

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020-10226C

On Highly Robust Efficient Solutions to Uncertain Multiobjective Linear Programs

Garrett M. Dranichak

Junior Researcher Best Paper Finalist Session

G.M. Dranichak and M.M. Wiecek. On highly robust efficient solutions to uncertain multiobjective linear programs. *European Journal of Operational Research*, 273:20–30, 2019.

laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, a Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract

Outline

- ① Introduction
- ② Research Objectives
- ③ Cones
- ④ Regarding the Highly Robust Efficient Set
- ⑤ Conclusions and Future Research

Notation

For all $\mathbf{y}', \mathbf{y}'' \in \mathbb{R}^p$, we write

$\mathbf{y}' \leqq \mathbf{y}''$ if $y'_k \leq y''_k$ for all $k = 1, \dots, p$;

$\mathbf{y}' \leq \mathbf{y}''$ if $y'_k \leq y''_k$ for all $k = 1, \dots, p$ and $\mathbf{y}' \neq \mathbf{y}''$;

$\mathbf{y}' < \mathbf{y}''$ if $y'_k < y''_k$ for all $k = 1, \dots, p$.

Motivation

- Conflicting goals may be present during the decision-making process, which suggests more than one objective function is needed
- Problems of concern may not only have conflicting objectives, but may also incorporate some level of uncertainty due to:
 - inaccurate data
 - imperfect modeling
 - lack of knowledge
 - volatility of the global environment

Robust Multiobjective Optimization

Multiobjective LP (MOLP):

$$\begin{array}{ll}\min_x & \mathbf{C}\mathbf{x} = [\mathbf{c}_1\mathbf{x} \quad \cdots \quad \mathbf{c}_p\mathbf{x}]^T \\ \text{s.t.} & \mathbf{x} \in X,\end{array}$$

$\mathbf{c}_k \in \mathbb{R}^{1 \times n}$, $k = 1, \dots, p$,

$X = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leqq \mathbf{b}, \mathbf{x} \geqq \mathbf{0}\}$,

$\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$.

If uncertainty exists:

- robust multiobjective optimization
- variety of robustness concepts due to *multiple* objectives
- goal to solve uncertain MOLPs (UMOLPs) for *robust efficient* solutions

Definition

$\hat{\mathbf{x}} \in X$ is said to be an *efficient solution* to MOLP if there is no other $\mathbf{x} \in X$ s.t. $\mathbf{C}\mathbf{x} \leqq \mathbf{C}\hat{\mathbf{x}}$. The *efficient set* is denoted $E(X, \mathbf{C})$.

Uncertain Multiobjective Linear Programs (UMOLPs)

A UMOLP is

$$\{P(u)\}_{u \in U}.$$

In particular,

$$\left\{ \begin{array}{ll} \min_{\mathbf{x}} & \mathbf{C}(u)\mathbf{x} \\ \text{s.t.} & \mathbf{x} \in X \end{array} \right\}_{u \in U}.$$

Terminology:

- $P(u)$ is an *instance* of UMOLP
- $U \subseteq \mathbb{R}^q$ is the *uncertainty set* or *set of scenarios*
- u is a *realization* or *scenario*
- $X \subseteq \mathbb{R}^n$ is the *polyhedral feasible set*
- $E(X, \mathbf{C}(u))$ is the *efficient set* of $P(u)$

Objective-wise Uncertainty

Definition

A UMOLP is of *objective-wise uncertainty* if the uncertainties of the cost vectors are independent of each other, i.e., if

$U = U_1 \times \cdots \times U_p$, where $U_k \subseteq \mathbb{R}^{q_k}$, $k = 1, \dots, p$, such that

$$\mathbf{C}(\mathbf{u}) = [\mathbf{c}_1(\mathbf{u}_1) \quad \cdots \quad \mathbf{c}_p(\mathbf{u}_p)]^T$$

with $\mathbf{u} = [\mathbf{u}_1 \quad \cdots \quad \mathbf{u}_p]^T \in U$ and $\mathbf{u}_k \in U_k$, $k = 1, \dots, p$.

