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Space-Time Quantum Metasurfaces
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(Dated: June 4, 2021)

Metasurfaces have recently entered the realm of quantum photonics, enabling manipulation of quantum light
using a compact nanophotonic platform. Realizing the full potential of metasurfaces at the deepest quantum
level requires the ability to tune coherent light-matter interactions continuously in space and time. Here, we
introduce the concept of space-time quantum metasurfaces for arbitrary control of the spectral, spatial, and spin
properties of nonclassical light using a compact photonic platform. We show that space-time quantum meta-
surfaces allow on-demand tailoring of entanglement among all degrees of freedom of a single photon. We also
that spatio-temporal modulation induces asymmetry at the fundamental level of quantum fluctuations, resulting
in the generation of steered and vortex photon pairs out of vacuum. Space-time quantum metasurfaces have the
potential to enable novel photonic functionalities, such as encoding quantum information into high-dimensional
color qudits using designer modulation protocols, sculpting multispectral and multispatial modes in spontaneous
emission, and generating reconfigurable hyperentanglement for high-capacity quantum communications.

The generation, manipulation, and detection of nonclassical
states of light is at the heart of quantum photonics. As quan-
tum information can be encoded into the different degrees of
freedom of a single photon, it is highly desirable to develop
photonic platforms that allow to control them while maintain-
ing quantum coherence. Metasurfaces [1, 2] have recently
transitioned from the classical to the quantum domain [3–
16]. Demonstrations of metasurfaces in quantum photonics
are based on meta-atoms whose optical properties are deter-
mined by their material composition and geometrical design,
and the lack of spatio-temporal control severely limits the
functionalities that state-of-the-art quantum metasurfaces can
attain. At the classical level, space-time metasurfaces have
been shown to provide that higher degree of control [17, 18],
both by reconfigurable and fully-dynamic tailoring of the op-
tical response of meta-atoms using analog and digital modu-
lation schemes [19, 20]. Transitioning spatio-temporal mod-
ulation through the classical-quantum divide could be critical
to enable novel opportunities for flat quantum photonics.

Here, we put forward the concept of space-time quantum
metasurfaces (STQMs) for spatio-temporal control of quan-
tum light. In the STQM paradigm, meta-atoms are modu-
lated in space and time enabling manipulation of quantum
light interacting with the dynamical metasurface. STQMs
come in different flavors, including modulated quantum sys-
tems such as atomic arrays driven by laser pulses, hybrid
quantum-classical systems such as quantum emitters embed-
ded in modulated dielectric nanostructures, and meta-atoms
made of classical or quantum materials with driven optical
or electro-optical response. In this work we discuss concrete
examples for the last two flavors. Figure 1a depicts an all-
dielectric STQM for generating multicolor-multipath-spin hy-
perentanglement on a single photon. Figure 1b illustrates a
graphene-based STQM generating vortex dynamical Casimir
photons out of the quantum vacuum.

STQM-enabled entanglement manipulation: We first study
the entanglement dynamics of a single photon as it transits
through a dielectric metasurface whose permittivity is spatio-
temporally modulated. The meta-atoms are comprised of

high-index dielectrics, that have low optical absorption and
result in negligible photon loss. The identical meta-atoms are
anisotropic and are suitably rotated with respect to each other
(Fig. 1a). The combination of anisotropy and rotation results
in circular cross-polarization conversion and a spin-dependent
Pancharatnam-Berry geometric phase distribution Ψ(r) akin
to spin-orbit coupling [21]. The spatio-temporal modulation
is modeled as a harmonic perturbation to the permittivity,
ε(r, t) = εum+ ∆ε cos(Ωt−Φ(r)), where εum is the unmod-
ulated permittivity, ∆ε the modulation amplitude, Ω the mod-
ulation frequency, and Φ(r) a “synthetic” phase. Such kind of
modulation has been recently demonstrated in [22] using an
amorphous Si optical metasurface and two slightly detuned
near-IR pump beams. Their interference produces a traveling-
wave permittivity modulation via the nonlinear Kerr effect in
amorphous Si, resulting in Φ(r) = β · r and with modulation
frequency given by the detuning of the pumps [23]. Note that
the geometric phase is fixed by the design of the metasurface,
while the modulation momentum “kick” β can be reconfig-
ured on-demand.

The geometry of the meta-atoms can be tailored so that their
lowest Mie electric and magnetic dipolar resonances domi-
nate the optical response and the STQM has maximal cross-
polarized transmission [23]. One can then describe the in-
teraction of each resonator with light using the Hamiltonian
Hint = −p · E − m · B [32, 33], where p and m are the
electric and magnetic dipole operators and E and B are the
quantized electromagnetic fields. It is convenient to express
the Hamiltonian only in terms of photonic modes by relating
dipoles and fields via effective electric αE and magnetic αM
polarizability tensors. Cross-polarized transmission of a nor-
mally incident photon can be described via an unmodulated
coupling strength α

(cr)
um (ω) = Re[αE,xx(ω) + αM,yy(ω) −

αE,yy(ω) − αM,xx(ω)]. Upon spatio-temporal modulation,
the polarizabilities adiabatically follow the harmonic driving
because the response times of semiconductors are much faster
than THz modulations achievable with all-optical schemes.
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Figure 1. Conceptual representations of space-time quantum meta-
surfaces. (a) A dielectric STQM with refractive index modulation
induces color-spin-path hyperentanglement on a single photon. (b)
A graphene-disk STQM with electro-optical modulation generates
entangled vortex photon pairs out of the quantum vacuum.

Hence,

α(cr)(ω; r, t) = α(cr)
um (ω) + ∆α(cr)(ω) cos(Ωt−Φ(r)). (1)

We calculate the polarizability modulation amplitude
∆α(cr)(ω) from the dependency of α

(cr)
um (ω) on permit-

tivity modulation (Fig. 2a). The STQM Hamiltonian
H1(t) = −

∑
j,γ,γ′ [α

(cr)
um (ω) + ∆α(cr)(ω) cos(Ωt − Φj)] ×

A∗γ;jAγ′;je
i(ω−ω′)t[eiΨja†γ,Raγ′,L + e−iΨja†γ,Laγ′,R] + h.c.

results from summing contributions from individual j-th
resonators. The STQM annihilates the input photon with
frequency ω′ and spatial mode Aγ′ , and creates a new one
with the same or Doppler-shifted frequency, flipped spin com-
ponents, and added geometric and synthetic phases. Photons
are very robust against decoherence in high-index dielectrics,
as shown in previous experiments [5]. Temporal fluctuations
in the STQM could introduce environmental noise whose
quantification depends on the particular modulation protocol.
For simplicity, here we consider noise-free modulations and
restrict to unitary dynamics.

When the geometric phase is a linear function of the meta-
atoms’ positions it generates spin-path correlations, while a
linear synthetic phase creates path-color correlations. The
two correlations are intertwined through path and the photon
evolves into a state that is hyperentangled in spin, path, and
color [34]

|ψ(t)〉=
∑
p,q

c(R)
p,q (t)|ωp;kp,q;R〉+c(L)

p,q (t)|ωp;kp,−q;L〉, (2)

where p are integers, q = 0, 1, R (L) denotes right (left) cir-
cular polarization, ωp = ωin + pΩ are harmonics of the input
frequency ωin, kp,q = kin + pβ + qβg are momentum har-
monics of the in-plane input wave-vector kin, and βg is the
momentum kick induced by the geometric phase. Note the
STQM makes the photon to occupy high-dimensional color
qudit states. We will denote states in the first and second
terms of Eq. (2) as (p, q,R) and (p,−q, L), highlighting that
the geometric-phase-induced momentum kicks for right- and
left-polarized photons have opposite directions. To calculate
the probability amplitudes we consider a normally-incident
linearly-polarized single-photon pulse and assume Ω � ωin
and |β|, |βg| � ωin/c. We obtain [23]

|c(R/L)
p,q (t)|2 =

1

2
cos2

(ωintα(cr)
um

2hP 2

)
J2
p

(ωint∆α(cr)

2hP 2

)
(3)

when p and q have the same parity; for opposite parity the co-
sine is replaced by a sine; Jp(x) is the Bessel function. The
probability that the output photon is in a given harmonic as
a function of the modulation depth is shown in Fig. 2b. At
zero modulation, the output has the same frequency as the in-
put and is an equal superposition of right- and left-polarized
geometric-phase-kicked states. As the modulation increases,
transitions to only the first few frequency/momentum harmon-
ics occur and a larger amount of the Hilbert space is explored
at large modulation depths. At oblique incidence, conversion
efficiencies into momentum harmonics could deteriorate due
to limited performance of phase gradient metasurfaces, and
wide-angle metasurfaces could be employed to enhance the
transition probabilities [2]. Regarding other input polariza-
tion states, the corresponding transition probabilities are cal-
culated in [23]. In particular, circularly-polarized input pho-
tons are cross-polarized in transmission and only get color-
path entangled at the output.

