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Abstract—In this paper, the challenges and a future vision
of the cyber-physical security of photovoltaic (PV) systems are
discussed from a firmware, network, PV converter controls,
and grid security perspective. The vulnerabilities of PV sys-
tems are investigated under a variety of cyber-attacks, ranging
from data integrity attacks to software-based attacks. A success
rate metric is designed to evaluate the impact and facilitate
decision making. Model-based and data-driven methods for
threat detection and mitigation are summarized. In addition, the
blockchain technology that addresses cyber-attacks in software
and cyber networks is described. Simulation and experimental
results that show the impact of cyber-attacks at the converter
(device) and grid (system) levels are presented. Finally, potential
research opportunities are discussed for next-generation, cyber-
secure power electronics systems. These opportunities include
multi-scale controllability, self-/event-triggering control, artificial
intelligence/machine learning, hot patching, and online security.
As of today, this study will be one of the few comprehensive
studies in this emerging and fast-growing area.
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I. INTRODUCTION

As the move towards smart grids and microgrids accelerates,
protecting renewable energy assets, such as photovoltaic (PV)
systems, against cyber-physical attacks and ensuring their
security is becoming crucial to electric power grid reliability.
To address the increasing cyber-security challenges associated
with power electronics systems, the IEEE Power Electronics
Society (PELS) has established a new Technical Committee
on Design Methodologies. Existing studies on smart grid
cybersecurity mostly focus on cyberattacks that impact grid
reliability and availability rather than power electronics sub-
systems’ performance and behavior.

This trend is due to the increasing penetration of the Internet-
of-Things (IoT) enabled applications, such as connected
Electric Vehicles (EVs) [1] and smart grids [2]. PV systems
are differentiated from EVs and smart grid systems in terms
of power levels (kWs to GWs), penetration levels, and the
tight integration with many interfaces to the grid via grid-
tied PV inverters and multiple sensors and communication
hardware. PV systems are inherently intermittent, which leads
to special challenges to determine “normal” vs. compromised
behavior; thus, cybersecurity algorithms must be more carefully
constructed and customized to detect attacks. It is easier for the
attacker to hide in this more random signal environment. For in-
stance, EV cybersecurity is best addressed through segmenting
systems such as infotainment from vehicle operations, whereas
PV cybersecurity and smart grids depend on communications
to determine operational settings and control [2]. To contrast
PV systems from the broader issue of smart grid cybersecurity,
PV cybersecurity will focus on device-level through grid-
level interactions, including communications, grid controls,
and power conversion [2], whereas smart grid cybersecurity
activities focus primarily on microgrid controllers and digital
grid control and sensing. PV cybersecurity is a component of
smart grid security that contributes to overall grid security. At
the heart of PV systems is the power conversion device known
as the PV solar inverter, a smart power electronics system that
is responsible for interfacing with the grid.
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Power electronics systems are becoming increasingly vul-
nerable to a variety of cyber threats, ranging from data
integrity attacks (DIA) to denial of service (DOS) attacks.
In addition, with the increasing number of distributed energy
resources (DERs), such as PV and wind assets, along with their
associated communication and smart technologies, the cyber-
physical security of these renewable assets requires immediate
attention [3], [4]. In a power electronics-based smart grid
(PESG), grid-tied converters are remotely controlled by a
plant controller and a supervisory control and data acquisition
(SCADA) via power line communication (PLC), optical fiber,
or wireless communications such as Zigbee, cellular (3G), and
LTE (4G) [5], [6]. These communications and remote control
capabilities will inevitably expand the cyber-attack surfaces,
hence making PESGs vulnerable to cyber-physical attacks.
These attacks include but are not limited to DIA and DOS. In
addition, PESGs are susceptible to faults and degradation, such
as power electronics device failures in open and-short circuit
mode and passive component (e.g., capacitors) degradation.

As DER components’ performance degrades over time, it
can lead to abnormal PESG operating conditions, such as
reactive power output imbalance, irregular power flow, and
grid instabilities, such as sub-synchronous resonance, which
might eventually cause the main grid to collapse or blackout.
Recently, several operational issues due to improper firmware
upgrades of PV solar plants have attracted increasing attention
[7]. These operational issues resulted in abnormal inverter
operations and faults. Examples include over and under voltage,
volt/volt ampere reactive fluctuation, and unexpected power
factor adjustments. In addition, networked power electronics
systems are vulnerable to hacking from coordinated botnet
via malicious software/process or via backdoor attacks in
any of their compromised devices. For many safety-critical
applications, if these threats are not detected at an early stage,
they can lead to catastrophic failures and substantial economic
losses.

In recent years, smart grid cyber-physical security has been
extensively studied. In a recent study [2], security challenges
and vulnerabilities in the control of grid-tied voltage source
converters (VSCs) were discussed. Typical cyber-attacks that
affect the operation of VSCs in microgrids, high-voltage DC
(HVDCO), static synchronous compensators (STATCOM), etc.,
are described in [2]. Cyber-attack assessment is discussed
in [8], [9]. In [8], J. Zhang et al. proposed an assessment
methodology for the cyber-attacks in a PESG. The proposed
method uses attack scenarios such as DIAs to analyze their
impacts on the stability and performance of smart grids. In
[9], J. Zhang et al. analyzed the vulnerabilities in a PV farm
and proposed machine learning and deep learning methods to
detect cyber-attacks. Cyber-attack detection and diagnostics are
discussed in [10]-[14]. [10] proposes a framework for the false-
data injection attacks in a DC microgrid, in which invariants
representing microgrid properties are extracted to detect cyber-
attacks. [11] analyzes stealthly cyberattack mechanisms in
DC microgrids and introduces a cooperative vulnerability
factor based on the dynamic consensus algorithm in secondary
controllers to detect cyber events. In [12], a novel high-
dimensional data-driven method is used to detect cyberattacks

and faults in electric power grids using a statistical leverage
score and binary matrix factorization. [13] proposes a multilayer
long short-term memory (LSTM) method to detect cyber threats
in PV farms using point of common coupling (PCC) waveform
data. [14] proposes an active detection method of deception
attacks in microgrids. Attack-resilient controls are discussed in
[15]-[17]. Considering the principle of heterogeneity raised
by different types of sources, a novel resilient detection and
mitigation methodology employing adaptive discord element is
proposed for dc microgrids in [15]. [16] introduces a resilient
control framework to deal with unbounded malicious attacks in
electric power grids to ensure frequency and voltage stability.
In [17], a time-delay recovery communication protocol is
developed and simulation results demonstrate the efficacy of the
method in multiarea frequency control of electric power grids.
A cyberattack to PV systems that could falsify power generation
by spoofing sensor data of the PV inverter is studied in [18]. Y.
Isozaki et al. showed the impacts of cyber-attacks on the output
power of PV farms in the distribution grid [19]. In addition to
the emerging topic in the cyber-physical security of PV, the
reliability and anomaly detection of PVs have been studied for
many years. P. Zhang et al. presented a comprehensive review
of the reliability assessment methods for power converters that
includes capacitor aging, switching devices fault modes, and
control firmware malfunction [20]. U. Jahn et al. proposed a
reliability model to evaluate the performance of PV farms [21].
A. Golnas discussed the long-term performance of PV from
the perspective of system operators [22]. To increase the fault
detection accuracy, D. S. Pillai et al. summarized the advanced
fault detection approaches for PV farms [23]. Although the
cited literature work provides the technical foundation for PV
farms cyber-security, their applicability is limited since cyber-
attack impacts and surfaces are far more complex, so further
studies are needed. There remain several major issues to be
addressed and studied in detail: (1) Comprehensive cyber-attack
models need to be developed to include cyber-attacks from
different sources and locations, including firmware and network
layers. (2) Existing detection and mitigation strategies mostly
focus on cyber-attacks that adversely impact the functionality,
stability, or maintenance cost of grid systems. (3) Cyber-attacks
that compromise the performance of power electronics systems
are not well addressed.

This paper describes the challenges, and proposes a cyber-
physical security vision for a MW-scale PV farm. As of today,
this study may be one of the few comprehensive studies in
this emerging and fast-growing area. The main contributions
of this paper are as follows:

o PV systems’ cyber-physical security aspects: firmware
and network, PV converter control, and grid security.

o PV systems’ vulnerabilities investigations under a variety
of cyber-attacks, ranging from data integrity to software-
based attacks. A success rate metric is designed to evaluate
the impact and facilitate decision making. Simulation and
experimental results are provided to further analyze the
cyber-attack impacts on both the converter (device) and
grid (system) levels.

e Model-based and data-driven methods to detect and
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Fig. 1: A typical PV plant block diagram.

mitigate cyber-attacks in PV farms.

o A blockchain algorithm to address cyber-attacks in soft-
ware and cyber networks.

o Challenges and opportunities in designing next-generation
cyber-secure power electronics systems, to provide readers
with guidelines on future research directions.