We only consider the UMOLP of objective-wise uncertainty with $U = U_1 \times \cdots \times U_p$ such that $U_k \subseteq \mathbb{R}^n$, $k = 1, \dots, p$, and

$$\mathbf{C}(\mathbf{u}) = \begin{bmatrix} \mathbf{c}_1(\mathbf{u}_1) \\ \vdots \\ \mathbf{c}_p(\mathbf{u}_p) \end{bmatrix} = \begin{bmatrix} c_{11}u_{11} & \cdots & c_{1n}u_{1n} \\ \vdots & & \vdots \\ c_{p1}u_{p1} & \cdots & c_{pn}u_{pn} \end{bmatrix}.$$

Solution Concept: Highly Robust Efficiency

Definition

A solution $\mathbf{x}^* \in X$ to UMOLP is *highly robust efficient (HRE)* if for every $\mathbf{u} \in U$, there does not exist $\mathbf{x} \in X$ such that $\mathbf{C}(\mathbf{u})\mathbf{x} \leq \mathbf{C}(\mathbf{u})\mathbf{x}^*$. The *HRE set* of UMOLP is denoted by $E(X, \mathbf{C}(\mathbf{u}), U)$.

Remark

The point $\mathbf{x}^ \in X$ is an HRE solution to UMOLP if and only if $\mathbf{x}^* \in \bigcap_{\mathbf{u} \in U} E(X, \mathbf{C}(\mathbf{u}))$, i.e., $E(X, \mathbf{C}(\mathbf{u}), U) = \bigcap_{\mathbf{u} \in U} E(X, \mathbf{C}(\mathbf{u}))$.*

Research Objectives

What's missing in the literature on HRE solutions:

- ① properties and characterizations of the HRE set
- ② bound sets on the HRE set
- ③ a robust counterpart

Polyhedral Uncertainty Set Reduction

Existing (due to Ide and Schöbel (2015)):

- (Theorem 46) If the uncertainty set is a **bounded polyhedron** and the objective functions are affine w.r.t. $\mathbf{u} \in U$, then a solution is HRE w.r.t. U if and only if it is HRE w.r.t. the finite set of extreme points of U
- True for nonlinear uncertain multiobjective programs too
- Theorem does not hold if the objective-wise assumption is relaxed (cf. Example 48)

Consequently, we assume U is a finite set of scenarios given by

$$U := \{\mathbf{u}^1, \mathbf{u}^2, \dots, \mathbf{u}^s\} \subseteq \mathbb{R}^q.$$

Properties of the HRE Set

Properties that immediately extend from the deterministic to uncertain setting:

Let the HRE set be nonempty. Then

- ① the HRE set is
 - closed
 - not necessarily convex
 - either the entire set X or on the boundary of X
- ② there exists an HRE extreme point
- ③ if a point in the relative interior of a face of X is HRE, then so is the entire face

A property that is *not* the same:

- ④ The HRE set is *not* necessarily connected

Example: Disconnected HRE Set

UMOLP:

$$\left\{ \begin{array}{ll} \min_{\mathbf{x}} & \begin{bmatrix} 3u_{11} & -9u_{12} \\ -u_{21} & 9u_{22} \end{bmatrix} \mathbf{x} \\ \text{s.t.} & \mathbf{x} \in X_1 \end{array} \right\}_{\mathbf{u}_1 \in U_1 = \{(1,1)\}, \mathbf{u}_2 \in U_2 = \{(1,1), (2, -1/9)\}},$$

where $X_1 := \{\mathbf{x} \in \mathbb{R}^2 : -x_1 + 2x_2 \leq 6, x_1 + x_2 \leq 6, x_1, x_2 \geq 0\}$