Figure 2c depicts the density matrix of the input linearly-
polarized photon and Figs. 2d-f the output density matri-
ces for different configurations of the STQM: (d) Geomet-
ric phase with spatio-temporal modulation off, giving a spin-
path entangled output of same frequency as input; (e) No ge-
ometric phase and spatio-temporal modulation on, resulting
in multicolor-multipath entanglement; (f) Geometric phase
with spatio-temporal modulation on, delivering multicolor-
multipath-spin hyperentanglement.

We quantify the amount of entanglement using concur-
rence for qudit multi-partite systems [35, 36]. We obtain
C ≈ 0.996, C ≈ 1.129, and C ≈ 1.381 for Figs. 4d,e,f,
respectively. Note that the concurrence in these systems is not
bound to be less than one. For example, for color-path maxi-
mally entangled qudits Cmax =

√
2, implying that the output

state in Fig. 4e is highly entangled. Quantum state tomog-
raphy or correlation measurements between different degrees
of freedom of the output photon could be employed to probe
entanglement. Extensions of the above analysis to other ge-
ometric and synthetic phase configurations are discussed in
[23].
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Figure 2. (a) Modulation amplitudes of polarizability tensor com-
ponents normalized to the meta-atom volume for ∆ε/εum = 1% of
an optical all-dielectric STQM designed for maximal cross-polarized
transmission at 1550 nm under normal incidence. Inset: Anisotropic
amorphous Si meta-atom with L1 = 950 nm, L2 = 435 nm,
h = 300 nm, w = 200 nm, and square unit cell with period
P = 1200 nm. (b) Conversion probability of a linearly-polarized
input photon into an output photon in frequency harmonic ωin + pΩ
and momentum harmonic pβ+qβg versus polarizability modulation
depth. Density matrices of input (c) and output photons featuring (d)
spin-path entanglement, (e) color-path entanglement, and (f) color-
spin-path hyperentanglement. Parameters are: ωin/2π = 193 THz,
Ω/2π = 10 THz, |β| = |βg| = 0.01ωin/c, 1 ps interaction time,
and α(cr)

um = 0.6µm3 [23].

STQM-enabled quantum vacuum manipulation: We now
study STQMs comprising modulated quantum materials [37]
and manipulating quantum vacuum fluctuations. As a simple
example, we consider a graphene-disk STQM whose Fermi
energy EF is spatio-temporally modulated, EF (r, t) = EF +
∆EF cos(Ωt − Φ(r)). The geometric phase is zero and, in
the intraband regime, the modulation of EF results in a corre-
sponding modulation of the electric polarizability of the disks,
α(ω; r, t) = αum(ω) + ∆α(ω) cos(Ωt − Φ(r)). The highly
localized plasmons supported by the graphene disks [38–40]
result in resonant enhancements of ∆α(ω) conducive to effi-
cient coupling of the STQM with the quantum vacuum (inset
Fig. 4e). Furthermore, the use of ultra-high mobility graphene
minimizes photon absorption [41, 42], which is also desired
feature for enhancing the coupling. We design the metasur-
face to operate in the low-THz regime, and consider modula-
tion frequencies also in the same range, which can be achieved
using dynamic optical gratings and graphene’s Kerr nonlinear-

Figure 3. Steered quantum vacuum from a graphene-disk STQM.
Density (first column) polar plots of emitted circularly-polarized ra-
diation for various momentum kicks cβ/Ω equal to 0 (a), 0.3 (b),
0.38 (c), and 0.5 (d). The areas to the right (left) of the vertical
solid line correspond to the emission spectrum of the high- (low-)
frequency photon in a pair. The second and third columns show the
corresponding spherical polar plots. Parameters are: Ω/2π = 10
THz, ∆EF /EF = 1%, nMS = 103 mm−2, D = 5 µm, and
µ = 104 cm2 V−1 s−1.

ity [23].

The STQM couples to the quantum electromagnetic
field via the photon-number-non-conserving Hamiltonian
H2(t) = (1/8)

∑
j,γ,γ′

∑
λ,λ′ [∆α(ω) + ∆α(ω′)] ×

A∗γ;jA
∗
γ′;j e

iΦjei(ω+ω′−Ω)t a†γ,λa
†
γ′,λ′ + h.c., where λ, λ′ are

polarization states of the two photons. This process is essen-
tially an analogue of the dynamical Casimir effect (DCE) in
which an oscillating boundary parametrically excites virtual
into real photons [43–45]. Interestingly, the STQM synthetic
phase allows for a novel degree of control over the quantum
vacuum, beyond previously demonstrated analog DCE set-ups
[46–49]. Indeed, steered and twisted DCE photons can be
produced and the DCE scattering matrix becomes asymmetric
[50], reflecting that Lorentz reciprocity is broken at the level
of quantum vacuum fluctuations [51].

We compute the rates of photon production out of the quan-
tum vacuum using time-dependent perturbation theory by as-
suming weak modulation depths of the meta-atoms (other pos-
sible approaches are discussed in [44, 45]). Energy conserva-
tion dictates that the photon pairs satisfy ω + ω′ = Ω. The
two-photon emission rate from an STQM of area A with arbi-
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trary synthetic phase Φ(r) is

ΓΦ =
An2

MSΩ4

512π3c4

∫ Ω

0

dω|∆α(ω) + ∆α(Ω− ω)|2fΦ(ω). (4)

The rate scales as the square of the meta-atoms number sur-
face density nMS , indicating coherent emission of photon
pairs. The spectral weight function fΦ(ω) results from the
integration of all two-photon generation events encoded in the
angular emission spectrum. In Figure 3 we show this spectrum
fβ(k, ω) for the case of the linear synthetic phase. Momentum
conservation enforces that the emitted photons must have in-
plane momenta that add up to the imprinted kick, k+k′ = β,
and the emitted photons are entangled over continuous colors
and paths. In the absence of kick the spectra resemble cone-
(dome-) like shapes for the high- (low-) frequency photon. As
the magnitude of the momentum kick β increases, the emis-
sion profiles undergo intricate changes. The directions of al-
lowed emission for the first (second) photon get deformed un-
til at βmax = Ω/c they collapse to a single direction and the
photon is only emitted parallel (anti-parallel) to the kick. The
modulation also excites hybrid entangled pairs composed of
one photon and one evanescent surface wave (shaded areas in
the left panels), and when β > βmax only evanescent modes
are created. The spectral weight function fβ(ω) is plotted in
Fig. 4a. At zero kick it has a singular behavior at ω/Ω = 0.5
which results from events where both photons are emitted at
grazing angles [52]. For nonzero kick the modulation induces
an asymmetry between the photons and such singular events
cannot take place. The spectrum develops a central plateau-
like form with sharp edges at ω±/Ω = (1 ± cβ/Ω)/2, cor-
responding to cases where the high (low) frequency photon
starts (stops) to be emitted at grazing angles and in azimuthal
directions parallel (antiparallel) to the kick.

The STQM can also stir the quantum vacuum and induce
angular momentum nonreciprocity [53] that results in entan-
gled vortex-pair generation (Fig. 1b). The required syn-
thetic phase to induce such a process is the spinning phase
Φ(r) = `ϕ (` is an arbitrary integer and ϕ is the azimuthal an-
gle). The modulated metasurface generates photon pairs car-
rying angular momenta that add up to the imprinted spinning
m + m′ = ` in agreement with angular momentum conser-
vation. Photons are color-angular momentum entangled and
their correlations could be probed using photo-coincidence
detection and techniques based on angular momentum sort-
ing of light [54, 55]. The spectral weight function f`(ω) is
reported in Fig. 4b, showing plateau-like structures with de-
creasing height as the spinning grows. There is a drastic but
subtle difference between fβ(ω) and f`(ω) that is not appar-
ent in the plots: The former vanishes beyond the finite kick
threshold βmax, while there is no finite spinning threshold for
the latter. Figures 4c-d show the angular momentum spectra
of low- and high-frequency photons in an emitted pair. Due
to color-angular momentum entanglement and the conserva-
tions laws derived above, the probability of emitting a photon
with (ω,m) must be the identical to that of creating a pho-
ton with (Ω − ω, ` −m). When the STQM does not imprint

Figure 4. Spectral weight function for (a) linear and (b) rotating syn-
thetic phase. Solid lines in (b) correspond to a finite radius metasur-
face (ΩR/c = 30) and dashed line is the ` = 0 case for an infinite
metasurface. Angular-momentum spectra for finite radius metasur-
face for the (c) low- and (d) high-frequency photon. (e) Spectral
photo-production rate for null synthetic phase for a graphene-disk
STQM. Inset: unmodulated electric polarizability αum(ω) (solid)
and modulation amplitude ∆α(ω) (dashed) in units of µm3. (f)
Emission rate for linear synthetic phase. The black thick curve joins
peaks of maximal emission and the thin black curve ωres(EF ) =
(Ω + cβ)/2 is its projection on the β − EF plane. Parameters are
the same as in Fig. 3.

any spinning, the spectra are symmetric around the peak at
m = 0, with oppositely twisted photons in each emitted pair.
When spinning is present, one intuitively expects that photons
will be emitted with the same angular momentum as the drive
(m = `), and because they are created in pairs with comple-
mentary angular momentum, emission at m = 0 should be
equally probable, as verified in Figs. 4c,d.

