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ABSTRACT

Tolerating cracks in human-made malleable materials is counterintuitive as
micro-damage usually limits material lifetime rather than enhancing it. Some
composites, such as bone, have hierarchical microstructures that feature crack
tolerance, but cannot withstand high elongation. We successfully reconcile crack
tolerance and high elongation, demonstrated with a directionally-solidified eutectic
high-entropy alloy (EHEA). The solidified alloy has a hierarchically-organized
herringbone structure that equips a bionic-inspired hierarchical crack buffering.
This effect guides stable, persistent, crystallographic nucleation and growth of
multiple micro-cracks in abundant poor-deformability microstructures. The
structure helps the cracks avoid catastrophic growth and percolation, due to a
hierarchical buffering by adjacent dynamic strain-hardened features. Our self-
buffering herringbone material yields an ultrahigh uniform tensile elongation
(~509%0), three times that of conventional non-buffering EHEAS, without sacrificing

strength.
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Cracks occur in materials if loads cannot be fully dissipated by elastic-plastic work,
exposing human lives to risk of failure and integrity loss of safety-critical components
(1-6). Some hierarchical composites, such as high-toughness bone (3), feature excellent
crack tolerance, but they usually cannot withstand high elongations due to the lack of
conventional lattice defects to bear tensile deformation (1-3). By contrast, tolerating
cracks in human-engineered formable materials is counterintuitive as extensive cracks
tend to trigger the premature failure (6). More specifically, these cracks are generally
initiated from the localized severe plastic deformation, and their propagation cannot be
effectively buffered and arrested (5-8). This situation is due to the fact that the locally-
deformed microstructures are usually not characterized by sufficiently sustainable
strain-hardening capability used to relieve locally high stresses at the propagating tips
of cracks (1-4). So even though some ductile metallic composites exhibit crack
tolerance, only limited additional tensile ductility can be achieved (5-11). Overall, in
human-made materials the total elongation in conjunction with crack tolerance is
usually not as high as we would expect (5-11). We show that the conflict between
extensive crack generation and high uniform elongation can be broken in eutectic high-
entropy alloys (EHEAS). EHEAs are a family of recently developed multi-principal-
element lamellar composites (12-15). We demonstrate that in EHEASs a herringbone-
like hierarchical eutectic microstructure design tends to generate a high density of cracks
upon tensile deformation. However, the hierarchical crack buffering prevents them from
growing and percolating catastrophically across a huge straining range of ~25%.

Consequently, such a high density of cracks is not detrimental to the elongation, but
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instead can serve as an effective strategy to compensate for the limited tensile ductility
of the poor-deformability lamellae. This renders ultrahigh isostrain forming conditions
among adjacent lamellae with different deformability, thus achieving a surprisingly high
uniform elongation of ~50%. This value is three times that of conventional EHEAS

without this type of crack tolerance.

We studied two as-cast AljgFeCoxNisy (at.%) EHEAs (15) fabricated by
conventional casting and directional solidification (DS), respectively. The
conventionally-cast EHEA served as the reference material and exhibited a typical
lamellar microstructure (Fig. 1A) formed during a eutectic transformation (14). The
structure is comprised of L1, (soft ordered face-centered-cubic) and B2 (hard ordered
body-centered-cubic) dual-phase lamellae with varying growth directions in different
near-equiaxed grains (Fig. 1B, C). The directionally-solidified EHEA displays a
directionally-grown microstructure (Fig. 1D). It consists of columnar grains aligned
along the DS direction (Fig. 1E). They contain aligned (grain center) and branched (rims
of the grains) eutectic colonies, both of which comprise soft L1, and hard B2 lamellae
with nano-indentation hardness of ~4.2 GPa and ~5.6 GPa, respectively (Fig. 1E).
Lamellae consisting of aligned eutectic colonies (AEC, accounting for ~33 vol.%)
generally grow along the DS direction, whereas lamellae comprising branched eutectic
colonies (BEC, 67 vol.%) are inclined at 30~60 degrees to the DS direction, and have a
more branched morphology. With these features the directionally-solidified EHEA
assumes a new type of hierarchically-arranged herringbone microstructure (Fig. 1F).

