termination
(sometimes also called quiescence): an actor is terminated if it is not currently processing a message
and cannot receive a message in the future. Moreover, many actor frameworks provide all actors with
access to file I/O or external storage; without inspecting an actor’s internal code, it is necessary to
check that the actor has terminated to ensure that it may be garbage collected in these frameworks.
Previous algorithms to detect actor garbage require coordination mechanisms such as causal message
delivery or nonlocal monitoring of actors for mutation. Such coordination mechanisms adversely
affect concurrency and are therefore expensive in distributed systems. We present a low-overhead
reference listing technique (called DRL) for termination detection in actor systems. DRL is based
on asynchronous local snapshots and message-passing between actors. This enables a decentralized
implementation and transient network partition tolerance. The paper provides a formal description
of DRL, shows that all actors identified as garbage have indeed terminated (safety), and that all
terminated actors—under certain reasonable assumptions—will eventually be identified (liveness).

2012 ACM Subject Classification Computing methodologies — Concurrent algorithms; Software
and its engineering — Garbage collection

Keywords and phrases actors, concurrency, termination detection, quiescence detection, garbage
collection, distributed systems

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2020.11

Funding This work was supported in part by the National Science Foundation under Grant No.
SHF 1617401, and in part by the Laboratory Directed Research and Development program at Sandia
National Laboratories, a multi-mission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA0003525.

Acknowledgements We would like to thank Dipayan Mukherjee, Atul Sandur, Charles Kuch, Jerry

Wu, and the anonymous referees for providing valuable feedback in earlier versions of this work.

1 Introduction

The actor model [1, 2] is a foundational model of concurrency that has been widely adopted
for its scalability: for example, actor languages have been used to implement services at
PayPal [19], Discord [27], and in the United Kingdom’s National Health Service database [18].
In the actor model, stateful processes known as actors execute concurrently and communicate
by sending asynchronous messages to other actors, provided they have a reference (also called
© Dan Plyukhin and Gul Agha;
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a mail address or address in the literature) to the recipient. Actors can also spawn new
actors. An actor is said to be garbage if it can be destroyed without affecting the system’s
observable behavior.

Although a number of algorithms for automatic actor GC have been proposed [10, 13, 24,
25, 28, 30], actor languages and frameworks currently popular in industry (such as Akka [4],
Erlang [5], and Orleans [8]) require that programmers garbage collect actors manually. We
believe this is because the algorithms proposed thus far are too expensive to implement in
distributed systems. In order to find applicability in real-world actor runtimes, we argue
that a GC algorithm should satisfy the following properties:

1. (Low latency) GC should not restrict concurrency in the application.
2. (High throughput) GC should not impose significant space or message overhead.
3. (Scalability) GC should scale with the number of actors and nodes in the system.

To the best of our knowledge, no previous algorithm satisfies all three constraints. The
first requirement precludes any global synchronization between actors, a “stop-the-world”
step, or a requirement for causal order delivery of all messages. The second requirement
means that the number of additional “control” messages imposed by the algorithm should
be minimal. The third requirement precludes algorithms based on global snapshots, since
taking a global snapshot of a system with a large number of nodes is infeasible.

To address these goals, we have developed a garbage collection technique called DRL for
Deferred Reference Listing. The primary advantage of DRL is that it is decentralized and
incremental: local garbage can be collected at one node without communicating with other
nodes. Garbage collection can be performed concurrently with the application and imposes
no message ordering constraints. We also expect DRL to be reasonably efficient in practice,
since it does not require many additional messages or significant actor-local computation.

DRL works as follows. The communication protocol (Section 4) tracks information, such
as references and message counts, and stores it in each actor’s state. Actors periodically
send out copies of their local state (called snapshots) to be stored at one or more designated
snapshot aggregator actors. Each aggregator periodically searches its local store to find a
subset of snapshots representing terminated actors (Section 6). Once an actor is determined
to have terminated, it can be garbage collected by, for example, sending it a self-destruct
message. Note that our termination detection algorithm itself is location transparent.

Since DRL is defined on top of the actor model, it is oblivious to details of a particular
implementation (such as how sequential computations are represented). Our technique is
therefore applicable to any actor framework and can be implemented as a library. Moreover,
it can also be applied to open systems, allowing a garbage-collected actor subsystem to
interoperate with an external actor system.

The outline of the paper is as follows. We provide a characterization of actor garbage in
Section 2 and discuss related work in Section 3. We then provide a specification of the DRL
protocol in Section 4. In Section 5, we describe a key property of DRL called the Chain
Lemma. This lemma allows us to prove the safety and liveness properties, which are stated in
Section 6. We then conclude in Section 7 with some discussion of future work and how DRL
may be used in practice. To conserve space, all proofs have been relegated to the Appendix.

2 Preliminaries

An actor can only receive a message when it is idle. Upon receiving a message, it becomes
busy. A busy actor can perform an unbounded sequence of actions before becoming idle.
In [3], an action may be to spawn an actor, send a message, or perform a (local) computation.
We will also assume that actors can perform effects, such as file I/O. The actions an actor
performs in response to a message are dictated by its application-level code, called a behavior.



D. Plyukhin and G. Agha

(F)
(2) (o)

ONNO
® @® — -

Busy Idle Terminated Reference Message

(1)

Figure 1 A simple actor system. The first configuration leads to the second after C' receives the
message m, which contains a reference to E. Notice that an actor can send a message and “forget”
its reference to the recipient before the message is delivered, as is the case for actor F'. In both
configurations, E is a potential acquaintance of C', and D is potentially reachable from C. The only
terminated actor is F' because all other actors are potentially reachable from unblocked actors.

Actors can also receive messages from external actors (such as the user) by becoming
receptionists. An actor A becomes a receptionist when its address is exposed to an external
actor. Subsequently, any external actor can potentially obtain A’s address and send it a
message. It is not possible for an actor system to determine when all external actors have
“forgotten” a receptionist’s address. We will therefore assume that an actor can never cease
to be a receptionist once its address has been exposed.

An actor is said to be garbage if it can be destroyed without affecting the system’s
observable behavior. However, without analyzing an actor’s code, it is not possible to know
whether it will have an effect when it receives a message. We will therefore restrict our
attention to actors that can be guaranteed to be garbage without inspecting their behavior.
According to this more conservative definition, any actor that might receive a message in the
future should not be garbage collected because it could, for instance, write to a log file when
it becomes busy. Conversely, any actor that is guaranteed to remain idle indefinitely can
safely be garbage collected because it will never have any effects; such an actor is said to be
terminated. Hence, garbage actors coincide with terminated actors in our model.