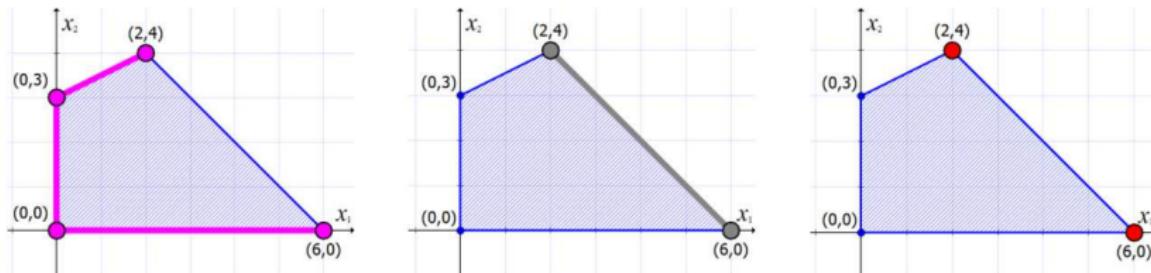


Figure: The efficient sets with $\mathbf{u} = (1, 1, 1, 1)$ (purple) and $\mathbf{u} = (1, 1, 2, -1/9)$ (grey), as well as the HRE set (red)

Cones: Definitions

Let $K \subseteq \mathbb{R}^n$ be a cone.

Definition

K is *acute* if $\text{cl}(K) \subseteq H \cup \{\mathbf{0}\}$, where H is an open half-space whose generating hyperplane passes through the origin.

Definition

- i The *(positive) polar* of K is the cone

$$K^+ := \{\mathbf{y} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{y} \geq 0 \text{ for all } \mathbf{x} \in K\}.$$

- ii The *strict (positive) polar* of K is the cone

$$K^{s+} := \{\mathbf{y} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{y} > 0 \text{ for all } \mathbf{x} \in K \setminus \{\mathbf{0}\}\}.$$

Cones: Definitions Ctd.

For an instance $P(\mathbf{u})$, an *improving direction* is a vector $\mathbf{d} \in \mathbb{R}^n$ such that $\mathbf{C}(\mathbf{u})\mathbf{d} \leq \mathbf{0}$.

Definition

- i The *(closed) cone of improving directions* of $P(\mathbf{u})$ for scenario $\mathbf{u} \in U$ is $K_{(\leq)\leq}(\mathbf{C}(\mathbf{u})) := \{\mathbf{d} \in \mathbb{R}^n : \mathbf{C}(\mathbf{u})\mathbf{d} (\leq) \leq \mathbf{0}\}$.
- ii The *(closed) cone of improving directions* of UMOLP for uncertainty set U is $K_{(\leq)\leq}(\mathbf{C}(\mathbf{u}), U) := \bigcup_{\mathbf{u} \in U} K_{(\leq)\leq}(\mathbf{C}(\mathbf{u}))$.

Definition

The *normal cone* to X at $\bar{\mathbf{x}} \in X$ is a convex cone

$$N_X(\bar{\mathbf{x}}) := \{\mathbf{p} \in \mathbb{R}^n : \mathbf{p}^T(\mathbf{x} - \bar{\mathbf{x}}) \leq 0 \text{ for all } \mathbf{x} \in X\}.$$

Polar Cone Results

Proposition

The equality $K_{\leq}^+(\mathbf{C}(\mathbf{u})) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = -\mathbf{C}(\mathbf{u})^T \boldsymbol{\lambda}, \boldsymbol{\lambda} \geq \mathbf{0}\}$ holds.

Proposition

The equality $K_{\leq}^+(\mathbf{C}(\mathbf{u}), U) = \bigcap_{\mathbf{u} \in U} K_{\leq}^+(\mathbf{C}(\mathbf{u}))$ holds.