We show that this bone-like structure is formed by the directional growth of cellular
4/ 31
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solid-liquid interfaces along the DS direction (16-21). The lamellae of both colonies
grow perpendicular to the cellular interfaces (Fig. 11 and fig. S1). We did not detect any
precipitates or other phases in the dual-phase lamellae by selected-area-electron
diffraction patterns and high-resolution high-angle annular dark-field scanning
transmission-electron microscopy (HAADF-STEM, Fig. 1G and fig. S1). We confirmed
this observation with synchrotron high-energy X-ray diffraction (SHE-XRD, Fig. 1H).
Our HAADF-STEM energy-dispersive spectroscopy analysis shows that the DS process
has a negligible effect on the chemical composition distribution of the eutectic lamellae
(fig. S2). We also obtained three-dimensional stereographic microstructure images of
the two as-cast EHEAs (fig. S3). The average width of the columnar grains and its L1,-
phase content are ~54 um and ~59 vol.% in the directionally-solidified EHEA,
respectively. Both values are slightly larger than in the conventionally-cast reference
EHEA (grain size ~48 um and L1,-phase content ~55 vol.%). These two discrepancies
are due to the slower cooling rate of the molten EHEA during DS compared to the
condition that during transient solidification when preparing the reference EHEA. The
eutectic lamellar spacing of the reference EHEA is ~2.1 um, which is smaller than that
of the AEC (~2.8 um) and the BEC (mainly varying in the range 3~8 um). Variable
lamellar spacing in the BEC results in significant hardness fluctuations (192~247 HV)

compared to the AEC (263 = 10 HV).

We observed a remarkable ductility improvement, quantified from engineering stress-
strain curves (Fig. 2A), of the directionally-solidified compared to the conventionally-

cast reference material. The uniform elongation tripled, increasing from ~16% for the
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reference EHEA to ~50% for the directionally-solidified EHEA. Additionally, the
directionally-solidified EHEA has a ~150-MPa higher vyield strength than the
conventionally-cast EHEA. Although the directionally-solidified EHEA has a high
content of hard, low-ductility B2 phase (~41 vol.%) (15, 22, 23), it nonetheless exhibits
a large uniform elongation of ~50%. Its elongation is comparable to that of widely-
studied, high-ductility, and fully homogenized face-centered-cubic high-entropy alloys
(HEAS) (24-27). The resulting strength—ductility combination, and especially the
uniform ductility, in the directionally-solidified EHEA outperforms that of any other as-

cast eutectic and near-eutectic HEAs (14, 15, 19, 20, 22, 23, 28-33) (Fig. 2B).

We attribute the gain in ductility of the directionally-solidified material to its
hierarchical herringbone microstructure and the effect that this structure has on crack
buffering, as we revealed with detailed characterizations of the deformation and fracture
mechanisms (Fig. 3). The post-fractured specimen surface of the EHEA, which we
characterized by scanning-electron microscopy (SEM), shows a large number of micro-
cracks (Fig. 3H). The micro-crack density is as large as ~8 x 10* mm2 in the AEC, and
the micro-crack spacing is as small as ~0.83 um in some B2 lamellae of the AEC. We
do not find the otherwise typical large secondary cracks that are observed in
conventional as-cast materials (5) (fig. S5). The micro-cracks we observed are mainly
distributed in the hard B2 lamellae of the AEC (Fig. 3H), yet they seem to have ultrahigh
stability. The cracks remain strictly confined in the individual B2 phase where they
formed, and no crack percolation into neighboring B2 lamellae occurs. This applies even

in B2 regions with multiple micro-cracks that are separated by only a single L1, lamella
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(Fig. 3H). Interestingly, we detected high micro-crack populations already at early and
medium strains of up to ~25% (Fig. 3J). Considering the ~50% total ductility, the
material features a capability to withstand ~25% more straining after the onset of the
first massive crack initiation at modest strains. In this deformation regime, no crack
percolation or catastrophic failure event occur irrespective of the extreme abundance of
micro-cracks (Fig. 3E—H). This observation substantiates our claim that this alloy has

extreme crack tolerance and a crack-mediated ductility reserve of ~25%.