Terminated actors can be detected by looking at the global state of the system. We say
that an actor B is a potential acquaintance of A (and A is a potential inverse acquaintance
of B) if A has a reference to B or if there is an undelivered message to A that contains a
reference to B. We define potential reachability to be the reflexive transitive closure of the
potential acquaintance relation. If an actor is idle and has no undelivered messages, then it
is blocked; otherwise it is unblocked. We then observe that an actor is terminated when it is
only potentially reachable by blocked actors: Such an actor is idle, blocked, and can only
potentially be sent a message by other idle blocked actors. Conversely, without analyzing
actor code we cannot safely conclude that an actor is terminated if it is potentially reachable
by an unblocked actor. Hence, we say that an actor is terminated if and only if it is blocked
and all of its potential inverse acquaintances are terminated.
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3 Related Work

Global Termination

Global termination detection (GTD) is used to determine when all processes have terminated
[17, 16]. For GTD, it suffices to obtain global message send and receive counts. Most GTD
algorithms also assume a fixed process topology. However, Lai gives an algorithm in [14]
that supports dynamic topologies such as in the actor model. Lai’s algorithm performs
termination detection in “waves”, disseminating control messages along a spanning tree
(such as an actor supervisor hierarchy) so as to obtain consistent global message send and
receive counts. Venkatasubramanian et al. take a similar approach to obtain a consistent
global snapshot of actor states in a distributed system [25]. However, such an approach does
not scale well because it is not incremental: garbage cannot be detected until all nodes in
the system have responded. In contrast, DRL does not require a global snapshot, does not
require actors to coordinate their local snapshots, and does not require waiting for all nodes
before detecting local terminated actors.

Reference Tracking

We say that an idle actor is simple garbage if it has no undelivered messages and no other
actor has a reference to it. Such actors can be detected with distributed reference counting
[31, 6, 20] or with reference listing [21, 30] techniques. In reference listing algorithms, each
actor maintains a partial list of actors that may have references to it. Whenever A sends B
a reference to C, it also sends an info message informing C' about B’s reference. Once B
no longer needs a reference to C, it informs C' by sending a release message; this message
should not be processed by C' until all preceding messages from B to C have been delivered.
Thus an actor is simple garbage when its reference listing is empty.

Our technique uses a form of deferred reference listing, in which A may also defer sending
info messages to C until it releases its references to C. This allows info and release
messages to be batched together, reducing communication overhead.

Cyclic Garbage

Actors that are transitively acquainted with one another are said to form cycles. Cycles of
terminated actors are called cyclic garbage and cannot be detected with reference listing
alone. Since actors are hosted on nodes and cycles may span across multiple nodes, detecting
cyclic garbage requires sharing information between nodes to obtain a consistent view of the
global topology. One approach is to compute a global snapshot of the distributed system [13]
using the Chandy-Lamport algorithm [9]; but this requires pausing execution of all actors on
a node to compute its local snapshot.

Another approach is to add edges to the actor reference graph so that actor garbage
coincides with passive object garbage [24, 29]. This is convenient because it allows existing
algorithms for distributed passive object GC, such as [23], to be reused in actor systems.
However, such transformations require that actors know when they have undelivered messages,
which requires some form of synchronization.

To avoid pausing executions, Wang and Varela proposed a reference listing based technique
called the pseudo-root algorithm. The algorithm computes approzrimate global snapshots and
is implemented in the SALSA runtime [30, 28]. The pseudo-root algorithm requires a high
number of additional control messages and requires actors to write to shared memory if they
migrate or release references during snapshot collection. Our protocol requires fewer control
messages and no additional actions between local actor snapshots. Wang and Varela also
explicitly address migration of actors, a concern orthogonal to our algorithm.
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Our technique is inspired by MAC, a termination detection algorithm implemented in
the Pony runtime [10]. In MAC, actors send a local snapshot to a designated cycle detector
whenever their message queue becomes empty, and send another notification whenever it
becomes non-empty. Clebsch and Drossopoulou prove that for systems with causal message
delivery, a simple request-reply protocol is sufficient to confirm that the cycle detector’s view
of the topology is consistent. However, enforcing causal delivery in a distributed system
imposes additional space and networking costs [11, 7]. DRL is similar to MAC, but does not
require causal message delivery, supports decentralized termination detection, and actors
need not take snapshots each time their message queues become empty. The key insight is
that these limitations can be removed by tracking additional information at the actor level.

An earlier version of DRL appeared in [22]. In this paper, we formalize the description of
the algorithm and prove its safety and liveness. In the process, we discovered that release
acknowledgment messages are unnecessary and that termination detection is more flexible
than we first thought: it is not necessary for GC to be performed in distinct “phases” where
every actor takes a snapshot in each phase. In particular, once an idle actor takes a snapshot,
it need not take another snapshot until it receives a fresh message.

4 A Two-Level Semantic Model

Our computation model is based on the two level approach to actor semantics [26], in which
a lower system-level transition system interprets the operations performed by a higher, user-
facing application-level transition system. In this section, we define the DRL communication
protocol at the system level. We do not provide a transition system for the application
level computation model, since it is not relevant to garbage collection (see [3] for how
it can be done). What is relevant to us is that corresponding to each application-level
action is a system-level transition that tracks references. We will therefore define system-
level configurations and transitions on system-level configurations. We will refer to these,
respectively, as configurations and transitions in the rest of the paper.

4.1 Overview

Actors in DRL use reference objects (abbreviated refobs) to send messages, instead of using
plain actor addresses. Refobs are similar to unidirectional channels and can only be used
by their designated owner to send messages to their target; thus in order for A to give B a
reference to C, it must explicitly create a new refob owned by B. Once a refob is no longer
needed, it should be deactivated by its owner and removed from local state.

The DRL communication protocol enriches each actor’s state with a list of refobs that
it currently owns and associated message counts representing the number of messages sent
using each refob. Each actor also maintains a subset of the refobs of which it is the target,
together with associated message receive counts. Lastly, actors perform a form of “contact
tracing” by maintaining a subset of the refobs that they have created for other actors; we
provide details about the bookkeeping later in this section.

The additional information above allows us to detect termination by inspecting actor
snapshots. If a set of snapshots is consistent (in the sense of [9]) then we can use the “contact
tracing” information to determine whether the set is closed under the potential inverse
acquaintance relation (see Section 5). Then, given a consistent and closed set of snapshots,
we can use the message counts to determine whether an actor is blocked. We can therefore
find all the terminated actors within a consistent set of snapshots.
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Figure 2 An example showing how refobs are created and destroyed. Below each actor we list all
the “facts” related to z that are stored in its local state. Although not pictured in the figure, A
also obtains facts Active(z) and Active(y) after spawning actors B and C, respectively. Likewise,
actors B, C obtain facts Created(z),Created(y), respectively, upon being spawned.

In fact, DRL satisfies a stronger property: any set of snapshots that “appears terminated”
in the sense above is guaranteed to be consistent. Hence, given an arbitrary closed set of
snapshots, it is possible to determine which of the corresponding actors have terminated.
This allows a great deal of freedom in how snapshots are aggregated. For instance, actors
could place their snapshots in a global eventually consistent store, with a garbage collection
thread at each node periodically inspecting the store for local terminated actors.