II. CYBER-PHYSICAL SECURITY IN PV FARMS
A. Cyber-Physical Security in PV farms

1) PV Farm Description: Figure 1 shows a typical PV
array consisting of PV modules, a PV inverter, monitoring
and diagnostics platform, and a utility meter. The PV array is
connected to the grid and/or feeds AC loads via a grid-tied
inverter. The grid-tied inverter performs maximum power point
tracking (MPPT) on the overall PV array I/V characteristics
and ensures that maximum power is extracted under various
irradiance and temperature conditions. There are several MPPT
algorithms that are used in commercial inverters [24]. When
combined with battery energy storage systems, PV plants are
used to charge the batteries during the day to dispatch it later.
For solar-plus-storage plants, the ramp rate is the common
algorithm that is used for energy management [25], [26].

A monitoring/diagnostic platform that acquires measurement
data from various sensors that are deployed across the PV
plant (e.g., module temperature, weather-related data, irradiance,
power and energy data, and voltages and currents) is used to
monitor the plant performance and diagnose any degradation,
outages, and failures that might impact the plant reliability
and availability. There are various levels of monitoring and
diagnostics (M&D), granularity ranging from module, to
inverter, to the plant level [27]. Data are acquired via a
communication link between the PV array, the inverter, and the
grid. A utility meter (for residential and commercial customers)
tracks total energy production. With the increasing integration
of large-scale PV farms into the power grid, the control
methodologies and smart inverters allow PV farms to realize
grid support services and respond to customer demand.

2) Cyber-Physical Security of PV farm: Cyber-physical
attack points are identified as depicted in Figure 2.

o Attack number 1 is an actual physical attack on the

hardware, such as tampering with the hardware (e.g.,
PV modules, combiner boxes, cables, inverters). The
most prominent attacks that happened recently involve the
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Fig. 2: PV plant potential cyber-attack points: i) physical,
ii) inverter controller and algorithm, iii) supply chain, iv)
monitoring and diagnostics platform, and v) grid.

stealing and the removal of PV modules for the purpose
of reselling them [28], [29].

o Attack number 2 is an attack on the inverter controller
and algorithms, and on the plant supervisory system
(e.g., accessing and modifying the inverter controller
software, accessing the unit controller to either shut down
the plant or cause damage). Attacks on the PV inverter
controls can occur at any moment through either the PV
plant monitoring and diagnostics system, internet-enabled
communications, or through the plant controller.

« Attack number 3 represents attacks that propagate through-
out the supply chain (e.g., faulty electronic components,
subpar analog, or digital parts). PV inverters are so-
phisticated electronics devices that use several advanced
electronic components, such as a digital signal processor,
micro controllers, and smart ASICs. These components
can harbor malicious software that will corrupt inverter
operation and cause it to fail.

o Attack number 4 targets the monitoring and diagnostics
platform (e.g., data injection to mislead the operator, replay
attack to mimic previous system operation, data integrity
to falsify the sensor measurements). This type of attack is
made possible by the increasing digitization of PV systems
and the use of the IoT devices to communicate, send, and
collect data from the PV plant. Increasingly, many inverter
companies are prioritizing cybersecurity and are hardening
their products [30], [31]. They are also providing end-
to-end encryption of all information sent between their
devices in the field as well as to their communication
gateways and interfaces with the customer.

o Attack number 5 attacks are those that are directed at
the grid and have the potential to significantly impact
the plant operation and its overall safety (e.g., falsifying
energy demand, disconnecting the grid from the plant).
This attack is similar to attack number 2, but it propagates
through the grid. Hackers can disconnect PV inverters
from the grid by tripping the breakers or by inducing
low-voltage, high-voltage, or zero-voltage conditions.
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B. Cyber-attack Model in PV Converter

Information technology (IT) cyber threats to confidentiality,
integrity, and availability [32], [33], have been extensively
studied. Similar to other cyber-physical systems, such as electric
power grids and EVs, PV systems are vulnerable to similar
cyber threats, including DIAs, DOS attacks, replay attacks, and
stealthy attacks [1], [34]. In addition, an attack could falsify
the power output of a PV converter by spoofing sensor data
[18].

A typical PV converter and associated vulnerabilities
are shown in Figure 3. The measured data from sensors
and power control reference are expressed as Y (t) =
Tac(t), Uae(t), I5 (), Uo0), I, (0]T. S(t) = [P*(¢), Q" (8)]"
Where Iy is the inverter filter-side inductor current; U, is the
filter capacitor voltage; and I, is the grid side current. I is
the PV array output current. Uy, is the DC-link voltage. The
cyber-attack model can be expressed as follows:

Y(t) = x YF(t) + B * YO(t - tdelay)
S(t) =7 * SF(t) + ¢ * SO(t - tdelay)

where Y, S are the compromised data vectors that are eventually
the input to the power converter controller; Yy, Sy are the
original measurements; Yz, S are the biased vectors, which
can be independent or a function of Yp; o and ~ are
multiplicative factor matrices that define the weight of the
attack vectors; 8 and ¢ are multiplicative factor matrices that
define the weight of the real vectors; and f4eiqy 1 the time
delay that is inherent in communication systems and/or caused
by cyber-attacks. In this definition, « is the multiplicative factor
matrix, and it can be expressed as an 11 x 11 matrix:

)]

2)

where, 3,7, ¢ could be formed based on the definition of a.
The attack duration is denoted as t, = [ts, t.|, where ¢; and
t. represent the start and end time of the attack. Typical cyber-
attacks are described as follows. To exhibit and analyze the
impact of cyber-attacks on a PV farm, seven sets of two-stage
PV inverters are simulated in an Opal-RT® real-time test bed.
Opal-RT is used for control algorithm validation. MATLAB®
has been integrated with Opal-RT using the software module
RT-LAB™ within Opal-RT. To achieve real-time simulation,
C code generated by RT-LAB is executed on OPAL-RT to

@ = dZag [aipvaaudc; aillxgvauclxgv aiglxg]'

simulate the dynamic performance of the power electronics
components. Detailed information on the testbed and PV farm
are shown in Tables I and II, respectively.

TABLE I: PV inverter parameters

Rated Power 125 kW  DC-Link voltage 1500 V
L,filter 3.5 mH Lgm’d 1.8 mH
Cfritter 7.2 uF Grid Voltage 480 V

1) Data Integrity Attack: DIAs can directly falsify measure-
ments of the sensor or power references [9]. Considering the
attack model in equation (1), the multiplicative factors S and ¢
determine the scaling attack impact on the PV farm [36]. Notice
that the strength of the cyber-attacks could vary owing to the
elements in the attack vector [c, 8]. As shown in Figure 4,
both single- and three-phase DIAs on the inverter filter-side
inductor current, I, beginning at the 15s time instant, affect
the operation of PV Converter #1 (PV #1). Afterwards, the
same disturbance at the power generation level of the PV farm
appears under single- and three-phase DIAs. Compared to the
unbalanced current injected by a single-phase attack shown in
Figure 4(a, b), a three-phase DIA exerts a more serious impact
on inverter side current and the capacitor voltage of PV #1. As
shown in Figure 4(c), the output currents’ frequency at the PCC
is affected due to DIAs, which attests to the strength of two
DIAs. Based on the PCC voltage waveform, the two attacks
have a similar influence on the PCC voltage—the PCC voltage
frequency shows an obvious difference between the single- and
three-phase DIAs, as shown in Figure 4(c). Compared to the
distortion of the PCC current, the DIAs’ impact on the PCC
voltage is more limited.

2) DOS Attack: A DOS attack is a typical IT attack that
shuts down the network by overwhelming it with traffic [37].
This type of attack makes the sensor measurements or the power
references inaccessible. DOS attacks work by compromising a
PV plant sensor and delaying the measurement data so that the
plant controller cannot acquire the PV inverter feedback at the
appropriate time. Figure 5(a) shows the effects of a DOS attack
on the inverter filter-side inductor current, Iy, of PV #1,—its
delay time is increased by 0.11s. The disturbance appears in
the PV output current, filter capacitor voltage, and PV power
output after 15s of the onset of the attack. Although there is
no obvious variation in the magnitude of the PCC voltage, the
frequency of the PCC current and voltage exhibits a discernible
difference when compared to the normal condition, as shown in
Figure 5(c). Compared with DIAs, there is a different frequency
pattern of PCC current and voltage under DOS attack.

3) Replay Attack: Replay attacks, also called playback
attacks, repeat, or delay the sensor data or control command
to the PV farm [38]. First, the hackers save the data in the
communication network and then maliciously falsify sensor
data by re-injecting the saved data. This attack cannot be
detected by only monitoring the sensor data or by control
command, but it can disturb or damage the PV farm operation.
Replay attacks can be modeled as in equation (1) by substituting
Y (t) and S(t) with the previously saved data by the hackers.
The impact of a replay attack on PV #1 and the PV farm
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Fig. 5: Impact of DOS attack and replay attack on PV Converter #1 and PV farm [35].
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obvious variation during the attack time. After a replay attack
is implemented at the 15s time instant, a slow change in the
PV power output is observed, which is a unique feature for
this type of attack.

4) Stealthy Attack: A stealthy attack depends on the skill
and professional knowledge of the hacker. An attacker could
constantly generate a negative impact on the PV system
operation while being undetected. This type of attack could
be more destructive to power electronics-based systems than
traditional power systems, by taking advantage of their low-
inertia property; hence, an attacker can cause more harm to
a power electronics-based system while momentarily staying
undetected. C. Zhao et al. provided the analysis of stealthy
attacks in a smart grid under a well-developed consensus-based
protocol [39]. M. Esmalifalak et al. proposed two machine
learning methodologies for the detection of stealthy attacks in
a power grid [40]. The time it takes to detect stealthy attacks
on control systems highly depends on the complexity of the

&
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Fig. 6: Cases of MITM attack in a PV system that modify
in-transit data from cloud platforms.

attack stemming from the attackers’ knowledge of a power
system model. S. Harshbarger et al. provide an analysis on how
uncertainty in the power grid model may impact the detection
of stealthy attacks [41].