To further verify the exceptional crack tolerance, we evaluated the fracture resistance
of the directionally-solidified herringbone EHEA by measuring J-integral-based R-
curves—J as a function of the stable crack extension, Aa—using single-edge bend
specimens in accordance with the ASTM Standard E1820 (34). The crack-resistance (R-
curve) behavior (fig. S6A) displays a surprisingly high crack-initiation fracture
toughness Ji., determined essentially at Aa — 0, of ~318 kJ/m?, and a crack-growth
toughness Jss of ~430 kJ/m? at a valid crack extension Aa of ~1 mm. These toughness
values are over 2 times higher than those in the conventionally-cast EHEA (fig. S6A).
These fracture properties are comparable with those of high-toughness gradient-
structured materials reported recently (35). Thus, these trends demonstrate extreme

crack resistance and damage tolerance of the herringbone EHEA.

To illuminate the underlying mechanisms responsible for the extraordinary crack
tolerance, we characterized the dynamic micro-crack evolution in the directionally-

solidified herringbone structure (Fig. 3E-H). We revealed an in-situ developing

7131



149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

hierarchical interplay between crystallographic micro-crack guidance and crack
blunting. We first observed the evolution of dense slip lines on the pre-polished surface
of the hard B2 lamellae (Fig. 3E). These slip lines mark regions of strong linear strain
localization, stemming from prevalent activation of the primary slip system with highest
Schmid factor (35-38). This promotes formation of micro-cracks in the B2 lamellae and
their linear crystallographic propagation along these slip lines (Fig. 3E, F). Quantitative
analysis of these micro-cracks reveals a rapid increase in crack density in this strain
stage (Stage | in Fig. 3J), which subsequently increases modestly towards near-
saturation. This behavior differs from the gradually-increasing crack density observed
in most common materials (10). Surprisingly, this rapid increase in micro-crack
population occurs in a relatively-small intermediate strain range of 25~30%. The
resulting micro-crack density is up to ~5.5 x 10* mm2, which is over twice the density
increase found in the subsequent large strain range of 30~50% (Fig. 3J). Interestingly,
these multiple cracks do not cause specimen rupture, thus revealing an impressive
tolerance of the plastically-deformed material against percolative crack expansion and

catastrophic failure.

We observed that the micro-cracks emerging in the B2 phase got arrested at the
interfaces to the alternatingly adjacent L1, lamellae of the AEC (Fig. 3F). These softer
L1, lamellae serve as soft crack buffers, that act on the tips of micro-cracks, blunt them,
and shield the associated high local stresses (10, 35, 39). Without the presence of such
alternating soft buffer layers, the cracks would have percolated forward. When the

micro-cracks have penetrated an entire B2-lamellar cross section, the neighboring soft
8/ 31
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L1, lamellae blunt the crack tips, as evidenced by their rounded shapes (10) (Fig. 3G).
Also, for triggering sample fracture, micro-cracks would not only have to cut through
the L1, lamellae and thus cut the whole AEC, but also penetrate into the adjacent BEC
zone. This means that the herringbone microstructure has two hierarchical levels that
feature crack arresting properties, namely, the alternating hard-soft (B2-L1,) phase
layers and the changing alignment of the eutectic colonies. Further three-point bending
experiments reveal that this hierarchical effect effectively blunts the crack tip and
buffers the crack propagation (fig. S8) (21), thus rendering the directionally-solidified

herringbone EHEA with concurrently excellent fracture toughness (fig. S6A) (39).

