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Abstract—In this paper, the challenges and a future vision 
of the cyber-physical security of photovoltaic (PV) systems are 
discussed from a firmware, network, PV converter controls, 
and grid security perspective. The vulnerabilities of PV sys-
tems are investigated under a variety of cyber-attacks, ranging 
from data integrity attacks to software-based attacks. A success 
rate metric is designed to evaluate the impact and facilitate 
decision making. Model-based and data-driven methods for 
threat detection and mitigation are summarized. In addition, the 
blockchain technology that addresses cyber-attacks in software 
and cyber networks is described. Simulation and experimental 
results that show the impact of cyber-attacks at the converter 
(device) and grid (system) levels are presented. Finally, potential 
research opportunities are discussed for next-generation, cyber-
secure power electronics systems. These opportunities include 
multi-scale controllability, self-/event-triggering control, artificial 
intelligence/machine learning, hot patching, and online security. 
As of today, this study will be one of the few comprehensive 
studies in this emerging and fast-growing area. 
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I. INTRODUCTION 

As the move towards smart grids and microgrids accelerates, 
protecting renewable energy assets, such as photovoltaic (PV) 
systems, against cyber-physical attacks and ensuring their 
security is becoming crucial to electric power grid reliability. 
To address the increasing cyber-security challenges associated 
with power electronics systems, the IEEE Power Electronics 
Society (PELS) has established a new Technical Committee 
on Design Methodologies. Existing studies on smart grid 
cybersecurity mostly focus on cyberattacks that impact grid 
reliability and availability rather than power electronics sub-
systems’ performance and behavior. 

This trend is due to the increasing penetration of the Internet-
of-Things (IoT) enabled applications, such as connected 
Electric Vehicles (EVs) [1] and smart grids [2]. PV systems 
are differentiated from EVs and smart grid systems in terms 
of power levels (kWs to GWs), penetration levels, and the 
tight integration with many interfaces to the grid via grid-
tied PV inverters and multiple sensors and communication 
hardware. PV systems are inherently intermittent, which leads 
to special challenges to determine “normal” vs. compromised 
behavior; thus, cybersecurity algorithms must be more carefully 
constructed and customized to detect attacks. It is easier for the 
attacker to hide in this more random signal environment. For in-
stance, EV cybersecurity is best addressed through segmenting 
systems such as infotainment from vehicle operations, whereas 
PV cybersecurity and smart grids depend on communications 
to determine operational settings and control [2]. To contrast 
PV systems from the broader issue of smart grid cybersecurity, 
PV cybersecurity will focus on device-level through grid-
level interactions, including communications, grid controls, 
and power conversion [2], whereas smart grid cybersecurity 
activities focus primarily on microgrid controllers and digital 
grid control and sensing. PV cybersecurity is a component of 
smart grid security that contributes to overall grid security. At 
the heart of PV systems is the power conversion device known 
as the PV solar inverter, a smart power electronics system that 
is responsible for interfacing with the grid. 
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Power electronics systems are becoming increasingly vul-
nerable to a variety of cyber threats, ranging from data 
integrity attacks (DIA) to denial of service (DOS) attacks. 
In addition, with the increasing number of distributed energy 
resources (DERs), such as PV and wind assets, along with their 
associated communication and smart technologies, the cyber-
physical security of these renewable assets requires immediate 
attention [3], [4]. In a power electronics-based smart grid 
(PESG), grid-tied converters are remotely controlled by a 
plant controller and a supervisory control and data acquisition 
(SCADA) via power line communication (PLC), optical fiber, 
or wireless communications such as Zigbee, cellular (3G), and 
LTE (4G) [5], [6]. These communications and remote control 
capabilities will inevitably expand the cyber-attack surfaces, 
hence making PESGs vulnerable to cyber-physical attacks. 
These attacks include but are not limited to DIA and DOS. In 
addition, PESGs are susceptible to faults and degradation, such 
as power electronics device failures in open and-short circuit 
mode and passive component (e.g., capacitors) degradation. 

As DER components’ performance degrades over time, it 
can lead to abnormal PESG operating conditions, such as 
reactive power output imbalance, irregular power flow, and 
grid instabilities, such as sub-synchronous resonance, which 
might eventually cause the main grid to collapse or blackout. 
Recently, several operational issues due to improper firmware 
upgrades of PV solar plants have attracted increasing attention 
[7]. These operational issues resulted in abnormal inverter 
operations and faults. Examples include over and under voltage, 
volt/volt ampere reactive fluctuation, and unexpected power 
factor adjustments. In addition, networked power electronics 
systems are vulnerable to hacking from coordinated botnet 
via malicious software/process or via backdoor attacks in 
any of their compromised devices. For many safety-critical 
applications, if these threats are not detected at an early stage, 
they can lead to catastrophic failures and substantial economic 
losses. 

In recent years, smart grid cyber-physical security has been 
extensively studied. In a recent study [2], security challenges 
and vulnerabilities in the control of grid-tied voltage source 
converters (VSCs) were discussed. Typical cyber-attacks that 
affect the operation of VSCs in microgrids, high-voltage DC 
(HVDC), static synchronous compensators (STATCOM), etc., 
are described in [2]. Cyber-attack assessment is discussed 
in [8], [9]. In [8], J. Zhang et al. proposed an assessment 
methodology for the cyber-attacks in a PESG. The proposed 
method uses attack scenarios such as DIAs to analyze their 
impacts on the stability and performance of smart grids. In 
[9], J. Zhang et al. analyzed the vulnerabilities in a PV farm 
and proposed machine learning and deep learning methods to 
detect cyber-attacks. Cyber-attack detection and diagnostics are 
discussed in [10]–[14]. [10] proposes a framework for the false-
data injection attacks in a DC microgrid, in which invariants 
representing microgrid properties are extracted to detect cyber-
attacks. [11] analyzes stealthly cyberattack mechanisms in 
DC microgrids and introduces a cooperative vulnerability 
factor based on the dynamic consensus algorithm in secondary 
controllers to detect cyber events. In [12], a novel high-
dimensional data-driven method is used to detect cyberattacks 

and faults in electric power grids using a statistical leverage 
score and binary matrix factorization. [13] proposes a multilayer 
long short-term memory (LSTM) method to detect cyber threats 
in PV farms using point of common coupling (PCC) waveform 
data. [14] proposes an active detection method of deception 
attacks in microgrids. Attack-resilient controls are discussed in 
[15]–[17]. Considering the principle of heterogeneity raised 
by different types of sources, a novel resilient detection and 
mitigation methodology employing adaptive discord element is 
proposed for dc microgrids in [15]. [16] introduces a resilient 
control framework to deal with unbounded malicious attacks in 
electric power grids to ensure frequency and voltage stability. 
In [17], a time-delay recovery communication protocol is 
developed and simulation results demonstrate the efficacy of the 
method in multiarea frequency control of electric power grids. 
A cyberattack to PV systems that could falsify power generation 
by spoofing sensor data of the PV inverter is studied in [18]. Y. 
Isozaki et al. showed the impacts of cyber-attacks on the output 
power of PV farms in the distribution grid [19]. In addition to 
the emerging topic in the cyber-physical security of PV, the 
reliability and anomaly detection of PVs have been studied for 
many years. P. Zhang et al. presented a comprehensive review 
of the reliability assessment methods for power converters that 
includes capacitor aging, switching devices fault modes, and 
control firmware malfunction [20]. U. Jahn et al. proposed a 
reliability model to evaluate the performance of PV farms [21]. 
A. Golnas discussed the long-term performance of PV from 
the perspective of system operators [22]. To increase the fault 
detection accuracy, D. S. Pillai et al. summarized the advanced 
fault detection approaches for PV farms [23]. Although the 
cited literature work provides the technical foundation for PV 
farms cyber-security, their applicability is limited since cyber-
attack impacts and surfaces are far more complex, so further 
studies are needed. There remain several major issues to be 
addressed and studied in detail: (1) Comprehensive cyber-attack 
models need to be developed to include cyber-attacks from 
different sources and locations, including firmware and network 
layers. (2) Existing detection and mitigation strategies mostly 
focus on cyber-attacks that adversely impact the functionality, 
stability, or maintenance cost of grid systems. (3) Cyber-attacks 
that compromise the performance of power electronics systems 
are not well addressed. 

This paper describes the challenges, and proposes a cyber-
physical security vision for a MW-scale PV farm. As of today, 
this study may be one of the few comprehensive studies in 
this emerging and fast-growing area. The main contributions 
of this paper are as follows: 

• PV systems’ cyber-physical security aspects: firmware 
and network, PV converter control, and grid security. 

• PV systems’ vulnerabilities investigations under a variety 
of cyber-attacks, ranging from data integrity to software-
based attacks. A success rate metric is designed to evaluate 
the impact and facilitate decision making. Simulation and 
experimental results are provided to further analyze the 
cyber-attack impacts on both the converter (device) and 
grid (system) levels. 

• Model-based and data-driven methods to detect and 
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Fig. 1: A typical PV plant block diagram. 

mitigate cyber-attacks in PV farms. 
• A blockchain algorithm to address cyber-attacks in soft-

ware and cyber networks. 
• Challenges and opportunities in designing next-generation 

cyber-secure power electronics systems, to provide readers 
with guidelines on future research directions. 

II. CYBER-PHYSICAL SECURITY IN PV FARMS 

A. Cyber-Physical Security in PV farms 

1) PV Farm Description: Figure 1 shows a typical PV 
array consisting of PV modules, a PV inverter, monitoring 
and diagnostics platform, and a utility meter. The PV array is 
connected to the grid and/or feeds AC loads via a grid-tied 
inverter. The grid-tied inverter performs maximum power point 
tracking (MPPT) on the overall PV array I/V characteristics 
and ensures that maximum power is extracted under various 
irradiance and temperature conditions. There are several MPPT 
algorithms that are used in commercial inverters [24]. When 
combined with battery energy storage systems, PV plants are 
used to charge the batteries during the day to dispatch it later. 
For solar-plus-storage plants, the ramp rate is the common 
algorithm that is used for energy management [25], [26]. 