C. Network and Software/Firmware Security in PV Farm

The cybersecurity of PV systems still relies on network-
based security postures, such as firewall rules, authentication of
users, and the encryption of communication-based on transport
layer security (TLS) [42], [43]; however, security entails a
much larger scope than current network-based security methods.
Encryption only ensures that the encrypted data cannot be
understood; therefore, encrypted spoofed messages/malware
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easily bypass firewalls. Furthermore, current field network
protocols (e.g., Modbus TCP/RTU and SunSpec Modbus)
in PV farms have no or weak security measures. Moreover,
human risks always exist, which threatens users’ passwords
and malware installations [44]. Attackers use the exposed
vulnerabilities of PV systems. A typical network attack is
a (D)DoS attack attempting to disrupt a network rendering the
controller unavailable to receive data or commands. Attackers
in these types of attacks typically flood web servers, systems
or networks with traffic that overwhelms target networks with
bogus traffic, making it difficult for victim inverters or a PV
system control server to operate normally [45]. As described
in Section II.B, the external control commands, S(t), and PV
system sensor data delivered to the inverter controller through
communications (i.e., in-transit data) could be modified by
network attacks, such as man-in-the-middle (MITM) attacks
[46]-[48]. Fig. 6 shows three potential MITM attack cases that
can change in-transit data in a PV system [49]: 1) a wide-area
network (WAN) MITM, 2) an unauthorized device MITM; and
3) an authorized device MITM. WAN MITM attacks could
be caused by a third party, such as a virtual private network
(VPN) provider, a domain name server (DNS), or an internet
service provider (ISP)). Since the security of the third party is
outside the security perimeter of the PV system, it is hard to
validate data passed by the malicious third party or breached
third party by attackers. Although people consider that TLS
is currently secure, advanced attacks such as TLS harvesting
can break TLS (e.g., stealing session key logs). Second, an
unauthorized MITM device will be physically located and
connected to the local area network (LAN). Field network
protocols without strong authentication and encryption are
vulnerable to this type of MITM attack. Note that most MITM
attack detection in PV systems applied this attack scenario.
Due to the malware injection attacks, the authorized devices
can be a MITM attack devices. As shown in Fig. 6, a site data
manager is an aggregator and a gateway in a PV system acting
as a major middleman between the inverters and the cloud.
The encrypted TLS data are decrypted and converted to the
local network protocols such as Modbus TCP in the site data
manager; therefore, a malicious site data manager can easily
make MITM attacks although this device is authenticated and
authorized in the current PV system security perimeter such as
firewall rules and encryption-based security controls. Although,
the site data manager will be a critical target device from the
attacker’s perspective, compromised inverters or operational
technology network devices can also create MITM attacks.
Attackers also exploit software/firmware update events to create
cyber-attacks [50], which can directly or indirectly target the
inverter controller, as described in Section II.B. The attack
surface of software/firmware in a solar farm control center
and smart inverters includes three major attack points [51]:
1) Remote vendor access via the regular software update and
maintenance; 2) Operator access via a remote user interface;
and 3) Physical access via USB flash drives or LAN or reverse
engineering/side-channel attacks. Advanced attackers such as
advanced persistent threat (APT) groups [52] and insider threats
(e.g., disgruntled employees or malicious insiders [53]) can
disguise as vendors or authorized users to modify software or
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Fig. 7: A cyber kill chain model.

inject malware (e.g., backdoor, Trojan horses, viruses, worms,
ransomware, and rootkits [54]). Attackers who can access the
inverter “firmware enable’ function can modify the behavior of
the inverter and lead to malfunction or performance degradation
(i.e., stealthy attacks that avoid being detected by intrusion
detection systems (IDSs)). For example, the sensor matrix, Y(t),
which is generated by embedded sensors in the inverter, can
be altered by injecting malicious code in the inverter firmware
through flash memory data modification in an inverter control
card [55] or over-the-air update [51]. The software/firmware
and in-transit data modifications will occur once the chains of
cyber-attacks are successful. Examples of such cyber-attacks
are: malware backdoor injection through the supply chain [56],
eavesdropping for snipping credential data, spoofing through
security certificates to gain unauthorized access, least-privilege
violations to access unauthorized services, and brute-force
credentials and side-channel attacks to guess the password
or a security key [57]. Additional information on adversarial
tactics and techniques based on real-world attacks is found in
MITRE’s ATT&CK for Industrial Control Systems (ICS) [58].

Fig. 7 illustrates a scenario of a firmware attack targeting to
disrupt a PV inverter, where the cyber kill chain (CKC) model is
designed based on ATT&CK for ICS framework. An adversary
is trying to access a platform information technology (PIT)
system (e.g., a vendor providing firmware update server) by
using the supply chain of software developed by a 3rd vendor
or old employee’s weak passwords, or a VPN password leakage
(1. Initial Access). A backdoor malware is installed in the server
(2. Execution). The adversary is trying to maintain foothold to
continuously access and explore the server (3. Persistence). The
adversary is trying to gain higher-level permission (4. Privilege
Escalation). Adversaries may use masquerading to disguise a
malicious code/modification in the firmware to be updated to
avoid operator and engineer suspicion (5. Evasion). Afterwards,
the field side PV system information in the PIT is gathered by
the adversary (6. Discovery). The adversary can freely access
the solar farm via valid remote access pathways (7. Lateral
Movement). The adversary is trying to gather data on the
solar farm domain (8. Collection). The adversary is trying to
communicate with and control a target PV inverter through the
authorized command and control channel (9. Command and
Control). The adversary activates the firmware update mode and
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disables the monitoring and alarm functions on the inverter (10.
Inhibit Response Function). The malicious firmware is updated
to manipulate the inverter (11. Impair Process Control). Finally,
the adversary is trying to manipulate, interrupt, or destroy the
inverter (12. Impact).

III. CYBER-PHYSICAL SECURITY ASSESSMENT IN
PHOTOVOLTAIC FARMS

In this section, the cyber-physical security assessment in PV
farms is introduced with real-world case studies. Furthermore,
a success rate metric is proposed for cyber-attack assessments
in PV farms.

A. Attack Consequences and Assessment for PV Farm

A key part of a cybersecurity evaluation is to assess the
impact of a cyber-attack, on the equipment, services, and plant
mission. The consequences of such attacks directly affect the
attacked assets and propagate through mission and system
dependencies. Previous efforts have been focused on proposing
and devising methods for quantifying the impact of cyber-
attacks. As an example, Jakobson [59] proposed a four steps
conceptual framework and a method for assessing the impact
that cyber-attacks have on a given asset. These four steps
are: 1) Attack Point Detection, which identifies the exact
target of an attack and the vulnerabilities it may exploit. 2)
Direct Cyber-Attack Impact Assessment, which determines
the direct impact of the cyber-attack on the asset that it is
targeting. 3) Propagation of the Cyber-Attack throughout the
system dependencies. 4) Impact Assessment on the high-level
missions based on asset dependency relationships derived by
the logical mission models. Giani et al. proposed, analyzed,
and quantified metrics for assessment of data integrity attacks
on the smart grid [60]. These are a class of cyber-attacks that
compromise grid information that is processed by grid operators.
The latter may include energy meter readings of injected
power at remote generators, power flows in transmission
lines, and protective relays’ status. Some of these cyber-
attack consequences are: 1) Financial losses from sub-optimal
economic dispatch [61] (e.g., altering cost of electricity) to
service loads, 2) Robustness/resiliency losses (e.g., changing
on/off status of power lines) from placing the grid at operating
points that are at greater risk from contingencies and 3)
Systemic losses (e.g., shifting loads to nearby elements of
the system) resulting from cascading failures induced by poor
operational choices. Liu et al. studies the impact of cyber-
attacks on microgrids, and specifically on PV and energy
storage systems (ESS) controls [62].

B. Case Study

Cyber-attacks on PV systems are real. On March 5th, 2019
sPower, a Utah-based provider of solar and wind energy was a
victim of a DOS attack [64]. The vulnerability exploited was an
unpatched firewall and the attack caused the power grid operator
to become disconnected from its power generation station from
9 a.m. until 7 p.m. local time [64]. Teymouri et al. investigated
the impact of cyber-attacks on a distribution grid (with a PV
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Fig. 8: U.S. solar PV deployment forecast [63].

plant that provides reactive power) with a focus on voltage
regulation [65]. They showed how the modification of grid
measurements by the attackers affects the dynamics and reactive
power injection capability of the PV inverter. The master and
local controller are vulnerable assets that can be modified by an
external source, hence impacting the overall distribution grid.
These types of attacks can continue undetected for a long time
since they do not violate any detection constraint [65]. Isozaki
et al. also addressed cyber-attack on distribution power grids
and specifically on voltage regulation. They demonstrated that
if voltage measurements are falsified by an attacker, voltage
violation can occur in the system [19]. They also showed that
with the appropriate use of a detection algorithm, the damage
can be limited.