Another important effect is that during tension new micro-cracks are frequently
generated in the free intact material portions between these fully-extended cracks within
every single B2 lamella (Fig. 3G, H). This crack pattern refinement releases stress
concentrations around phase interfaces and weakens the stress intensity at the tips of

larger micro-cracks (1-6).

Thus, further growth of these fully-extended micro-cracks requires increased
mechanical loads for developing them into unstable and critical larger cracks that can
cause failure (1-3). However, the overall directional topology of the phases and
interfaces means that these micro-cracks can only grow with an alignment towards the
tensile (and not transverse) direction in the B2 lamellae of the AEC. Numerous micro-
cracks develop in such a fashion assuming stable parallelogram-like shapes (Fig. 3H).

We confirmed these experimental observations with high-resolution focused-ion-beam
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imaging (fig. S5C) and quantitative micro-crack studies (Stage Il in Fig. 3J). This stage
features a very slow increase in micro-crack density and length. But these micro-cracks
in the low-ductility B2 lamellae of the AEC exhibit a surprisingly high capacity to
accommodate their shapes and thus carry strains, as revealed by their parallelogram-like
morphology (Fig. 3H). Even in this high load regime no interface delamination cracks
are found in the herringbone structure. This effect is attributed to their semi-coherent

interface structure that can bear high shear stresses (17) (fig. S9).

By contrast, in the absence of crack tolerance, early failure occurs in the
conventionally-cast EHEA. In the directionally-solidified material, the strain tolerated
by the hierarchical herringbone structure, with its high density of cracks in the 25~50%
tensile strain regime, exceeds the overall elongation (~16%, Fig. 2A) of the
conventionally-cast EHEA. In general, the cumulative crack damage of the material’s
cross section will gradually reduce its effective load-bearing capability per unit area,
thus decreasing the apparent nominal tensile stress (6—-11). However, this trend does not

appear in the directionally-solidified material (Fig. 2A), despite its high crack density.

We investigated the microstructure in detail at the nanoscale to better understand the
crack-tolerance mechanisms. Aberration-corrected transmission-electron microscopy
(TEM, Fig. 4) shows that the directional movement of massive dislocations in the crystal
interior produces the pronounced crystallographic slip-line structures (35-38), also
visible on the pre-polished sample surfaces (Fig. 3). The deformation of the B2 lamellae

is dominated by planar slip of screw dislocations on {110}<111> slip systems, and the
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L1, lamellae show planar-dislocation slip on {111}<011> (Fig. 4A, B and fig. S10). As
deformation proceeds, the B2 lamellae undergo increasing planar-dislocation shear
(characterized by dramatically-reduced dislocation spacing at tensile strains of 10~25%,
fig. S11H). This leads to a gradual exhaustion of deformability (fig. S11E—H). The
exhausted node corresponds roughly to ~25% tensile strain, thus triggering extensive
micro-crack initiation at the low strain range of 25~30% (Fig. 3E, J) and their
crystallographic propagation along these slip lines inside the B2 lamellae (Fig. 3F, G).
In the L1, lamellae, however, we found a dynamic substructure refinement governed by
sequentially-activated multi-slip dislocation shear and microband formation (Fig. 4). At
a tensile strain of ~5%, the deformation of the L1, lamellae is at first dominated by
planar-dislocation slip evolving into a banded shear morphology (Fig. 4A). In these slip
bands, the spacing among adjacent dislocations gradually decreases from the lamellar
interior towards the lamellar interfaces (fig. S11A), thereby establishing a long-range
strain gradient (40, 41). These dislocations, piled up against the interfaces, are known
as geometrically-necessary dislocations (GNDs), creating back-stress hardening (40).
At ~15% strain, these pronounced planar dislocations evolve into well-developed slip
bands (42) (Fig. 4D). Subsequently, we observed deformation-driven refinement of slip
bands. Fresh slip bands are constantly generated in the free space between initially-
existing ones (Fig. 4E). The increasing slip-band density supports substantial dislocation
storage, accompanied by back-stress hardening. By conducting loading-unloading-
reloading experiments, we detected a back stress-dominated high kinematic