A monitoring/diagnostic platform that acquires measurement 
data from various sensors that are deployed across the PV 
plant (e.g., module temperature, weather-related data, irradiance, 
power and energy data, and voltages and currents) is used to 
monitor the plant performance and diagnose any degradation, 
outages, and failures that might impact the plant reliability 
and availability. There are various levels of monitoring and 
diagnostics (M&D), granularity ranging from module, to 
inverter, to the plant level [27]. Data are acquired via a 
communication link between the PV array, the inverter, and the 
grid. A utility meter (for residential and commercial customers) 
tracks total energy production. With the increasing integration 
of large-scale PV farms into the power grid, the control 
methodologies and smart inverters allow PV farms to realize 
grid support services and respond to customer demand. 

2) Cyber-Physical Security of PV farm: Cyber-physical 
attack points are identified as depicted in Figure 2. 
• Attack number 1 is an actual physical attack on the 

hardware, such as tampering with the hardware (e.g., 
PV modules, combiner boxes, cables, inverters). The 
most prominent attacks that happened recently involve the 

Fig. 2: PV plant potential cyber-attack points: i) physical, 
ii) inverter controller and algorithm, iii) supply chain, iv) 
monitoring and diagnostics platform, and v) grid. 

stealing and the removal of PV modules for the purpose 
of reselling them [28], [29]. 

• Attack number 2 is an attack on the inverter controller 
and algorithms, and on the plant supervisory system 
(e.g., accessing and modifying the inverter controller 
software, accessing the unit controller to either shut down 
the plant or cause damage). Attacks on the PV inverter 
controls can occur at any moment through either the PV 
plant monitoring and diagnostics system, internet-enabled 
communications, or through the plant controller. 

• Attack number 3 represents attacks that propagate through-
out the supply chain (e.g., faulty electronic components, 
subpar analog, or digital parts). PV inverters are so-
phisticated electronics devices that use several advanced 
electronic components, such as a digital signal processor, 
micro controllers, and smart ASICs. These components 
can harbor malicious software that will corrupt inverter 
operation and cause it to fail. 

• Attack number 4 targets the monitoring and diagnostics 
platform (e.g., data injection to mislead the operator, replay 
attack to mimic previous system operation, data integrity 
to falsify the sensor measurements). This type of attack is 
made possible by the increasing digitization of PV systems 
and the use of the IoT devices to communicate, send, and 
collect data from the PV plant. Increasingly, many inverter 
companies are prioritizing cybersecurity and are hardening 
their products [30], [31]. They are also providing end-
to-end encryption of all information sent between their 
devices in the field as well as to their communication 
gateways and interfaces with the customer. 

• Attack number 5 attacks are those that are directed at 
the grid and have the potential to significantly impact 
the plant operation and its overall safety (e.g., falsifying 
energy demand, disconnecting the grid from the plant). 
This attack is similar to attack number 2, but it propagates 
through the grid. Hackers can disconnect PV inverters 
from the grid by tripping the breakers or by inducing 
low-voltage, high-voltage, or zero-voltage conditions. 
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B. Cyber-attack Model in PV Converter 

Information technology (IT) cyber threats to confidentiality, 
integrity, and availability [32], [33], have been extensively 
studied. Similar to other cyber-physical systems, such as electric 
power grids and EVs, PV systems are vulnerable to similar 
cyber threats, including DIAs, DOS attacks, replay attacks, and 
stealthy attacks [1], [34]. In addition, an attack could falsify 
the power output of a PV converter by spoofing sensor data 
[18]. 

A typical PV converter and associated vulnerabilities 
are shown in Figure 3. The measured data from sensors 
and power control reference are expressed as Y (t) = 
[Idc(t), Udc(t), If (t), Uc(t), Ig(t)]

T , S(t) = [P ∗(t), Q∗(t)]T . 
Where If is the inverter filter-side inductor current; Uc is the 
filter capacitor voltage; and Ig is the grid side current. Idc is 
the PV array output current. Udc is the DC-link voltage. The 
cyber-attack model can be expressed as follows: 

Y (t) = α ∗ YF (t) + β ∗ Y0(t − tdelay ) 
(1)

S(t) = γ ∗ SF (t) + φ ∗ S0(t − tdelay) 

where Y, S are the compromised data vectors that are eventually 
the input to the power converter controller; Y0, S0 are the 
original measurements; YF , SF are the biased vectors, which 
can be independent or a function of Y0; α and γ are 
multiplicative factor matrices that define the weight of the 
attack vectors; β and φ are multiplicative factor matrices that 
define the weight of the real vectors; and tdelay is the time 
delay that is inherent in communication systems and/or caused 
by cyber-attacks. In this definition, α is the multiplicative factor 
matrix, and it can be expressed as an 11 × 11 matrix: 

α = diag [αipv, αudc, αil1×3 , αuc1×3 , αig1×3 ]. (2) 

where, β, γ, φ could be formed based on the definition of α. 
The attack duration is denoted as ta = [ts, te], where ts and 
te represent the start and end time of the attack. Typical cyber-
attacks are described as follows. To exhibit and analyze the 
impact of cyber-attacks on a PV farm, seven sets of two-stage 
PV inverters are simulated in an Opal-RTr real-time test bed. 
Opal-RT is used for control algorithm validation. MATLABr 

has been integrated with Opal-RT using the software module 
RT-LABTM within Opal-RT. To achieve real-time simulation, 
C code generated by RT-LAB is executed on OPAL-RT to 

simulate the dynamic performance of the power electronics 
components. Detailed information on the testbed and PV farm 
are shown in Tables I and II, respectively. 

TABLE I: PV inverter parameters 

Rated Power 125 kW DC-Link voltage 1500 V 
Lf ilter 3.5 mH Lgrid 1.8 mH 
Cf ilter 7.2 µF Grid Voltage 480 V 

1) Data Integrity Attack: DIAs can directly falsify measure-
ments of the sensor or power references [9]. Considering the 
attack model in equation (1), the multiplicative factors β and φ 
determine the scaling attack impact on the PV farm [36]. Notice 
that the strength of the cyber-attacks could vary owing to the 
elements in the attack vector [α, β]. As shown in Figure 4, 
both single- and three-phase DIAs on the inverter filter-side 
inductor current, If , beginning at the 15s time instant, affect 
the operation of PV Converter #1 (PV #1). Afterwards, the 
same disturbance at the power generation level of the PV farm 
appears under single- and three-phase DIAs. Compared to the 
unbalanced current injected by a single-phase attack shown in 
Figure 4(a, b), a three-phase DIA exerts a more serious impact 
on inverter side current and the capacitor voltage of PV #1. As 
shown in Figure 4(c), the output currents’ frequency at the PCC 
is affected due to DIAs, which attests to the strength of two 
DIAs. Based on the PCC voltage waveform, the two attacks 
have a similar influence on the PCC voltage—the PCC voltage 
frequency shows an obvious difference between the single- and 
three-phase DIAs, as shown in Figure 4(c). Compared to the 
distortion of the PCC current, the DIAs’ impact on the PCC 
voltage is more limited. 

2) DOS Attack: A DOS attack is a typical IT attack that 
shuts down the network by overwhelming it with traffic [37]. 
This type of attack makes the sensor measurements or the power 
references inaccessible. DOS attacks work by compromising a 
PV plant sensor and delaying the measurement data so that the 
plant controller cannot acquire the PV inverter feedback at the 
appropriate time. Figure 5(a) shows the effects of a DOS attack 
on the inverter filter-side inductor current, If , of PV #1,—its 
delay time is increased by 0.11s. The disturbance appears in 
the PV output current, filter capacitor voltage, and PV power 
output after 15s of the onset of the attack. Although there is 
no obvious variation in the magnitude of the PCC voltage, the 
frequency of the PCC current and voltage exhibits a discernible 
difference when compared to the normal condition, as shown in 
Figure 5(c). Compared with DIAs, there is a different frequency 
pattern of PCC current and voltage under DOS attack. 

3) Replay Attack: Replay attacks, also called playback 
attacks, repeat, or delay the sensor data or control command 
to the PV farm [38]. First, the hackers save the data in the 
communication network and then maliciously falsify sensor 
data by re-injecting the saved data. This attack cannot be 
detected by only monitoring the sensor data or by control 
command, but it can disturb or damage the PV farm operation. 
Replay attacks can be modeled as in equation (1) by substituting 
Y (t) and S(t) with the previously saved data by the hackers. 
The impact of a replay attack on PV #1 and the PV farm 
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(a) (b) (c)

Single-Phase DIA

Three-Phase DIA

Normal Attack Normal Attack

Fig. 4: DIAs’ impact on PV Converter #1 (PV #1) and PV farm [35]. 

(a) (b) (c)

DOS Attack

Replay Attack

Normal Attack Normal Attack

Fig. 5: Impact of DOS attack and replay attack on PV Converter #1 and PV farm [35]. 

TABLE II: OPAL-RT OP5700 Specifications 

CPU Intel(R) Xeon E5, 8 cores, 3.2 GHz, 
20M Cache 

Installed Memory (RAM) 8.0 GB 
Motherboard X10DRL-I Supermicro Motherboard 

Dual Intel Xeon Processor 

are shown in Figure 5(b, c). The mismatch between the 
saved data and the real measurements degrades the controller 
performance of PV converter #1. As with DIA and DOS 
attacks, the frequency of the PCC voltage and current shows an 
obvious variation during the attack time. After a replay attack 
is implemented at the 15s time instant, a slow change in the 
PV power output is observed, which is a unique feature for 
this type of attack. 