Reference Objects

A refob is a triple (z, A, B), where A is the owner actor’s address, B is the target actor’s
address, and z is a globally unique token. An actor can cheaply generate such a token by
combining its address with a local sequence number, since actor systems already guarantee
that each address is unique. We will stylize a triple (z, A, B) as = : A — B. We will also
sometimes refer to such a refob as simply z, since tokens act as unique identifiers.

When an actor A spawns an actor B (Fig. 2 (1, 2)) the DRL protocol creates a new refob
x: A —o B that is stored in both A and B’s system-level state, and a refob iy : B — B in
B’s state. The refob x allows A to send application-level messages to B. These messages are
denoted app(z, R), where R is the sett of refobs contained in the message that A has created
for B. The refob y corresponds to the self variable present in some actor languages.

If A has active refobs 2 : A — B and y : A — C, then it can create a new refob z : B — C
by generating a token z. In addition to being sent to B, this refob must also temporarily
be stored in A’s system-level state and marked as “created using y” (Fig. 2 (3)). Once B
receives z, it must add the refob to its system-level state and mark it as “active” (Fig. 2 (4)).
Note that B can have multiple distinct refobs that reference the same actor in its state; this
can be the result of, for example, several actors concurrently sending refobs to B. Transition
rules for spawning actors and sending messages are given in Section 4.3.

Actor A may remove z from its state once it has sent a (system-level) info message
informing C' about z (Fig. 2 (4)). Similarly, when B no longer needs its refob for C, it
can “deactivate” z by removing it from local state and sending C' a (system-level) release
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Figure 3 A time diagram for actors A, B,C, demonstrating message counts and consistent
snapshots. Dashed arrows represent messages and dotted lines represent consistent cuts. In each cut
above, B’s message send count agrees with C’s message receive count.

message (Fig. 2 (5)). Note that if B already has a refob z : B — C' and then receives another
2z : B — C, then it can be more efficient to defer deactivating the extraneous z’ until z is
also no longer needed; this way, the release messages can be batched together.

When C receives an info message, it records that the refob has been created, and when
C receives a release message, it records that the refob has been released (Fig. 2 (6)). Note
that these messages may arrive in any order. Once C has received both, it is permitted to
remove all facts about the refob from its local state. Transition rules for these reference
listing actions are given in Section 4.4.

Once a refob has been created, it cycles through four states: pending, active, inactive, or
released. A refob z: B —o (' is said to be pending until it is received by its owner B. Once
received, the refob is active until it is deactivated by its owner, at which point it becomes

inactive. Finally, once C' learns that z has been deactivated, the refob is said to be released.

A refob that has not yet been released is unreleased.

Slightly amending the definition we gave in Section 2, we say that B is a potential
acquaintance of A (and A is a potential inverse acquaintance of B) when there exists an
unreleased refob x : A — B. Thus, B becomes a potential acquaintance of A as soon as x is
created, and only ceases to be an acquaintance once it has received a release message for
every refob y : A — B that has been created so far.

Message Counts and Snapshots

For each refob x : A — B, the owner A counts the number of app and info messages sent
along x; this count can be deleted when A deactivates x. Each message is annotated with the
refob used to send it. Whenever B receives an app or info message along z, it correspondingly
increments a receive count for z; this count can be deleted once = has been released. Thus
the memory overhead of message counts is linear in the number of unreleased refobs.

A snapshot is a copy of all the facts in an actor’s system-level state at some point in
time. We will assume throughout the paper that in every set of snapshots @, each snapshot
was taken by a different actor. Such a set is also said to form a cut. Recall that a cut is
consistent if no snapshot in the cut causally precedes any other [9]. Let us also say that @ is
a set of mutually quiescent snapshots if there are no undelivered messages between actors
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in the cut. That is, if A € @) sent a message to B € @) before taking a snapshot, then the
message must have been delivered before B took its snapshot. Notice that if all snapshots in
@ are mutually quiescent, then @) is consistent.

Notice also that in Fig. 3, the snapshots of B and C' are mutually quiescent when their
send and receive counts agree. This is ensured in part because each refob has a unique token:
If actors associated message counts with actor names instead of tokens, then B’s snapshots
at tg and t3 would both contain Sent(C,1). Thus, B’s snapshot at ¢35 and C’s snapshot at to
would appear mutually quiescent, despite having undelivered messages in the cut.

We would like to conclude that snapshots from two actors A, B are mutually quiescent if
and only if their send and receive counts are agreed for every refob x: A —o Bory: B — A.
Unfortunately, this fails to hold in general for systems with unordered message delivery. It
also fails to hold when, for instance, the owner actor takes a snapshot before the refob is
activated and the target actor takes a snapshot after the refob is released. In such a case,
neither knowledge set includes a message count for the refob and they therefore appear to
agree. However, we show that the message counts can nevertheless be used to bound the
number of undelivered messages for purposes of our algorithm (Lemma 12).

Definitions

We use the capital letters A, B, C, D, E to denote actor addresses. Tokens are denoted x, y, z,
with a special reserved token null for messages from external actors.

A fact is a value that takes one of the following forms: Created(z), Released(z),
CreatedUsing(z,y), Active(x), Unreleased(x), Sent(z,n), or Received(x,n) for some
refobs z,y and natural number n. Each actor’s state holds a set of facts about refobs and
message counts called its knowledge set. We use ¢, to denote facts and ®, ¥ to denote
finite sets of facts. Each fact may be interpreted as a predicate that indicates the occurrence
of some past event. Interpreting a set of facts ® as a set of axioms, we write ® F ¢ when ¢ is
derivable by first-order logic from ® with the following additional rules:

m If (An €N, Sent(z,n) € ®) then & F Sent(z,0)

= If (An € N, Received(x,n) € ®) then ® - Received(z,0)
m If ®F Created(z) A —Released(z) then ® | Unreleased(x)
m If @ |- CreatedUsing(z,y) then ® - Created(y)

For convenience, we define a pair of functions incSent(x, ®), incRecv(x, ®) for incrementing
message send/receive counts, as follows: If Sent(x,n) € ® for some n, then incSent(z, ) =
(®\ {Sent(z,n)}) U {Sent(x,n + 1)}; otherwise, incSent(x, ®) = ® U {Sent(z,1)}. Likewise
for incRecv and Received.

Recall that an actor is either busy (processing a message) or idle (waiting for a message).
An actor with knowledge set ® is denoted [®] if it is busy and (®) if it is idle.

Our specification includes both system messages (also called control messages) and
application messages. The former are automatically generated by the DRL protocol and
handled at the system level, whereas the latter are explicitly created and consumed by
user-defined behaviors. Application-level messages are denoted app(z, R). The argument x
is the refob used to send the message. The second argument R is a set of refobs created by
the sender to be used by the destination actor. Any remaining application-specific data in
the message is omitted in our notation.