strengthening effect (holding about two-thirds of the applied stress, fig. S12) (40, 43).
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This quantitatively confirms the leading role of back-stress hardening in the L1,
lamellae at this stage. Upon further straining we observed dislocations in wavy-slip
patterns between slip bands (Fig. 4E). This suggests that dislocation cross-slip is
activated, inducing forest dislocation hardening (43) (fig. S12). At higher strains of
35~42%, we observed deformation-induced microbands that subdivide the L1, lamellae
into numerous plate-like misoriented domains (43-45) (Fig. 4C, F). Thus, these
microbands, analogous to low-angle grain boundaries (not twins, evidenced by Fig. 4F,
inset), are associated with further lamellar subdivision and refinement. This mechanism
promotes a microband-induced hardening effect, as demonstrated by the surprisingly

high strain-hardening rate (Fig. 2A, inset).

As we further discovered using low-angle annular dark-field STEM (fig. S13), this
dynamic substructure refinement favors substantial local strain hardening in the vicinity
of the incoming crack tips (3), thus turning the L1, lamellae into very efficient crack
buffer regions. This phenomenon endows the herringbone structure with excellent crack
tolerance (Fig. 3K). Besides the plastic buffering and crack blunting effect, strong strain
hardening of the L1, lamellae (Fig. 4C—F) contributes to the high load-bearing capability
of the material. This counteracts the potential softening effect caused by micro-cracks
in the B2 phase, as revealed by the fact that the material does not lose but gain tensile
strength (Fig. 2A). To provide quantitative insights into the exceptional load-bearing
capability, we performed in-situ synchrotron experiments. We observed a real-time
stress partitioning effect (46-48) between the B2 and L1, phases, based on the SHE-

XRD results (Fig. 4G). As we expected, the yielding of the L1, phase leads to stress
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relaxation and stress transfer to the hard B2 phase. This trend is known from other dual-
phase composites (46-48). Stress partitioning to hard phases usually increases
continuously until fracture (46). However, in the herringbone structure the B2 phase
bears decreasing stress after reaching a tensile strain of ~25%, whereas the L1, phase
exhibits an opposite trend with remarkable strain-hardening behavior (Fig. 4G). This
marks a gradual transfer of the load from the hard but brittle B2 phase to the initially
soft but gradually strain-hardened L1, phase. This means that the SHE-XRD probing
elucidates that the load-bearing capacity of the L1, phase increases substantially due to
dynamic substructure refinement, while that of the B2 phase decreases gradually caused
by increasing internal micro-cracking. To compensate the limited TEM-sampling area,
we also conducted 2D SHE-XRD diffraction investigations (48), covering the entire
360°-azimuthal range recorded for different planes near the point of fracture (Fig. 4H).
No new diffraction lines are detected, suggesting that the high load-bearing capability
of the herringbone structure is not caused by conventional phase transformation.
However, the diffraction lines of the B2 phase (e.g., marked by red lines) deviate
severely from their initial angle. This is caused by the huge elastic strain of the B2 phase
(up to ~5.5%, fig. S14). This observation is also revealed by the conventionally-cast

EHEA, which shows delayed dislocation shear in the B2 lamellae (fig. S15).

When further exploring the hierarchical herringbone structure and its microstructural
evolution during tensile deformation, we identified a slip-line-mediated sequential
deformation transfer from the soft BEC to the hard AEC (Fig. 3A-D) (21). This finding