4) Stealthy Attack: A stealthy attack depends on the skill 
and professional knowledge of the hacker. An attacker could 
constantly generate a negative impact on the PV system 
operation while being undetected. This type of attack could 
be more destructive to power electronics-based systems than 
traditional power systems, by taking advantage of their low-
inertia property; hence, an attacker can cause more harm to 
a power electronics-based system while momentarily staying 
undetected. C. Zhao et al. provided the analysis of stealthy 
attacks in a smart grid under a well-developed consensus-based 
protocol [39]. M. Esmalifalak et al. proposed two machine 
learning methodologies for the detection of stealthy attacks in 
a power grid [40]. The time it takes to detect stealthy attacks 
on control systems highly depends on the complexity of the 

Fig. 6: Cases of MITM attack in a PV system that modify 
in-transit data from cloud platforms. 

attack stemming from the attackers’ knowledge of a power 
system model. S. Harshbarger et al. provide an analysis on how 
uncertainty in the power grid model may impact the detection 
of stealthy attacks [41]. 

C. Network and Software/Firmware Security in PV Farm 

The cybersecurity of PV systems still relies on network-
based security postures, such as firewall rules, authentication of 
users, and the encryption of communication-based on transport 
layer security (TLS) [42], [43]; however, security entails a 
much larger scope than current network-based security methods. 
Encryption only ensures that the encrypted data cannot be 
understood; therefore, encrypted spoofed messages/malware 
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easily bypass firewalls. Furthermore, current field network 
protocols (e.g., Modbus TCP/RTU and SunSpec Modbus) 
in PV farms have no or weak security measures. Moreover, 
human risks always exist, which threatens users’ passwords 
and malware installations [44]. Attackers use the exposed 
vulnerabilities of PV systems. A typical network attack is 
a (D)DoS attack attempting to disrupt a network rendering the 
controller unavailable to receive data or commands. Attackers 
in these types of attacks typically flood web servers, systems 
or networks with traffic that overwhelms target networks with 
bogus traffic, making it difficult for victim inverters or a PV 
system control server to operate normally [45]. As described 
in Section II.B, the external control commands, S(t), and PV 
system sensor data delivered to the inverter controller through 
communications (i.e., in-transit data) could be modified by 
network attacks, such as man-in-the-middle (MITM) attacks 
[46]–[48]. Fig. 6 shows three potential MITM attack cases that 
can change in-transit data in a PV system [49]: 1) a wide-area 
network (WAN) MITM, 2) an unauthorized device MITM; and 
3) an authorized device MITM. WAN MITM attacks could 
be caused by a third party, such as a virtual private network 
(VPN) provider, a domain name server (DNS), or an internet 
service provider (ISP)). Since the security of the third party is 
outside the security perimeter of the PV system, it is hard to 
validate data passed by the malicious third party or breached 
third party by attackers. Although people consider that TLS 
is currently secure, advanced attacks such as TLS harvesting 
can break TLS (e.g., stealing session key logs). Second, an 
unauthorized MITM device will be physically located and 
connected to the local area network (LAN). Field network 
protocols without strong authentication and encryption are 
vulnerable to this type of MITM attack. Note that most MITM 
attack detection in PV systems applied this attack scenario. 
Due to the malware injection attacks, the authorized devices 
can be a MITM attack devices. As shown in Fig. 6, a site data 
manager is an aggregator and a gateway in a PV system acting 
as a major middleman between the inverters and the cloud. 
The encrypted TLS data are decrypted and converted to the 
local network protocols such as Modbus TCP in the site data 
manager; therefore, a malicious site data manager can easily 
make MITM attacks although this device is authenticated and 
authorized in the current PV system security perimeter such as 
firewall rules and encryption-based security controls. Although, 
the site data manager will be a critical target device from the 
attacker’s perspective, compromised inverters or operational 
technology network devices can also create MITM attacks. 
Attackers also exploit software/firmware update events to create 
cyber-attacks [50], which can directly or indirectly target the 
inverter controller, as described in Section II.B. The attack 
surface of software/firmware in a solar farm control center 
and smart inverters includes three major attack points [51]: 
1) Remote vendor access via the regular software update and 
maintenance; 2) Operator access via a remote user interface; 
and 3) Physical access via USB flash drives or LAN or reverse 
engineering/side-channel attacks. Advanced attackers such as 
advanced persistent threat (APT) groups [52] and insider threats 
(e.g., disgruntled employees or malicious insiders [53]) can 
disguise as vendors or authorized users to modify software or 

Fig. 7: A cyber kill chain model. 

inject malware (e.g., backdoor, Trojan horses, viruses, worms, 
ransomware, and rootkits [54]). Attackers who can access the 
inverter ’firmware enable’ function can modify the behavior of 
the inverter and lead to malfunction or performance degradation 
(i.e., stealthy attacks that avoid being detected by intrusion 
detection systems (IDSs)). For example, the sensor matrix, Y(t), 
which is generated by embedded sensors in the inverter, can 
be altered by injecting malicious code in the inverter firmware 
through flash memory data modification in an inverter control 
card [55] or over-the-air update [51]. The software/firmware 
and in-transit data modifications will occur once the chains of 
cyber-attacks are successful. Examples of such cyber-attacks 
are: malware backdoor injection through the supply chain [56], 
eavesdropping for snipping credential data, spoofing through 
security certificates to gain unauthorized access, least-privilege 
violations to access unauthorized services, and brute-force 
credentials and side-channel attacks to guess the password 
or a security key [57]. Additional information on adversarial 
tactics and techniques based on real-world attacks is found in 
MITRE’s ATT&CK for Industrial Control Systems (ICS) [58]. 

Fig. 7 illustrates a scenario of a firmware attack targeting to 
disrupt a PV inverter, where the cyber kill chain (CKC) model is 
designed based on ATT&CK for ICS framework. An adversary 
is trying to access a platform information technology (PIT) 
system (e.g., a vendor providing firmware update server) by 
using the supply chain of software developed by a 3rd vendor 
or old employee’s weak passwords, or a VPN password leakage 
(1. Initial Access). A backdoor malware is installed in the server 
(2. Execution). The adversary is trying to maintain foothold to 
continuously access and explore the server (3. Persistence). The 
adversary is trying to gain higher-level permission (4. Privilege 
Escalation). Adversaries may use masquerading to disguise a 
malicious code/modification in the firmware to be updated to 
avoid operator and engineer suspicion (5. Evasion). Afterwards, 
the field side PV system information in the PIT is gathered by 
the adversary (6. Discovery). The adversary can freely access 
the solar farm via valid remote access pathways (7. Lateral 
Movement). The adversary is trying to gather data on the 
solar farm domain (8. Collection). The adversary is trying to 
communicate with and control a target PV inverter through the 
authorized command and control channel (9. Command and 
Control). The adversary activates the firmware update mode and 
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disables the monitoring and alarm functions on the inverter (10. 
Inhibit Response Function). The malicious firmware is updated 
to manipulate the inverter (11. Impair Process Control). Finally, 
the adversary is trying to manipulate, interrupt, or destroy the 
inverter (12. Impact). 

III. CYBER-PHYSICAL SECURITY ASSESSMENT IN 
PHOTOVOLTAIC FARMS 

In this section, the cyber-physical security assessment in PV 
farms is introduced with real-world case studies. Furthermore, 
a success rate metric is proposed for cyber-attack assessments 
in PV farms. 

A. Attack Consequences and Assessment for PV Farm 

A key part of a cybersecurity evaluation is to assess the 
impact of a cyber-attack, on the equipment, services, and plant 
mission. The consequences of such attacks directly affect the 
attacked assets and propagate through mission and system 
dependencies. Previous efforts have been focused on proposing 
and devising methods for quantifying the impact of cyber-
attacks. As an example, Jakobson [59] proposed a four steps 
conceptual framework and a method for assessing the impact 
that cyber-attacks have on a given asset. These four steps 
are: 1) Attack Point Detection, which identifies the exact 
target of an attack and the vulnerabilities it may exploit. 2) 
Direct Cyber-Attack Impact Assessment, which determines 
the direct impact of the cyber-attack on the asset that it is 
targeting. 3) Propagation of the Cyber-Attack throughout the 
system dependencies. 4) Impact Assessment on the high-level 
missions based on asset dependency relationships derived by 
the logical mission models. Giani et al. proposed, analyzed, 
and quantified metrics for assessment of data integrity attacks 
on the smart grid [60]. These are a class of cyber-attacks that 
compromise grid information that is processed by grid operators. 
The latter may include energy meter readings of injected 
power at remote generators, power flows in transmission 
lines, and protective relays’ status. Some of these cyber-
attack consequences are: 1) Financial losses from sub-optimal 
economic dispatch [61] (e.g., altering cost of electricity) to 
service loads, 2) Robustness/resiliency losses (e.g., changing 
on/off status of power lines) from placing the grid at operating 
points that are at greater risk from contingencies and 3) 
Systemic losses (e.g., shifting loads to nearby elements of 
the system) resulting from cascading failures induced by poor 
operational choices. Liu et al. studies the impact of cyber-
attacks on microgrids, and specifically on PV and energy 
storage systems (ESS) controls [62]. 