The consequences of cyber-attacks on PV plants may vary
depending on a host of factors. One such factor is the type of
installation (i.e., residential, commercial, and utility). Figure 8
shows the growth trajectory of PV in the United States; hence
it is important to address cyber-attacks and prevent attackers
from disrupting the Nation’s power grid. Based on the scale
of the PV plant farm, i.e., residential, commercial, or utility,
the consequences can be different, as shown in Table III. A
residential PV system can be part of a microgrid, and it can
also include energy storage, but it is generally grid-tied. Power
loss is the main consequence of an attack, which translates
into monetary loss to the consumer. Additional consequences
are damage to the equipment and, in extreme cases, loss
of the components. Privacy is another critical issue in the
cybersecurity of residential PV systems, as the usage of the PV-
generated power reflects the behavior of the users which can be
exploited to launch additional attacks. Commercial PV systems
which are used by small, medium, and large businesses, are
used to offset energy costs as well as participate in the energy
trading market. They are generally paired with monitoring and
control devices (e.g., unit controllers, Phasor Measurement
Units (PMUs), etc.) and are equipped with rapid shutdown
solutions to eliminate shock hazards for emergency responders.
Attacks on commercial PV systems may lead to damages to
daily operations, system failure, disruptions to grid services,
and ultimately, to damages at the grid level. For utility PV
systems that are used by electric utilities and energy providers,
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TABLE III: Impacts of cyberattacks on residential, commercial, and utility PV systems.

Residential(3-10kW)

Commercial(10kW-2MW)

Utility(>2MW)

Power loss/Monetary loss

Damage to overall commercial operation

Power/Monetary loss

Equipment/Component damage

System failure

Grid instability

Loss of the unit itself

Damage to grid services

Loss of the PV solar farm

Privacy

Domino effect, propagation to other
systems in the grid

Power generation cost fluctuation

the consequences of cyber-attacks can be far-reaching and
lead to significant monetary losses, disruption of services to
customers, and ultimately to grid instability and blackouts.
Even locally and limited targeted attacks on a PV utility farm
can cause a fluctuation in the cost of electric power generation,
therefore, increasing the cost of electricity and denying service
to customers.

C. Success Rate Metrics

Metrics are tools that are designed to facilitate decision
making and improve performance and accountability through
collection, analysis, and reporting of relevant performance-
related data [66]. Many existing approaches compute Security
Risks as Threat x Vulnerability x Impact, but this definition
is limited since it is very difficult to quantify each value [67].
Important elements involved in quantifying metrics are: 1) Asset
value, which is defined by plant size, utilization, reliability,
and availability; 2) Cost of downtime which is the result of
losing the PV plant due to a cyber-attack; and 3) Security costs
required to prevent, detect, respond, and mitigate the impact
of a cyber-attack.

Based on the published and public domain literature and
research, the following metrics to measure the success rate
of an attack are proposed, as shown in Table IV. These
metrics address the effectiveness of a cybersecurity response
strategy and solution as a function of mitigation effectiveness,
detection rate, neutralization power, consequences avoided, and
solution cost. Mitigation effectiveness measures the efficacy
of the proposed solution to mitigate the effect of the cyber-
attack. Detection Rate measures the quality of the solution to
detect cyber-attacks. Neutralization Speed measures the speed
by which the proposed solution neutralizes the cyber-attack.
Consequences Avoided measures the value of the cyber-attack
impact on the PV plant if the cyber-attack had taken place and
succeeded in disrupting the system. Solution Cost measures
the cost of implementing and deploying a security solution to
avoid further cyber-attacks. Total Solution Success measures
the overall cyber-security solution power.

Table IV shows a specific example in which the detection
rate is high, the neutralization power is low, and the rest of the
metrics are rated medium. The solution success is a weighted
average that depends on the weights assigned to the various
metrics and on how the customer perceives them based on
their mission profile. For Table IV and with equally distributed
weights, the solution success is rated 3 or medium. When a
specific weight is assigned to each aspect of the solution, the

TABLE IV: Proposed three-level cyber security metrics and
an example of a cyber attack. Level 1 is Low impact, Level 2
is Medium impact and Level 3 is High impact.

Metrics Weight | 1-L | 3-M | 9-H
ap: Mitigation Effectiveness P1 X
as: Detection Rate P2 X
as: Neutralization Speed P3 X
a4: Consequences Avoided D4 X
as: Solution Cost D5 X
ag: Total Solution Success X
total solution success is defined as:
n
Ay
ap = L—?}L]’Z : 3)

where p; is an integer that represents the weight associated
with the aspect a; of the solution methodology; and n is
the total number of metrics. As with any other asset, the
cybersecurity of PV systems involves a variety of aspects and
poses several questions and challenges that need to be addressed
when selecting and developing a security strategy.

The weight factors depend on the type of operation that the
PV plant supports. For example, in an environment where daily
operations rely exclusively on the power generated by the PV
farm, the consequences of a cyber-attack are significant, and
the weight associated with “Consequences Avoided” is high,
10 on a scale from 1 to 10. Under the same circumstances,
the weight associated with “Solution Cost” is low to moderate,
3 to 5 since these types of installations prioritize reliability
and continuity of service over cost. When service restoration
is prioritized such as for critical assets like data centers or
medical facilities, the weight associated with ‘“Neutralization
Speed” is high. In a situation such as a large PV farm, where
the attack might propagate to other devices, detecting the attack
is a priority and the weight associated with the “Detection Rate”
becomes significant. In all cases mitigating the effect of the
attack is important to limit the damages to the customers, the
facilities and the equipment, hence the weight associated with
“Mitigation Effectiveness” is generally high.

IV. OVERVIEW OF DETECTION AND MITIGATION
METHODOLOGY

To address the cyber-physical security issue of PV farms,
this section presents cyber-attack detection and mitigation
methodologies including model-based cyber-attack detection,
data-driven cyber-attack detection, and network and firmware
security detection and mitigation.
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A. Model-based Cyber-Attack Detection for Control Security
in PV Farm

Cyber-attacks can affect the control system in a PV farm by
corrupting the sensor measurements received by the controller
and the control decisions sent to the actuators. Model-based
cyber-attack detection methods seek to use physics-based
models that are meant to emulate systems under no-fault
conditions to compare with actual system measurements to
recognize anomalies by uncovering inconsistencies between
the modeled and actual performance [68]. This inconsistency
is evaluated against a residual threshold.

We show below a general model of a PV farm whose control
system is under cyber-attack:

z = f(z,uq) + wi, (4a)
y = h(z,u) + wo, (4b)
u = g(ya) + ws, (40)
Yo =Y+ a1, u,=u+ay, (4d)

where z, y, u represent the system state, output, and input
variables; f, h, and g represent some potentially nonlinear
equations describing system dynamics, measurement equation,
and control design; wj, we, and ws represent the system
disturbances; a; and ao represent the attacks signals on
measurement information and the control decisions; and u,
and y, are the corrupted input and output information. Notice
that (4a) can model both DOS and faulty data injection attacks.
A variety of model-based cyber-attack detection methods have
been developed.

First, bad input data detection methods have been developed
for cyber-attack detection [69]. Bad data analysis methods
are initially developed for power system state estimation
to remove the measurement or topological errors in input
data [70]. A variety of methods have been developed for
bad data detection [71]-[74], including residual normalization
method, geometric method, sensitivity analysis, and geometric
approaches. They have good performance if statistics about
the errors of the data are known. Notice that the power output
from individual PV inverters and the power flows within a PV
system have a huge impact on the overall power generation
output. They are closely monitored by the PV system SCADA.
The state estimation based attack detection methods have a
wide range of applications by leveraging the existing SCADA
measurement and monitoring capabilities. We exemplify the
main idea by using the following classic weighted least-square
(WLS) problem:

min (ya - h(xvua))TW(ya - h(xaua))a (5)

x

where W is a weight matrix usually obtained through mea-
surement error statistics [75]. Suppose the solution of (5) is z;
it is considered as an estimation of the system states based on
received system measurements y,. Let r be a residual defined
as follows,

r=Yq — h(E, ug). (6)

Let || - || represent Euclidean norm. It is assumed that the
estimated states obtained based on the corrupted information
cannot fit the physics-based model very well. Hence, regarding

Equation1  Equation2 Equation N

Equation 1 1 1 0
\ Equation 2 0 1 1
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Fig. 9: Bipartie diagram and structural representation

[|r|], a larger than normal value would be generated when there
is presence of attacks. Based on this idea, a residual threshold is
often determined prior to deployment to test ||r||. An anomaly
caused by cyber-attacks can be detected when the threshold is
passed. The method leverages the mature power system state
estimation approaches and is amenable to applications.