Figure 4e depicts the spectral rate for a STQM for null
synthetic phase, featuring Lorentzian peaks at complementary
frequencies. For high-Q resonances the emission rate for ar-
bitrary synthetic phase is approximated as

ΓΦ ≈ gΩ (An2
MSD

6ω4
res/c

4) fΦ;res

(∆EF
EF

)2(Ω

γ

)3

. (5)

Here, ωres = (e2EF /4π
2ε0|ξ1|~2D)1/2 is the resonance fre-

quency, D the disk diameter, fΦ;res the spectral weight on
resonance, γ = ev2

F /EFµ (Fermi velocity vF and mobility
µ), and g = 5π4a4

1ξ
2
1/2(512)3 is determined by the low-

est plasmonic eigenmode coefficients a1 = 6.1 and ξ1 =
−0.072. Figure 4f shows the emission rate for the linear syn-
thetic phase as a function of momentum kick and Fermi en-
ergy. Giant photon-pair production rates on the order of 1012

photons/cm2s are obtained at low-THz driving frequencies
and modest modulation depths.



5

In conclusion, we uncovered a key property of space-time
quantum metasurfaces relevant for potential applications: On-
demand reconfiguration of the synthetic phase allows dynam-
ically tunable quantum correlations, enabling to tailor the na-
ture of entanglement depending on the symmetry properties
of both geometric and synthetic phases. We also illustrated a
second key property of space-time quantum metasurfaces with
fundamental relevance: Lorentz nonreciprocity at the deepest
level of vacuum fluctuations is attained through joint space
and time modulations of optical properties and can be inter-
preted as an asymmetric quantum vacuum. Novel photonic
devices potentially enabled by the proposed STQM concept
include quantum emitters with reconfigurable spatial modes,
quantum nonreciprocal routers and isolators for free-space
photon transport in distributed quantum networks, and active
quantum sensors with photon steering capabilities to scan a
detection area of interest. Beyond solid-state quantum meta-
surfaces, the extension of the proposed STQM concept to
atomic-scale quantum metasurfaces, such as two-dimensional
atomic arrays in an optical lattice, could open new paths
for manipulating cooperative light-matter interactions at the
single-quantum level. As such, space-time quantum metasur-
faces can provide breakthrough advances in the broad field of
quantum science and technology.

This work was supported by the DARPA QUEST and
LANL LDRD programs. We are grateful to A. Efimov, M.
Julian, C. Lewis, M. Lucero, and A. Manjavacas for discus-
sions.
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I. EFFECTIVE POLARIZABILITIES AND HAMILTONIAN FOR ALL-DIELECTRIC STQM

The unit cell design of the anisotropic dielectric meta-atom is shown in Supplementary Figure 1a (the same structure
is shown in the main Fig. 2a). We calculate via full-wave simulations the transmission and reflection spectra of the
periodic metasurface for a normally-incident plane-wave (Supplementary Figure 1b), showing high cross-polarized
transmission. We perform a Cartesian multipole expansion [1] of the obtained polarization field P(R, ω) = ε0(ε(ω)−
1)E(R, ω), where ε(ω) is the electric permittivity of the meta-atoms and E is the total local electric field. The
associated electric and magnetic Mie dipoles are

p(ω) =

∫
dR′ P(R′, ω),

m(ω) = − iω
2

∫
dR′ [R′ ×P(R′, ω)], (S1)

where the integrals are over the volume of any given meta-atom. We obtain effective electric αE(ω) and magnetic
αM (ω) polarizability tensors for the meta-atom by writing the dipoles in terms of the incident plane-wave evalu-
ated at the center R0 of the dielectric resonator, p(ω) = ε0αE(ω)Einc(R0, ω) and m(ω) = µ−1

0 αM (ω)Binc(R0, ω).
The corresponding polarizability modulation tensors ∆αE(ω) are shown in Supplementary Figure 1c, and the field
distribution for the corresponding dipolar electric and magnetic resonances are shown in Supplementary Figure 1d.
The modulated polarizabilities ∆αE/M (ω) are calculated by analyzing the change of αE(ω) and αM (ω) when ε(ω) is
varied around a chosen working point εum(ω). The results for the modulated polarizabilities are reported in Fig. 2a
of the main text, and repeated here in Supplementary Figure 1e for completeness.

In-plane rotation of each anisotropic j−th meta-atom around its center R0;j = (rj , zj) by an angle θj results
in a rotated polarizability tensor. In the (eL, eR, z) basis (left and right circular polarization unit vectors eL/R =

(x± iy)/
√

2) it reads

αE/M ;j = R(θj)αE/MR(−θj) =

 1
2 (αE/M,xx + αE/M,yy) 1

2e
−iΨj (αE/M,xx − αE/M,yy) 0

1
2e
iΨj (αE/M,xx − αE/M,yy) 1

2 (αE/M,xx + αE/M,yy) 0
0 0 αE/M,zz

 , (S2)

where R(θj) is the rotation matrix and Ψj = −2θj is the geometric phase distribution induced by rotation. Anisotropy
αE/M,xx 6= αE/M,yy and rotation generate spin-orbit coupling contained in the off-diagonal components.

The Hamiltonian describing the interaction of the quantum electromagnetic field with the geometric phase STQM
is Hint(t) = −

∑
j pj(t) · E(rj , zj , t) −

∑
jmj(t) · B(rj , zj , t). Here pj and mj are electric and magnetic dipole

operators associated to each meta-atom and E and B are field operators. We assume the STQM is free-standing and
its permittivity is modulated as ε(ω; r, t) = εum(ω) + ∆ε(ω) cos(Ωt−Φ(r)), where Φ(r) is the synthetic phase. Dipole
and field operators are related as

dj(ω) = ε0αE;j(ω)E(rj , zj , ω) +
1

2
e−iΦj ε0∆αE;j(ω+ Ω)E(rj , zj , ω+ Ω) +

1

2
eiΦj ε0∆αE;j(ω−Ω)E(rj , zj , ω−Ω) (S3)

and similarly for mj(ω). Relevant frequencies are around the input photon frequency ωin and, in the approximation
Ω � ωin, we neglect Doppler shifts in the polarizabilities in Eq. (S3) but keep them in the fields to account
for frequency harmonic generation. Hint(t) can be expressed as a sum of four terms: co-polarized transmission
and reflection containing in-plane diagonal components in Eq. (S2), and cross-polarized transmission and reflection
with the non-diagonal components. For a normally-incident photon and in the quasi-paraxial approximation, the
corresponding unmodulated effective coupling strengths are

α
(co/cr)
um;t (ω) = Re[αE,xx(ω) + αM,yy(ω)]± Re[αE,yy(ω) + αM,xx(ω)],

α(co/cr)
um;r (ω) = Re[αE,xx(ω)− αM,yy(ω)]± Re[αE,yy(ω)− αM,xx(ω)], (S4)

the plus (minus) sign associated with co- (cross-) polarization. The same relations hold for the corresponding effective

polarizability modulation amplitudes ∆α
(co/cr)
t/r (ω). We work in the regime when the cross-polarized coupling strength
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FIG. S1. Effective polarizabilities of all-dielectric space-time quantum metasurfaces. (a) Anisotropic amorphous Si Mie
nanocross meta-atom with optimized geometrical parameters for maximal cross-polarization transmission for a normally-
incident λin = 1550 nm input photon. Parameters are L1 = 950 nm, L2 = 435 nm, h = 300 nm, w = 200 nm, and square
unit cell with period P = 1200 nm. (b) Co- and cross-polarized reflectivity and transmissivity for the full metasurface (solid)
and electric/magnetic dipole array (dashed). (c) Real parts of the electric and magnetic polarizabilities normalized by the

meta-atom volume. Solid line is the effective unmodulated coupling strength for cross-polarized transmission: α
(cr)
um ≈ 0.6µm3

at the input frequency. (d) Electric field distribution for the two electric and the two magnetic Mie resonances. (e) Polarizability
modulation amplitudes for permittivity modulation depth ∆ε/εum = 1%. Solid line is the polarizability modulation amplitude

for cross-polarized transmission: ∆α(cr)/α
(cr)
um ≈ 16% at the input frequency.