B. Case Study 

Cyber-attacks on PV systems are real. On March 5th, 2019 
sPower, a Utah-based provider of solar and wind energy was a 
victim of a DOS attack [64]. The vulnerability exploited was an 
unpatched firewall and the attack caused the power grid operator 
to become disconnected from its power generation station from 
9 a.m. until 7 p.m. local time [64]. Teymouri et al. investigated 
the impact of cyber-attacks on a distribution grid (with a PV 

Fig. 8: U.S. solar PV deployment forecast [63]. 

plant that provides reactive power) with a focus on voltage 
regulation [65]. They showed how the modification of grid 
measurements by the attackers affects the dynamics and reactive 
power injection capability of the PV inverter. The master and 
local controller are vulnerable assets that can be modified by an 
external source, hence impacting the overall distribution grid. 
These types of attacks can continue undetected for a long time 
since they do not violate any detection constraint [65]. Isozaki 
et al. also addressed cyber-attack on distribution power grids 
and specifically on voltage regulation. They demonstrated that 
if voltage measurements are falsified by an attacker, voltage 
violation can occur in the system [19]. They also showed that 
with the appropriate use of a detection algorithm, the damage 
can be limited. 

The consequences of cyber-attacks on PV plants may vary 
depending on a host of factors. One such factor is the type of 
installation (i.e., residential, commercial, and utility). Figure 8 
shows the growth trajectory of PV in the United States; hence 
it is important to address cyber-attacks and prevent attackers 
from disrupting the Nation’s power grid. Based on the scale 
of the PV plant farm, i.e., residential, commercial, or utility, 
the consequences can be different, as shown in Table III. A 
residential PV system can be part of a microgrid, and it can 
also include energy storage, but it is generally grid-tied. Power 
loss is the main consequence of an attack, which translates 
into monetary loss to the consumer. Additional consequences 
are damage to the equipment and, in extreme cases, loss 
of the components. Privacy is another critical issue in the 
cybersecurity of residential PV systems, as the usage of the PV-
generated power reflects the behavior of the users which can be 
exploited to launch additional attacks. Commercial PV systems 
which are used by small, medium, and large businesses, are 
used to offset energy costs as well as participate in the energy 
trading market. They are generally paired with monitoring and 
control devices (e.g., unit controllers, Phasor Measurement 
Units (PMUs), etc.) and are equipped with rapid shutdown 
solutions to eliminate shock hazards for emergency responders. 
Attacks on commercial PV systems may lead to damages to 
daily operations, system failure, disruptions to grid services, 
and ultimately, to damages at the grid level. For utility PV 
systems that are used by electric utilities and energy providers, 
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TABLE III: Impacts of cyberattacks on residential, commercial, and utility PV systems. 

Residential(3-10kW) Commercial(10kW-2MW) Utility(>2MW) 
Power loss/Monetary loss Damage to overall commercial operation Power/Monetary loss 

Equipment/Component damage System failure Grid instability 
Loss of the unit itself Damage to grid services Loss of the PV solar farm 

Privacy Domino effect, propagation to other 
systems in the grid 

Power generation cost fluctuation 

the consequences of cyber-attacks can be far-reaching and 
lead to significant monetary losses, disruption of services to 
customers, and ultimately to grid instability and blackouts. 
Even locally and limited targeted attacks on a PV utility farm 
can cause a fluctuation in the cost of electric power generation, 
therefore, increasing the cost of electricity and denying service 
to customers. 

C. Success Rate Metrics 

Metrics are tools that are designed to facilitate decision 
making and improve performance and accountability through 
collection, analysis, and reporting of relevant performance-
related data [66]. Many existing approaches compute Security 
Risks as Threat x Vulnerability x Impact, but this definition 
is limited since it is very difficult to quantify each value [67]. 
Important elements involved in quantifying metrics are: 1) Asset 
value, which is defined by plant size, utilization, reliability, 
and availability; 2) Cost of downtime which is the result of 
losing the PV plant due to a cyber-attack; and 3) Security costs 
required to prevent, detect, respond, and mitigate the impact 
of a cyber-attack. 

Based on the published and public domain literature and 
research, the following metrics to measure the success rate 
of an attack are proposed, as shown in Table IV. These 
metrics address the effectiveness of a cybersecurity response 
strategy and solution as a function of mitigation effectiveness, 
detection rate, neutralization power, consequences avoided, and 
solution cost. Mitigation effectiveness measures the efficacy 
of the proposed solution to mitigate the effect of the cyber-
attack. Detection Rate measures the quality of the solution to 
detect cyber-attacks. Neutralization Speed measures the speed 
by which the proposed solution neutralizes the cyber-attack. 
Consequences Avoided measures the value of the cyber-attack 
impact on the PV plant if the cyber-attack had taken place and 
succeeded in disrupting the system. Solution Cost measures 
the cost of implementing and deploying a security solution to 
avoid further cyber-attacks. Total Solution Success measures 
the overall cyber-security solution power. 

Table IV shows a specific example in which the detection 
rate is high, the neutralization power is low, and the rest of the 
metrics are rated medium. The solution success is a weighted 
average that depends on the weights assigned to the various 
metrics and on how the customer perceives them based on 
their mission profile. For Table IV and with equally distributed 
weights, the solution success is rated 3 or medium. When a 
specific weight is assigned to each aspect of the solution, the 

TABLE IV: Proposed three-level cyber security metrics and 
an example of a cyber attack. Level 1 is Low impact, Level 2 
is Medium impact and Level 3 is High impact. 

Metrics Weight 1-L 3-M 9-H 
a1: Mitigation Effectiveness p1 × 
a2: Detection Rate p2 × 
a3: Neutralization Speed p3 × 
a4: Consequences Avoided p4 × 
a5: Solution Cost p5 × 
a0: Total Solution Success × 

total solution success is defined as:Pn 
i=1 piai a0 = (3) 
n 

where pi is an integer that represents the weight associated 
with the aspect ai of the solution methodology; and n is 
the total number of metrics. As with any other asset, the 
cybersecurity of PV systems involves a variety of aspects and 
poses several questions and challenges that need to be addressed 
when selecting and developing a security strategy. 

The weight factors depend on the type of operation that the 
PV plant supports. For example, in an environment where daily 
operations rely exclusively on the power generated by the PV 
farm, the consequences of a cyber-attack are significant, and 
the weight associated with “Consequences Avoided” is high, 
10 on a scale from 1 to 10. Under the same circumstances, 
the weight associated with “Solution Cost” is low to moderate, 
3 to 5 since these types of installations prioritize reliability 
and continuity of service over cost. When service restoration 
is prioritized such as for critical assets like data centers or 
medical facilities, the weight associated with “Neutralization 
Speed” is high. In a situation such as a large PV farm, where 
the attack might propagate to other devices, detecting the attack 
is a priority and the weight associated with the “Detection Rate” 
becomes significant. In all cases mitigating the effect of the 
attack is important to limit the damages to the customers, the 
facilities and the equipment, hence the weight associated with 
“Mitigation Effectiveness” is generally high. 

IV. OVERVIEW OF DETECTION AND MITIGATION 
METHODOLOGY 

To address the cyber-physical security issue of PV farms, 
this section presents cyber-attack detection and mitigation 
methodologies including model-based cyber-attack detection, 
data-driven cyber-attack detection, and network and firmware 
security detection and mitigation. 
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A. Model-based Cyber-Attack Detection for Control Security 
in PV Farm 

Cyber-attacks can affect the control system in a PV farm by 
corrupting the sensor measurements received by the controller 
and the control decisions sent to the actuators. Model-based 
cyber-attack detection methods seek to use physics-based 
models that are meant to emulate systems under no-fault 
conditions to compare with actual system measurements to 
recognize anomalies by uncovering inconsistencies between 
the modeled and actual performance [68]. This inconsistency 
is evaluated against a residual threshold. 

We show below a general model of a PV farm whose control 
system is under cyber-attack: 

ẋ = f(x, ua) + ω1, (4a) 
y = h(x, u) + ω2, (4b) 
u = g(ya) + ω3, (4c) 
ya = y + α1, ua = u + α2, (4d) 

where x, y, u represent the system state, output, and input 
variables; f , h, and g represent some potentially nonlinear 
equations describing system dynamics, measurement equation, 
and control design; ω1, ω2, and ω3 represent the system 
disturbances; α1 and α2 represent the attacks signals on 
measurement information and the control decisions; and ua 

and ya are the corrupted input and output information. Notice 
that (4a) can model both DOS and faulty data injection attacks. 
A variety of model-based cyber-attack detection methods have 
been developed. 

First, bad input data detection methods have been developed 
for cyber-attack detection [69]. Bad data analysis methods 
are initially developed for power system state estimation 
to remove the measurement or topological errors in input 
data [70]. A variety of methods have been developed for 
bad data detection [71]–[74], including residual normalization 
method, geometric method, sensitivity analysis, and geometric 
approaches. They have good performance if statistics about 
the errors of the data are known. Notice that the power output 
from individual PV inverters and the power flows within a PV 
system have a huge impact on the overall power generation 
output. They are closely monitored by the PV system SCADA. 
The state estimation based attack detection methods have a 
wide range of applications by leveraging the existing SCADA 
measurement and monitoring capabilities. We exemplify the 
main idea by using the following classic weighted least-square 
(WLS) problem: 

min (ya − h(x, ua))
>W (ya − h(x, ua)), (5) 

x 

where W is a weight matrix usually obtained through mea-
surement error statistics [75]. Suppose the solution of (5) is x̂; 
it is considered as an estimation of the system states based on 
received system measurements ya. Let r be a residual defined 
as follows, 

r = ya − h(x̂, ua). (6) 

Let || · || represent Euclidean norm. It is assumed that the 
estimated states obtained based on the corrupted information 
cannot fit the physics-based model very well. Hence, regarding 

...

...

Equation 1 Equation 2 Equation N

Variable 1 Variable 2 Variable M

1 1 ⋯ 0
0 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
0 1 ⋯ 1

Equation 1

Equation 2

Equation N

⋮

Variable 1 Variable 2 Variable M

Fig. 9: Bipartie diagram and structural representation 

||r||, a larger than normal value would be generated when there 
is presence of attacks. Based on this idea, a residual threshold is 
often determined prior to deployment to test ||r||. An anomaly 
caused by cyber-attacks can be detected when the threshold is 
passed. The method leverages the mature power system state 
estimation approaches and is amenable to applications. 