Similarly, dynamic state estimation methods like the Lu-
enberger observer method [76] for linear systems and the
Generalized Kalman filter method [77] for nonlinear systems
have been developed for cyber-attack detection as well. PV
systems have rich dynamics arising from the integration of PV
inverters regulated under various control strategies. When the
controllers are marred by cyber-attacks, the system dynamical
behaviors will then deviate from the normal operational condi-
tions. The basic idea of using the dynamical state estimation
based methods is to find the estimated system model and output
(often defined as ¢) to be compared with the received readings
to ascertain the presence of cyber-attacks: If the difference
between gy and y, is ‘“significant enough”, an anomaly is
believed to be found. This comparison is usually conducted
using x? detectors [37]. The x? detector compares the statistical
characteristics of the obtained residual with the normal case,
for example, it calculates the following value:

g=r'Q7'r, (7)

where () is the covariance matrix of r and g a scalar. When r
is of a given distribution, g may conform to a fixed distribution
correspondingly (e.g., if 7 is Gaussian distributed then g is x?
distributed).

The third category of model-based cyber-attack detection
methods is based on FDI methods [78]-[80]. Such methods
usually construct state observers or use parity equations to
generate residuals for attack detection purposes. FDI-based
methods usually conduct a detectability analysis aiming to
determine whether a subset of system equations can be found
such that it contains enough data redundancy to generate the
specific residuals to detect certain attacks. The detectability
analysis method is usually conducted using graph theory meth-
ods. For example, a bipartisan diagram is usually constructed
to reveal the structure of a system as shown in Fig. 9. It can be
observed that with N equations and M variables, an N x M
binary matrix can be constructed such that if variable j exists
in equation ¢ the element on the i-th row and j-th column is
one, which is otherwise zero. From the binary matrix, graph
theory methods like the Dulmage-Mendelsohn decomposition
method can be applied to obtain the subset to find residuals.

Although the above-mentioned detection methods work well
in many applications, in the context of coordinated cyber-
attacks they have potential critical loopholes that might prevent
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TABLE V: Waveform detection results Acc(.):[ANN, LSTM, CNN] (%, 20kHz, Epoch=300)

Accuracy Ny = 400 N, = 600 Ny, = 800 Ny, = 1000
Accget [91.18, 98.49, 98.13] | [92.53, 98.82, 99.36] | [93.09, 99.53, 97.96] | [91.85, 97.80, 99.44]
Accnom [88.91, 99.63, 98.37] | [89.45, 99.93, 98.89] | [92.36, 99.78, 99.49] | [85.87, 97.69, 99.14]
Accgia [86.76, 96.69, 91.17] | [83.43, 97.63, 98.37] | [83.69, 99.23, 89.18] | [86.08, 97.30, 97.73]

AcCreplay | [87.11, 98.67, 96.00] | [81.20, 98.00, 95.60] | [89.67, 93.27, 95.52] | [88.12, 98.36, 96.72]
Accrauir | [99.54, 99.77, 99.77]1 | [99.75, 100.0, 99.78] | [99.79, 100.0, 99.78] | [99.76, 100.0, 100.0]

them from performing as expected [11]. For example, in (5), it
can be seen that the corrupted control decisions u, are included
in the cost function as well. If u, is maliciously chosen such
that 7 is placed below the threshold, the method then fails to
spot cyber-attacks anymore.

Another class of methods that could potentially tackle the
issue is based on Hypothesis Testing. The basic idea behind
these methods is to compute the conditional probability of
the existence of a cyber-attack for two (or more) hypothetical
conditions, i.e., 1) the attack is absent or 2) there exists a
smart adversary that deliberates cyber-attacks with the perfect
system information [81]. The methods have been widely used
to monitor a group of sensors [82], a subset of which are under
attack and a system monitor needs to locate the corrupted
sensors based on all the received measurements. As discussed
above, a PV system has a large amount of sensors and is usually
equipped with a SCADA for monitoring purposes. Hence, the
aforementioned scenario could happen, and exhibit considerable
challenges for PV system operations. The Hypothetical Testing
based methods usually use the flexible tools from robust
optimizations, like minimax or game-theoretic approaches, to
describe the competition between the system monitor and the
adversary, in which the system monitor decides the probability

of an attack in the “worst-case” that an adversary could incite.

B. Data-driven Cyber-Attack Detection for Control Security in
PV Farm

In recent years, data-driven methodologies that do not require
physical models have gained continued interest in smart grid
applications. There are many different data-driven methods,
including stacked auto-encoder (SAE) [83], reinforcement
learning (RL) [84], vector autoregressive model (VAR) [85],
dynamic Bayesian networks (DBN) [86], deep neural networks
(DNN) [87], LSTM [88], PCA reconstruction (PCA) [89],
cumulative sum (CUSUM) [90], influential point selection
[91], and support vector machine (SVM) [40]. Specifically, in
power system fields, data-driven methodologies are used to
detect various cyber-attacks which falsify the market and system
operation. In [92], the authors proposed an SAE- based deep
learning method to detect cyber threats in the state estimation
of SCADA. In power markets, the CUSUM statistical model
was used to detect cyber threats [90]. In [93], the authors
proposed an online cyber attack detection methodology using
reinforcement learning. A distributed SVM was designed to

detect the stealthy false data injection attacks in smart grids [40].

In [94], the authors improved the performance of the supervised

learning techniques algorithm with heuristic feature selection.

A deep belief network was designed to detect the false injection
attacks in real-time using captured features in the historical

measurement data [95]. In [96], the authors designed a cyber
anomaly detector using a convolutional neural network (CNN)
and LSTM. In addition to supervised learning that requires
a large amount of data in training, unsupervised learning is
increasingly popular, which can cluster data into different
classes according to a certain feature. Unsupervised anomaly
detection using a statistical correlation between measurements
was proposed in [86].

While there is extensive work on data-driven methods in
power grids, data-driven detection for PV security is in its early
stage. As described above, in PV systems, both device-level
and system-level controllers are vulnerable to cyber-attacks.
In [12], we proposed a statistical data-driven approach to
detect and diagnose a variety of cyber-physical threats for
distribution systems with PV farms, including cyber-attacks on
the solar inverter controller, cyber-attacks on relays/switches,
and other faults (e.g., short circuit faults). Considering cyber-
attack impacts on two-stage PV converters, a deep-sequence-
learning-based detection and diagnosis was proposed for data
integrity attacks in PV systems [13]. For comparison, [13]
shows a comparison and evaluation of classic data-driven
methods, including K-nearest neighbor (KNN), decision tree
(DT), SVM, artificial neural network (ANN), and CNN. In
addition, we developed machine learning methods to detect
cyber attacks that can lead to the PV inverter performance
degradation through the use of micro-PMU data at the PCC
[97].

In general, most learning-based methods identify the anomaly
in the system based on the monitoring data. Considering the
impact of noise on measurements, the discrepancy between
falsified data and estimated data is calculated in different feature
spaces. Besides cyber-attack detection, the data-driven methods
are used to distinguish from normal conditions, DIA, replay
attacks and physical faults. A comparison study using PCC
waveform data is conducted in the real-time testbed [35] to
diagnose the type of attacks/faults in the PV farm. TABLE. V
shows the Artificial Neural Networks (ANN), LSTM, and CNN.
LSTM and CNN exhibit a better performance in this case
study. ANN is a feed-forward neural network, which cannot
capture sequential information in time series data. Instead,
CNN utilizes the convolutional kernels to extract features of
measurement data. Compared to ANN, CNN is more accurate
using a higher number of layers. In most cases, LSTM achieves
a higher successful detection rate. This is because LSTM
as a special case of Recurrent Neural Networks (RNN) is
capable of learning long-term dependencies. Thus, its model is
more effective at capturing long-term temporal dependencies.
TABLE. V also demonstrates its advantage in anomaly detection
using time-series PCC data.
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TABLE VI: Advantages and Limitations of Model-based and Data-driven Cyber-attack Detection Methods.

Model-based Methods

Data-driven Methods

Advantages

Limitations

» Milder data requirement: Model-based methods usu-
ally prescribe the system model structures and some
system parameters, leveraging established models and
the given information about the system configuration
that are relatively easier to obtain; have milder require-
ments for faulty data. When the system model is built,
the system performance under cyber-attacks can be
simulated, thereby avoiding the need for real-world
faulty data that could be difficult to obtain.

e More mature and highly implementable: Model-
based detection methods are relatively more mature, as
they have been extensively applied for fault detection
in the industry. The best practices and experiences
developed for such methods could potentially be ap-
plied to cyber-attack detection applications and usually
have less computational burden both in the detector
preparation and in the real-time implementation stages.
* Model accuracy. Model-based methods might not be
able to provide accurate detection results since many
real-world applications or phenomena lack an accurate
model.

e Unprecedented cyber-attack class. Model-based
methods usually need to develop specified models
for different cyber-attacks of interest. When a new
class of cyber-attacks is encountered, model-based
methods might provide inaccurate results. Data-driven
methods can better handle such circumstances by
using a generic detector, for example, which can
discriminate between unprecedented cyber-attacks and
normal operations.

* Minimal detection error since detailed model infor-
mation is not required. The detection error is therefore
not affected by the model uncertainty.

* Ability to be trained offline and implemented online.
Real-world data can be used to train a perfect model
for a data-driven method, which reduces the risk for
system operation.

* Supervised learning methods require labeled infor-
mation for the monitored data. Any error in the label
information might lead to the failure of the trained
model.

e A large amount of historical data is required in
the offline model training of the supervised learning
method.

The advantages and limitations of model-based and data-
driven methods are summarized in TABLE. VI.

