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Introduction

Nevada National Security Site
Source Physics Experiment
(SPE)

Phase | in granite, Phase |l in
dry alluvium geology
Underground chemical
explosion source

Goal here: investigate
scattering and path effects
between two different receivers
from the same source using
gradiometric analysis
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Data

Location of Dry Alluvium Geology
(DAG) underground explosions and
the two gradiometric arrays: GAE
(gradiometer array east) and GAN Nevada
(gradiometer array north). The %
gradiometers were 1.5 km away and
roughly due east and due north,
respectively, of the explosions. The
ground is visibly cratered on the
surface from previous explosion
testing in the area. Imagery courtesy
of Google.
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Gradiometry

* Very small, dense seismic array

 Array aperture < .1*seismic
wavelength

« Spatial derivatives of seismograms
averaged over array aperture

w Vertical

« Can use spatial gradients to compute

: . P>
rotational motions, w,, w;, w,

w radial

Source
. w Transverse
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Wavelet Analysis

= Wavelet transform — time-frequency

decomposition of a time series Cla, b: £ (1), w(1)) = f F) Ly (r - E:) d
= Wavelet coherence — compare —co a \ a.,

wavelet transforms of GAE vs GAN

gradiometers et HH

= Apply methods to displacement s, T +,,r|. ”
seismograms and gradiometric wave o e — YV 4
att ri b utes Signal Constituent wavelets of different scales and positions

Source: Mathworks.com/help/wavelet
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Wavelet Transform

= Wavelet can be translated in time and - |
frequency Cla.b fO.w®) = | fl6)ly (IE b)fﬂ
a :

= Stretched (translated in frequency) oo a

= Translated (translated in time)
i e Wavelet
= We use a complex Morlet wavelet D S — N
= Reasonable resolution in time and T R ) 4
frequency domain W

. . Signal Constituent wavelets of different scales and positions

= Allows recovery of phase information 0.5 | | | | |
—real part
——imaginary part
0
_05 | | 1 | | 1 |
-4 -3 -2 -1 0 1 2 3 e
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Wavelet Coherence

= Use Cross-wavelet transform (1)

= Wavelet transform of one time series with
complex conjugate of wavelet transform of
2" series

WY (s) = WK (s) W *(s) (1
= Wavelet coherence measures where the i () n (8) Wn™(s) (1)

two series are similar (2)

= Cross correlation between time series as a

function of time and frequency 2
(s 9)|

S(s‘l|W,{((S)|2)S(s‘1|W,¥(S)|2)

= Complex wavelet recovers relative phase RS (S) —
= —

(2)
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Significance levels

= We follow Grinsted et al, 2004, to ] e Coors or ot
calculate significance levels relative to =
red noise ?

= Red noise has higher relative energy in f
lower frequencies

Frequency (H=z)

. 95% Conﬁdence Ievel that the Signal in Source: Cnoise, Wikipedia/wiki/colors_of_noise
the wavelet plots is NOT noise is it
outlined in plots J B

Power/variance

11111

12 13 14
Time (s)
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What do we expect?

= |f there is appreciable scattering differences between the source and
the two gradiometers, we expect low coherence for displacement
data and rotation data
= One path is very broken up from previous underground testing
= Vertical rotation should capture much of the effect of scattering

= Might see low coherence for radial and transverse rotation — not studied
extenSiVEIy w Vertical

= Some frequency bands might be consistently more coherent than

w radial

others
= Each explosion had a different yield and depth
= Different coherence patterns between explosions Sayree /wmnwse

= Help illuminate how travel path and scattering can affect wavefield
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Example — Continuous Wavelet Transform

Explosion: dag2 Array: gan

128 CWT - vert component - Displacement Data
I I I I [

P arrival 512
256
64 — J 128

Decomposes the
signal into
frequency spectrum
as a function of time

Frequency (Hz)
Power/variance

%1078 Displacement traces - Component: vert

Displacement
Meters

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Time (s)
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DAG 1 GAE gradiometer

Vertical component

%108 Explosion: dag1 Array: gae Component: vert
|

oy

Traces
Displacement (m)
o

o4
X

Superimposed

In order from top to bottom:

1) Raw seismograms

2) Slowness in x and y
direction

3) Slowness magnitude

4) Velocity magnitude

5) Azimuth of wave
propagation (degrees
from north)

6) Changes in radiation
pattern, in x and y
direction

Slowness
sec/meter
o

Slowness
Magnitude
sec/meter

km/s .
O =~ N W HOO N A O OO
X

Velocity
Magnitude

Azimuth
6, degrees

Time (seconds)
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DAG 1 GAN gradiometer

Vertical component

In order from top to

bottom:

1) Raw seismograms

2) Slowness in xand y
direction

3) Slowness magnitude

4) Velocity magnitude

5) Azimuth of wave
propagation (degrees
from north)

6) Changes in radiation
pattern, in x and y
direction

%1078 Explosion: dag1 Array: gan Component: vert

Superimposed
Traces
Displacement (m)
o

o 4
X

Slowness
sec/meter
o

sec/meter

Magnitude
oM wWhAOO N A O © O
7% X

Slowness

Velocity
Magnitude
km/s

N Wb
N O O
o oo

6, degrees
&
© @™
o oo

Time (seconds)
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CWT: Displacement Data - Vertical Component