Similarly, dynamic state estimation methods like the Lu-
enberger observer method [76] for linear systems and the 
Generalized Kalman filter method [77] for nonlinear systems 
have been developed for cyber-attack detection as well. PV 
systems have rich dynamics arising from the integration of PV 
inverters regulated under various control strategies. When the 
controllers are marred by cyber-attacks, the system dynamical 
behaviors will then deviate from the normal operational condi-
tions. The basic idea of using the dynamical state estimation 
based methods is to find the estimated system model and output 
(often defined as ŷ) to be compared with the received readings 
to ascertain the presence of cyber-attacks: If the difference 
between ŷ  and ya is “significant enough”, an anomaly is 
believed to be found. This comparison is usually conducted 
using χ2 detectors [37]. The χ2 detector compares the statistical 
characteristics of the obtained residual with the normal case, 
for example, it calculates the following value: 

>Q−1 g = r r, (7) 

where Q is the covariance matrix of r and g a scalar. When r 
is of a given distribution, g may conform to a fixed distribution 
correspondingly (e.g., if r is Gaussian distributed then g is χ2 

distributed). 
The third category of model-based cyber-attack detection 

methods is based on FDI methods [78]–[80]. Such methods 
usually construct state observers or use parity equations to 
generate residuals for attack detection purposes. FDI-based 
methods usually conduct a detectability analysis aiming to 
determine whether a subset of system equations can be found 
such that it contains enough data redundancy to generate the 
specific residuals to detect certain attacks. The detectability 
analysis method is usually conducted using graph theory meth-
ods. For example, a bipartisan diagram is usually constructed 
to reveal the structure of a system as shown in Fig. 9. It can be 
observed that with N equations and M variables, an N × M 
binary matrix can be constructed such that if variable j exists 
in equation i the element on the i-th row and j-th column is 
one, which is otherwise zero. From the binary matrix, graph 
theory methods like the Dulmage-Mendelsohn decomposition 
method can be applied to obtain the subset to find residuals. 

Although the above-mentioned detection methods work well 
in many applications, in the context of coordinated cyber-
attacks they have potential critical loopholes that might prevent 
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TABLE V: Waveform detection results Acc(·)=[ANN, LSTM, CNN] (%, 20kHz, Epoch=300) 

Accuracy Nw = 400 Nw = 600 Nw = 800 Nw = 1000 
Accdet 

Accnom 

Accdia 

Accreplay 

Accf ault 

[91.18, 98.49, 98.13] 
[88.91, 99.63, 98.37] 
[86.76, 96.69, 91.17] 
[87.11, 98.67, 96.00] 
[99.54, 99.77, 99.77] 

[92.53, 98.82, 99.36] 
[89.45, 99.93, 98.89] 
[83.43, 97.63, 98.37] 
[81.20, 98.00, 95.60] 
[99.75, 100.0, 99.78] 

[93.09, 99.53, 97.96] 
[92.36, 99.78, 99.49] 
[83.69, 99.23, 89.18] 
[89.67, 93.27, 95.52] 
[99.79, 100.0, 99.78] 

[91.85, 97.80, 99.44] 
[85.87, 97.69, 99.14] 
[86.08, 97.30, 97.73] 
[88.12, 98.36, 96.72] 
[99.76, 100.0, 100.0] 

them from performing as expected [11]. For example, in (5), it 
can be seen that the corrupted control decisions ua are included 
in the cost function as well. If ua is maliciously chosen such 
that r is placed below the threshold, the method then fails to 
spot cyber-attacks anymore. 

Another class of methods that could potentially tackle the 
issue is based on Hypothesis Testing. The basic idea behind 
these methods is to compute the conditional probability of 
the existence of a cyber-attack for two (or more) hypothetical 
conditions, i.e., 1) the attack is absent or 2) there exists a 
smart adversary that deliberates cyber-attacks with the perfect 
system information [81]. The methods have been widely used 
to monitor a group of sensors [82], a subset of which are under 
attack and a system monitor needs to locate the corrupted 
sensors based on all the received measurements. As discussed 
above, a PV system has a large amount of sensors and is usually 
equipped with a SCADA for monitoring purposes. Hence, the 
aforementioned scenario could happen, and exhibit considerable 
challenges for PV system operations. The Hypothetical Testing 
based methods usually use the flexible tools from robust 
optimizations, like minimax or game-theoretic approaches, to 
describe the competition between the system monitor and the 
adversary, in which the system monitor decides the probability 
of an attack in the “worst-case” that an adversary could incite. 

B. Data-driven Cyber-Attack Detection for Control Security in 
PV Farm 

In recent years, data-driven methodologies that do not require 
physical models have gained continued interest in smart grid 
applications. There are many different data-driven methods, 
including stacked auto-encoder (SAE) [83], reinforcement 
learning (RL) [84], vector autoregressive model (VAR) [85], 
dynamic Bayesian networks (DBN) [86], deep neural networks 
(DNN) [87], LSTM [88], PCA reconstruction (PCA) [89], 
cumulative sum (CUSUM) [90], influential point selection 
[91], and support vector machine (SVM) [40]. Specifically, in 
power system fields, data-driven methodologies are used to 
detect various cyber-attacks which falsify the market and system 
operation. In [92], the authors proposed an SAE- based deep 
learning method to detect cyber threats in the state estimation 
of SCADA. In power markets, the CUSUM statistical model 
was used to detect cyber threats [90]. In [93], the authors 
proposed an online cyber attack detection methodology using 
reinforcement learning. A distributed SVM was designed to 
detect the stealthy false data injection attacks in smart grids [40]. 
In [94], the authors improved the performance of the supervised 
learning techniques algorithm with heuristic feature selection. 
A deep belief network was designed to detect the false injection 
attacks in real-time using captured features in the historical 

measurement data [95]. In [96], the authors designed a cyber 
anomaly detector using a convolutional neural network (CNN) 
and LSTM. In addition to supervised learning that requires 
a large amount of data in training, unsupervised learning is 
increasingly popular, which can cluster data into different 
classes according to a certain feature. Unsupervised anomaly 
detection using a statistical correlation between measurements 
was proposed in [86]. 

While there is extensive work on data-driven methods in 
power grids, data-driven detection for PV security is in its early 
stage. As described above, in PV systems, both device-level 
and system-level controllers are vulnerable to cyber-attacks. 
In [12], we proposed a statistical data-driven approach to 
detect and diagnose a variety of cyber-physical threats for 
distribution systems with PV farms, including cyber-attacks on 
the solar inverter controller, cyber-attacks on relays/switches, 
and other faults (e.g., short circuit faults). Considering cyber-
attack impacts on two-stage PV converters, a deep-sequence-
learning-based detection and diagnosis was proposed for data 
integrity attacks in PV systems [13]. For comparison, [13] 
shows a comparison and evaluation of classic data-driven 
methods, including K-nearest neighbor (KNN), decision tree 
(DT), SVM, artificial neural network (ANN), and CNN. In 
addition, we developed machine learning methods to detect 
cyber attacks that can lead to the PV inverter performance 
degradation through the use of micro-PMU data at the PCC 
[97]. 

In general, most learning-based methods identify the anomaly 
in the system based on the monitoring data. Considering the 
impact of noise on measurements, the discrepancy between 
falsified data and estimated data is calculated in different feature 
spaces. Besides cyber-attack detection, the data-driven methods 
are used to distinguish from normal conditions, DIA, replay 
attacks and physical faults. A comparison study using PCC 
waveform data is conducted in the real-time testbed [35] to 
diagnose the type of attacks/faults in the PV farm. TABLE. V 
shows the Artificial Neural Networks (ANN), LSTM, and CNN. 
LSTM and CNN exhibit a better performance in this case 
study. ANN is a feed-forward neural network, which cannot 
capture sequential information in time series data. Instead, 
CNN utilizes the convolutional kernels to extract features of 
measurement data. Compared to ANN, CNN is more accurate 
using a higher number of layers. In most cases, LSTM achieves 
a higher successful detection rate. This is because LSTM 
as a special case of Recurrent Neural Networks (RNN) is 
capable of learning long-term dependencies. Thus, its model is 
more effective at capturing long-term temporal dependencies. 
TABLE. V also demonstrates its advantage in anomaly detection 
using time-series PCC data. 
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TABLE VI: Advantages and Limitations of Model-based and Data-driven Cyber-attack Detection Methods. 

Model-based Methods Data-driven Methods 
Advantages 

Limitations 

• Milder data requirement: Model-based methods usu-
ally prescribe the system model structures and some 
system parameters, leveraging established models and 
the given information about the system configuration 
that are relatively easier to obtain; have milder require-
ments for faulty data. When the system model is built, 
the system performance under cyber-attacks can be 
simulated, thereby avoiding the need for real-world 
faulty data that could be difficult to obtain. 
• More mature and highly implementable: Model-
based detection methods are relatively more mature, as 
they have been extensively applied for fault detection 
in the industry. The best practices and experiences 
developed for such methods could potentially be ap-
plied to cyber-attack detection applications and usually 
have less computational burden both in the detector 
preparation and in the real-time implementation stages. 
• Model accuracy. Model-based methods might not be 
able to provide accurate detection results since many 
real-world applications or phenomena lack an accurate 
model. 

• Minimal detection error since detailed model infor-
mation is not required. The detection error is therefore 
not affected by the model uncertainty. 

• Ability to be trained offline and implemented online. 
Real-world data can be used to train a perfect model 
for a data-driven method, which reduces the risk for 
system operation. 