in transmission is much larger than the other three and we approximate the total Hamiltonian by its cross-polarized

transmission part (henceforth we omit the subscript t in ∆α
(cr)
t (ω)). The photon-number-conserving part of the

Hamiltonian is

H1(t) = −
∑
j,γ,γ′

A∗γ;jAγ′;je
i(ω−ω′)t [α(cr)

um (ω) + ∆α(cr)(ω) cos(Ωt− Φj)] [eiΨja†γ,Raγ′,L + e−iΨja†γ,Laγ′,R] + h.c. (S5)

The sums are over all meta-atoms and field modes, aγ′,L/R is an annihilation operator of a left/right circular polarized

photon, and a†γ,R/L is a creation operator of a right/left polarized photon, and Aγ;j , Aγ′;j are spatial modes. The

process of two-photon emission from dielectric STQMs, also contained in the full Hamiltonian, is less efficient than in
all-plasmonic ultra-thin STQMs because these enable giant modulation amplitudes.

All-optical modulation schemes of an amorphous Si STQM can be employed to get high modulation frequencies.
For example, to obtain a linear synthetic phase one can implement a laser-induced dynamical optical grating through
the interference of two slightly detuned, non-collinear Gaussian laser beams [2]. A Ti:Sapphire laser (800 nm central
wavelength, 20 nm bandwidth, peak intensity IP = 15 GW cm−2) can be split into two beams using a beam splitter,
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each part is then detuned to λP1 = 2πc/ωP1 = 810 nm and λP2 = 2πc/ωP2 = 790 nm using tunable optical
parametric amplifiers (OPAs), and then they are made to interfere on the amorphous Si metasurface to generate
an optical dynamical grating with intensity proportional to IP cos(Ωt − βx). The modulation frequency is equal
to the detuning, Ω = ωP1 − ωP2 = 2π × 10 THz, and the modulation wavevector β is equal to the difference of
the in-plane wavevectors of the pumps that can be controlled by the angles of incidence of the pumps. Due to the
nonlinear optical Kerr effect of amorphous Si, the moving optical grating induces a traveling-wave modulation of its
effective linear permittivity of the form ε(ω; r, t) = εum(ω) + ∆ε(ω) cos(Ωt − β · r) with the modulation amplitude
being proportional to the third-order susceptibility χ(3)(ω, ωP1,−ωP2). Permittivity modulation depths of the order
of 1% can be achieved. As shown in Fig. S1, this leads to a 16% polarizability modulation depth. The increase is
due to the strong dispersion of the unmodulated polarizability around the input frequency. Such a rotating synthetic
phase could be implemented, e.g., via a heterodyne laser-induced dynamical grating with Laguerre-Gauss petal modes
[3, 4] to generate an all-optical spinning perturbation of the meta-atoms’ refractive index

II. INTERACTION HAMILTONIANS FOR VARIOUS SYNTHETIC AND GEOMETRIC PHASES IN
ALL-DIELECTRIC STQMS

When both the synthetic and geometric phase distributions are linear, Φ(r) = β ·r and Ψ(r) = βg ·r, we quantize the

electromagnetic field using modes labelled by γ = {k, ζ, ω} and plane-wave (PW) spatial mode functions A
(PW )
γ (r, z) =

(~ω/2V )1/2ei(k·r+ζ|kz|z). Here, ζ = ± corresponds to upward (kz > 0) or downward (kz < 0) propagation, respectively.
V = NhP 2 is the quantization volume, N the number of meta-atoms, h the height of the meta-atom, and P the size
of the square unit cell. Meta-atoms are located at zj = 0. The quasi-paraxial approximation requires momentum
kicks much smaller than the input wave-vector, |β|, |βg| � ωin/c. Then

H
(β,βg)
1 (t) = −

∑
j

∑
k,ζ,ω

∑
k′,ζ′,ω′

~
√
ωω′

4V
[α(cr)
um (ω) + ∆α(cr)(ω) cos(Ωt− β · rj)]ei(ω−ω

′)t

× δζ,ζ′ e−i(k−k
′)·rj [eiβg·rja†k,ζ,ω,R ak′,ζ′,ω′,L + e−iβg·rja†k,ζ,ω,L ak′,ζ′,ω′,R] + h.c. (S6)

where we use that in transmission ζ = ζ ′. The superscript in H1 highlights the type of synthetic and geometric phases.
This STQM Hamiltonian generates frequency-spin-path hyperentanglement.

A similar Hamiltonian can be written when the synthetic and geometric phases are both spinning distributions,
Φ(r) = `ϕ and Ψ(r) = `gϕ. As there is no in-plane momentum kick, the paraxial approximation is exact for a normally-
incident photon. We employ paraxial quantization of the electromagnetic field with orbital angular momentum (OAM)

[5]. Modes are labelled by γ = {l, p, ζ, ω} and spatial mode functions are Laguerre-Gauss (LG), A
(LG)
γ (ρ, ϕ, z) =

(~ω/2V )1/2LGl,p,ζ,ω(ρ, ϕ, z). l is the winding number and p the number of modal nodes in the radial direction. Then,

H
(`,`g)
1 (t) = −

∑
j

∑
l,p,ζ,ω

∑
l′,p′,ζ′,ω′

~
√
ωω′

4V
[α(cr)
um (ω) + ∆α(cr)(ω) cos(Ωt− `ϕj)]ei(ω−ω

′)t

×δζ,ζ′LG∗l,n,ζ,ω(ρj , ϕj ,−ct)LGl′,p′,ζ′,ω′(ρj , ϕj ,−ct)
[
ei`gϕja†l,p,ζ,ω,R al′,p′,ζ′,ω′,L + e−i`gϕja†l,p,ζ,ω,L al′,p′,ζ′,ω′,R

]
+h.c. (S7)

We use standard notation of LG beams for which the coordinate system is attached to the beam center at z = 0. This
Hamiltonian generates frequency-OAM-spin hyperentanglement.

For mixed-phase STQMs, e.g., Φ(r) = β · r and Ψ(r) = `gϕ, we express the linear synthetic phase in the cylindrical
basis appropriate for the geometric phase. Using exp(iβ · r) =

∑∞
n=0 i

nJn(βρ)einϕ, with β = |β|, and assume small
in-plane kicks for paraxial quantization with LG modes. The Hamiltonian is

H
(β,`g)
1 (t) = −

∑
j

∑
l,p,ζ,ω

∑
l′,p′,ζ′,ω′

~
√
ωω′

4V

{
α(cr)
um (ω)+

1

2
∆α(cr)(ω)

∑
n

inJn(βρj)
[
ei(Ωt−nϕj)+(−1)ne−i(Ωt−nϕj)

]}
ei(ω−ω

′)t

×δζ,ζ′LG∗l,p,ζ,ω(ρj , ϕj ,−ct) LGl′,p′,ζ′,ω′(ρj , ϕj ,−ct)
[
ei`gϕja†l,p,ζ,ω,R al′,p′,ζ′,ω′,L + e−i`gϕja†l,p,ζ,ω,L al′,p′,ζ′,ω′,R

]
+h.c. (S8)

Importantly, this mixed-phase Hamiltonian does not generate hyperentanglement but only bi-partite OAM-spin en-
tanglement in the LG basis. Alternatively, one can expand the spinning geometric phase in terms of plane-waves
and employ plane-wave quantization. The transformed Hamiltonian generates the same output state, which is now
frequency-path entangled in the PW basis. The evolved state can then be written in either basis as

|ψ(β,`g)(t)〉=
∑
p≥0

A(`g)
p (t) [|ωp;kp,0〉+ |ω−p;k−p,0〉]⊗ |λin〉=

∑
p

∑
q=0,1

B(β)
pq (t)|ωp〉 ⊗ [|`0,q;R〉+ |`0,−q;L〉] , (S9)
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where ωp = ωin + pΩ, kp,q = kin + pβ + qβg, `p,q = p` + q`g, and |λin〉 is the input linearly polarized state. The

Hamiltonian H
(`,βg)
1 (t) can be similarly derived.

