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Notation

For all y', yll E RP, we write

yi < yf

y/ < yf

y/ < yf I

Motivation
Problem Formulation
Solution Concept
Research Objectives

if < 4' for all k = 1, , p;

if < yiki for all k = 1, , p and y' y";

if < 4' for all k = 1, , p.
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Motivation

Motivation

o Conflicting goals may be present during the decision-making
process, which suggests more than one objective function is
needed

o Problems of concern may not only have conflicting objectives,
but may also incorporate some level of uncertainty due to:

O inaccurate data
o imperfect modeling
o lack of knowledge
o volatility of the global environment
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Robust Multiobjective Optimization

Multiobjective LP (MOLP):

min Cx = [cix • • • cpx] T

s.t. x E X,

Ck E lxn k = 1, • • • ,
X = fx E Rn : Ax b,x Of,

A E R"", b E Rm.

Definition

E X is said to be an efficient

solution to MOLP if there is no

other x E X s.t. Cx < CR. The
efficient set is denoted E(X, C).

If uncertainty exists:

o robust multiobjective optimization

o variety of robustness concepts due to multiple objectives

o goal to solve uncertain MOLPs (UMOLPs) for robust efficient
solutions
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Uncertain Multiobjective Linear Programs (UMOLPs)

A UMOLP is

{P(u)}ucu.

In particular,

min C(u)x

s.t. x E X
}uEU.

Terminology:

o P(u) is an instance of
UMOLP

o U C Rq is the uncertainty
set or set of scenarios

o u is a realization or
scenario

o X C Rn is the polyhedral

feasible set

o E(X, C(u)) is the efficient
set of P(u)
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Objective-wise Uncertainty
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Research Objectives

Definition

A UMOLP is of objective-wise uncertainty if the uncertainties of
the cost vectors are independent of each other, i.e., if
U = Ul x • • • x Up, where Uk C R(ik k = 1, , p, such that

C(u) = [ci(ui) • • • Cp(Up)] T

with u = [ui • • • Up] T E U and uk E Uk,k = 1, • • • , P.

We only consider the UMOLP of objective-wise uncertainty with
U = Ul x • • • x Up such that Uk C Rn k =1, • • • and

Ci(1.11) C11 L/11 • • • ClnUln

C(u) =

cp(up) Cp1Upi • • • CpnUpn_
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Solution Concept: Highly Robust Efficiency

Definition

A solution x* E X to UMOLP is highly robust efficient (HRE) if for
every u E U, there does not exist x E X such that C(u)x < C(u)x*.
The HRE set of UMOLP is denoted by E(X, C(u), U).

Remark

The point X* E X is an HRE solution to UMOLP if and only if

x* E %= nuctiEU E(X,C(u)), i.e., E(X,C(u), U) E(X, C(u)).
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What's missing in the literature on HRE solutions:

• properties and characterizations of the HRE set

• bound sets on the HRE set

41) a robust counterpart
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Polyhedral Uncertainty Set Reduction

Existing (due to Ide and Schöbel (2015)):

@ (Theorem 46) If the uncertainty set is a bounded polyhedron
and the objective functions are affine w.r.t. u E U, then a
solution is HRE w.r.t. U if and only if it is HRE w.r.t. the

finite set of extreme points of U

c• True for nonlinear uncertain multiobjective programs too

@ Theorem does not hold if the objective-wise assumption is
relaxed (cf. Example 48)

Consequently, we assume U is a finite set of scenarios given by

U := {u1, u2, . , us} C Rq.
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Properties of the HRE Set

Properties
erization

Bound Set
Robust Counterpart

Properties that immediately extend from the deterministic to
uncertain setting:

Let the HRE set be nonempty. Then

O the HRE set is
o closed
o not necessarily convex
o either the entire set X or on the boundary of X

• there exists an HRE extreme point

10 if a point in the relative interior of a face of X is HRE, then
so is the entire face

A property that is not the same:

• The HRE set is not necessarily connected
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Example: Disconnected HRE Set

UMOLP:

[3u11 —9u121min
—U23, 9u22

s.t.
theui.={(1,1)},u2eu2={(1,1),(2,-1/9)},

where X1 := E R2 : 2X2 < 6, xi + x2 < 6, x1 , x2 >

(2A)

x E

(0,3)

X (2,4)

x,

(6,0)

(0,3

(0,0

(2,4)

(6,0)

Figure: The efficient sets with u = (1,1,1,1) (purple) and u = (1,1,2,-1/9) (grey),
as well as the HRE set (red)
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Cones: Definitions

Let K C IP be a cone.

Characterization
Bound Set
Robust Counterpart

Definition

K is acute if cl(K) C H U 101, where H is an open half-space
whose generating hyperplane passes through the origin.

Definition

• The (positive) polar of K is the cone

K+ := {y Rn : xTy > 0 for all x K}.

• The strict (positive) polar of K is the cone

Ks+ := fy E Rn : xTy > 0 for all x E K \ {0}}.
 J
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Cones: Definitions Ctd.

Characterization
Bound Set
Robust Counterpart

For an instance P(u), an improving direction is a vector d E Rn
such that C(u)d < O.

Definition

The (closed) cone of improving directions of P(u) for scenario
u E U is K(<)~(C(u)) := {d E R" : C(u)d () < 01.

The (closed) cone of improving directions of UMOLP for
uncertainty set U is K(<)~(C(u), U) := LIEU N<)~(C(u)).