The DRL communication protocol uses two kinds of system messages. info(y, z, B) is a
message sent from an actor A to an actor C, informing it that a new refob z : B — C was
created using y : A — C. release(x,n) is a message sent from an actor A to an actor B,
informing it that the refob x : A — B has been deactivated and should be released.
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A configuration { o | p )% is a quadruple (a, i, p, x) where: « is a mapping from actor
addresses to knowledge sets; p is a mapping from actor addresses to multisets of messages;
and p, y are sets of actor addresses. Actors in dom(«) are internal actors and actors in y are
external actors; the two sets may not intersect. The mapping p associates each actor with
undelivered messages to that actor. Actors in p are receptionists. We will ensure p C dom(«)
remains valid in any configuration that is derived from a configuration where the property
holds (referred to as the locality laws in [12]).

Configurations are denoted by k, K/, ko, etc. If an actor address A (resp. a token x),
does not occur in &, then the address (resp. the token) is said to be fresh. We assume a
facility for generating fresh addresses and tokens.

In order to express our transition rules in a pattern-matching style, we will employ
the following shorthand. Let «, [®]4 refer to a mapping o where o/(A) = [®] and a =
@' |dom(ar)\{A}- Similarly, let u,[A <m] refer to a mapping p' where m € y/'(A) and p =
H |dom(uy\{ay ULA = p'(A)\{m}}. Informally, the expression a, [®] 4 refers to a set of actors
containing both a and the busy actor A (with knowledge set ®); the expression u, [A <m)]
refers to the set of messages containing both p and the message m (sent to actor A).

The rules of our transition system define atomic transitions from one configuration to
another. Each transition rule has a label [, parameterized by some variables & that occur in
the left- and right-hand configurations. Given a configuration s, these parameters functionally

; ; ; - ; 1(9)
determine the next configuration x’. Given arguments v, we write K —— &’ to denote a
semantic step from k to ' using rule (7).
We refer to a label with arguments [(¥) as an event, denoted e. A sequence of events
is denoted 7. If 7 = eq,...,e, then we write k Iy k' when k =% k1 =2 .. S K/ I
there exists 7 such that x = &/, then x’ is derivable from k. An ezecution is a sequence
of events eq, ..., e, such that kg — k1 - ... — Ky, where kg is the initial configuration

(Section 4.2). We say that a property holds at time t if it holds in ;.

4.2 Initial Configuration

The initial configuration x consists of a single actor in a busy state:

(12110 )}gy,

where ® = {Active(z: A — FE), Created(y: A — A), Active(y: A — A)}. The actor’s
knowledge set includes a refob to itself and a refob to an external actor E. A can become a
receptionist by sending F a refob to itself. Henceforth, we will only consider configurations
that are derivable from an initial configuration.

4.3 Standard Actor Operations

Fig. 4 gives transition rules for standard actor operations, such as spawning actors and sending
messages. Fach of these rules corresponds a rule in the standard operational semantics of
actors [3]. Note that each rule is atomic, but can just as well be implemented as a sequence
of several smaller steps without loss of generality because actors do not share state — see [3]
for a formal proof.

The SPAWN event allows a busy actor A to spawn a new actor B and creates two re-
fobs x: A — B, y: B — B. B is initialized with knowledge about z and y via the facts
Created(z),Created(y). The facts Active(z),Active(y) allow A and B to immediately
begin sending messages to B. Note that implementing SPAWN does not require a synchroniz-
ation protocol between A and B to construct x : A — B. The parent A can pass both its
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SPAWN(z, A, B)
(o [®la | p)f = (o, [@U{Active(r: A — B)}a, [Y]p | n )}

where z,y, B fresh
and ¥ = {Created(z : A —o B), Created(y: B —o B), Active(y: B — B)}

SEND(z,7, %, A, B, C)
<< «, [(I)]A | H >>§7< - << «, [incsent(xv @) U ‘II]A | Hs [B d app(:c, R)] >>f<

where ¢ and Z fresh and n = |g| = |Z] = |C‘|
and ® F Active(r : A — B) and Vi < n, ®F Active(y; : A — C})
and R={z;: B—C;|i<n}and U = {CreatedUsing(y;,z;) | ¢ < n}

RECEIVE(z, B, R)
{ o, (®)B | 1, [Baapp(z,R)] )§ = ( o, [incRecv(z, @) UW]p | p )}
where ¥ = {Active(z) | z € R}
IDLE(A)

(o [®lalpdf = (o (@alp)f

Figure 4 Rules for standard actor interactions.

address and the freshly generated token = to the constructor for B. Since actors typically
know their own addresses, this allows B to construct the triple (z, A, B). Since the spawn
call typically returns the address of the spawned actor, A can also create the same triple.

The SEND event allows a busy actor A to send an application-level message to B containing
a set of refobs z1,..., 2, to actors C= Ci,...,C, — it is possible that B = A or C; = A for
some i. For each new refob z;, we say that the message contains z;. Any other data in the
message besides these refobs is irrelevant to termination detection and therefore omitted. To
send the message, A must have active refobs to both the target actor B and to every actor
C4,...,C, referenced in the message. For each target C;, A adds a fact CreatedUsing(y;, z;)
to its knowledge set; we say that A created z; using y;. Finally, A must increment its Sent
count for the refob z used to send the message; we say that the message is sent along x.

The RECEIVE event allows an idle actor B to become busy by consuming an application
message sent to B. Before performing subsequent actions, B increments the receive count
for x and adds all refobs in the message to its knowledge set.

Finally, the IDLE event puts a busy actor into the idle state, enabling it to consume
another message.

4.4 Release Protocol

Whenever an actor creates or receives a refob, it adds facts to its knowledge set. To remove
these facts when they are no longer needed, actors can perform the release protocol defined
in Fig. 5. All of these rules are not present in the standard operational semantics of actors.
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SENDINFO(y, 2, A, B, C)
(. [@UW]a | ph§ = (o lincSent(y, ®)]a | p, [C <info(y, 2, B)] )}
where ¥ = {CreatedUsing(y: A —- C,z: B — C)}
INFO(y, 2, B, C)
(@ (®)c | 1, [C <info(y, z, B)] )§ = ( e, (incReco(y, @) UW)o | p )y

where ¥ = {Created(z : B — ()}

SENDRELEASE(z, A, B)

(a,[@UU]a|p)hy = (o [®la]p,[Brelease(x,n)] )§

where W = {Active(z : A — B),Sent(z,n)}
and Ay, CreatedUsing(z,y) € ®

RELEASE(z, A, B)

(o, (@) | p, [B<arelease(z,n)] )y — (o, (® U {Released(z)})p | 1 )}

only if ® - Received(z,n)
COMPACTION(z, B, C')

(a,(@UT)c [ phy = (o (@)c | 1

where W = {Created(z : B — ('),Released(x : B —o C),Received(z,n)} for some n € N
or U = {Created(z : B — (C),Released(z : B — C)} and Vn € N, Received(z,n) € ®

SNAPSHOT(A, @)

(a (@)alphf—= (o (@alp)i

Figure 5 Rules for performing the release protocol.