Proposition

The equality $K_{\leq}^+(\mathbf{C}(\mathbf{u}), U) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = -\widetilde{\mathbf{C}}^T \boldsymbol{\lambda}, \boldsymbol{\lambda} \geq \mathbf{0}\}$ holds for some suitable matrix $\widetilde{\mathbf{C}}^T \in \mathbb{R}^{n \times \tilde{p}}$.

Strict Polar Cone Results

Proposition

If $K_{\leq}(\mathbf{C}(\mathbf{u}))$ is acute, then

$$K_{\leq}^{s+}(\mathbf{C}(\mathbf{u})) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = -\mathbf{C}(\mathbf{u})^T \boldsymbol{\lambda}, \boldsymbol{\lambda} > \mathbf{0}\}.$$

Proposition

The equality $K_{\leq}^{s+}(\mathbf{C}(\mathbf{u}), U) = \bigcap_{\mathbf{u} \in U} K_{\leq}^{s+}(\mathbf{C}(\mathbf{u}))$ holds.

Proposition

If $K_{\leq}(\mathbf{C}(\mathbf{u}), U)$ is acute, then

$$K_{\leq}^{s+}(\mathbf{C}(\mathbf{u}), U) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = -\tilde{\mathbf{C}}^T \boldsymbol{\lambda}, \boldsymbol{\lambda} > \mathbf{0}\}$$

for some suitable matrix $\tilde{\mathbf{C}}^T \in \mathbb{R}^{n \times \tilde{p}}$.

Acuteness Recognition: $K_{\leq}(\mathbf{C}(\mathbf{u}))$

$K_{\leq}(\mathbf{C}(\mathbf{u}))$ has two representations for each $\mathbf{u} \in U$

- ① Inequality: $\{\mathbf{d} \in \mathbb{R}^n : \mathbf{C}(\mathbf{u})\mathbf{d} \leq \mathbf{0}\}$
- ② Generator: $\{\mathbf{d} \in \mathbb{R}^n : \mathbf{d} = \mathbf{G}(\mathbf{u})^T \boldsymbol{\lambda}, \boldsymbol{\lambda} \geq \mathbf{0}\}$, where the columns of $\mathbf{G}(\mathbf{u})^T \in \mathbb{R}^{n \times r}$ are a finite set of generators of $K_{\leq}(\mathbf{C}(\mathbf{u}))$

Note: ① is given and ② may be computed in SageMath

Theorem

For some $\mathbf{u} \in U$, let $K_{\leq}(\mathbf{C}(\mathbf{u})) \neq \{\mathbf{0}\}$ be given in generator form. Then $K_{\leq}(\mathbf{C}(\mathbf{u}))$ is acute if and only if $-\mathbf{G}(\mathbf{u})\mathbf{d} < \mathbf{0}$ is consistent.

Theorem

If $\dim(K_{\leq}^+(\mathbf{C}(\mathbf{u}))) = n$, then $K_{\leq}(\mathbf{C}(\mathbf{u}))$ is acute.

Acuteness Recognition Example

$$K_{\leq}(\mathbf{C}(\mathbf{u}^1)) : \quad \left\{ \mathbf{d} \in \mathbb{R}^2 : \mathbf{d} = \begin{bmatrix} -3 & -9 \\ -1 & -1 \end{bmatrix} \boldsymbol{\lambda}, \boldsymbol{\lambda} \geq \mathbf{0} \right\}$$

$$K_{\leq}(\mathbf{C}(\mathbf{u}^2)) : \quad \left\{ \mathbf{d} \in \mathbb{R}^2 : \mathbf{d} = \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix} \boldsymbol{\lambda}, \boldsymbol{\lambda} \geq \mathbf{0} \right\}$$

System to check acuteness:

$$\begin{array}{l} 3d_1 + d_2 < 0 \\ 9d_1 + d_2 < 0 \\ -3d_1 - d_2 < 0 \\ d_1 - 2d_2 < 0 \end{array}$$