reveals that the BEC features high deformability that allows compatible deformation of
13/ 31
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adjacent columnar grains (Fig. 3D). At the early deformation stage, dense dislocation
pile-up arrays against phase interfaces were observed in the L1, lamellae of the BEC
(Figs. 3A, 4A). The associated pile-up stresses are accommodated by the elastic
deformation of the plastically-less compliant B2 lamellae (Fig. 3B), thereby shielding
high stress concentrations (48), a mechanism which supports compatible co-
deformation of adjacent phases and colonies (49). The large local misorientation shown
in the kernel average misorientation (KAM) map (Fig. 31) confirms that the plastic strain
incompatibility can be well accommodated in the BEC. As the deformation progresses,
stable micro-cracks, as observed in the AEC, can also be generated in the low-ductility
B2 lamellae of the BEC, assisting its compliance (fig. S16). These mechanisms of
mechanical energy release in the adjacent phases and colonies reduce the chance of
grain-boundary decohesion or cracking (40, 49) (fig. S5B), unlike accessible in
conventionally cast EHEA. The statistically-distributed lamellar arrangements in the
differently-oriented grains cannot sustain a compatible co-deformation among them
(21). Consequently, grain-boundary cracking concomitant with mechanical instability
triggers premature failure (i.e., deteriorating tensile ductility) (fig. S17-19) and also
limits the fracture toughness level of the conventionally-cast material (40, 49) (figs. S6,

7).

Natural materials with high toughness often also comprise hard and soft components
in hierarchical layered architectures (50-52). The lamellar cortical bone, a prime
example, consists of mineralized collagen fibrils and a non-fibrillar organic matrix,

which acts as a ‘glue’ that holds the mineralized fibrils together (50-52). Healthy
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lamellar bone resists fracture through complementary intrinsic and extrinsic
contributions throughout its hierarchical structure (50, 52). The glue-mediated fibrillar
sliding mechanism, analogous to the dislocation-assisted inelastic deformation in our
herringbone EHEA, is essential to promote high plasticity (50). In both materials,
plasticity and the resultant ductility provide a major contribution to the intrinsic
toughness by dissipating energy and forming plastic zones surrounding incipient cracks,
which further serves to blunt crack tips, thereby reducing the driving force for cracking
(3, 50). The extrinsic mechanisms, such as collagen-fibre bridging and crack deflection,
act principally on the wake of cracks to reduce (shield) the local stresses/strains
experienced at crack tips and inhibit their propagation (50). These effects exhibit a
marked similarity to what we identified in our herringbone material (see Fig. 3E-H and
fig. S8). Of course, a salient characteristic of bone is its ability to remodel itself to heal
and repair damage—a trait that is difficult to replicate in our synthetic materials (50,

51).

In summary, we presented a hierarchical microstructure design approach, realized in
a directionally-solidified bulk EHEA, that allows reconciliation of crack tolerance and
high uniform elongation, features that are usually mutually exclusive in both, human-
made and biological materials. The crack tolerance is maintained over a huge range of
~25% tensile elongation and enables to triple the ductility of the material by a factor of
3 relative to conventionally solidified material, without sacrificing strength. These
proposed mechanisms exhibit practical merits in guiding a broader group of eutectic-

type cast HEA and traditional alloy development. The microstructure approach can be
15 / 31
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potentially realized also in other bulk materials consisting of hard and soft phases that
can be rendered into hierarchically organized herringbone microstructures, enabling the
design of crack-tolerant yet high-deformability materials not by avoiding cracks but by
guiding and buffering them. Furthermore, this hierarchical herringbone microstructure
design approach and the salient effect it has on crack buffering show a promising
guidance in designing not only new hierarchically-structured alloys with high

elongation but also new bone substituting biomaterials with excellent fracture toughness.
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Fig. 1. Hierarchically-arranged herringbone microstructure. (A to C)
Conventionally-cast EHEA serving here as reference material. (A) Scanning-electron
microscopy (SEM) backscattered electron image. (B) Electron back-scattering
diffraction (EBSD) phase map (left) and inverse-pole-figure (IPF) map (right). (C)
Schematic diagram. (D to I) The directionally-solidified EHEA with a hierarchical
herringbone microstructure. The black arrows in (D) and (E) indicate the DS direction,
and also the tensile loading direction in Fig. 2A. (D) SEM backscatter electron image

showing that the microstructure is composed of columnar grains. Grain boundaries are

