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Motivation

Notation

For all y',y"” € RP, we write

Y Sy'ify, <ylforallk=1,...,p;
y <y"ify, <yl forall k=1,...,pandy #y";
y <y'ify, <yl forallk=1,...,p.
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Motivation
Problem Formt

Motivation

o Conflicting goals may be present during the decision-making
process, which suggests more than one objective function is
needed

@ Problems of concern may not only have conflicting objectives,
but may also incorporate some level of uncertainty due to:
e inaccurate data
o imperfect modeling
o lack of knowledge
o volatility of the global environment
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Robust Multiobjective Optimization

Multiobjective LP (MOLP): Definition
R [clx cpx] T x € X is said to be an efficient
x solution to MOLP if there is no
st.  x€e X, other x € X s.t. Cx < Cx. The

c €RVM k=1.... p, efficient set is denoted E(X, C).

X={xeR":Ax < b,x = 0},
AcR™" beR".

If uncertainty exists:
@ robust multiobjective optimization
@ variety of robustness concepts due to multiple objectives

o goal to solve uncertain MOLPs (UMOLPs) for robust efficient
solutions
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A UMOLP is Terminology:
o P(u) is an instance of
{P(u)}ueu. UMOLP
In particular, o U C RY is the uncertainty
set or set of scenarios
{ min  C(u)x } . .
x © u is a realization or
s xeX J v scenario

@ X CR" is the polyhedral
feasible set

o E(X,C(u)) is the efficient
set of P(u)
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Formulation
Concept

Objective-wise Uncertainty

Definition
A UMOLP is of objective-wise uncertainty if the uncertainties of

the cost vectors are independent of each other, i.e., if
U= U x---x U, where U CR¥ k=1,...,p, such that

Clu) = [er(u) -~ cp(up)]”

with u = [ul up]TeUand ug € U, k=1,...,p.

We only consider the UMOLP of objective-wise uncertainty with
U= Uy x---xUpsuchthat U CR", k=1,...,p, and

ci(ug) Cliu1l -+ Clalin
C(u) = : = :

cp(up) Cpilpl - Cpnlpn
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Solution Co

Research Objectives

Solution Concept: Highly Robust Efficiency

Definition
A solution x* € X to UMOLP is highly robust efficient (HRE) if for

every u € U, there does not exist x € X such that C(u)x < C(u)x*.
The HRE set of UMOLP is denoted by E(X, C(u), U).

Remark

The point x* € X is an HRE solution to UMOLP if and only if
x* € Nyeu E(X, C(u)), ie., E(X,C(u), U) = Nyey E(X, C(u)).
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Research Objectives

Research Objectives

What's missing in the literature on HRE solutions:

@ properties and characterizations of the HRE set
® bound sets on the HRE set

® a robust counterpart
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Existing (due to lde and Schabel (2015)):

o (Theorem 46) If the uncertainty set is a bounded polyhedron
and the objective functions are affine w.r.t. u € U, then a
solution is HRE w.r.t. U if and only if it is HRE w.r.t. the
finite set of extreme points of U

@ True for nonlinear uncertain multiobjective programs too

@ Theorem does not hold if the objective-wise assumption is
relaxed (cf. Example 48)

Consequently, we assume U is a finite set of scenarios given by

U:={ul,u?,... ,u°} CRI.
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Properties of the HRE Set

Properties that immediately extend from the deterministic to
uncertain setting:

Let the HRE set be nonempty. Then
@ the HRE set is

o closed
@ not necessarily convex
o either the entire set X or on the boundary of X

@ there exists an HRE extreme point

© if a point in the relative interior of a face of X is HRE, then
so is the entire face

A property that is not the same:

® The HRE set is not necessarily connected
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Example: Disconnected HRE Set

UMOLP:
min 3uin —Yurp
X —Uu21 9U22
s.t. X € X

ueUh={(1,1)},u2€lh={(1,1),(2,~-1/9)},
where X1 := {x € R? : —x1 + 2xp < 6,x1 + x2 < 6,x1,x > 0}

1

(6,0)

Figure: The efficient sets with u = (1,1,1,1) (purple) and u = (1,1,2,—1/9) (grey),
as well as the HRE set (red)
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Cones: Definitions

Let K C R" be a cone.

K is acute if cl(K) € HU {0}, where H is an open half-space
whose generating hyperplane passes through the origin.

® The (positive) polar of K is the cone
Kt :={yeR":x"y>0forall x e K}.

@ The strict (positive) polar of K is the cone
Kt :={yeR":x"y>0forall xc K\ {0}}.
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Cones: Definitions Ctd.

For an instance P(u), an improving direction is a vector d € R”
such that C(u)d < 0.

@ The (closed) cone of improving directions of P(u) for scenario
ue Uis K<)<(C(u)) :={d € R": C(u)d (=) < 0}.

@ The (closed) cone of improving directions of UMOLP for
uncertainty set U is K(<y<(C(u), U) := Uyey Ki=)<(C(u)).