III. ENTANGLEMENT DYNAMICS IN STQMS

We compute the evolution operator U (Φ,Ψ)(t) = T exp[−(i/~)
∫ t

0
dt′H1(t′)] under the time-dependent STQM Hamil-

tonian H1(t) in Eq. (S5), with Φ and Ψ arbitrary synthetic and geometric phases (T denotes time-ordering). We
re-write the spin-dependent part of the Hamiltonian in terms of Pauli matrices as eiΨ|R〉〈L|+ e−iΨ|L〉〈R| = eiσ3Ψσ1

and expand the evolution operator in its Dyson series. Terms in the series with even powers of H1 allow to group the
factors eiσ3Ψσ1 in pairs and then their product is equal to the identity because eiσ3Ψσ1e

iσ3Ψσ1 = eiσ3Ψσ2
1e
−iσ3Ψ = I

per the anti-commutation relations of Pauli matrices. Terms of the series with odd powers of the Hamiltonian allow
to group all factors by pairs except one, and their product is then equal to the ungrouped factor. Therefore,

U (Φ,Ψ)(t) = U (Φ)
even(t)⊗ I + U

(Φ)
odd (t)⊗ eiσ3Ψσ1. (S10)

As a result, geometric-phase-induced momentum kicks ±q~∇Ψ and angular momenta ±q~`g have q = 0, 1 as the only

possible values. Expressions for U
(Φ)
even(t) and U

(Φ)
odd (t) depend on the specifics of the synthetic phase. The output

photon state from the metasurface is |ψout〉 = U (Φ,Ψ)(tint)|ψin〉, where tint is the photon-STQM effective interaction
time.

We now consider linear geometric/synthetic phases and an input photon |ψin〉 = |ωin;kin;λin〉 in polarization state

|λin〉 = λ
(R)
in |R〉+ λ

(L)
in |L〉. Then

U (β,βg)(t)|ψin〉 =
∑
p

(
c̃p,0(t)|ωp;kp,0〉 ⊗ [λ

(R)
in |R〉+ λ

(L)
in |L〉]

)
+
∑
p

(
c̃p,1(t)[λ

(R)
in |ωp;kp,−1;L〉+ λ

(L)
in |ωp;kp,1;R〉]

)
.

(S11)
The first term produces frequency-path entanglement and the second frequency-spin-path hyperentanglement. Defin-

ing c
(R/L)
p,0 (t) = λ

(R/L)
in c̃p,0(t) and c

(R/L)
p,1 (t) = λ

(L/R)
in c̃p,1(t) we re-write

|ψ(t)〉 =
∑
p,q

[c(R)
p,q (t)|ωp;kp,q;R〉+ c(L)

p,q (t)|ωp;kp,−q;L〉]. (S12)

where we recall that q = 0, 1 and p is an integer. The probability amplitudes satisfy coupled-mode equations that
follow from Schrödinger equation

ċ
(R/L)
p,0 = iωp ηum c

(L/R)
p,1 +i(ωpωp+1)1/2 η c

(L/R)
p+1,1 +i(ωpωp−1)1/2 η c

(L/R)
p−1,1 ,

ċ
(R/L)
p,1 = iωpηum c

(L/R)
p,0 +i(ωpωp+1)1/2 η c

(L/R)
p+1,0 +i(ωpωp−1)1/2 η c

(L/R)
p−1,0 , (S13)

with initial conditions c
(R/L)
p,0 (0) = λ

(R/L)
in δp,0 and c

(R/L)
p,1 (0) = 0. Here, ηum = α

(cr)
um /2hP 2 and η = ∆α(cr)/4hP 2. We

solve the modes equations in the limit |β|, |βg| � ωin/c and consider only the lowest diffraction orders. This means
that the output paths are quasi-paraxial with the input path. Furthermore, we also assume Ω� ωin and approximate
all square roots by ωin. Using the generating function approach we find

c
(R/L)
p,0 (t) =

1

2
ipλ

(R/L)
in Jp(2ηωint)

[
eiηumωint + (−1)pe−iηumωint

]
,

c
(R/L)
p,1 (t) =

1

2
ipλ

(L/R)
in Jp(2ηωint)

[
eiηumωint − (−1)pe−iηumωint

]
, (S14)

For a linearly-polarized input and p and q of the same parity, the probabilities are |c(R)
pq (t)|2 = |c(L)

pq (t)|2 =
(1/2) cos2(ηumωint)J

2
p (2ηωint) and for opposite parity the cosine is replaced by a sine. Because the modulation

is harmonic, the probabilities are invariant under the exchange p ↔ −p. Note that within the quasi-paraxial and

small-frequency modulation limits, c
(R/L)
p,q (t) do not explicitly depend on Ω, β or βg. However, these parameters do

enter into the labeling of the conversion states (p, q,R) and (p,−q, L) through the frequency harmonics ωp = ωin+pΩ
and momentum harmonics kp,q = pβ + qβg. When the modulation is off (η = 0), the photon undergoes Rabi
oscillations between states q = 0 and q = 1 suffering linear kicks ±βg and conserving its input frequency, and
the output state is path-spin entangled. When the modulation is on (η 6= 0), Rabi oscillations are still present,
frequency-conversion takes place, and the state is hyperentangled in frequency-spin-path. When the modulation is
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only temporal (β = 0), the index p corresponds only to frequency harmonic as there is no synthetic phase momentum
kick, and the evolution equations are still given by Eq. (S14).

When the STQM design does not have a geometric phase (Ψ = 0), the evolution operator is U (Φ,0)(t) = Ũ
(Φ)
even(t)⊗

I + Ũ
(Φ)
odd (t)⊗ σ1. For the linear synthetic phase

U (β,0)(t)|ψin〉 =
∑
p

|ωp;kp,0〉 ⊗
(

[λ
(R)
in c̃p,0(t) + λ

(L)
in d̃p,0(t)]|R〉+ [λ

(L)
in c̃p,0(t) + λ

(R)
in d̃p,0(t)]|L〉

)
. (S15)

Frequency-path entanglement is generated and no Rabi oscillations are present as the q = 1 state does not exist.

The probability amplitudes d
(R)
p (t) = λ

(R)
in c̃p,0(t) + λ

(L)
in d̃p,0(t) and d

(L)
p (t) = λ

(L)
in c̃p,0(t) + λ

(R)
in d̃p,0(t) for right and left

polarizations have initial conditions d
(R/L)
p (0) = λ

(R/L)
in δp,0, and satisfy the following coupled-mode equation with the

quoted solution

ḋ(R/L)
p = iωpηum d(L/R)

p +i(ωpωp+1)1/2 η d
(L/R)
p+1 +i(ωpωp−1)1/2 η d

(L/R)
p−1 ,

d(R/L)
p (t) =

1

2
(−1)pJp(2ηωint)[(λ

(R)
in + λ

(L)
in )eiηum ωint ± (λ

(R)
in − λ

(L)
in )e−iηum ωint], (S16)

where we used pΩ � ωin to get the solution in the second line. For a linearly-polarized input, the right and left

probabilities are the same |d(R)
p (t)|2 = |d(L)

p (t)|2 = (1/2)J2
p (2ηωint). Supplementary Figure 2 shows the population

dynamics of the in-transit photon, both in the presence and absence of a linear geometric phase.
We quantify entanglement using concurrence generalized to qudit bi-partite [6] and multi-partite [7] systems. For

bi-partite systems with dimensions d1 and d2, the generalization is the I-concurrence given by C =
√

2(1− Tr(ρ2
r)),

where ρr is the reduced density matrix. Maximally-entangled states have Cmax =
√

2(1− 1/min(d1, d2)). For N-

partite systems (N > 2), the generalization is C = 21−N
2

√
(2N − 2)−

∑
i Tr(ρ

2
r,i), where the summation is over the

2N−2 non-trivial partitions of the N-partite system. We note that a single scalar measure cannot fully characterize the
correlations present in multi-partite systems. For example, for the prototypical maximally entangled three qubit GHZ
and W states, |GHZ〉 = (1/

√
2)(|111〉+ |000〉) and |W 〉 = (1/

√
3)(|100〉+ |010〉+ |001〉), the generalized concurrence

takes different values, C =
√

3/2 and C =
√

4/3, respectively.
For an STQM with geometric phase and modulation off, bi-partite spin-path entanglement is generated. The spin

degree of freedom (DOF) has d1 = 2, the path DOF has d2 = 3, and the concurrence of the output state is

Cspin−path =

√
2− 2

∑
q

(
|c(R)

0q |4 + |c(L)
0q |4 + 2|c(R)

0q |2|c
(L)
0q |2

)
. (S17)