• Supervised learning methods require labeled infor-
mation for the monitored data. Any error in the label 
information might lead to the failure of the trained 
model. 

• Unprecedented cyber-attack class. Model-based 
methods usually need to develop specified models 
for different cyber-attacks of interest. When a new 
class of cyber-attacks is encountered, model-based 
methods might provide inaccurate results. Data-driven 
methods can better handle such circumstances by 
using a generic detector, for example, which can 
discriminate between unprecedented cyber-attacks and 
normal operations. 

• A large amount of historical data is required in 
the offline model training of the supervised learning 
method. 

The advantages and limitations of model-based and data-
driven methods are summarized in TABLE. VI. 

C. Network and Firmware Security Detection and Mitigation 
Methodology 

Network-based security techniques have been mostly pro-
posed to address the vulnerabilities of PV system communica-
tion standards [42], [43], [98]–[106]. A cybersecurity roadmap 
for PV systems was released in 2017 [42]. The roadmap 
focused on communication networks and emphasized the role 
of all stakeholders in establishing a cyber-secure PV network. 
Sandia National Laboratories (SNL) investigated three advanced 
network-based defense mechanisms for DERs including net-
work segmentation, encryption, and ”moving target” defense in 
a virtualized environment [43]. The National Renewable Energy 
Laboratory (NREL) has established several best practices to 
mitigate these network-related attacks. Examples include role-
based user access control and strong key management, public 
key infrastructure (PKI), and certification management [99]. 
They also proposed the incorporation of an OT hardware 
module (i.e., Module-OT) into the PV inverter to strengthen 
its network security [100]. Software-defined networking (SDN) 
technology, where network operators flexibly manage the 

network, has been applied to a configurable network and access 
control with the goal of mitigating cyber-attacks, such as DoS 
attacks [101], [102]. Moreover, real-time network intrusion 
detection methods for PV inverters/systems have been widely 
studied to detect the forged in-transit-data, which includes: 1) 
Signature/rule-based network intrusion detection using tools 
such as Snort [103] and Suricata [107] (e.g., detecting irregular 
network packet format, reply, and message authentication); 2) 
Behavior-based machine learning [103], and signal processing 
methods (e.g., watermarking [104] and perturbation-based 
diagnostics [105]). 

Software-related attacks can bypass the most advanced 
access control and security mechanisms [108]. Numerous cases 
of power grid devices’ firmware vulnerabilities have been 
reported [109]. To date, PV inverters’ real-time firmware 
security has not been explored as much as network-related 
security. A power router prototype using a dual-controller 
design has been proposed to improve uptime and firmware 
security for power grid devices [110]. The dual-controller 
design consists of one controller that provides pulse width 
modulation (PWM) signals to the PV inverter and another 
controller that examines the updated firmware by checking 
the generated PWM signals. A.P. Kuruvila et al. proposed 
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a custom-built hardware performance counter (HPC) method 
to detect malicious firmware modifications in a PV inverter. 
The method consists of periodically measuring the order of 
various instruction types within the inverter firmware code and 
identifying an unwanted modification using machine learning-
based classifiers [111]. A machine learning-based tool to auto-
mate security patches and vulnerability remediation for electric 
utilities has been proposed [112]. The machine learning engine 
automatically acquires applicable vulnerabilities from a central 
database that includes asset data and Common Vulnerability 
Scoring System (CVSS) attributes obtained from vendors, third-
party services, or public databases. CKC-based defense methods 
can be used to detect sophisticated attackers early, before an 
actual impact occurs, and to neutralize sophisticated cyber-
attacks by cutting a middle stage of the CKC model in both 
PIT and OT sides. D3FEND is a knowledge graph framework 
providing a countermeasure of MITRE’s ATT&CK for ICS 
based CKC model [113]. The graph contains semantically 
rigorous types and relations that define both of the key concepts 
in the cybersecurity countermeasure domain. 

Blockchain technology can provide a secure distributed 
system framework on currently available information and 
communication technology (ICT) applications utilizing the 
latest cryptography, PKI, consensus, smart contract, and access 
control mechanisms. Blockchain technology has been widely 
adopted in IoT applications and e-commerce systems for 
secure communications, data sharing, and software security 
[114], [115]. In the energy sector, blockchain technology has 
been mostly studied in secure or privacy-preserved energy 
trading [116], [117]. Recently, M. Mylrea et al. examined how 
blockchain technology can meet North American Electric Re-
liability Corporation (NERC) Critical Infrastructure Protection 
(CIP) compliance requirements for software patching [118]. It is 
anticipated that the traceability, transparency, and accountability 
features of the blockchain technology could mitigate most of 
the challenges associated with patching critical IT and OT 
systems. Fig. 10 illustrates the overall concept of blockchain-
based zero-trust ecosystem for a PV system (i.e., no network-
related entity including sensitive data, devices, applications, 
and systems can be trusted) [45]. A private blockchain network 
can build a collaborative security ecosystem where multiparty 
(e.g., utility, operator, vendors, and security service provider) 
can seamlessly handle the user- or vendor-identified incidents 
through effective notification, coordination, disclosure, and 
validation mechanisms, while considering the privacy of the 
PV system using smart contract and multichannel blockchain. 
The consistent and continuous process of verifying identity, 
validating activity, and limiting access and privilege will 
increase the trustworthiness of the system security services 
to ensure the integrity and authenticity of critical assets, thus 
providing a viable way to manage the evolving cyber risks 
on PV systems. Security modules are attached/installed in 
the critical devices, such as the cloud, site data manager, 
and inverters. The security module mainly consists of a 
blockchain client program, IDS, static malware analysis, and 
firmware rollback/patch [119]. The blockchain client enables 
the submission of transactions, access ledgers, and public 
key infrastructure (PKI, as part of membership service), and 

Fig. 10: A concept of block-based zero-trust security for a PV 
system. 

such events can be controlled by smart contracts. Through the 
blockchain-based framework, the MITM attacks are detected 
by using the blockchain-based cooperative in-transit data 
verification process [45] and software/firmware update [119]. 
Fig. 11 shows the block diagram of the blockchain platform for 
an in-transit control command/file integrity validation scenario 
where the data are considered a critical asset; therefore, the 
authentication, integrity, and authorization of the critical in-
transit data are kept verified, and the results are stored in the 
ledger as security logs. PV system vendors, an operator, utility, 
and security modules will be the clients that are authorized 
persons/devices providing data as a form of transactions to the 
blockchain network and can access/share the data stored in 
their blockchain ledgers. Uploading and accessing data in the 
ledgers are mutually agreed upon and programmed by smart 
contracts. Only authorized parties using the blockchain client 
program can create transactions that include hash values of 
control commands/files, and the blockchain network considers 
the control command or file update as an authorized event. 
Therefore, the blockchain network can provide increased 
visibility into the methods, applications, and services to 
easily ensure the integrity and authenticity of the control 
command/file assets. After they provide the hash values to the 
blockchain ledger, the smart contract is running the integrity 
check without trusting the existing security perimeters, such 
as the TLS and firewall whitelist. In addition to the file 
integrity check using blockchain, software/firmware update 
process includes static malware analysis (i.e., the file will 
be analyzed without open/run the file). In [119], an open-
source software, PeStudio Ver. 9.09 is used to reverse the code 
engineering of the received files first in a Windows virtual 
machine. This tool provides cryptographic hash verification, 
original file information, signature, blacklists, and the level 
of risk information as clues of known malware types. It 
enables access to VirusTotal, an online suspicious file/URL scan 
website cooperating 69 antivirus engines; thus, a python code 
is developed and implemented in Raspberry Pi OS (Debian) in 
a virtual machine to perform similar static malware analysis, 
allowing communications with the blockchain server. 

T. Kim et al. explored the cyber-physical security of battery 
management systems (BMSs) and the adoption of blockchain 
technology with IoT devices as defense strategies for security 
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TABLE VII: Comparison of State-of-art Strategies and Blockchain Security Adopted/To Be Adopted To PV Farm. 

Security Category State-of-the-Art Strategy Blockchain-based Strategy 
Network Security • TLS, VPN, PKI 

• Network segmentation and moving target 
defense 

• Each device has its own ID and asymmetric 
key, resulting in eliminating complicated key 
management and distribution (membership 
service) 
• Smart contract-based access control and 
MITM attack detection 

• SDN 
Software/Firmware Security • Design a secure compiler with a secure 

coding rule checker and a static weakness 
analyzer 

• Code signing 
• Automated detection for software vulnera-
bilities and automated patch generation 

• A smart contract allows to store the original 
hash of the firmware in the ledger to vali-
date the firmware and automatically patch if 
corrupted 
• Static malware analysis 
• Patch management 

Data Storage Security 

On-board Interface Security 

• Data storage will be locked and the data 
can be encrypted (e.g., hashing technique and 
MD5 encryption) 
• Enforce recommendations from OWASP: 
1) remove unnecessary physical interfaces 
(e.g., USB ports); 2) disable testing/debugging 
tools; and 3) implement TPM 
• Detection methods for signal injection at-
tacks 

• Data integrity and privacy can be guaranteed 
through the distributed blockchain ledger 
since the blocks are linked and encrypted 
• On-board network security might be guar-
anteed if a lightweight blockchain can be 
implemented at the on-board level 

• Physically unclonable function (PUF) veri-
fied by blockchain 

Hardware Security • Functional safety checking of ICs • Component-level authorization and supply 
chain management can act as a good defense 
strategy against insecure hardware replace-
ments/insertions since the transactions on the 
ledger are immutable 

• Diagnostics for detecting damaged hardware 
components 
• Asset-based structural checking tool for 
detecting abnormal electrical signal patterns 

Fig. 11: Cooperative in-transit data (e.g., files for firmware 
update and contract command validation using blockchain). 

sensitive layers of battery management systems, including 
network, software/firmware, data storage, on-board interface, 
and hardware layers [120]. Table VII illustrates a comparison 
of the state-of-the-art (SOA) defense strategies and adopting 
emerging blockchain-based technologies for a PV system based 

on [120]. Interested readers are referred to [120] for more 
details. 

