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Introduction

• Nevada National Security Site
• Source Physics Experiment

(SPE)
• Phase I in granite, Phase 11 in

dry alluvium geology
• Underground chemical

explosion source
• Goal here: investigate

scattering and path effects
between two different receivers
from the same source using
gradiometric analysis
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Data

Location of Dry Alluvium Geology
(DAG) underground explosions and
the two gradiometric arrays: GAE
(gradiometer array east) and GAN
(gradiometer array north). The
gradiometers were 1.5 km away and
roughly due east and due north,
respectively, of the explosions. The
ground is visibly cratered on the
surface from previous explosion
testing in the area. Imagery courtesy
of Google.

DAG Buried Chemical Explosion Test - Gradiometer Location

37.14°N

37.12 N
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Gradiometry

• Very small, dense seismic array

• Array aperture < .1*seismic
wavelength

• Spatial derivatives of seismograms
averaged over array aperture

• Can use spatial gradients to compute
rotational motions, cor, cot, coz

Source

w Vertical

w radial

w Transverse
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Wavelet Analysis

• Wavelet transform — time-frequency
decomposition of a time series

• Wavelet coherence — compare
wavelet transforms of GAE vs GAN
gradiometers

• Apply methods to displacement
seismograms and gradiometric wave
attributes

aa
C (a, b; f (E), v(t)) = f (r)lvor* (t — b.) di

a it,

Wavelet

Trans orm

cons-tituent wavelets ot different scales and positions

Source: Mathworks.com/help/wavelet
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Wavelet Transform

• Wavelet can be translated in time and
frequency

• Stretched (translated in frequency)

• Translated (translated in time)

• We use a complex Morlet wavelet

• Reasonable resolution in time and

frequency domain

• Allows recovery of phase information
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Wavelet Coherence

• Use Cross-wavelet transform (1)

• Wavelet transform of one time series with

complex conjugate of wavelet transform of
2nd series

• Wavelet coherence measures where the
two series are similar (2)

• Cross correlation between time series as a
function of time and frequency

• Complex wavelet recovers relative phase

WriXY(s) Wnx(s) WriY*(s) (1)
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Significance levels

• We follow Grinsted et al, 2004, to
calculate significance levels relative to
red noise

• Red noise has higher relative energy in
lower frequencies

• 95% confidence level that the signal in
the wavelet plots is NOT noise is
outlined in plots

40
The Colors of Noise
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What do we expect?

• If there is appreciable scattering differences between the source and
the two gradiometers, we expect low coherence for displacement
data and rotation data
• One path is very broken up from previous underground testing

• Vertical rotation should capture much of the effect of scattering

• Might see low coherence for radial and transverse rotation — not studied
extensively

• Some frequency bands might be consistently more coherent than
others

• Each explosion had a different yield and depth
• Different coherence patterns between explosions

• Help illuminate how travel path and scattering can affect wavefield

Source

w Vertical

w radial

w Transverse
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Example Continuous Wavelet Transform

• Decomposes the
signal into
frequency spectrum
as a function of time
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Vertical component

In order from top to bottom:
1) Raw seismograms
2) Slowness in x and y

direction
3) Slowness magnitude
4) Velocity magnitude
5) Azimuth of wave

propagation (degrees
from north)

6) Changes in radiation
pattern, in x and y
direction

DAG 1 GAE gradiometer
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Vertical component

In order from top to
bottom:
1) Raw seismograms
2) Slowness in x and y

direction
3) Slowness magnitude
4) Velocity magnitude
5) Azimuth of wave

propagation (degrees
from north)

6) Changes in radiation
pattern, in x and y
direction

DAG 1 GAN gradiometer
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CWT: Displacement Data - Vertical Component

• Raw seismograms are
qualitatively different

• Notable differences in time-
frequency space

• Same explosion, different
paths

• GAN array reaches highest
power much later in time than
GAE
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Wavelet Coherence: DAG1 displacement seismograms

• Broadly high coherence at low frequencies
for vertical and transverse

• Vertical and radial components have
several areas of high coherence at high
frequencies (>= 10 Hz), including after P-
wave arrival P-wave arrivals are 180° out of
phase (radial and vertical), arrow points left
• We would expect them to be only —90°

out of phase
• Areas of high coherence are not consistent

between the components (radial,
transverse, vertical)
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Wavelet Coherence: DAG2 displacement seismograms

• Highly coherent on lower frequencies < 4
Hz, almost completely non coherent at
higher frequencies except for 10-15 Hz.