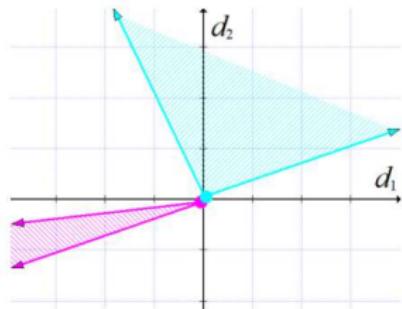


Figure: $K_{\leq}(\mathbf{C}(\mathbf{u}^1))$ (purple) and $K_{\leq}(\mathbf{C}(\mathbf{u}^2))$ (teal)

Characterization: Cone of Improving Directions

Theorem

$\mathbf{x}^* \in X$ is HRE if and only if
 $(K_{\leq}(\mathbf{C}(\mathbf{u}), U) + \{\mathbf{x}^*\}) \cap X = \emptyset$.

Sketch of Proof.

Intuition: The condition indicates that there is no feasible direction that is also improving. □

Example

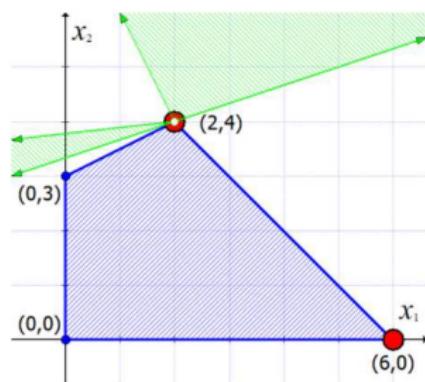


Figure: $K_{\leq}(\mathbf{C}(\mathbf{u}), U)$ (green) and HRE set (red)

Characterization: Normal Cone

Theorem

- i Let $K_{\leq}(\mathbf{C}(\mathbf{u}))$ be acute for all $\mathbf{u} \in U$, and $\mathbf{x}^* \in X$. Then \mathbf{x}^* is HRE if and only if $N_X(\mathbf{x}^*) \cap K_{\leq}^{s+}(\mathbf{C}(\mathbf{u})) \neq \emptyset$ for all $\mathbf{u} \in U$.
- ii Let $K_{\leq}(\mathbf{C}(\mathbf{u}))$ be acute for all $\mathbf{u} \in U$, and $\mathbf{x}^* \in X$. If $N_X(\mathbf{x}^*) \cap K_{\leq}^{s+}(\mathbf{C}(\mathbf{u}), U) \neq \emptyset$, then \mathbf{x}^* is HRE.

Example

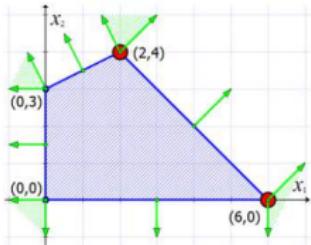


Figure: HRE set (red) and normal cones (green)

$$K_{\leq}^{s+}(\mathbf{C}(\mathbf{u}), U) = \emptyset$$

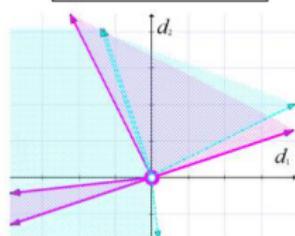


Figure: $K_{\leq}(\mathbf{C}(\mathbf{u}), U)$ (purple)

$$N_X(\mathbf{x}^*) \cap K_{\leq}^{s+}(\mathbf{C}(\mathbf{u}), U) = \emptyset$$

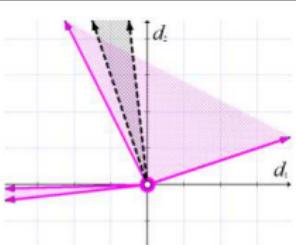


Figure: Strict polar cone (black)

Lower Bound Set

Theorem

If $K_{\leq}(\mathbf{C}(\mathbf{u}), U)$ is acute, then $E(X, \widetilde{\mathbf{C}}) \subseteq E(X, \mathbf{C}(\mathbf{u}), U)$ for some suitable matrix $\widetilde{\mathbf{C}}^T \in \mathbb{R}^{n \times \tilde{p}}$.