Cmax = 1 in this case. For the state of Fig. 2d in the main text we obtain C ≈ 0.996, which is very close to the
maximum value indicating highly efficient entanglement generation. The output state is not maximally entangled

because the photon has a small but non-zero probability of exiting the STQM unsteered (|c(R/L)
00 |2 6= 0). For an

STQM without geometric phase and modulation on, bi-partite color-path entanglement is generated. In this case,
d1 = d2 = ∞ because both the color and path DOF take infinite countable values corresponding to infinite number
of harmonics. The concurrence reads

Ccolor−path =

√
2− 2

∑
p

(
|d(R)
p |4 + |d(L)

p |4 + 2|d(R)
p |2|d(L)

p |2
)

(S18)

Cmax =
√

2 in this case. For the state in Fig. 2e we obtain C ≈ 1.129, and hence C/Cmax ≈ 0.8. Finally, in the
presence of geometric phase and modulation on, spin-color-path hyperentanglement is generated by the STQM. In
this case N = 3 and d1 = 2, d2 = d3 =∞. Concurrence takes the form

Ccolor−spin−path =
1√
2

√√√√6−
6∑
i=1

Tr(ρ2
i ). (S19)

The full density matrix is ρ = |ψ(t)〉〈ψ(t)| and the various reduced density matrices are defined by tracing over degrees
of freedom as follows: ρ1 = Trspin(ρ), ρ2 = Trcolor(ρ), ρ3 = Trpath(ρ), ρ4 = Trcolor−spin(ρ) ρ5 = Trspin−path(ρ),
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FIG. S2. Population dynamics of geometric-phase kicked q = 1 and unkicked q = 0 states for in-transit photon, showing Rabi
oscillations for the fundamental frequency harmonic. Inset: Rabi dynamics in higher harmonics. Envelopes (dashed black)
are the populations of p-harmonics in the absence of geometric phase. The input photon is linearly-polarized and impinges at

normal incidence on the STQM. Parameters are: ωin/2π = 193 THz, Ω/2π = 10 THz, |β| = |βg| = 0.01ωin/c, α
(cr)
um = 0.6µm3,

and ∆α/α
(cr)
um = 0.1. Geometrical parameters of the metasurface as the same as in Fig. S1.

ρ6 = Trcolor−path(ρ). To evaluate the purities it is convenient to slightly change notation and let the index q run from

-1 to 1, |ψ(t)〉 =
∑
p

∑1
q=−1

∑
s=R,L c

(s)
p,q(t)|ωp;kp,q; s〉, with c

(R)
p,−1(t) = c

(L)
p,1 (t) = 0. Then,

Tr(ρ2
1) = Tr(ρ2

6) =
∑
p,p′

∑
q,q′

∑
s,s′

c(s)p,qc
∗(s)
p′,q′c

(s′)
p′,q′c

∗(s′)
p,q =

(∑
p,q

|c(R)
p,q |2

)2

+
(∑
p,q

|c(L)
p,q |2

)2

+ 2
∣∣∣∑
p

c
(R)
p,0 c

∗(L)
p,0

∣∣∣2
Tr(ρ2

2) = Tr(ρ2
5) =

∑
p

∑
q,q′

∑
s,s′

|c(s)p,q|2|c
∗(s′)
p,q′ |

2 =
∑
p

[(∑
q

|c(R)
pq |2

)2

+
(∑

q

|c(L)
pq |2

)2

+ 2
(∑

q

|c(R)
pq |2

)(∑
q

|c(L)
pq |2

)]
Tr(ρ2

3) = Tr(ρ2
4) =

∑
p

∑
q,q′

∑
s,s′

c(s)p,qc
∗(s′)
p,q c

(s′)
p,q′c

∗(s)
p,q′ =

∑
p

[(∑
q

|c(R)
pq |2

)2

+
(∑

q

|c(L)
pq |2

)2

+ 2
∣∣∣c(R)
p0 c

∗(L)
p0

∣∣∣2] (S20)

For Fig. 4f we obtain C ≈ 1.381. To the best of our knowledge, a value for Cmax in the general multi-partite case is
not available.

IV. ALL-OPTICAL MODULATION OF GRAPHENE STQM

Here we describe the all-optical modulation scheme of the graphene STQM using the nonlinear optical Kerr effect.
In the intraband regime ω < 2EF , the zero-temperature linear conductivity of graphene takes the Drude form

σ
(1)
xx (ω) = σ

(1)
yy (ω) = ie2EF /π~2(ω + iγ), where EF is the Fermi energy, γ = ev2

F /EFµ is the scattering rate, vF
is the Fermi velocity, and µ is the mobility of graphene. Due to the inversion symmetry of its crystal structure,
pristine graphene has no second-order nonlinear conductivity. The real part of the third-order conductivity leads to
saturable absorption and the imaginary part to the optical Kerr effect, i.e., the nonlinear phase shift of the refractive

index. The third-order nonlinear conductivity tensor σ
(3)
ijkl(ω1, ω2, ω3) has eight non-zero components but just three

are independent [8, 9]. At zero temperature and for intraband transitions (ω1, ω2, ω3 < 2EF ),

σ(3)
xxxx(ω1, ω2, ω3) = σ(3)

yyyy(ω1, ω2, ω3) =
ie2

4π~2

(vF e)
2

6EF (ω1 + iγ)(ω2 + iγ)(ω3 + iγ)
(S21)

and all other components σ
(3)
xxyy = σ

(3)
yyxx, σ

(3)
xyxy = σ

(3)
yxyx and σ

(3)
xyyx = σ

(3)
yxxy are given by the same expresssion.

To generate a traveling-wave modulation, we consider a pair of x-polarized plane waves of frequencies ωP1 and ωP2

(detuning Ω = ωP1−ωP2 > 0), equal intensity IP = (1/2)cε0|EP |2, impinging on graphene at angles of incidence θP1

and θP2: EP1(r, z, t) = x̂EP e
i(ωP1t−(ωP1/c)sinθP1y−kz,P1z) + c.c. and EP2(r, z, t) = x̂EP e

i(ωP2t−(ωP2/c)sinθP2y−kz,P2z) +
c.c.. Their interference on the metasurface plane (z = 0) creates a dynamical optical grating with an intensity profile
proportional to cos(Ωt−βyy), where βy = (ωP1/c) sin θP1−(ωP2/c) sin θP2. A probe field E(r, z, t) = Eei(ωt−k·r−kzz)+
c.c. impinges on graphene under the above modulation. To first-order in the conductivity, the current generated on
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graphene that oscillates with the probe frequency is J
(1)
x (r, t) = Exσ

(1)
xx (ω)ei(ωt−k·r) + c.c.. The part of the third-order

current that gives the nonlinear Kerr effect oscillating at the probe frequency is contained in σ
(3)
xxxx(ω, ωP1,−ωP2) and

σ
(3)
xxxx(ω,−ωP1, ωP2), giving

J (3)
x (r, t) =

∫ ∞
−∞

dω1dω2dω3Ex(ω1)Ex(ω2)Ex(ω3)σ(3)
xxxx(ω1, ω2, ω3)ei (ω1+ω2+ω3)t

= 12 cos(Ωt− βyy)σ(3)
xxxx(ω, ωP1,−ωP2)Ex|EP |2ei(ωt−k·r) + c.c. (S22)

We can then define an effective spatio-temporally modulated conductivity

σeffxx (ω; y, t) = σeffyy (ω; y, t) =
ie2

π~2(ω + iγ)

[
EF −

4π ~αfsv2
F IP

EFωP1ωP2
cos(Ωt− βyy)

]
, (S23)

where αfs is the fine structure constant. The same result is obtained for the effective spatio-temporally modulated

conductivity σeffyy = σeffxx because σ
(3)
yyxx = σ

(3)
xxxx. The off-diagonal terms are zero, σeffxy = σeffyx = 0, because

σ
(1)
xy = σ

(1)
yx = σ

(3)
xyxx = σ

(3)
xyxx = 0. The above result implies that the Fermi energy is effectively modulated as

EF (y, t) = EF + ∆EF cos(Ωt− βyy) with a modulation depth

∆EF
EF

=
4π~αfsv2

F IP
E2
FωP1ωP2

. (S24)

A possible implementation of this scheme can be achieved by splitting a 800 nm pulse from a Ti:Sapphire laser
into two beams and pass them through optical parametric amplifiers (OPAs) to down-convert them to mid-IR, for
example ωP1/2π = 30 THz (λP1 = 10µm) and ωP2/2π = 20 THz (λP2 = 15µm). The intraband condition is satisfied
for EF > 0.1 eV, which can be implemented by electrical doping. The modulation frequency is 10 THz. We estimated
the value of the Fermi energy modulation depth using experimentally feasible parameters. For example, for EF = 0.3
eV and IP = 0.01 GW cm−2, the modulation depth is ≈ 1%, which is the value used in Figs. 3 and 4 of the main
text. Note the required intensity is much lower than in the case of amorphous Si (IP ∼ 10’s GW cm−2) thanks to the
giant nonlinearity of graphene.