The normal cone to X at x € X is a convex cone
Nx(X) :={p€R":p’(x —x) <0 for all x € X}.
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Polar Cone Results

Proposition
The equality KX (C(u)) = {x € R" : x = —C(u) "X, A = 0} holds.

Proposition

The equality KX (C(u), U) = Nyey K= (C(u)) holds.

Proposition

The equality KX (C(u),U) = {x € R" : x = —~CT A\, A = 0} holds

for some suitable matrix CT € R"*P.
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Strict Polar Cone Results

Proposition

If K<(C(u)) is acute, then
KEH(C(u) = {x e R": x = —C(u)"A, A > 0}.

The equality K= (C(u), U) = Nyey KET(C(u)) holds.

v

If K<(C(u), U) is acute, then
KEH(C(u), U) = {x e R": x = —C"X, A > 0}

for some suitable matrix CT € R"¥P.

v
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Acuteness Recognition: K<(C(u))

K<(C(u)) has two representations for each u € U
® Inequality: {d € R": C(u)d = 0}
® Generator: {d € R":d = G(u) "\, X = 0}, where the
columns of G(u)™ € R™" are a finite set of
generators of K<(C(u))
Note: @ is given and @ may be computed in SageMath

Theorem

For some u € U, let K<(C(u)) # {0} be given in generator form. Then
K<(C(u)) is acute if and only if —G(u)d < 0 is consistent.

Ifdim(Kg(C(u))) = n, then K<(C(u)) is acute.

v
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racterization

Acuteness Recognition Example

K-(C(ub)) : {d €R2:d= [j :ﬂ A2 o}

K-(C(u2)) : {d €R2:d= E ’21] AN o}

System to check acuteness: Y. 1%

3d1 + db <0

= 4

9d1 + dr <0 _ o d,

|—3d1— d2<0|
di —2d> <0

Figure: Kg(C(ul)) (purple) and
Kg(C(uz)) (teal)
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Characterization

x* € X is HRE if and only if
(K<(C(u), U) + (X" })) N X = 0.

Sketch of Proof.

Intuition: The condition
indicates that there is no
feasible direction that is also

improving. O Fig;u(re: )KS(C(u), U) (green) and HRE
set (red
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Characterization: Normal Cone

® Let K<(C(u)) be acute for allu € U, and x* € X. Then x* is
HRE if and only if Nx(x*) N K= (C(u)) # 0 for all u € U.

® Let K<(C(u)) be acute for allu € U, and x* € X. If
Nx (x*) N K (C(u), U) # 0, then x* is HRE.

Example KL (Cu), ) =0 ‘ Ny (x*) N Kg'(c(u), U)=10 |

Figure: HRE set (red) and Figure: K<(C(u), U) Figure: Strict polar cone
normal cones (green) (purple) (black)
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Lower Bound Set

If K<(C(u), U) is acute, then E(X, E) C E(X, C(u), U) for some
suitable matrix CT € R"<P,

As a direct consequence...

If K<(C(u), U) is acute and X is bounded, then the HRE set is
nonempty.

How to find C?
o SageMath
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Robust Counterpart

Definition

The robust counterpart of a UMOLP is an MOLP manEx whose feasible
S
and efficient solutions are feasible and HRE solutions to the UMOLP.

Theorem

If K<(C(u), U) is a polyhedral convex (finite) and acute cone, then
E(X,C(u), U) = E(X, C) for some suitable matrix C € RP*".

Sketch of Proof.
Kg(f) ={deR": Cd < 0} = K<(C(u), V). O

| A

How to find C?
@ Bemporad et al. (2001)
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Robust Counterpart Example

Consider the UMOLP:
. {Un —3U12]
min X
x| U2 ux»

s.t. x € X1
u; €Up,upels,

Uy = {(1, 1)}, U = {(]-a _1)5 (1, 1)}

ul =(1,1,1,-1) uv?*=(1,1,1,1)

C(“l)ZE If: C(uZ)z[} —13]

~ 1 -3

C= 1 1 Figure: HRE set (red) and closed cone
- of improving directions of UMOLP

(purple)
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Contributions

Contributions

Theoretical:
@ Properties of the HRE set
o Characterizations of the HRE set
o Bound sets on the HRE set

@ A robust counterpart for a special class of UMOLPs
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Input: X,C(u),U
'

Contributions: Computing HRE Solutions

No

Is K<(C(u), U) acute?

Addressed in separate paper

Yes l

Is K<(C(u), U) polyhedral?

Yes l

&

E(X,C(u),U) = E(X,C)

E(X,C(u), U) 2 E(X,C)

!

!

Solve minyex Cx for all
solutions x* € E(X, C(u), U)

Solve mingex Cx for some
solutions x* € E(X, C(u), U)

™

—

Output: Points
in E(X, C(u), U)
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Prospective Research

Avenues for Future Research

@ Implement the proposed scheme for computing HRE solutions

® Obtain additional lower bound sets
o relax the acuteness assumption

® Pursue further means to compute HRE solutions
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Contributions

Prospective Research

The End
Thank you!
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