As a direct consequence...

Corollary

If $K_{\leq}(\mathbf{C}(\mathbf{u}), U)$ is acute and X is bounded, then the HRE set is nonempty.

How to find $\widetilde{\mathbf{C}}$?

- SageMath

Robust Counterpart

Definition

The *robust counterpart* of a UMOLP is an MOLP $\min_{x \in X} \bar{\mathbf{C}}x$ whose feasible and efficient solutions are feasible and HRE solutions to the UMOLP.

Theorem

If $K_{\leq}(\mathbf{C}(\mathbf{u}), U)$ is a polyhedral convex (finite) and acute cone, then $E(X, \mathbf{C}(\mathbf{u}), U) = E(X, \bar{\mathbf{C}})$ for some suitable matrix $\bar{\mathbf{C}} \in \mathbb{R}^{\bar{p} \times n}$.

Sketch of Proof.

$$K_{\leq}(\bar{\mathbf{C}}) = \{\mathbf{d} \in \mathbb{R}^n : \bar{\mathbf{C}}\mathbf{d} \leq \mathbf{0}\} = K_{\leq}(\mathbf{C}(\mathbf{u}), U).$$

□

How to find $\bar{\mathbf{C}}$?

- Bemporad et al. (2001)

Robust Counterpart Example

Consider the UMOLP:

$$\left\{ \begin{array}{l} \min_{\mathbf{x}} \begin{bmatrix} u_{11} & -3u_{12} \\ u_{21} & u_{22} \end{bmatrix} \mathbf{x} \\ \text{s.t.} \quad \mathbf{x} \in X_1 \end{array} \right\}_{\mathbf{u}_1 \in U_1, \mathbf{u}_2 \in U_2},$$

$$U_1 = \{(1, 1)\}, U_2 = \{(1, -1), (1, 1)\}$$

$$\mathbf{u}^1 = (1, 1, 1, -1) \quad \mathbf{u}^2 = (1, 1, 1, 1)$$

$$\mathbf{C}(\mathbf{u}^1) = \begin{bmatrix} 1 & -3 \\ 1 & -1 \end{bmatrix} \quad \mathbf{C}(\mathbf{u}^2) = \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix}$$

$$\bar{\mathbf{C}} = \begin{bmatrix} 1 & -3 \\ 1 & -1 \end{bmatrix}$$

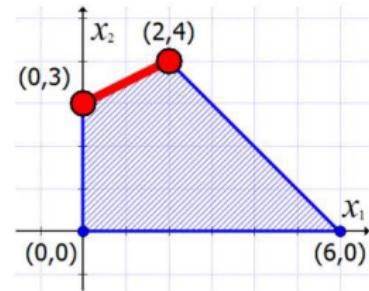
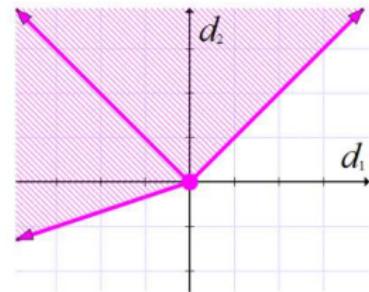