The SENDINFO event allows a busy actor A to inform C about a refob z : B — C' that it
created using y; we say that the info message is sent along y and contains z. This event
allows A to remove the fact CreatedUsing(y, z) from its knowledge set. It is crucial that
A also increments its Sent count for y to indicate an undelivered info message sent to
C: it allows the snapshot aggregator to detect when there are undelivered info messages,
which contain refobs. This message is delivered with the INFO event, which adds the fact
Created(z : B — () to C’s knowledge set and correspondingly increments C’s Received
count for y.

When an actor A no longer needs x : A — B for sending messages, A can deactivate x
with the SENDRELEASE event; we say that the release is sent along x. A precondition of
this event is that A has already sent messages to inform B about all the refobs it has created
using x. In practice, an implementation may defer sending any info or release messages
to a target B until all A’s refobs to B are deactivated. This introduces a trade-off between
the number of control messages and the rate of simple garbage detection (Section 5).
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IN(A, R)
{aluhy—(alup[A<app(aull, R)] )7 .,

where A€pand R={x1:A—-oB1,...,2n: A— By} and z1,...,z, fresh
and {Bi1,...,Bx}Ndom(a) C pand x' = {Bi,...,Bn}\ dom(c)

Out(z, B, R)

(|, [Baapp(z, R)] W2 — (o | u )2

where B € y and R={z1: B— Cl,...,@n: B— Cy} and p' = {C1,...,C,} N dom(c)
RELEASEOUT(z, B)
(| . [Barelease(,n)] ). m = (o | 1) 0
INFOOUT(y, 2, A, B, C)

{ a| p[C<info(y,z, A, B)] >>§u{c} = (alp >>>p<u{C}

Figure 6 Rules for interacting with the outside world.

Each release message for a refob z includes a count n of the number of messages sent
using x. This ensures that release(x,n) is only delivered after all the preceding messages
sent along x have been delivered. Once the RELEASE event can be executed, it adds the
fact that « has been released to B’s knowledge set. Once C' has received both an info and
release message for a refob z, it may remove facts about x from its knowledge set using
the COMPACTION event.

Finally, the SNAPSHOT event captures an idle actor’s knowledge set. For simplicity, we
have omitted the process of disseminating snapshots to an aggregator. Although this event
does not change the configuration, it allows us to prove properties about snapshot events at
different points in time.

4.5 Composition and Effects

We give rules to dictate how internal actors interact with external actors in Fig. 6. The IN
and OUT rules correspond to similar rules in the standard operational semantics of actors.

Since internal garbage collection protocols are not exposed to the outside world, all
release and info messages sent to external actors are simply dropped by the RELEASEOUT
and INFOOUT events. Likewise, only app messages can enter the system. Since we cannot
statically determine when a receptionist’s address has been forgotten by all external actors,
we assume that receptionists are never terminated. The resulting “black box” behavior of
our system is the same as the actor systems in [3]. Hence, in principle DRL can be gradually
integrated into a codebase by creating a subsystem for garbage-collected actors.

The IN event allows an external actor to send an application-level message to a receptionist
A containing a set of refobs R, all owned by A. Since external actors do not use refobs, the
message is sent using the special null token. All targets in R that are not internal actors
are added to the set of external actors.
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CreatedUsing(xs, z3)

@EP(?J» {z3}) CreatedUsing(z1, x2) \ap\p\(y, {zs})

) @

CreatedUsing(z1, z2)

(1)

Created(z1) Created(z)

Figure 7 An example of a chain from B to x3.

The OUT event delivers an application-level message to an external actor with a set of
refobs R. All internal actors referenced in R become receptionists because their addresses
have been exposed to the outside world.

4.6 Garbage

We can now operationally characterize actor garbage in our model. An actor A can potentially
recetve a message in k if there is a sequence of events (possibly of length zero) leading from
k to a configuration ' in which A has an undelivered message. We say that an actor is
terminated if it is idle and cannot potentially receive a message.

An actor is blocked if it satisfies three conditions: (1) it is idle, (2) it is not a receptionist,
and (3) it has no undelivered messages; otherwise, it is unblocked. We define potential
reachability as the reflexive transitive closure of the potential acquaintance relation. That
is, A; can potentially reach A, if and only if there is a sequence of unreleased refobs
(1: A1 — Ag),...,(xn: An_q —o Ap); recall that a refob x: A —o B is unreleased if its
target B has not yet received a release message for z.

Notice that an actor can potentially receive a message if and only if it is potentially
reachable from an unblocked actor. Hence an actor is terminated if and only if it is only
potentially reachable by blocked actors. A special case of this is simple garbage, in which an
actor is blocked and has no potential inverse acquaintances besides itself.

We say that a set of actors S is closed (with respect to the potential inverse acquaintance
relation) if, whenever B € S and there is an unreleased refob = : A — B, then also A € S.
Notice that the closure of a set of terminated actors is also a set of terminated actors.

5 Chain Lemma

To determine if an actor has terminated, one must show that all of its potential inverse
acquaintances have terminated. This appears to pose a problem for termination detection,
since actors cannot have a complete listing of all their potential inverse acquaintances
without some synchronization: actors would need to consult their acquaintances before
creating new references to them. In this section, we show that the DRL protocol provides a
weaker guarantee that will nevertheless prove sufficient: knowledge about an actor’s refobs
is distributed across the system and there is always a “path” from the actor to any of its
potential inverse acquaintances.

Let us construct a concrete example of such a path, depicted by Fig. 7. Suppose that A,
spawns B, gaining a refob x; : Ay —o B. Then A; may use x; to create xo : As —o B, which
Ay may receive and then use s to create x3 : Az — B.
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At this point, there are unreleased refobs owned by Ay and Az that are not included
in B’s knowledge set. However, Fig. 7 shows that the distributed knowledge of B, Ay, A
creates a “path” to all of B’s potential inverse acquaintances. Since A; spawned B, B knows
the fact Created(z;). Then when A; created x5, it added the fact CreatedUsing(xy,z2) to
its knowledge set, and likewise A added the fact CreatedUsing(xs, x3); each fact points to
another actor that owns an unreleased refob to B (Fig. 7 (1)).

Since actors can remove CreatedUsing facts by sending info messages, we also consider
(Fig. 7 (2)) to be a “path” from B to As. But notice that, once B receives the info message,
the fact Created(x3) will be added to its knowledge set and so there will be a “direct path”
from B to A3. We formalize this intuition with the notion of a chain in a given configuration

(alp)t:

» Definition 1. A chain to x : A — B is a sequence of unreleased refobs (x1 : Ay — B),. ..,

(zn, : A, — B) such that:

= «(B)t Created(z; : 41 — B);

m  For alli <n, either a(A;) - CreatedUsing(z;,x;11) or the message [B <info(x;, ziy1)]
is in transit; and

m A,=Aand z, = x.