C. Network and Firmware Security Detection and Mitigation
Methodology

Network-based security techniques have been mostly pro-
posed to address the vulnerabilities of PV system communica-
tion standards [42], [43], [98]-[106]. A cybersecurity roadmap
for PV systems was released in 2017 [42]. The roadmap
focused on communication networks and emphasized the role
of all stakeholders in establishing a cyber-secure PV network.
Sandia National Laboratories (SNL) investigated three advanced
network-based defense mechanisms for DERs including net-
work segmentation, encryption, and “moving target” defense in
a virtualized environment [43]. The National Renewable Energy
Laboratory (NREL) has established several best practices to
mitigate these network-related attacks. Examples include role-
based user access control and strong key management, public
key infrastructure (PKI), and certification management [99].
They also proposed the incorporation of an OT hardware
module (i.e., Module-OT) into the PV inverter to strengthen
its network security [100]. Software-defined networking (SDN)
technology, where network operators flexibly manage the

network, has been applied to a configurable network and access
control with the goal of mitigating cyber-attacks, such as DoS
attacks [101], [102]. Moreover, real-time network intrusion
detection methods for PV inverters/systems have been widely
studied to detect the forged in-transit-data, which includes: 1)
Signature/rule-based network intrusion detection using tools
such as Snort [103] and Suricata [107] (e.g., detecting irregular
network packet format, reply, and message authentication); 2)
Behavior-based machine learning [103], and signal processing
methods (e.g., watermarking [104] and perturbation-based
diagnostics [105]).

Software-related attacks can bypass the most advanced
access control and security mechanisms [108]. Numerous cases
of power grid devices’ firmware vulnerabilities have been
reported [109]. To date, PV inverters’ real-time firmware
security has not been explored as much as network-related
security. A power router prototype using a dual-controller
design has been proposed to improve uptime and firmware
security for power grid devices [110]. The dual-controller
design consists of one controller that provides pulse width
modulation (PWM) signals to the PV inverter and another
controller that examines the updated firmware by checking
the generated PWM signals. A.P. Kuruvila et al. proposed
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a custom-built hardware performance counter (HPC) method
to detect malicious firmware modifications in a PV inverter.
The method consists of periodically measuring the order of
various instruction types within the inverter firmware code and
identifying an unwanted modification using machine learning-
based classifiers [111]. A machine learning-based tool to auto-
mate security patches and vulnerability remediation for electric
utilities has been proposed [112]. The machine learning engine
automatically acquires applicable vulnerabilities from a central
database that includes asset data and Common Vulnerability
Scoring System (CVSS) attributes obtained from vendors, third-
party services, or public databases. CKC-based defense methods
can be used to detect sophisticated attackers early, before an
actual impact occurs, and to neutralize sophisticated cyber-
attacks by cutting a middle stage of the CKC model in both
PIT and OT sides. D3FEND is a knowledge graph framework
providing a countermeasure of MITRE’s ATT&CK for ICS
based CKC model [113]. The graph contains semantically
rigorous types and relations that define both of the key concepts
in the cybersecurity countermeasure domain.

Blockchain technology can provide a secure distributed
system framework on currently available information and
communication technology (ICT) applications utilizing the
latest cryptography, PKI, consensus, smart contract, and access
control mechanisms. Blockchain technology has been widely
adopted in IoT applications and e-commerce systems for
secure communications, data sharing, and software security
[114], [115]. In the energy sector, blockchain technology has
been mostly studied in secure or privacy-preserved energy
trading [116], [117]. Recently, M. Mylrea et al. examined how
blockchain technology can meet North American Electric Re-
liability Corporation (NERC) Ceritical Infrastructure Protection
(CIP) compliance requirements for software patching [118]. It is
anticipated that the traceability, transparency, and accountability
features of the blockchain technology could mitigate most of
the challenges associated with patching critical IT and OT
systems. Fig. 10 illustrates the overall concept of blockchain-
based zero-trust ecosystem for a PV system (i.e., no network-
related entity including sensitive data, devices, applications,
and systems can be trusted) [45]. A private blockchain network
can build a collaborative security ecosystem where multiparty
(e.g., utility, operator, vendors, and security service provider)
can seamlessly handle the user- or vendor-identified incidents
through effective notification, coordination, disclosure, and
validation mechanisms, while considering the privacy of the
PV system using smart contract and multichannel blockchain.
The consistent and continuous process of verifying identity,
validating activity, and limiting access and privilege will
increase the trustworthiness of the system security services
to ensure the integrity and authenticity of critical assets, thus
providing a viable way to manage the evolving cyber risks
on PV systems. Security modules are attached/installed in
the critical devices, such as the cloud, site data manager,
and inverters. The security module mainly consists of a
blockchain client program, IDS, static malware analysis, and
firmware rollback/patch [119]. The blockchain client enables
the submission of transactions, access ledgers, and public
key infrastructure (PKI, as part of membership service), and
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Fig. 10: A concept of block-based zero-trust security for a PV
system.

such events can be controlled by smart contracts. Through the
blockchain-based framework, the MITM attacks are detected
by using the blockchain-based cooperative in-transit data
verification process [45] and software/firmware update [119].
Fig. 11 shows the block diagram of the blockchain platform for
an in-transit control command/file integrity validation scenario
where the data are considered a critical asset; therefore, the
authentication, integrity, and authorization of the critical in-
transit data are kept verified, and the results are stored in the
ledger as security logs. PV system vendors, an operator, utility,
and security modules will be the clients that are authorized
persons/devices providing data as a form of transactions to the
blockchain network and can access/share the data stored in
their blockchain ledgers. Uploading and accessing data in the
ledgers are mutually agreed upon and programmed by smart
contracts. Only authorized parties using the blockchain client
program can create transactions that include hash values of
control commands/files, and the blockchain network considers
the control command or file update as an authorized event.
Therefore, the blockchain network can provide increased
visibility into the methods, applications, and services to
easily ensure the integrity and authenticity of the control
command/file assets. After they provide the hash values to the
blockchain ledger, the smart contract is running the integrity
check without trusting the existing security perimeters, such
as the TLS and firewall whitelist. In addition to the file
integrity check using blockchain, software/firmware update
process includes static malware analysis (i.e., the file will
be analyzed without open/run the file). In [119], an open-
source software, PeStudio Ver. 9.09 is used to reverse the code
engineering of the received files first in a Windows virtual
machine. This tool provides cryptographic hash verification,
original file information, signature, blacklists, and the level
of risk information as clues of known malware types. It
enables access to VirusTotal, an online suspicious file/URL scan
website cooperating 69 antivirus engines; thus, a python code
is developed and implemented in Raspberry Pi OS (Debian) in
a virtual machine to perform similar static malware analysis,
allowing communications with the blockchain server.

T. Kim et al. explored the cyber-physical security of battery
management systems (BMSs) and the adoption of blockchain
technology with IoT devices as defense strategies for security
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TABLE VII: Comparison of State-of-art Strategies and Blockchain Security Adopted/To Be Adopted To PV Farm.

Security Category State-of-the-Art Strategy

Blockchain-based Strategy

Network Security ¢ TLS, VPN, PKI

* Network segmentation and moving target

defense
e SDN

* Each device has its own ID and asymmetric
key, resulting in eliminating complicated key
management and distribution (membership
service)

* Smart contract-based access control and
MITM attack detection

Software/Firmware Security
analyzer

* Code signing

¢ Automated detection for software vulnera-

* Design a secure compiler with a secure
coding rule checker and a static weakness

* A smart contract allows to store the original
hash of the firmware in the ledger to vali-
date the firmware and automatically patch if
corrupted

* Static malware analysis

 Patch management

bilities and automated patch generation

Data Storage Security

MDS5 encryption)

» Data storage will be locked and the data
can be encrypted (e.g., hashing technique and

* Data integrity and privacy can be guaranteed
through the distributed blockchain ledger
since the blocks are linked and encrypted

On-board Interface Security

tacks

* Enforce recommendations from OWASP:
1) remove unnecessary physical interfaces
(e.g., USB ports); 2) disable testing/debugging
tools; and 3) implement TPM

* Detection methods for signal injection at-

* On-board network security might be guar-
anteed if a lightweight blockchain can be
implemented at the on-board level

* Physically unclonable function (PUF) veri-
fied by blockchain

Hardware Security

* Functional safety checking of ICs

* Component-level authorization and supply
chain management can act as a good defense
strategy against insecure hardware replace-
ments/insertions since the transactions on the
ledger are immutable

* Diagnostics for detecting damaged hardware
components

* Asset-based structural checking tool for
detecting abnormal electrical signal patterns
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Fig. 11: Cooperative in-transit data (e.g., files for firmware
update and contract command validation using blockchain).

sensitive layers of battery management systems, including
network, software/firmware, data storage, on-board interface,
and hardware layers [120]. Table VII illustrates a comparison
of the state-of-the-art (SOA) defense strategies and adopting
emerging blockchain-based technologies for a PV system based

on [120]. Interested readers are referred to [120] for more
details.