Definition

The normal cone to X at z C X is a convex cone

Nx(R) :={p e Rn T(x 
R) < 0 for all x E X}.
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Polar Cone Results

Characterization
Bound Set
Robust Counterpart

Proposition

The equality 1cF(C(u)) = {x E Rn : x = —C(u) TA, 0} holds.

Proposition

The equality K(C(u), U) = nueu 1.‹E(C(u)) holds.

Proposition

The equality K-(C(u), U) = {x E R" : x = —ETA, 01 holds

for some suitable matrix CT E Rn"3.
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Strict Polar Cone Results

Characterization
Bound Set
Robust Counterpart

Propositio

If KAC(u)) is acute, then

K+(C(u)) = {x E : x = —C(u)TA, a> 0}.

Propositio

The equality K+(C(u). U) = ilucu Kr(C(u)) holds.

Proposition

lf KAC(u), U) is acute, then

KnC(u), U)= fx E : x = > 01
for some suitable matrix ET E R"13. 1
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Bound Set
Robust Counterpart

Acuteness Recognition: K<(C(u))

K<(C(u)) has two representations for each u E U

• Inequality: {d E Rn : C(u)d < Of

@ Generator: {d E Rn : d = G(u)TA, Of, where the
columns of G(u)T E Rn" are a finite set of

generators of K<(C(u))

Note: is given and may be computed in SageMath

For some u E U, let K<(C(u)) {0} be given in generator form. Then

K<(C(u)) is acute if and only if —G(u)d < 0 is consistent.

If dim(K(C(u))) = n, then K<(C(u)) is acute.
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Acuteness Recognition Example

K<(C(u1)) : d E R2 ' d =[-3
—1

—9
—1

> 0

K<(C(u2)) : {d E R2 : d =
[31 —21 A' CI}

System to check acuteness:

3d1 + d2 <0
9d1 + d2 <0

—3d1 — d2 <0
d1 — 2d2 <0

Figure: K<(C(u1)) (purple) and

K<(C(u2)) (teal)
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Robust Counterpart

Characterization: Cone of Improving Directions

Theorem

X* E X is HRE if and only if
(K<(C(u), U) + {x*}) n X =

Sketch of Proof.

Intuition: The condition
indicates that there is no
feasible direction that is also
improving. ❑

Example

x

Figure: K<(C(u), U) (green) and HRE
set (red)
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Characterization
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Characterization: Normal Cone

Theorem

O Let K<(C(u)) be acute for all u E U, and x* E X. Then x' is

HRE if and only if Nx(x*) n KV-(c(u)) for all u E U.

• Let K<(C(u)) be acute for all u E U, and X* E X. lf

Nx(x*) n Knc(u), (4, then x* is HRE.

Example

2,9)

(0,3)

0,0)

(6,0)

x,

Figure: HRE set (red) and
normal cones (green)

K(C(u), =

Figure: K<(C(u), U)

(purple)

Nx(x*) n 1,<'<+(C(u), U) =

Figure: Strict polar cone
(black)
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Lower Bound Set

Properties
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Robust Counterpart

Theorem

If K<(C(u), U) is acute, then E(X,C) C E(X,C(u), U) for some

suitable matrix tT  E RnxI3.

As a direct consequence...

Corollary

lf K<(C(u), U) is acute and X is bounded, then the HRE set is
nonempty.

How to find C?

o SageMath
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Robust Counterpart

Properties
Characterization
Bound Set
Robust Counterpart

Definition

The robust counterpar of a UMOLP is an MOLP min Cx whose feasible
xEX

and efficient solutions are feasible and HRE solutions to the UMOLP.

Theorem

If K<(C(u), U) is a polyhedral convex (finite) and acute cone, then

E(X, C(u), U) = E(X,C) for some suitable matrix C E RP".

Sketch of Proof.

K<(C) = E : Cd < = K<(C(u), U).

How to find C?
o Bemporad et al. (2001)
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Robust Counterpart Example

Consider the UMOLP:

1 nin

s.t. x E Xi

l
U21 U22

[1111 —31-112]

u1EU1,upEUp,

Ui = 1(1, 1)}, U2 = 1(1, —1),(1, 1)}

ul = u2 = (1,1,1,1)

c(u1)= rl :31 1] c(u2)= - 
Ll 

13]

= Li —31
1 -1

Properties
Characterization
Bound Set
Robust Counterpart

Figure: HRE set (red) and closed cone
of improving directions of UMOLP
(purple)
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Contributions

Contributions
Prospective Research

Theoretical:

o Properties of the HRE set

o Characterizations of the HRE set

co Bound sets on the HRE set

42 A robust counterpart for a special class of UMOLPs
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Contributions
Prospectiv, '

Contributions: Computing HRE Solutions

Input: X, C(u), U

Is K<(C(u), U) acute?

Yes

Is K<(C(u), U) polyhedral?

Yes

E(X, C(u), U) = E(X, C)

Solve minxEx tx for all
solutions x* E E(X, C(u), U)

No

Addressed in separate paper

E(X, C(u), U) E(X, E)

Solve minXEx Ex for some
solutions x* E E(X, C(u), U)

Output: Points
in E(X, C(u), U)
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Avenues for Future Research

Contributions
Prospective Research

• Implement the proposed scheme for computing HRE solutions

(9 Obtain additional lower bound sets

o relax the acuteness assumption

• Pursue further means to compute HRE solutions
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The End

Thank you!
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