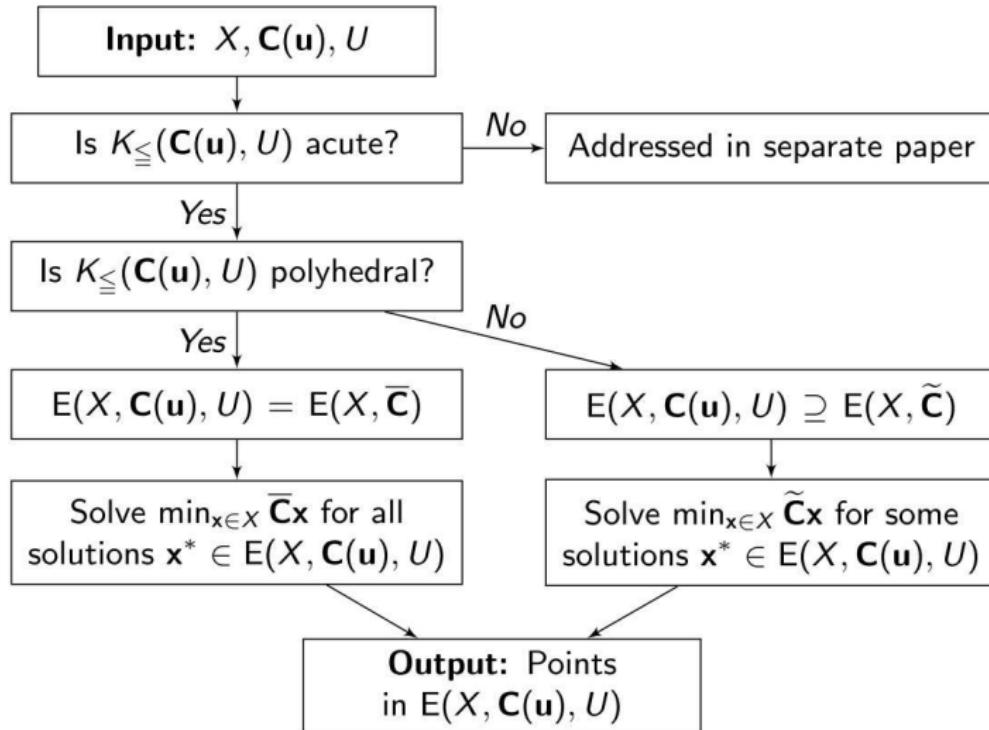
Figure: HRE set (red) and closed cone of improving directions of UMOLP (purple)

Contributions

Theoretical:

- Properties of the HRE set
- Characterizations of the HRE set
- Bound sets on the HRE set
- A robust counterpart for a special class of UMOLPs

Contributions: Computing HRE Solutions



Avenues for Future Research

- ① Implement the proposed scheme for computing HRE solutions
- ② Obtain additional lower bound sets
 - relax the acuteness assumption
- ③ Pursue further means to compute HRE solutions

The End

Thank you!

References

- A. Bemporad, K. Fukuda, and F.D. Torrisi. Convexity recognition of the union of polyhedra. *Computational Geometry*, 18(3):141–154, 2001.
- A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. *Operations Research Letters*, 25:1–13, 1999.
- G.R. Bitran. Linear multiple objective problems with interval coefficients. *Management Science*, 26(7):694–706, 1980.
- G.M. Dranichak and M.M. Wiecek. On computing highly robust efficient solutions. *Journal of Multi-Criteria Decision Analysis*, 25(5–6):177–188, 2018.
- J.G. Ecker and I.A. Kouada. Finding efficient points for linear multiple objective programs. *Mathematical Programming*, 8(1):375–377, 1975.
- M. Ehrgott. *Multicriteria Optimization*. Springer, second edition, 2005.

References Ctd.

- J. Ide and A. Schöbel. Robustness for uncertain multi-objective optimization: A survey and analysis of different concepts. *OR Spectrum*, 38(1):235–271, 2015.
- K. Kuhn, A. Raith, M. Schmidt, and A. Schöbel. Bicriteria robust optimisation. Technical report, Georg-August-Universität Göttingen, Germany, 2013.
- K. Kuhn, A. Raith, M. Schmidt, and A. Schöbel. Bi-objective robust optimisation. *European Journal of Operational Research*, 2016.
- M.J. Panik. *Fundamentals of Convex Analysis*. Kluwer Academic Publishers, 1993.