V. DESIGNING NEXT-GENERATION CYBER-SECURE POWER 
ELECTRONICS SYSTEMS 

Power electronics systems are increasingly using advanced 
controls to operate in a secure way and protect the interfaced 
assets such as PV systems from abnormal grid events as well 
as cyber-attacks. To achieve this goal, a strong interaction 
and interdependence among hardware (e.g., power converters), 
firmware (e.g., control and communication), generation assets 
(e.g., PV solar, wind turbine) and the electric power grid is 
required [3], [121]. In particular PV inverters can be vulnerable 
to cyber- attacks and particular attention should be paid to 
making their controls robust and reliable. 

Communication-based protection schemes against cyber-
attacks will depend on a variety of factors such as the 
system architecture, its control, and the level of reliability 
required [122]. Based on a smart integrated system, B. Kang 
et al. describe a PV system where an attack through its 
communication layer caused significant physical damage on the 
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PV systems by forcing the inverter off the maximum planned 
aggregated I-V curve power point [123]. Other related attack 
scenarios are initiated by communicating false information to 
mislead system operators, hence leading to system instability 
caused by the operators themselves. A.Y. Fard et al. analyzed 
the unstable operation of high penetration PV grids due 
to abnormal operations [124]. The proposed cybersecurity 
analytics method shows that active-reactive power (PQ) set-
point manipulation at the secondary control layer of PV 
inverters can cause grid voltage instability. To mitigate this 
risk an additional protection layer to check the validity of the 
incoming PQ setpoint is added to the primary protection layer. 

Communication protocols and their encryption play an 
important role in securing interconnected PV systems against 
cyber-attacks. These communication-based attacks can happen 
without the central system operator’s knowledge since it can be 
easily mistaken for and confounded with PV assets intermittent 
behavior. Many of the industry communication protocols do 
not have adequate encryption to protect against cyber-attacks. 
In systems with connected distributed generation sources which 
are highly dependent on communication systems and smart 
meters, an intruder might have access to several communication 
nodes [125]. A single cybersecurity layer will not be sufficient 
to protect against these attacks. To achieve a higher level of 
reliability, the communication layer may require a redundant 
protection system. The ease of propagation of cyber-attacks in a 
power system depends on the degree of decentralization of the 
distributed energy resources such as PV solar [126]. With the 
advent of decentralizing communication and the IoT, patterns 
that lead to cyber-attacks can be recognized and detected in a 
cooperative and timely manner, without depending on a failure 
prone central data collector. Ultimately, the use of control and 
detection algorithms in these communication systems should 
be modeled, quantified and considered when computing the 
system’s overall reliability metrics [20]. 

To detect cyber-attacks, the system’s actual response should 
be continuously compared to its normal operating condition 
state via appropriate modeling techniques. A cyber-attack is 
detected when a known system variable deviates from its 
normal value and no longer correlates to other variables 
within the system. Y. Isozaki et al. proposed a detection 
methodology of cyber-attacks on DERs with high PV penetra-
tion targeting voltage regulation and over-voltage protection 
at the point of interconnection to grid [19]. The detection 
algorithm works best and damages are limited when only a 
small number of PV panels are involved. Another class of 
attacks are stealthy attacks which are undetectable by common 
intrusion detection mechanisms. These attacks can cause severe 
harm to power electronics-based grid systems that exhibit 
low virtual inertia [127]. The low virtual inertia nature of 
power electronics-based systems when interconnected with 
traditional synchronous generator-based grid systems creates 
a new opportunity (attack surface) for the attacker to inflict 
more harm within a short amount of time [127], [128]. As a 
result of these attacks, these systems can easily and quickly 
become unstable before the intrusion is detected and acted 
upon. Traditional synchronous-based grid systems, however 
are more stable due to their high inertia. 

K.G. Lore et al. argue that cyber-attacks on grid-tied PV 
systems with a central unit controller can either be strategic or 
random [85], however there is still a lack of well-established 
standards for attack detection. As there is not yet a standardized 
strategy, there are efforts on different fronts to develop intrusion 
detection techniques. In one such instance, Olowu et al. classi-
fies these methodologies into signature-based, anomaly-based, 
and specification-based detections strategies [129]. Attack 
detection methodologies based on pattern recognition usually 
employ state vector estimations from observed measurements. 
This state estimation can be implemented using model-based 
or data-driven strategies as discussed in this work. The 
latter strategies correlate the expected response of the system 
output to the individual PV panels output, while the residual 
of this comparison is computed and compared to a given 
threshold. To face the challenge of detecting cyber-attacks 
on photovoltaic plants, signature-based machine-learning and 
deep-learning algorithms have been proposed [13], [97]. These 
algorithms have shown great accuracy in diagnosing cyber-
attacks; however they have not been field-validated in an 
actual PV system. The signature of a cyber-attack can also 
be seen in the physical layer. Thus, Y. Isozaki et al. proposed 
hybrid data-based and physical-informed detection methods 
based on the observation of variables such as voltage and 
reactive power fluctuations during transient periods [130], [131]. 
These last two cited works show that observation and detection 
based on physical variables can be slow. The reason for the 
long-drawn-out detection response is that the standards allow 
for some flexibility in operating limits during the transient 
response of grid tied PV systems. Ozai et al., in turn, present 
an anomaly-based strategy [132] for smart grids. In this 
work, the authors argue that methodologies that work with 
state estimation face difficulties in recovering state vectors in 
sparse networks. To address this problem, the authors propose 
a statistical correlation-based machine learning mechanism 
for large-scale and distributed systems. The best accuracy 
in intrusion detection, however, is theoretically verified by 
specification-based techniques. These techniques specify the 
desirable behavior of a system through a security policy and 
with the help of smart meters. For this last methodology, 
solutions were implemented for applications in smart grids 
[133], [134]. As with other anomaly-based detection techniques, 
there is still no specification-based methodology that especially 
addresses the cybersecurity of photovoltaic plants, to the best 
of our knowledge. 

Given the specificity of these attacks and that there are 
established detection methods, some recent studies proposed 
control-based solutions to mitigate their effect [15], [16], [135], 
[136]. These solutions control and impact the outcome through 
the converter power semiconductor switching devices. At the 
system level, resiliency to cyber-attacks requires a tight cyber-
physical integration amongst all constituent sub-systems (e.g., 
converters) and the cyber layer (e.g., communication, detection 
algorithms, control) to thwart cyber-attacks. 

The hybrid detection method leverages the flexible tools 
from the model-based and data-driven detection algorithms 
[137], [138]. From the model-based detection point of view, the 
motivation for hybrid cyber-attack detection method includes: 1) 
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Fig. 12: Overview of cyber security issues in PV systems – 
information uncertainty and correctness may affect the control 
and protection layers simultaneously. 

System model inaccuracies; and 2) Difficulty finding threshold 
for residuals. The latter can be a big issue for PV system cyber-
attack detection. The threshold method is a simple criterion 
which is based on the value of the residuals. If the residual 
crosses the threshold value, the system is believed to be under 
attack. Given the variability and uncertainty in PV generation, 
the threshold needs to be designed not only to reflect the 
difference between the anomaly and normal conditions but 
also to take into consideration their differences under disturbed 
conditions. For this reason, the threshold can be difficult to 
find for certain applications. Thus, data-driven classification 
methods can be applied to replace the simple threshold-based 
method [139]. For example, CNN based classifiers can be 
developed to extract features beyond values of the residuals. 
These features could potentially yield rich information helpful 
for cyber-attack detection [140]. 

A. Challenges 

Although the detection and mitigation approaches described 
above provide the technical foundations for dealing with cyber-
attacks on PV systems, there remain several challenges to solve 
in order to secure them. These challenges mainly arise from 
vulnerabilities in the PV system controls and communication 
layer. Described below are four prominent examples of these 
challenges: 

Wide Range of Time Scales (µs to min.): Since PV systems 
control dynamics operate at different timescales (microseconds 
to minutes), cybersecurity solutions need to operate from 
microseconds to minutes. An attack on the fastest control 
layer such as switching devices and gate drives requires fast 
cybersecurity solutions, while an attack on the slowest control 
layer such as the plant controller might be more manageable. 
Another challenge is discriminating between a cyber-attack 
and a fault. A thorough vulnerability assessment of PV system 
control loops against cyber-attacks is therefore key to its cyber-
security. 

Control Under Information Uncertainty: Figure 12 shows 
a PV system and its control, communication, and protection 
layers. Either a cyber intrusion or impaired communication 
traffic (e.g., latency, link failure, packet loss) can corrupt 
the transmitted data to the PV inverter causing information 

uncertainty. This uncertainty adversely affects the PV inverter 
control layer which in turns leads to real-time operation failures 
such as inability to respond to voltage and frequency ride-
through, and Volt-Var Control. Furthermore, this information 
uncertainty will also affect the PV inverter control layer 
computation process (usually operating at a faster - µs -
timescale). It will also impact circuit breaker protection relays 
as it will either delay or cancel relay trip decisions when 
grid faults occur. To address this challenge, communication 
network reliability and intrusion detection solutions must be 
implemented at the system and device level. 

Scalability and Grid Transition: Scaling cyber-security 
solutions from device to system level poses an additional 
challenge. For PV systems, cyber-securing the PV inverter 
is important, but additional cyber-security measures need to be 
taken at the grid level. The latter will become more challenging 
as PV inverters are transitioning from grid-following to grid-
forming. Grid-forming PV inverters will require complex and 
advanced controls to regulate the grid voltage and frequency. 
In a large PV farm there might be tens if not hundreds of these 
PV inverters, hence scaling cyber-security solutions from the 
inverter to the plant level is required. 