 Raw seismograms are
qualitatively different

* Notable differences in time-
frequency space

« Same explosion, different
paths

* GAN array reaches highest
power much later in time than
GAE

W D
N S
T

GAE Vert. Disp.
Frequency (Hz)

GAN Vert. Disp.
Frequency (Hz)

Vert Displacement
Meters

o

Explosion: dag2 - Wavelet Transform for GAE and GAN Vertical
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128
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Wavelet Coherence: DAG1 displacement seismograms

Explosion: dag1 - Wavelet Coherence
for Displacement Data

« Broadly high coherence at low frequencies
for vertical and transverse

» Vertical and radial components have
several areas of high coherence at high
frequencies (>= 10 Hz), including after P- B
wave arrival P-wave arrivals are 180° out of
phase (radial and vertical), arrow points left

« We would expect them to be only ~90°
out of phase

« Areas of high coherence are not consistent
between the components (radial,
transverse, vertical)

Vertical Displacement
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w
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Wavelet Coherence: DAG2 displacement seismograms

Highly coherent on lower frequencies < 4
Hz, almost completely non coherent at
higher frequencies except for 10-15 Hz.
Rolls over sharply below 4 Hz

« Expected due to instrument response
Relative phase between arrays changes
are smooth and consistent within 95%
confidence contour (white)
Areas of high coherence are not
consistent between the components
(radial, transverse, vertical)
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Wavelet Coherence: DAG3 displacement seismograms

Broadly high coherence at low frequencies
for all components
Broadly low coherence at higher
frequencies for all components, some high
coherence for transverse later in figure
P-wave arrivals are in phase (radial and
vertical), arrow points right

« we'd expect them to be 90 degrees out

of phase

Areas of high coherence are not consistent
between the components (radial,
transverse, vertical)
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Wavelet Coherence: DAG1 Rotational motions

Generally low coherence immediately ot conr ST
post P arrival o 28, % \
Transverse component has broad high
coherence above about 12 Hz

No consistent pattern between the 3 h
rotation components
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Wavelet Coherence: DAG2 Rotational motions

Explosion: dag2

* Low coherence dominates the time-freqUEeNCY  waveiet conerence for Retationsl Components
space immediately post P arrival.

 Areas of high coherence have consistent,
smoothly changing phase.

* Transverse component has higher coherence

[o2]
s
T

w
N
T

w Vertical
Frequency (Hz)
>

N S o]
T

- +40.6

than radial or vertical components. = "
w Vertical €§

104

w radial

Source
. w Transverse

Radial
Frequency (Hz)

Meters

Vert Displacement
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Wavelet Coherence: DAG3 Rotational motions

« Generally low coherence immediately post P

arrival

« Radial component has broad region of high

coherence below about 6 Hz

* No consistent pattern between the 3 b

rotational components

w Vertical

w radial

Source
' w Transverse

Explosion: dag3
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Envelope Decay — DAG 2

Displacement (m)

Test: dag2 GAE - GAN Component: vert

10210°
[r—
— AN
gl
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0 l l ‘\" "mn”"\“ﬂw'"”',',,VV',vw»-o
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2
4
8
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Discussion — Interpretations of Coherence

Gradiometerv
= Each explosion had a different yield
and a different depth of burial

= We don’t expect each analysis to look
similar from one explosion to another

= Coherence plots varied between:

= Different rotational components: w,, w,,
and w,

= Different seismogram components:
radial, transverse, and vertical
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Discussion — Interpretations of Coherence (cont)

= Low coherence between GAE and GAN
datasets

= Suggests that the travel path significantly and
GA measurably decorrelates the wavefield for the same
N

‘ travel distance.
= |ots of scattering - depends on azimuth of
propagation
= Small frequency bands of high coherence, but

frequency and time varied

= Displacement data and rotational data — no
consistent pattern

= Rotational coherence hasn’t been studied
extensively

= Could be coincidental — parts of the wavefields will
be coherent due to chance

GA

23
NEVADA NATIONAL 22 Sandi EVAD =
IN NSS4 NN , Loz Alamos - Lawrence Livermore @ National % — DRI
fructear = ’ Desert R

Laboratories .
esearch Institute

zzzzzzz



Discussion — Interpretations of Coherence (cont)

Low coherence immediately after the P arrival, with

very few exceptions - attributed to scattering and
path effects

Low coherence between each explosion (not shown)
= Demonstrates path effects from dip are visible

Implications for computing explosion yield

= Yield calculations typically assume an isotropic source

AND propagation of energy is fairly uniform in all
directions

= Not necessarily a correct assumption - different source-
receiver paths could result in different computed yields

= Near source wavefield distortions can impact source
type estimates and yield estimates

24
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Discussion — Interpretations of Coherence (cont)

= Gradiometry might offer more insight into explosion characteristics for better
guantification of yield

= Based on our observations, path effects can be substantial and must be
accounted for to get accurate calculations
= |ncludes azimuthal path effects and dip path effects
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Future Work

= More gradiometers (not just two)
= Simultaneously deploy gradiometers with

modern rotational seismometers for
O «—

ground-truth comparison

= 3 Dimensional gradiometer (boreholes)
= Similar experiment in a variety of geologic

settings O

= Quantitatively measure the degree of scattering

= Additional analysis of envelope decay of the coda
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