V. ELECTRIC POLARIZABILITIES OF ALL-PLASMONIC STQMS

We employ the plasmon wave-function formalism [10] to compute the electric polarizability tensors of ultra-thin
plasmonic meta-atoms. For the disk geometry the geometric phase is zero due to rotational symmetry, and the
unmodulated electric polarizability is αE(ω) = αum(ω) diag(1, 1, 0), where

αum(ω) =
π3D3

128

∞∑
n=1

a2
n

1/ξum(ω)− 1/ξn
, (S25)

where the sum is over the bright-mode plasmonic eigenmodes of the disk [11]. Here, D is the disk diameter, n−1 denotes
the number of nodes along the radial direction, an are dimensionless coefficients related to the mode eigenvector,
ξn < 0 is the mode eigenvalue, and ξum(ω) = iσ(ω)/4πε0~ωD contains the electro-optical properties of graphene.
We describe graphene’s conductivity σ(ω) via a Drude model at zero temperature and neglect inter-band transitions,
i.e., σ(ω) = ie2EF /π~2(ω + iγ), where EF is the Fermi energy, γ = ev2

F /EFµ is the scattering rate, vF is the Fermi
velocity, and µ is the mobility of graphene. The unmodulated polarizability has localized plasmonic resonances at

ωres;n =
( αfscEF
π|ξn|~D

)1/2

, (S26)

where αfs is the fine structure constant.
We assume a spatio-temporal modulation of the Fermi energy of graphene disks of the form EF ;j(t) = EF +

∆EF cos(Ωt − Φj), where EF is the Fermi energy working level and ∆EF is the modulation amplitude. For small
Fermi energy modulation depths we approximate αj(ω; t) ≈ αum(ω) + ∆α(ω) cos(Ωt − Φj), where the polarizability
modulation amplitude results

∆α(ω) =
π3D3

128

∆EF
EF

ξum(ω)

∞∑
n=1

a2
nξ

2
n

[ξn − ξum(ω)]2
. (S27)
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We choose to tailor the disk diameter and the Fermi energy so that the first bright-mode plasmonic resonance of the
disk ωres;n=1 is within the DCE spectrum and all other higher-order bright-modes have resonant frequencies larger
than Ω (a1 = 6.1 and ξ1 = −0.072 for the n = 1 mode [11]). When the resonance has a high-Q (γ/Ω � 1) the
polarizabilities are well-approximated as

αum(Ωu) ≈ iπ
3D3

256

(πa1|ξ1|αfscEF
D~Ω2

)1/2 (γ/2Ω)

(u− ures)2 + (γ/2Ω)2
,

∆α(Ωu) ≈ π2a2
1αfscD

2∆EF
512~Ω2

(γ/2Ω)2

[(u− ures)2 + (γ/2Ω)2]2
, (S28)

where u = ω/Ω and ures = ωres;n=1/Ω.
We gauge the impact of multiscattering among the all-plasmonic STQM meta-atoms using the approach based on

effective surface polarizabilities in [12]. Multi-scattering can be neglected when P � α
1/3
um at resonance, where P is

the size of the square unit cell of the metasurface. This is approximately satisfied for the parameters used in the main
paper and we therefore consider all graphene disks to be non-interacting.

VI. TWO-PHOTON EMISSION FROM STQMS WITH LINEAR SYNTHETIC PHASE

For the array of all-plasmonic two-dimensional isotropic meta-atoms we describe their interaction with the quantum
electromagnetic field via the electric dipole Hamiltonian Hint(t) = −

∑
j pj(t) · E(rj , zj , t) and write the dipoles in

terms of the field using the corresponding polarizabilities. Photon emission arises solely from the modulated part of
the Doppler shifted electric dipole operator (Eq. (S3)). Discarding counter-rotating contributions, the Hamiltonian is

H2(t) =
1

8

∑
j,γ,γ′

∑
λ,λ′

[∆α(ω) + ∆α(ω′)]eiΦjei(ω+ω′−Ω)tA∗γ;jA
∗
γ′;j a

†
γ,λa

†
γ′,λ′ + h.c. (S29)

In contrast to what is done for the problem of the single photon interacting with the STQM (Eq. (S5)), here one
must maintain the Doppler shift in the polarizability modulation amplitude because photons are emitted over the
broad DCE spectral range from ω = 0 to ω = Ω. Also, as photons are emitted in arbitrary directions, non-paraxial
quantization is required. The probability amplitude of generating a photon-pair is computed with first-order time-
dependent perturbation theory and the energy conservation relation ω + ω′ = Ω is obtained.

For the linear synthetic phase (Supplementary Figure 3a) we use plane-wave modes which directly allow for non-
paraxial quantization. The probability density rate of emitting the photon pair irrespective of the polarization of one
of the photons is

Pβ(k, ω;k′, ω′) =
Ω2N2

1024(2π)5
δ(ω + ω′ − Ω) |∆α(ω) + ∆α(ω′)|2 Rβ(k, ω;k′, ω′),

Rβ(k, ω;k′, ω′) =
ωω′

Ω2N2|k|2|k′|2
{

(k·k′)2
[
1+
(c2kzk′z

ωω′

)2]
+|(k×k′)|2

[(ckz
ω

)2

+
(ck′z
ω′

)2]} ∣∣∣∑
j

e−i(k+k′−β)·rj
∣∣∣2. (S30)

with k2
z = ω2/c2 − |k|2 > 0 and (k′z)

2 = (ω′)2/c2 − |k′|2 > 0. The summation above gives the in-plane momentum
conservation relation k + k′ = β. In Supplementary Figure 3b we show the one-photon angular emission distribution
for a fixed propagation direction of its twin, indicating how the externally imprinted momentum controls the directivity
of the emission process. The spectral photon emission rates per unit area for photons with right or left polarization,
in-plane momentum in the interval (k,k + dk) and frequency in the interval (ω, ω + dω) is

dΓ
(R/L)
β (k, ω)

dkdω
=

ω

c2kz

An2
MSΩ2

512(2π)3c
|∆α(ω) + ∆α(Ω− ω)|2 fβ(k, ω),

fβ(k, ω) =
ω(Ω− ω)2

cΩ2|k|2|β − k|2k′z

[
(k · (β − k))2

(
1 +

c4k2
z(k′z)

2

ω2(Ω− ω)2

)
+ |k× β|2

(
c2k2

z

ω2
+

c2(k′z)
2

(Ω− ω)2

)]
. (S31)

In Supplementary Figure 3c we plot fβ(k, ω) for the high-frequency (ω > Ω/2) and low-frequency (ω′ < Ω/2)
photons in the emitted pair. In the absence of kick, the high-frequency photon can be emitted in any azimuthal
direction but it has a maximum polar angle of emission, while no such a constraint exists for the low-frequency
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FIG. S3. (a) A linear synthetic phase is imprinted on a metasurface through a traveling-wave modulation and is tuned
on demand (colored arrows) to steer the emitted dynamical Casimir photons. (b) Emission lobes of one photon for varying
momentum kick and fixed (vertical) emission direction of its twin. (c) Density polar plots of angular emission spectrum for
various β = (0, 0.2, 0.3, 0.38, 0.5)Ω/c from left to right. The areas to the right (left) of the vertical solid line correspond to the
angular emission spectrum of the high- (low-) frequency photon in a pair. Frequencies are ω/Ω = 0.7 and ω′/Ω = 0.3. Shaded
zones correspond to forbidden photon emission directions. Between the two rightmost panels two special events simultaneously
happen: the merge of the emission “island” of the high-frequency photon with the grazing line and the birth of forbidden
regions for the low-frequency photon.

photon. As the magnitude of the momentum kick β increases, the distributions undergo intricate changes. The region
of allowed emission for the first photon gets deformed when the kick is non-zero and at a critical value of the kick an
“island” of emission appears surrounded by a sea of forbidden emission directions (shaded areas). The island drifts
to higher polar angles until it touches the grazing emission line, starts to shrink in size, and finally at βmax = Ω/c it
collapses to a point and the photon is only emitted parallel to the kick. Far-field emission above that value of the kick
is not possible. Regarding the second photon, its emission distribution remains mostly unperturbed until two areas of
forbidden emission appear at large polar angles and opposite to the kick direction. The forbidden region grows until
it engulfs its allowed emission region and a second island forms (not shown). Finally, it ends up being emitted at a
grazing angle but in a direction anti-parallel to the kick. Critical events occur at: (a) cβ = Ω − ω: an “island” of
emission for the high-frequency photon appears surrounded by a sea of forbidden emission directions; (b) cβ = 2ω−Ω:
the island touches the grazing emission line; (c) cβ = Ω− 2ω′: two areas of forbidden emission for the low-frequency
photon appear at large polar angles and opposite to the kick direction; (d) cβ = Ω− ω′: an island of emission for the
low-frequency photon appears; and (e) cβ = Ω: both islands collapse and the high- (low-) frequency photon is only
emitted parallel (anti-parallel) to the kick. Finally, we. mention that the modulation also excites hybrid entangled
pairs composed of one photon and one evanescent surface wave (shaded areas), and when β > βmax only evanescent
modes are created and subsequently decay via non-radiative loss mechanisms.