Interoperability: As PV solar energy has become increas-
ingly competitive, large (Hundreds of MegaWatts to few 
GigaWatts) plants are being deployed worldwide. These large 
plants include many PV panels (in the Millions) and PV 
inverters (in the Hundreds or Thousands if string inverters 
are used). Under these conditions interoperability amongst 
PV inverters is crucial to ensuring the plant cybersecurity. 
In addition to grid-following and forming, PV inverters 
perform many other functions such as fault-ride through, black-
start, reactive power compensation, etc. To ensure optimal 
cyber-physical interaction amongst these PV inverters various 
syntactic compatibility reinforcements need to be monitored 
carefully as per the international standards for communication, 
which defines structural interoperability. Moreover, semantic 
interoperability is another challenge that rises when the 
structure and codification of data are non-uniform among all 
systems and sub-systems. Cybersecurity has therefore emerged 
as another metric when multiple power electronics converters 
need to be coordinated. Standardization of practices, policies 
for secure exchange of information is also critical critical for 
PV systems to securely perform their grid functions such as 
frequency regulation and demand response. 

B. Future Directions 

Cyber-physical security must keep pace with advances in 
control and computing techniques. The detection and mitigation 
methods for cyber-attacks have challenges as mentioned above. 
To bridge the gaps and meet these challenges, we propose, to 
expand the current research and work into the following new 
topics. 

Multi-scale Controllability: To extend the current research 
to multi-scale controllability of grid-tied power electronic 
converters, a significant focus needs to be put on evaluating how 
cyber attackers impact large power systems. These attacks not 
only lead to shutdown and grid instability but also affect the grid 
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Fig. 13: Reduced cyber-physical interactions from periodic 
communication to self-triggering. 

operation from an economic perspective. Resilience measures 
against cyber-attacks should be implemented at all levels and 
across time scales. Multi-scale controllability should enhance 
spacial temporal scalability across all the layers and events 
ranging from slow updates to cyber layers to faster disturbances 
in converters and the switching layers. This functionality will 
ultimately induce controllability over each function, such as 
MPPT, voltage regulation, switching losses reduction, and 
Electro Magnetic Interference (EMI) mitigation. 

Event and Self-triggering Control: To simultaneously 
minimize both the cyber-physical interactions and provide 
resiliency against cyber-attacks, as shown in Figure 13, event 
and self-triggering control techniques are deployed. An event is 
defined as any cyber-physical disturbance to the system and is 
characterized by the measured values beyond a particular state-
dependent threshold. Event-triggering control is an aperiodic 
concept that consists of only updating triggering signals when 
the system is in a quasi-stable mode. This reduces both 
the system computation and communication burden and only 
activates the communication layer during these events [141]– 
[143]. Self-triggering control uses a local entity to generate the 
triggering instants for each converter thereby reducing the need 
for communication between the converter and plant controllers. 
It can also be defined and tuned subject to the system noise. 
In addition to reducing computational and communication 
burdens, these triggering control techniques can also be used 
to schedule the exchange of information (such as PQ set-points) 
between PV systems and the grid as requested by the local 
Independent System Operator (ISO), such as NYISO, CAISO. 
As a result, any false data injected by a cyber attacker can be 
easily detected as it results in false command that does not fit 
the event-triggering criteria. 

Artificial Intelligence and Machine Learning: Artificial 
Intelligence (AI) and Machine Learning (ML) are recent 
tools that are being deployed to make intelligent and data-
driven device and system level control decisions based on 
the data generated by the actual system as well as its model. 
Specifically, in power systems with a high penetration of power 
electronics-based converters, accurate models are important 

and are validated by reinforced intelligence learning and 
abstraction AI/ML-based tools. These tools use a digital twin 
of the PV system to perform fault diagnostics and condition 
monitoring as well as expedite the resiliency of grid-tied PV 
systems against cyber-attacks using historical data. The tools’ 
performance accuracy depends mainly on the volume and 
quality of the current and historical data, hence further research 
is required to develop sorting methods to screen and classify 
the data accordingly. For PV systems’ cybersecurity purposes, 
it is essential to collect the system’s response under various 
conditions such as grid faults, load shedding, contingencies, 
and data interruption from sensors and controllers. 

Distributed Decision Making: Distributed decision-making 
is one of the most reliable means of information sharing in a 
multi-function power electronics system due to its communi-
cation infrastructure low cost, its scalability, and its resiliency 
against delays and link failures. Compared to a centralized 
information-sharing mechanism, distributed decision-making 
efficiently uses a common consensus point to reach a system 
level collective decision. This could be another PV systems 
attribute to ensure resiliency against cyber-attacks. A distributed 
sharing mechanism is more robust to attacks than a centralized 
mechanism since more points need to be compromised to 
destabilize the system versus a single central point. As a 
result, considerable system information is required by the cyber 
attacker to destabilize a distributed decision-making process 
system. 

Hot-Patching and Online Security Performance: Hot-
Patching is the ability to perform a firmware patch (to update, 
fix or improve) on a given device control unit without causing 
any downtime or any disruption to the system operation. Hot-
Patching can reduce the cost and risk of system downtime 
during a firmware upgrade. Therefore, while the firmware 
update is being developed, tested, and patched, the entire 
system can continue running without interruptions. Generally, 
the firmware update is tested for vulnerabilities offline and once 
it passes the tests, the firmware is transmitted to the device 
and deployed in real time. When dealing with multiple devices’ 
firmware updates, a time schedule for disconnecting, patching, 
and re-connecting the devices to the grid is established. When 
the firmware is ready to be patched, Hot-Patching allows for all 
of the devices to be simultaneously patched without interrupting 
the power flow of the PV system. 

The architecture of a Hot-Patch capable device requires 
embedded parts that allow for the firmware patch to be 
performed while the rest of the controller is actively managing 
the grid-connected device. Having dedicated components in 
the controller that perform independent functions, such as 
firmware patching, allows for embedding security measures as 
part of the independent functions. When multiple vulnerabilities 
are discovered in different device controllers, they need to 
be immediately addressed and the corresponding firmware 
needs to be updated, which is time consuming. Fengli et al. 
demonstrated a patch scheduling methodology that prevents 
and denies opportunities for the attackers to exploit system 
vulnerabilities [144]. This scheduling methodology also takes 
into consideration the time-sensitivity of updating software 
vulnerabilities and the device downtime needed to patch the 
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firmware. Hot-Patching and embedded security system concepts 
allow for an additional backup in the control layer when 
firmware vulnerabilities are being updated. If the vulnerabilities 
are not patched in a timely manner, they can be exploited by 
an attacker to send compromised commands to the system 
control layer. The embedded security hardware and firmware 
will evaluate these commands before they are transmitted to the 
system active controller. As an example, if the attacker sends 
a malicious firmware update that could harm the system, the 
embedded security hardware and firmware feature will screen 
these commands before they are implemented in the active 
controller. 

Resilient Control Under Compromised Conditions: The 
electric power grid is a network system that is designed to 
serve a variety of consumers and stakeholders. Even when 
cybersecurity measures are implemented, the grid may still 
be vulnerable to cyber-attacks via a variety of attack surfaces. 
Attack-tolerant control algorithms to allow a power system 
to sustain its operation are critical to resilience against cyber-
physical attacks. To maintain sustainable operation even when 
a small portion of the system is compromised, some solutions 
have been proposed in the literature. N. Gajanur et al. pro-
posed blockchain-assisted inverter secondary control in which 
blockchain serves as a secure communication medium [145]. 
Though high-security methods with multiple security measures 
such as blockchain may incur additional latency, resulting from 
reinforced cybersecurity measures, the system can continue 
to operate under severe cyber-attacks. These attacks may 
compromise a portion of the primary communication and 
control system. M. Greidanus et al. proposed advanced controls 
to compensate for the impact of the security measures, e.g., 
increased latency [146]. 

In the legacy grid, a cyber-attack or a natural disaster will 
lead to outages at all distribution feeders, including feeders 
that are tied to DER assets such as PV. This is due to the 
mode of operation of grid-following PV inverters, which are 
unable to operate in an islanding mode. To operate and to form 
the voltage and frequency of an isolated, inverter-based DER 
distribution local grid, grid-forming inverter controls are used 
to independently black-start it when the main grid experiences 
a blackout [147], [148]. By allowing multiple PV inverters 
to collectively manage the local grid, without relying on high-
fidelity communications, grid resilience can be achieved. To 
enhance the survivability of a power system against cyber-
physical attacks, system operators should consider limiting the 
use of external network-based communications and instead 
rely on robust internal communication as much as possible. 
Although the use of internal communications might not be 
optimal, it does have the benefits of ensuring service continuity 
and facilitating the recovery process during and post cyber-
attack events. 

VI. CONCLUSION 

This paper presented a comprehensive review and status 
of PV systems’ cyber-physical security. This includes vul-
nerability analysis, impact assessment, attack detection and 
mitigation, and future research topics. Cyber-physical security 

was addressed from a hardware, firmware, communications, 
and network perspective. Impacts and security assessment 
preliminary results were described and presented. To address 
cyber threat detection and mitigation, model-based and data-
driven methodologies are proposed. In addition, blockchain 
algorithms are also suggested as a way to counter cyber-attacks 
on the communication networks. Additional ideas include 
multi-scale system modeling, event-trigger control, artificial 
intelligence application, and hot patching. The ideas proposed 
have the potential to address the increasing challenges posed 
by cyber-attacks on renewable assets in general and on PV 
systems in particular. 
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