We say that an actor B is in the root set if it is a receptionist or if there is an application
message app(x, R) in transit to an external actor with B € targets(R). Since external actors
never release refobs, actors in the root set must never terminate.

» Lemma 2 (Chain Lemma). Let B be an internal actor in k. If B is not in the root set,
then there is a chain to every unreleased refob x : A — B. Otherwise, there is a chain to
some refob y : C —o B where C' is an external actor.

» Remark. When B is in the root set, not all of its unreleased refobs are guaranteed to have
chains. This is because an external actor may send B’s address to other receptionists without
sending an info message to B.

An immediate application of the Chain Lemma is to allow actors to detect when they are
simple garbage. If any actor besides B owns an unreleased refob to B, then B must have a
fact Created(z : A — B) in its knowledge set where A # B. Hence, if B has no such facts,
then it must have no nontrivial potential inverse acquaintances. Moreover, since actors can
only have undelivered messages along unreleased refobs, B also has no undelivered messages
from any other actor; it can only have undelivered messages that it sent to itself. This gives
us the following result:

» Theorem 3. Suppose B is idle with knowledge set ®, such that:

= D does not contain any facts of the form Created(x : A — B) where A # B; and

m  for all facts Created(x : B —o B) € ¥, also ® - Sent(x,n) A Received(z,n) for some n.
Then B is simple garbage.

6 Termination Detection

In order to detect non-simple terminated garbage, actors periodically sends a snapshot of
their knowledge set to a snapshot aggregator actor. An aggregator in turn may disseminate
snapshots it has to other aggregators. Each aggregator maintains a map data structure,
associating an actor’s address to its most recent snapshot; in effect, snapshot aggregators
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maintain an eventually consistent key-value store with addresses as keys and snapshots as
values. At any time, an aggregator can scan its local store to find terminated actors and
send them a request to self-destruct.

Given an arbitrary set of snapshots (), we characterize the finalized subsets of @ in this

section. We show that the actors that took these finalized snapshots must be terminated.
Conversely, the snapshots of any closed set of terminated actors are guaranteed to be finalized.

(Recall that the closure of a set of terminated actors is also a terminated set of actors.) Thus,
snapshot aggregators can eventually detect all terminated actors by periodically searching
their local stores for finalized subsets. Finally, we give an algorithm for obtaining the
maximum finalized subset of a set @) by “pruning away” the snapshots of actors that appear
not to have terminated.

Recall that when we speak of a set of snapshots (), we assume each snapshot was taken
by a different actor. We will write ® 4 € @ to denote A’s snapshot in Q; we will also write
A € @Q if A has a snapshot in Q). We will also write Q I ¢ if & - ¢ for some ® € Q.

» Definition 4. A set of snapshots Q is closed if, whenever Q F Unreleased(z : A — B)
and B € Q, then also A € Q and P4 F Active(x : A — B).

» Definition 5. An actor B € Q appears blocked if, for every Q b Unreleased(z : A — B),
then @4, ®p € Q and 4 - Sent(x,n) and Pp - Received(x,n) for some n.

» Definition 6. A set of snapshots Q is finalized if it is closed and every actor in @ appears
blocked.

This definition corresponds to our characterization in Section 4.6: An actor is terminated
precisely when it is in a closed set of blocked actors.

» Theorem 7 (Safety). If Q is a finalized set of snapshots at time ty then the actors in Q
are all terminated at ty.

We say that the final action of a terminated actor is the last non-snapshot event it
performs before becoming terminated. Notice that an actor’s final action can only be an
IDLE, INFO, or RELEASE event. Note also that the final action may come strictly before an
actor becomes terminated, since a blocked actor may only terminate after all of its potential
inverse acquaintances become blocked.

The following lemma allows us to prove that DRL is eventually live. It also shows that
an non-finalized set of snapshots must have an unblocked actor.

» Lemma 8. Let S be a closed set of terminated actors at time t¢. If every actor in S took
a snapshot sometime after its final action, then the resulting set of snapshots is finalized.

» Theorem 9 (Liveness). If every actor eventually takes a snapshot after performing an
IDLE, INFO, or RELEASE event, then every terminated actor is eventually part of a finalized
set of snapshots.

Proof. If an actor A is terminated, then the closure S of {A} is a terminated set of actors.
Since every actor eventually takes a snapshot after taking its final action, Lemma 8 implies
that the resulting snapshots of S are finalized. <

We say that a refob x : A —o B is unreleased in Q if Q F Unreleased(z). Such a refob is
said to be relevant when B € @ implies A € Q and $4 - Active(z) and P4 F Sent(x,n)
and ®p F Received(z,n) for some n; intuitively, this indicates that B has no undelivered
messages along x. Notice that a set @ is finalized if and only if all unreleased refobs in @ are
relevant.
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Observe that if  : A — B is unreleased and irrelevant in @, then B cannot be in any
finalized subset of ). We can therefore employ a simple iterative algorithm to find the
maximum finalized subset of Q: for each irrelevant unreleased refob x : A — B in @), remove
the target B from . Since this can make another unreleased refob y : B — C' irrelevant,
we must repeat this process until a fixed point is reached. In the resulting subset Q’, all
unreleased refobs are relevant. Since all actors in @ \ Q' are not members of any finalized
subset of Q, it must be that @’ is the maximum finalized subset of Q.

7 Conclusion and Future Work

We have shown how deferred reference listing and message counts can be used to detect
termination in actor systems. The technique is provably safe (Theorem 7) and eventually
live (Theorem 9). An implementation in Akka is presently underway.

We believe that DRL satisfies our three initial goals:

1. Termination detection does not restrict concurrency in the application. Actors do not
need to coordinate their snapshots or pause execution during garbage collection.

2. Termination detection does not impose high overhead. The amortized memory overhead of
our technique is linear in the number of unreleased refobs. Besides application messages,
the only additional control messages required by the DRL communication protocol are
info and release messages. These control messages can be batched together and
deferred, at the cost of worse termination detection time.

3. Termination detection scales with the number of nodes in the system. Our algorithm is
incremental, decentralized, and does not require synchronization between nodes.

Since it does not matter what order snapshots are collected in, DRL can be used as
a “building block” for more sophisticated garbage collection algorithms. One promising
direction is to take a generational approach [15], in which long-lived actors take snapshots
less frequently than short-lived actors. Different types of actors could also take snapshots at
different rates. In another approach, snapshot aggregators could request snapshots instead of
waiting to receive them.

In the presence of faults, DRL remains safe but its liveness properties are affected. If an
actor A crashes and its state cannot be recovered, then none of its refobs can be released and
the aggregator will never receive its snapshot. Consequently, all actors potentially reachable
from A can no longer be garbage collected. However, A’s failure does not affect the garbage
collection of actors it cannot reach. In particular, network partitions between nodes will not
delay node-local garbage collection.

Choosing an adequate fault-recovery protocol will likely vary depending on the target
actor framework. One option is to use checkpointing or event-sourcing to persist GC state;
the resulting overhead may be acceptable in applications that do not frequently spawn actors
or create refobs. Another option is to monitor actors for failure and infer which refobs are
no longer active; this is a subject for future work.