The spectral weight function is

fβ(ω) = u

∫ θmax(u,b)

θmin(u,b)

dθ sin θ

∫ φmax(θ,u,b)

0

dφ
(b cosφ−u sin θ)2

[
u2(1−u)2+κ2

1zκ
2
2z

]
+b2 sin2 φ

[
(1−u)2κ2

1z + u2κ2
2z

]
κ2z

[
b2 + u2 sin2 θ − 2ub sin θ cosφ

] .

(S32)
Note that it depends only on the magnitude of the kick and not on its direction because the meta-atoms are
rotationally-invariant. Here, u = ω/Ω, b = cβ/Ω, κ2

1z = u2 cos2 θ, and κ2
2z = (1 − u)2 − b2 − u2 sin2 θ +

2ub sin θ cosφ. The propagative condition κ2
2z > 0 imposes constraints on the angular integration: φmax(θ, u, b) =

Θ(θ−θ∗)Re arccos[(u2 sin2 θ+b2− (1−u)2)/2ub sin θ)]+Θ(θ∗−θ)π, θmin(u, b) = Θ(u+b−1)Re arcsin[(u+b−1)/u)],
and θmax(u, b) = Re arcsin[(1 + b − u)/u)]. Here, θ∗(u, b) = Θ(1 − b − u)Re arcsin[(1 − b − u)/u] and Θ(x) is the
Heaviside function. For b = 0 we get the spectral weight function for null synthetic phase

fΦ=0(u) = fb=0(u) = −π
2
u2(1− u)2 log |1− 2u|+ π

16
(1− 2u)2 log |1− 2u|+ π

8
u(1− u)(u2 + (1− u)2) (S33)
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that has a logarithmic divergency at u = 1/2 due to emission of twin photons. For b 6= 0 there is no simple analytical
expression for the spectral weight function.

For a high-Q resonance we use δ(u− ures) = limε→0(16/5π)ε7[(u− ures)2 + ε2]−4 and Eq. (S28) to approximate

|∆α(Ωu)+∆α(Ω(1−u))|2≈|∆α(Ωu)|2 +|∆α(Ω(1−u))|2≈ 5π7a4
1ξ

2
1D

6

2(512)2

(∆EF
EF

)2(Ω

γ

)3

u4
res[δ(u−ures)+δ(1−u−ures)]

and the total rate is

Γβ =
8An2

MSΩ5

512(2π)3c4

∫ 1

0

du |∆α(Ωu) + ∆α(Ω(1− u))|2fb(u) ≈ gΩ (An2
MSD

6ω4
res/c

4)fb;res

(∆EF
EF

)2(Ω

γ

)3

, (S34)

where we summed over polarizations and considered a free-standing metasurface, which together bring a factor of
2× 2× 2 = 8 (two polarizations, two emissions directions along z for one photon and two emission directions for the
other photon). Here, g = 5π4a4

1ξ
2
1/2(512)3 and fb;res = fb(ωres,Ω). Note that when b = 0 a resonance at ures = 1/2

is singular because the delta approximation is right at the divergency of fb=0(u) and Eq.(S34) cannot be used. The
same procedure holds for an arbitrary synthetic phase.

Numerically we find that fb 6=0(u) has a sharp feature at u = (1 − b)/2, corresponding to the sudden birth of
forbidden regions for the low-frequency photon when θ∗(u, b) = π/2 (left side of rightmost panel in Supplemen-
tary Figure 3c). An identical feature symmetrically appears at u = (1 + b)/2 when the island of emission of the
high-frequency photon touches the grazing line θmax(u, b) = π/2 (between the two rightmost panels in Supple-
mentary Figure 3c). The functions θ∗(u, b) and θmax(u, b) have infinite jumps in their derivatives at the respec-
tive points: limu→[(1−b)/2]− ∂uθ

∗(u, b) → ∞, limu→[(1−b)/2]+ ∂uθ
∗(u, b) = 0; and limu→[(1+b)/2]+ ∂uθmax(u, b) → ∞,

limu→[(1+b)/2]− ∂uθmax(u, b) = 0. These discontinuities are responsible for the observed sharp edges of the plateaus in
Fig. 4a of the main text.

VII. TWO-PHOTON EMISSION FROM STQMS WITH SPINNING SYNTHETIC PHASE

We employ non-paraxial quantization of the electromagnetic field with angular momentum using vector-Bessel (VB)
modes [13]

A
(V B)
k,kz,m,st=±(ρ, ϕ, z) =

eimϕeikzz

4πω

[
(ckz ∓ ω)Jm+1(kρ)

−ix− y√
2

+ (ckz ± ω)Jm−1(kρ)
ix− y√

2
+ ckzJm(kρ)z

]
, (S35)

where Jm(x) are Bessel functions. VB modes are eigenstates of the transverse and axial linear momenta, as well as of
the total angular momentum (OAM+spin) and transverse spin angular momentum, with eigenvalues ~k, ~kz, ~m, and
st = ±~ckz/ω, respectively. The dispersion relation is ω2/c2 = k2+k2

z and does not depend on the angular momentum
index m nor on st. We use first-order time-dependent perturbation theory to compute two-photon generation rates
and obtain energy and angular momentum conservation relations ω+ω′ = Ω and m+m′ = `. The expectation value
of the Poynting vector 〈S〉 = µ−1

0 〈E × B〉 on the evolved two-photon quantum state has a single vortex singularity
along the z−axis for ` 6= 0 and a 2π` phase-wrapping around the vortex. The angular momentum decomposition of
the spectral weight function is

f`(ω) =
∑
m

f`(m,ω), (S36)

f`(m,u) = π

∫ u

0

κdκ

κz

∫ 1−u

0

κ′dκ′

κ′z
R2I(R)

m,`

{
[2u2 − κ2][2(1− u)2 − (κ′)2] I(R)

m,` + κ2(κ′)2 I(R)
m−2,`

}
= f`(`−m, 1− u),

where f`(m,ω) is the angular-momentum spectrum. Here, u = ω/Ω, R = RΩ/c with R the radius of the metasurface,

and I(R)
m,` (κ, κ′) =

∫ 1

0
dη ηJm(κηR)Jm−`(κ

′ηR). The total photo-emission rate is

Γ` =
An2

MSΩ5

512π3c4

∫ 1

0

du |∆α(Ωu) + ∆α(Ω(1− u))|2f`(u) ≈ gΩu10
res

∑
m

f`(m,ures). (S37)

For ` = 0, I(R)
m,0(κ, κ′) is one of Lommel’s integrals and has a closed form for all values of R, and for R � 1 we

approximate R2I(R)
m,0(κ, κ′) ≈

∫∞
0
dx xJm(κx)Jm(κ′x) = δ(κ−κ′)/κ. Thus,

f`=0(m,u) ≈ π

2

∫ min[u,1−u]

0

dκ κ [J2
m(κR)− Jm−1(κR)Jm+1(κR)]

(2u2 − κ2)(2(1− u)2 − κ2) + κ4

√
u2 − κ2

√
(1− u)2 − κ2

. (S38)
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We use
∑
m J

2
m(x) = 1 and

∑
m Jm−1(x)Jm+1(x) = 0 to sum over angular momenta to get the spectral weight function.

We recover the spectral weight function and emission rate for null synthetic phase, f`=0(ω) = fβ=0(ω) = fΦ=0(ω) and
Γ`=0 = Γβ=0 = ΓΦ=0 ≈ gΩu10

resfΦ=0(ures). In the limit R → ∞ Eq. (S38) vanishes, implying that the summation

over m and the infinite metasurface limit do not commute. For other values of ` the integral I(R)
m,` (κ, κ′) does not have

a closed form and must be computed numerically.
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