marked by black dotted lines. (E) Enlarged EBSD phase and IPF maps showing the
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497

columnar grain consisting of AEC and BEC. Black solid and dotted lines mark grain
and colony boundaries, respectively. (F and I) Schematic diagram of herringbone
structure and its formation principle, respectively. (G) HAADF-STEM image and
related selected-area electron diffraction patterns of B2 and L1, phases. The HAADF-
STEM image shows clean dual-phase lamellae without evidence of nanoprecipitates or

other phases, which is also indicated in (F). (F) SHE-XRD of B2 and L1, phases.
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Fig. 2. Tensile response at ambient temperature. (A) Engineering stress—strain
curves of the directionally-solidified EHEA compared with the conventionally-cast
EHEA, displaying a substantial increase in uniform tensile ductility without any strength
reduction. The directionally-solidified EHEA shows no post-uniform ductility, which is
also confirmed by the absence of macroscopic necking at the fracture end in the inset of
fig. S5A. Tensile loading was performed along the DS direction. Inset, the
corresponding strain-hardening curves. MDIH and MBIH refer to multi-slip dislocation-
induced hardening and microband-induced hardening, respectively. (ey) uniform strain.
(oy) yield strength. (ours) ultimate tensile strength. (B) Yield strength versus uniform
strain of the directionally-solidified EHEAs compared with those of previously reported
as-cast eutectic and near-eutectic HEAs (14, 15, 19, 20, 22, 23, 28-33). These blue
pentagrams indicate some of our recently-designed eutectic and near-eutectic HEAS
(unpublished). (N-)EHEAs refers to eutectic and near-eutectic HEAs. The conventional
(N-)EHEAs include the directly-cast and the arc-melting eutectic and near-eutectic

HEAs.
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Fig. 3. Hierarchical crack buffering. (A to C) SEM backscattered electron images
showing sequentially-activated slip lines from soft BEC to strong AEC. The inset in (B)
shows enlarged cross-slip lines. (D) SEM image exhibiting the compatible deformation
between adjacent columnar grains and no grain-boundary cracks. Black solid and dotted
lines mark grain and colony boundaries, respectively. (E to H) Well-controlled micro-
crack evolution in the AEC. These (upper) enlarged and (lower) colored insets illustrate
dynamic micro-crack evolution. (I) EBSD-based image quality (1Q) and 1Q with kernel
average misorientation (KAM) maps. The KAM is calculated up to the fifth neighbour

shell with a maximum misorientation angle of 5°, which is indicative of the deformation
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524 degree. (J) The evolution of micro-crack length, micro-crack density, and compensated
525 strain in the AEC. Stages I-I11 correspond to tensile strains of 25-30%, 30%—-40%, and

526 40%-50%. The error bars are standard deviations of the mean. (K) Schematic diagram.
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Fig. 4. Microstructural and micromechanical observations of load bearing
response for L1, lamellae. (A and B) Planar-slip dislocations in L1, and B2 lamellae,
respectively. (C) Deformation-induced microbands in L1, lamellae. The inset exhibits
clearer microband structure. (D and E) Dynamic slip band refinement (D and Upper E
shown by HAADF-STEM) and fresh slip bands and cross-slip dislocations marked by
red lines and yellow arrows, respectively (Under E). (F) Deformation-induced
microbands. The ring-like selected-area electron diffraction pattern (inset) suggests that
these microbands are similar to low-angle grain boundaries (rather than mechanical

twins). The beam directions are [011] in (A, D and E) and [001] in (B). g indicates the
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541

direction of the diffraction vector. (eg) tensile strain. (G) Real-time stress partitioning
of B2 and L1, phases (i.e., os2 and o1.12) during tensile loading (21). (H) Selected 2D X-
ray diffraction images along the full azimuthal angle n (0°-360°) at tensile strain of
~48%. Note that 90° and 180° correspond to the loading direction (LD) and transverse

direction (TD), respectively.
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