Another issue that can affect liveness is message loss: If any messages along a refob
x: A — B are dropped, then B can never be garbage collected because it will always appear
unblocked. This is, in fact, the desired behavior if one cannot guarantee that the message
will not be delivered at some later point. In practice, this problem might be addressed with
watermarking.
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A Appendix

A.1 Basic Properties

» Lemma 10. If B has undelivered messages along x : A —o B, then x is an unreleased refob.

Proof. There are three types of messages: app, info, and release. All three messages can
only be sent when z is active. Moreover, the RELEASE rule ensures that they must all be
delivered before x can be released. <

» Lemma 11.

m  Once CreatedUsing(y: A — C,z: B — C) is added to A’s knowledge set, it will not be
removed until after A has sent an info message containing z to C.
Once Created(z : B — () is added to C’s knowledge set, it will not be removed until
after C has received the (unique) release message along z.
Once Released(z : B —o C) is added to C’s knowledge set, it will not be removed until
after C has received the (unique) info message containing z.

Proof. Immediate from the transition rules. <

» Lemma 12. Consider a refob x : A — B. Let t1,ts be times such that x has not yet been
deactivated at t1 and x has not yet been released at to. In particular, t1 and to may be before
the creation time of x.

Suppose that oy, (A) F Sent(z,n) and o, (B) - Received(z,m) and, if t1 < ta2, that
A does not send any messages along x during the interval [t1,ts] . Then the difference
max(n — m,0) is the number of messages sent along x before t1 that were not received
before to.

Proof. Since z is not deactivated at time t; and unreleased at time t,, the message counts
were never reset by the SENDRELEASE or COMPACTION rules. Hence n is the number of
messages A sent along x before ¢; and m is the number of messages B received along x
before t5. Hence max(n — m, 0) is the number of messages sent before ¢; and not received
before ts. <

A.2 Chain Lemma

» Lemma 2 (Chain Lemma). Let B be an internal actor in k. If B is not in the root set,
then there is a chain to every unreleased refob x : A — B. Otherwise, there is a chain to
some refob y : C —o B where C' is an external actor.

Proof. We prove that the invariant holds in the initial configuration and at all subsequent
times by induction on events i>/ k', omitting events that do not affect chains. Let
k= {(a|phyandr = (o |p ).

In the initial configuration, the only refob to an internal actor is y : A — A. Since A
knows Created(y : A — A), the invariant is satisfied.

In the cases below, let x,y, 2z, A, B, C be free variables, not referencing the variables used
in the statement of the lemma.

SPAWN(z, A, B) creates a new unreleased refob x : A — B, which satisfies the invariant
because o/ (B) | Created(z : A — B).
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SEND(z, 9, Z, A, B,C) creates a set of refobs R. Let (z: B — C) € R, created using
y:A—C.
If C is already in the root set, then the invariant is trivially preserved. Otherwise, there
must be a chain (z; : Ay — O),...,(zy : A, — C) where z,, = y and A,, = A. Then
Z1,...,Tn, 2 is a chain in &', since a’(4,,) I CreatedUsing(zy, 2).
If B is an internal actor, then this shows that every unreleased refob to C' has a chain in
k'. Otherwise, C is in the root set in x’. To see that the invariant still holds, notice that
z: B —o (' is a witness of the desired chain.

= SENDINFO(y, 2z, A, B, C) removes the CreatedUsing(y, z) fact but also sends info(y, z, B),
so chains are unaffected.

= INFO(y, 2z, B,C') delivers info(y, z, B) to C' and adds Created(z : B — C) to its know-
ledge set.
Suppose z : B —o (' is part of a chain (z1 : Ay — C),...,(x, : A, — C), i.e. z; =y and
241 = z and A;y; = B for some i < n. Since o/(C) - Created(z;11 : Ajp1 — C), we
still have a chain z;y1,...,2z, in K.
RELEASE(z, A, B) releases the refob z : A — B. Since external actors never release their
refobs, both A and B must be internal actors.
Suppose the released refob was part of a chain (z1 : A; — B),..., (2, : A, — B), i.e.
x; = x and A; = A for some i < n. We will show that x;.1,...,x, is a chain in «'.
Before performing SENDRELEASE(z;, 4;, B), A; must have performed the INFO(z;, z;41,
A;y1, B) event. Since the info message was sent along x;, Lemma 10 ensures that the mes-
sage must have been delivered before the present RELEASE event. Furthermore, since x;41
is an unreleased refob in x’, Lemma 11 ensures that o/(B) - Created(z;11 : A;11 — B).

= IN(A, R) adds a message from an external actor to the internal actor A. This event can
only create new refobs that point to receptionists, so it preserves the invariant.

= OuT(z, B, R) emits a message app(z, R) to the external actor B. Since all targets in R
are already in the root set, the invariant is preserved. <

A.3 Termination Detection

Given a set of snapshots @) taken before some time t;, we write @); to denote those snapshots
in @ that were taken before time ¢ < ty. If @4 € @, we denote the time of A’s snapshot
as ta.

» Lemma 8. Let S be a closed set of terminated actors at time ty. If every actor in S took
a snapshot sometime after its final action, then the resulting set of snapshots is finalized.

Call this set of snapshots Q). First, we prove the following lemma.
» Lemma 13. If Q | Unreleased(z : A — B) and B € Q, then x is unreleased at tp.

Proof. By definition, @ F Unreleased(z : A — B) only if @ I Created(z) A “Released(x).
Since @ I Released(x), we must also have ®p I/ Released(x). For Q | Created(x), there
are two cases.

Case 1: ®p I Created(z). Since ®p I/ Released(z), Lemma 11 implies that = is
unreleased at time tg.

Case 2: For some C € @ and some y, ®¢ - CreatedUsing(y, z). Since C performed its
final action before taking its snapshot, this implies that C will never send the info message
containing x to B.



D. Plyukhin and G. Agha 11:21

Suppose then for a contradiction that x is released at time tg. Since ®p I Released(z),
Lemma 11 implies that B received an info message containing x before its snapshot. But
this is impossible because C never sends this message. |

Proof (Lemma 8). By strong induction on time ¢, we show that @ is closed and that every
actor appears blocked.

Induction hypothesis: For all times ¢’ <t, if B € Q¢ and @ I Unreleased(z : A — B), then
A€, QF Active(z), and @ F Sent(z,n) and Q F Received(z,n) for some n.

Since Qo = ), the induction hypothesis holds trivially in the initial configuration.

Now assume the induction hypothesis. Suppose that B € @) takes its snapshot at time ¢
with @ I~ Unreleased(z : A — B), which implies Q - Created(z) A —Released(x).

Q@ t Created(z) implies that x was created before t;. Lemma 13 implies that x is also
unreleased at time ¢y, since B cannot perform a RELEASE event after its final action. Hence
A is in the closure of {B} at time ty, so A € Q.