V. DESIGNING NEXT-GENERATION CYBER-SECURE POWER
ELECTRONICS SYSTEMS

Power electronics systems are increasingly using advanced
controls to operate in a secure way and protect the interfaced
assets such as PV systems from abnormal grid events as well
as cyber-attacks. To achieve this goal, a strong interaction
and interdependence among hardware (e.g., power converters),
firmware (e.g., control and communication), generation assets
(e.g., PV solar, wind turbine) and the electric power grid is
required [3], [121]. In particular PV inverters can be vulnerable
to cyber- attacks and particular attention should be paid to
making their controls robust and reliable.

Communication-based protection schemes against cyber-
attacks will depend on a variety of factors such as the
system architecture, its control, and the level of reliability
required [122]. Based on a smart integrated system, B. Kang
et al. describe a PV system where an attack through its
communication layer caused significant physical damage on the
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PV systems by forcing the inverter off the maximum planned
aggregated I-V curve power point [123]. Other related attack
scenarios are initiated by communicating false information to
mislead system operators, hence leading to system instability
caused by the operators themselves. A.Y. Fard et al. analyzed
the unstable operation of high penetration PV grids due
to abnormal operations [124]. The proposed cybersecurity
analytics method shows that active-reactive power (PQ) set-
point manipulation at the secondary control layer of PV
inverters can cause grid voltage instability. To mitigate this
risk an additional protection layer to check the validity of the
incoming PQ setpoint is added to the primary protection layer.

Communication protocols and their encryption play an
important role in securing interconnected PV systems against
cyber-attacks. These communication-based attacks can happen
without the central system operator’s knowledge since it can be
easily mistaken for and confounded with PV assets intermittent
behavior. Many of the industry communication protocols do
not have adequate encryption to protect against cyber-attacks.
In systems with connected distributed generation sources which
are highly dependent on communication systems and smart
meters, an intruder might have access to several communication
nodes [125]. A single cybersecurity layer will not be sufficient
to protect against these attacks. To achieve a higher level of
reliability, the communication layer may require a redundant
protection system. The ease of propagation of cyber-attacks in a
power system depends on the degree of decentralization of the
distributed energy resources such as PV solar [126]. With the
advent of decentralizing communication and the IoT, patterns
that lead to cyber-attacks can be recognized and detected in a
cooperative and timely manner, without depending on a failure
prone central data collector. Ultimately, the use of control and
detection algorithms in these communication systems should
be modeled, quantified and considered when computing the
system’s overall reliability metrics [20].

To detect cyber-attacks, the system’s actual response should
be continuously compared to its normal operating condition
state via appropriate modeling techniques. A cyber-attack is
detected when a known system variable deviates from its
normal value and no longer correlates to other variables
within the system. Y. Isozaki et al. proposed a detection
methodology of cyber-attacks on DERs with high PV penetra-
tion targeting voltage regulation and over-voltage protection
at the point of interconnection to grid [19]. The detection
algorithm works best and damages are limited when only a
small number of PV panels are involved. Another class of
attacks are stealthy attacks which are undetectable by common
intrusion detection mechanisms. These attacks can cause severe
harm to power electronics-based grid systems that exhibit
low virtual inertia [127]. The low virtual inertia nature of
power electronics-based systems when interconnected with
traditional synchronous generator-based grid systems creates
a new opportunity (attack surface) for the attacker to inflict
more harm within a short amount of time [127], [128]. As a
result of these attacks, these systems can easily and quickly
become unstable before the intrusion is detected and acted
upon. Traditional synchronous-based grid systems, however
are more stable due to their high inertia.

K.G. Lore et al. argue that cyber-attacks on grid-tied PV
systems with a central unit controller can either be strategic or
random [85], however there is still a lack of well-established
standards for attack detection. As there is not yet a standardized
strategy, there are efforts on different fronts to develop intrusion
detection techniques. In one such instance, Olowu et al. classi-
fies these methodologies into signature-based, anomaly-based,
and specification-based detections strategies [129]. Attack
detection methodologies based on pattern recognition usually
employ state vector estimations from observed measurements.
This state estimation can be implemented using model-based
or data-driven strategies as discussed in this work. The
latter strategies correlate the expected response of the system
output to the individual PV panels output, while the residual
of this comparison is computed and compared to a given
threshold. To face the challenge of detecting cyber-attacks
on photovoltaic plants, signature-based machine-learning and
deep-learning algorithms have been proposed [13], [97]. These
algorithms have shown great accuracy in diagnosing cyber-
attacks; however they have not been field-validated in an
actual PV system. The signature of a cyber-attack can also
be seen in the physical layer. Thus, Y. Isozaki et al. proposed
hybrid data-based and physical-informed detection methods
based on the observation of variables such as voltage and
reactive power fluctuations during transient periods [130], [131].
These last two cited works show that observation and detection
based on physical variables can be slow. The reason for the
long-drawn-out detection response is that the standards allow
for some flexibility in operating limits during the transient
response of grid tied PV systems. Ozai et al., in turn, present
an anomaly-based strategy [132] for smart grids. In this
work, the authors argue that methodologies that work with
state estimation face difficulties in recovering state vectors in
sparse networks. To address this problem, the authors propose
a statistical correlation-based machine learning mechanism
for large-scale and distributed systems. The best accuracy
in intrusion detection, however, is theoretically verified by
specification-based techniques. These techniques specify the
desirable behavior of a system through a security policy and
with the help of smart meters. For this last methodology,
solutions were implemented for applications in smart grids
[133], [134]. As with other anomaly-based detection techniques,
there is still no specification-based methodology that especially
addresses the cybersecurity of photovoltaic plants, to the best
of our knowledge.

Given the specificity of these attacks and that there are
established detection methods, some recent studies proposed
control-based solutions to mitigate their effect [15], [16], [135],
[136]. These solutions control and impact the outcome through
the converter power semiconductor switching devices. At the
system level, resiliency to cyber-attacks requires a tight cyber-
physical integration amongst all constituent sub-systems (e.g.,
converters) and the cyber layer (e.g., communication, detection
algorithms, control) to thwart cyber-attacks.

The hybrid detection method leverages the flexible tools
from the model-based and data-driven detection algorithms
[137], [138]. From the model-based detection point of view, the
motivation for hybrid cyber-attack detection method includes: 1)

2168-6777 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/é)ublicationsﬁstandards/publications/ri hts/index.html for more information.
Authorized licensed use limited to: National Renewable Energy Laboratory. Downloaded on September 22,

21 at 21:55:10 UTC from IEEE Xplore. Restrictions apply.


http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2021.3111728, IEEE Journal

of Emerging and Selected Topics in Power Electronics

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscripi.
The published version of the article is available from the relevant publisher.

Ry, L v,
= T
Information =
Correctnessl Cont;(zller “ Ril\ay |

| Communication |

Information Uncertainty

Fig. 12: Overview of cyber security issues in PV systems —
information uncertainty and correctness may affect the control
and protection layers simultaneously.

System model inaccuracies; and 2) Difficulty finding threshold
for residuals. The latter can be a big issue for PV system cyber-
attack detection. The threshold method is a simple criterion
which is based on the value of the residuals. If the residual
crosses the threshold value, the system is believed to be under
attack. Given the variability and uncertainty in PV generation,
the threshold needs to be designed not only to reflect the
difference between the anomaly and normal conditions but
also to take into consideration their differences under disturbed
conditions. For this reason, the threshold can be difficult to
find for certain applications. Thus, data-driven classification
methods can be applied to replace the simple threshold-based
method [139]. For example, CNN based classifiers can be
developed to extract features beyond values of the residuals.
These features could potentially yield rich information helpful
for cyber-attack detection [140].

A. Challenges

Although the detection and mitigation approaches described
above provide the technical foundations for dealing with cyber-
attacks on PV systems, there remain several challenges to solve
in order to secure them. These challenges mainly arise from
vulnerabilities in the PV system controls and communication
layer. Described below are four prominent examples of these
challenges:

Wide Range of Time Scales (s to min.): Since PV systems
control dynamics operate at different timescales (microseconds
to minutes), cybersecurity solutions need to operate from
microseconds to minutes. An attack on the fastest control
layer such as switching devices and gate drives requires fast
cybersecurity solutions, while an attack on the slowest control
layer such as the plant controller might be more manageable.
Another challenge is discriminating between a cyber-attack
and a fault. A thorough vulnerability assessment of PV system
control loops against cyber-attacks is therefore key to its cyber-
security.

Control Under Information Uncertainty: Figure 12 shows
a PV system and its control, communication, and protection
layers. Either a cyber intrusion or impaired communication
traffic (e.g., latency, link failure, packet loss) can corrupt
the transmitted data to the PV inverter causing information

uncertainty. This uncertainty adversely affects the PV inverter
control layer which in turns leads to real-time operation failures
such as inability to respond to voltage and frequency ride-
through, and Volt-Var Control. Furthermore, this information
uncertainty will also affect the PV inverter control layer
computation process (usually operating at a faster - us -
timescale). It will also impact circuit breaker protection relays
as it will either delay or cancel relay trip decisions when
grid faults occur. To address this challenge, communication
network reliability and intrusion detection solutions must be
implemented at the system and device level.

Scalability and Grid Transition: Scaling cyber-security
solutions from device to system level poses an additional
challenge. For PV systems, cyber-securing the PV inverter
is important, but additional cyber-security measures need to be
taken at the grid level. The latter will become more challenging
as PV inverters are transitioning from grid-following to grid-
forming. Grid-forming PV inverters will require complex and
advanced controls to regulate the grid voltage and frequency.
In a large PV farm there might be tens if not hundreds of these
PV inverters, hence scaling cyber-security solutions from the
inverter to the plant level is required.