• Rolls over sharply below 4 Hz
• Expected due to instrument response

• Relative phase between arrays changes
are smooth and consistent within 95%
confidence contour (white)

• Areas of high coherence are not
consistent between the components
(radial, transverse, vertical)
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Wavelet Coherence: DAG3 displacement seismograms

• Broadly high coherence at low frequencies
for all components

• Broadly low coherence at higher
frequencies for all components, some high
coherence for transverse later in figure

• P-wave arrivals are in phase (radial and
vertical), arrow points right
• we'd expect them to be 90 degrees out

of phase
• Areas of high coherence are not consistent

between the components (radial,
transverse, vertical)

128

+c" 64

E
8 1- 32

• c 16 L
a 

e.
6

0 g 8

LL

4

2
128

•5 64

E N
a) 32

E
O no-
To a)
fs Li_
as
cC 4

16

8

2
128

8

4

2

Explosion: dag3 - Wavelet Coherence
for Displacement Data 

ir Took Nik-
4 Ihe 

tpb...t -v

Vr,

1115111111111"9_

5 2< -7

P arrival
GAE
GAN

0.9 1 1 .1 1 .2 1 .3 1 .4 1 .5 1 .6

Ti me (s)
1 .7 1 .8

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

17

A
National Nuclear Security Administration

liffalADA MAMMAL 111)

Los Alamos
NATIONAL LABORATORY

EST 1943

Larrnance
National Laboratory

Sandia
National
Laboratories DRI

Desert Research Institute



Wavelet Coherence: DAG1 Rotational motions

• Generally low coherence immediately
post P arrival

• Transverse component has broad high
coherence above about 12 Hz

• No consistent pattern between the 3
rotation components
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Wavelet Coherence: DAG2 Rotational motions

• Low coherence dominates the time-frequency
space immediately post P arrival.

• Areas of high coherence have consistent,
smoothly changing phase.

• Transverse component has higher coherence
than radial or vertical components.
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Wavelet Coherence: DAG3 Rotational motions

• Generally low coherence immediately post P
arrival

• Radial component has broad region of high
coherence below about 6 Hz

• No consistent pattern between the 3
rotational components
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Discussion Interpretations of Coherence

• Each explosion had a different yield
and a different depth of burial

• We don't expect each analysis to look

similar from one explosion to another

• Coherence plots varied between:
• Different rotational components: wr, wt,

and wz

• Different seismogram components:

radial, transverse, and vertical

GradiometerV

DAG3*

DAG2

DAG1
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Discussion Interpretations of Coherence (cont)

1
• Low coherence between GAE and GAN

datasets
• Suggests that the travel path significantly and

GA measurably decorrelates the wavefield for the same
N travel distance.

• lots of scattering - depends on azimuth of
propagation

• Small frequency bands of high coherence, but
frequency and time varied
• Displacement data and rotational data — no

consistent pattern

• Rotational coherence hasn't been studied

GA

extensively

• Could be coincidental — parts of the wavefields will
be coherent due to chance
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Discussion Interpretations of Coherence (cont)

• Low coherence immediately after the P arrival, with
very few exceptions - attributed to scattering and
path effects

• Low coherence between each explosion (not shown)

• Demonstrates path effects from dip are visible

• Implications for computing explosion yield

• Yield calculations typically assume an isotropic source
AND propagation of energy is fairly uniform in all
directions

• Not necessarily a correct assumption - different source-
receiver paths could result in different computed yields

• Near source wavefield distortions can impact source
type estimates and yield estimates
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Discussion Interpretations of Coherence (cont)

• Gradiometry might offer more insight into explosion characteristics for better
quantification of yield

• Based on our observations, path effects can be substantial and must be
accounted for to get accurate calculations
• Includes azimuthal path effects and dip path effects
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Future Work

• More gradiometers (not just two)

• Simultaneously deploy gradiometers with
modern rotational seismometers for
ground-truth comparison

• 3 Dimensional gradiometer (boreholes)

• Similar experiment in a variety of geologic
settings

• Quantitatively measure the degree of scattering

• Additional analysis of envelope decay of the coda
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