Now suppose ®4 I/ Active(x). Then either z will be activated after t4 or z was
deactivated before ¢t 4. The former is impossible because A would need to become unblocked
to receive x. Since x is unreleased at time ¢ty and t4 < t¢, the latter implies that there is
an undelivered release message for = at time ¢;. But this is impossible as well, since B is
blocked at ty.

Finally, let n such that ®5 + Received(z,n); we must show that ® 4 F Sent(z,n). By
the above arguments, z is active at time ¢4 and unreleased at time tg. Since both actors
performed their final action before their snapshots, all messages sent before ¢4 must have
been delivered before ¢t5. By Lemma 12, this implies ® 4 - Sent(z,n). <

We now prove the safety theorem, which states that if @ is a finalized set of snapshots,
then the corresponding actors of @) are terminated. We do this by showing that at each time
t, all actors in @); are blocked and all of their potential inverse acquaintances are in Q.

Consider the first actor B in @) to take a snapshot. We show, using the Chain Lemma,
that the closure of this actor is in Q. Then, since all potential inverse acquaintances of B
take snapshots strictly after ¢p, it is impossible for B to have any undelivered messages
without appearing unblocked.

For every subsequent actor B to take a snapshot, we make a similar argument with an
additional step: If B has any potential inverse acquaintances in ), then they could not
have sent B a message without first becoming unblocked.

» Theorem 7 (Safety). If Q is a finalized set of snapshots at time ty then the actors in Q
are all terminated at ty.

Proof. Proof by induction on events. The induction hypothesis consists of two clauses that
must both be satisfied at all times ¢ < ¢y.

= IH 1: If B€ Q; and 2 : A — B is unreleased, then Q) F Unreleased(x).

= IH 2: The actors of Q); are all blocked.

Initial configuration. Since Qg = (), the invariant trivially holds.

Snapshot(B, ®g). Suppose B € ) takes a snapshot at time t. We show that if z: A — B
is unreleased at time ¢, then @ b Unreleased(x) and there are no undelivered messages
along x from A to B. We do this with the help of two lemmas.
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» Lemma 14. If Q - Unreleased(z : A — B), then x is unreleased at time t and there are
no undelivered messages along x at time t. Moreover, if t4 > t, then there are no undelivered
messages along x throughout the interval [t,t4].

Proof (Lemma). Since @ is closed, we have A € @ and ®4 F Active(x). Since B appears
blocked, we must have ® 4 - Sent(x,n) and ®p + Received(x,n) for some n.

Suppose t4 > t. Since ®4 - Active(z), x is not deactivated and not released at t4 or
t. Hence, by Lemma 12, every message sent along x before t4 was received before t. Since
message sends precede receipts, each of those messages was sent before t. Hence there are no
undelivered messages along x throughout [¢,%4].

Now suppose t4 < t. Since @4 - Active(x), x is not deactivated and not released at t4.
By IH 2, A was blocked throughout the interval [t4, ], so it could not have sent a release
message. Hence x is not released at t. By Lemma 12, all messages sent along x before 4
must have been delivered before t. Hence, there are no undelivered messages along = at
time . <

» Lemma 15. Let 1 : Ay — B,...,z,: A, — B be a chain to x : A — B at time t. Then
Q@ F Unreleased(z).

Proof (Lemma). Since all refobs in a chain are unreleased, we know Vi < n, ®p F/
Released(z;) and so @ |/ Released(x;). It therefore suffices to prove, by induction on
the length of the chain, that Vi < n, @Q F Created(x;).

Base case: By the definition of a chain, a;(B) - Created(z1), so Created(z;) € ®p.

Induction step: Assume @ + Unreleased(x;), which implies A; € Q. Let ¢; be the time of
A;’s snapshot.

By the definition of a chain, either the message [B <info(z;,x;+1)] is in transit at time ¢,
or a;(4;) - CreatedUsing(x;, z;+1). But the first case is impossible by Lemma 14, so we
only need to consider the latter.

Suppose t; >t. Lemma 14 implies that A; cannot perform the SENDINFO(z;, 41, Aiy1, B)
event during [t,¢;]. Hence oy, (A;) b CreatedUsing(x;, z;11), so Q I Created(z;1).

Now suppose t; < t. By IH 2, A; must have been blocked throughout the interval
[t;,t]. Hence A; could not have created any refobs during this interval, so x;;; must
have been created before ;. This implies ay, (A;) - CreatedUsing(x;, z;+1) and therefore
Q I~ Created(zit1). <

Lemma 15 implies that B cannot be in the root set. If it were, then by the Chain
Lemma there would be a refob y : C — B with a chain where C is an external actor. Since
Q@ + Unreleased(y), there would need to be a snapshot from C in @ — but external actors
do not take snapshots, so this is impossible.

Since B is not in the root set, there must be a chain to every unreleased refob z : A — B.
By Lemma 15, @Q | Unreleased(z). By Lemma 14, there are no undelivered messages to
B along x at time t. Since B can only have undelivered messages along unreleased refobs
(Lemma 10), the actor is indeed blocked.

Send(z, v, Z, A, B, 6_”) In order to maintain TH 2, we must show that if B € Q; then this
event cannot occur. So suppose B € ;. By IH 1, we must have @ - Unreleased(z : A — B),
so A € Q. By IH 2, we moreover have A ¢ (Q; — otherwise A would be blocked and unable
to send this message. Since B appears blocked in ), we must have ® 4 - Sent(z,n) and
®p + Received(z,n) for some n. Since x is not deactivated at t4 and unreleased at tp,
Lemma 12 implies that every message sent before ¢ 4 is received before t5. Hence A cannot
send this message to B because t4 >t > tp.



D. Plyukhin and G. Agha

In order to maintain IH 1, suppose that one of the refobs sent to B in this step is
z: B — C, where C' € ;. Then in the next configuration, CreatedUsing(y, z) occurs in
A’s knowledge set. By the same argument as above, A € Q \ Q; and ® 4 I Sent(y,n) and
& + Received(y, n) for some n. Hence A cannot perform the SENDINFO(y, z, A, B, C') event
before t4, so @4 | CreatedUsing(y, z) and Q I Created(z).

Sendinfo(y,z,A,B,C). By the same argument as above, A ¢ @; cannot send an info
message to B € (Q; without violating message counts, so IH 2 is preserved.

SendRelease(xz, A, B). Suppose that A ¢ Q; and B € Q;. By IH 1, : A — B is unre-
leased at time t. Since @ is finalized, ® 4 - Active(z). Hence A cannot deactivate z and TH
2 is preserved.

In(A, R). Since every potential inverse acquaintance of an actor in @ is also in @, none of
the actors in @Q; is a receptionist. Hence this rule does not affect the invariants.

Out(x, B, R). Suppose (y: B—-oC) € R where C € Q;. Then y is unreleased and
Q I Unreleased(y) and B € Q. But this is impossible because external actors do not take
snapshots. <
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