Interoperability: As PV solar energy has become increas-
ingly competitive, large (Hundreds of MegaWatts to few
GigaWatts) plants are being deployed worldwide. These large
plants include many PV panels (in the Millions) and PV
inverters (in the Hundreds or Thousands if string inverters
are used). Under these conditions interoperability amongst
PV inverters is crucial to ensuring the plant cybersecurity.
In addition to grid-following and forming, PV inverters
perform many other functions such as fault-ride through, black-
start, reactive power compensation, etc. To ensure optimal
cyber-physical interaction amongst these PV inverters various
syntactic compatibility reinforcements need to be monitored
carefully as per the international standards for communication,
which defines structural interoperability. Moreover, semantic
interoperability is another challenge that rises when the
structure and codification of data are non-uniform among all
systems and sub-systems. Cybersecurity has therefore emerged
as another metric when multiple power electronics converters
need to be coordinated. Standardization of practices, policies
for secure exchange of information is also critical critical for
PV systems to securely perform their grid functions such as
frequency regulation and demand response.

B. Future Directions

Cyber-physical security must keep pace with advances in
control and computing techniques. The detection and mitigation
methods for cyber-attacks have challenges as mentioned above.
To bridge the gaps and meet these challenges, we propose, to
expand the current research and work into the following new
topics.

Multi-scale Controllability: To extend the current research
to multi-scale controllability of grid-tied power electronic
converters, a significant focus needs to be put on evaluating how
cyber attackers impact large power systems. These attacks not
only lead to shutdown and grid instability but also affect the grid
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Fig. 13: Reduced cyber-physical interactions from periodic
communication to self-triggering.

operation from an economic perspective. Resilience measures
against cyber-attacks should be implemented at all levels and
across time scales. Multi-scale controllability should enhance
spacial temporal scalability across all the layers and events
ranging from slow updates to cyber layers to faster disturbances
in converters and the switching layers. This functionality will
ultimately induce controllability over each function, such as
MPPT, voltage regulation, switching losses reduction, and
Electro Magnetic Interference (EMI) mitigation.

Event and Self-triggering Control: To simultaneously
minimize both the cyber-physical interactions and provide
resiliency against cyber-attacks, as shown in Figure 13, event
and self-triggering control techniques are deployed. An event is
defined as any cyber-physical disturbance to the system and is
characterized by the measured values beyond a particular state-
dependent threshold. Event-triggering control is an aperiodic
concept that consists of only updating triggering signals when
the system is in a quasi-stable mode. This reduces both
the system computation and communication burden and only
activates the communication layer during these events [141]—
[143]. Self-triggering control uses a local entity to generate the
triggering instants for each converter thereby reducing the need
for communication between the converter and plant controllers.
It can also be defined and tuned subject to the system noise.
In addition to reducing computational and communication
burdens, these triggering control techniques can also be used
to schedule the exchange of information (such as PQ set-points)
between PV systems and the grid as requested by the local
Independent System Operator (ISO), such as NYISO, CAISO.
As a result, any false data injected by a cyber attacker can be
easily detected as it results in false command that does not fit
the event-triggering criteria.

Artificial Intelligence and Machine Learning: Artificial
Intelligence (AI) and Machine Learning (ML) are recent
tools that are being deployed to make intelligent and data-
driven device and system level control decisions based on
the data generated by the actual system as well as its model.
Specifically, in power systems with a high penetration of power
electronics-based converters, accurate models are important

and are validated by reinforced intelligence learning and
abstraction AI/ML-based tools. These tools use a digital twin
of the PV system to perform fault diagnostics and condition
monitoring as well as expedite the resiliency of grid-tied PV
systems against cyber-attacks using historical data. The tools’
performance accuracy depends mainly on the volume and
quality of the current and historical data, hence further research
is required to develop sorting methods to screen and classify
the data accordingly. For PV systems’ cybersecurity purposes,
it is essential to collect the system’s response under various
conditions such as grid faults, load shedding, contingencies,
and data interruption from sensors and controllers.

Distributed Decision Making: Distributed decision-making
is one of the most reliable means of information sharing in a
multi-function power electronics system due to its communi-
cation infrastructure low cost, its scalability, and its resiliency
against delays and link failures. Compared to a centralized
information-sharing mechanism, distributed decision-making
efficiently uses a common consensus point to reach a system
level collective decision. This could be another PV systems
attribute to ensure resiliency against cyber-attacks. A distributed
sharing mechanism is more robust to attacks than a centralized
mechanism since more points need to be compromised to
destabilize the system versus a single central point. As a
result, considerable system information is required by the cyber
attacker to destabilize a distributed decision-making process
system.

Hot-Patching and Online Security Performance: Hot-
Patching is the ability to perform a firmware patch (to update,
fix or improve) on a given device control unit without causing
any downtime or any disruption to the system operation. Hot-
Patching can reduce the cost and risk of system downtime
during a firmware upgrade. Therefore, while the firmware
update is being developed, tested, and patched, the entire
system can continue running without interruptions. Generally,
the firmware update is tested for vulnerabilities offline and once
it passes the tests, the firmware is transmitted to the device
and deployed in real time. When dealing with multiple devices’
firmware updates, a time schedule for disconnecting, patching,
and re-connecting the devices to the grid is established. When
the firmware is ready to be patched, Hot-Patching allows for all
of the devices to be simultaneously patched without interrupting
the power flow of the PV system.

The architecture of a Hot-Patch capable device requires
embedded parts that allow for the firmware patch to be
performed while the rest of the controller is actively managing
the grid-connected device. Having dedicated components in
the controller that perform independent functions, such as
firmware patching, allows for embedding security measures as
part of the independent functions. When multiple vulnerabilities
are discovered in different device controllers, they need to
be immediately addressed and the corresponding firmware
needs to be updated, which is time consuming. Fengli et al.
demonstrated a patch scheduling methodology that prevents
and denies opportunities for the attackers to exploit system
vulnerabilities [144]. This scheduling methodology also takes
into consideration the time-sensitivity of updating software
vulnerabilities and the device downtime needed to patch the
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firmware. Hot-Patching and embedded security system concepts
allow for an additional backup in the control layer when
firmware vulnerabilities are being updated. If the vulnerabilities
are not patched in a timely manner, they can be exploited by
an attacker to send compromised commands to the system
control layer. The embedded security hardware and firmware
will evaluate these commands before they are transmitted to the
system active controller. As an example, if the attacker sends
a malicious firmware update that could harm the system, the
embedded security hardware and firmware feature will screen
these commands before they are implemented in the active
controller.

Resilient Control Under Compromised Conditions: The
electric power grid is a network system that is designed to
serve a variety of consumers and stakeholders. Even when
cybersecurity measures are implemented, the grid may still
be vulnerable to cyber-attacks via a variety of attack surfaces.
Attack-tolerant control algorithms to allow a power system
to sustain its operation are critical to resilience against cyber-
physical attacks. To maintain sustainable operation even when
a small portion of the system is compromised, some solutions
have been proposed in the literature. N. Gajanur et al. pro-
posed blockchain-assisted inverter secondary control in which
blockchain serves as a secure communication medium [145].
Though high-security methods with multiple security measures
such as blockchain may incur additional latency, resulting from
reinforced cybersecurity measures, the system can continue
to operate under severe cyber-attacks. These attacks may
compromise a portion of the primary communication and
control system. M. Greidanus et al. proposed advanced controls
to compensate for the impact of the security measures, e.g.,
increased latency [146].

In the legacy grid, a cyber-attack or a natural disaster will
lead to outages at all distribution feeders, including feeders
that are tied to DER assets such as PV. This is due to the
mode of operation of grid-following PV inverters, which are
unable to operate in an islanding mode. To operate and to form
the voltage and frequency of an isolated, inverter-based DER
distribution local grid, grid-forming inverter controls are used
to independently black-start it when the main grid experiences
a blackout [147], [148]. By allowing multiple PV inverters
to collectively manage the local grid, without relying on high-
fidelity communications, grid resilience can be achieved. To
enhance the survivability of a power system against cyber-
physical attacks, system operators should consider limiting the
use of external network-based communications and instead
rely on robust internal communication as much as possible.
Although the use of internal communications might not be
optimal, it does have the benefits of ensuring service continuity
and facilitating the recovery process during and post cyber-
attack events.

VI. CONCLUSION

This paper presented a comprehensive review and status
of PV systems’ cyber-physical security. This includes vul-
nerability analysis, impact assessment, attack detection and
mitigation, and future research topics. Cyber-physical security

was addressed from a hardware, firmware, communications,
and network perspective. Impacts and security assessment
preliminary results were described and presented. To address
cyber threat detection and mitigation, model-based and data-
driven methodologies are proposed. In addition, blockchain
algorithms are also suggested as a way to counter cyber-attacks
on the communication networks. Additional ideas include
multi-scale system modeling, event-trigger control, artificial
intelligence application, and hot patching. The ideas proposed
have the potential to address the increasing challenges posed
by cyber-attacks on renewable assets in general and on PV
systems in particular.
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