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ABSTRACT

This paper presents a search engine system for sensor time series
data and metadata in the context of building management. It takes
natural language queries as input, retrieves sensor time series data,
ranks them with respect to their relevance to a given query, and
visualizes the time series as search results. In addition, the system
allows users to interact with the search results: they can define
events of interest in the visualized results and search across sensor
data for similar events, i.e., the search by example scheme. Quanti-
tative evaluations and user studies demonstrate the value of this
system for managing building sensor data.

CCS CONCEPTS

« Information systems — Database query processing; + Com-
puter systems organization — Sensor networks.
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1 INTRODUCTION

The internet-of-things has ushered in a new wave of “intelligent”
buildings. They are designed to make informed decisions about
aspects of building management, such as power management and
energy efficiency, using data provided by sensors located through-
out a building. While a multitude of research in the realm has been
focused on the algorithmic advancement for monitoring, control-
ling, and diagnosing building systems, there has not been as much
work dedicated to effective and efficient management of the data
generated by those systems. Currently, in order for facilities man-
agement teams to navigate through the data produced by these
building sensors as well as equipment, team members have to use
dashboards with a fixed set of predefined functionalities and data ac-
cessing scheme (e.g., SQL-like queries). This inevitably limits their
productivity and cannot fully unleash the potential of intelligent
building management.
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In this work, we aim to increase the productivity of facilities
management by enabling practitioners such as building managers,
who are usually not equipped with programming skills, to directly
interact with the sensor data via natural language queries and time
series queries. Due to the domain-specific and often esoteric vocab-
ulary used to name sensors in the context of building management
, a system allowing natural language search over such data must
be able to effectively derive correct semantic meanings from the
input query terms. For example, to retrieve results for the query
“overheated rooms on the second floor”, the system needs to map the
query phrase “overheated room” to the room temperature sensor
in each room and “second floor” to the location attribute of a room.
Furthermore, it also needs to correctly understand the required
condition on each attribute. For instance, in the aforementioned ex-
ample query, returned room(s)’ temperature should be well above
their setpoints, and must also be located on the second floor of
a target building. Only at this level of query understanding can
the system match the input query with the stored sensor data and
evaluate their relevance for result ranking and display.

Leveraging the advancement in modern information retrieval
techniques, we develop a simple set of query syntax for query
parsing, and use both lexicon-based [11] and pre-trained word em-
bedding [3] techniques for input query expansion. We map parsed
queries to a structured SQL format to search against the metadata
of sensor points for retrieval and ranking purposes. We shall note
that we assume in this work the sensor metadata is provided, and
thus the extraction as well as the representation of metadata are
out of the scope of this work. Even when such information is not
available, there are already studies for automated mapping of sen-
sor metadata [2, 6, 7], which can be employed as a pre-processing
component of our system.

In addition, our system features a “drag&search” function, which
allows users to select a subsequence of a presented time series as
events of their interest and then search against the other time series
data for similar events, i.e., query by example. A rich set of statisti-
cal features, including slope, skewness, entropy, and etc. [10], are
used to depict the shape patterns of user-selected events and locate
similar subsequences in the entire building sensor database. As the
length of user-selected subsequence is indeterminate beforehand,
query-time feature construction and similarity matching will be
extremely expensive and slow. In order to improve the search effi-
ciency, we pre-compute and store the feature vectors offline, and
only match and compute similarity against subsequences of the
same length of the original subsequence. We also use Dynamic Time
Warping (DTW) [12] as another way to quickly find subsequences
that match the user’s selected time series segment.

To evaluate the effectiveness of our developed building sensor
data search engine, we deploy the system over a large collection
of sensor data collected from a campus office building, with more
than 3,300 sensor points in a period of 498 days. There are more
than 21 million data points of sensor readings indexed on this data
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set. Both quantitative evaluations and user studies demonstrate the
system’s utility in managing building sensor data, especially its
flexibility and generality in satisfying users’ information needs in
building management.

2 RELATED WORK

Supporting natural language queries in structured datasets has been
studied in the database and information retrieval communities for
decades [13]. The key research challenges lie in query parsing and
mapping to predefined data schema. Early-stage solutions depend
on hand-crafted rules tailored to each individual database, which
are hard to generalize. Recent developments focus on learning-base
solutions to automate the process. For example, Tan and Peng [16]
assume queries are generated from single or multi-word seman-
tic concepts and these concepts are independent and identically
distributed in queries and external text corpus. Once a query is
segmented, it will be mapped to a SQL query with respect to the un-
derlying database schema [8]. To address vocabulary mismatch, e.g.,
keywords in a user query do not match any entry in the database,
query expansion is often needed [14].

However, natural language queries can hardly be comprehen-
sive, especially in describing the curvature of a desired time series
sequence. Query-by-example becomes a natural complement to
time series search, which allows users to select significant sub-
sequences from existing time series data and search for similar
patterns across other time series sources. Hochheiser and Shneider-
man [5] describe such a system that allows users to visually select
rectangular portions of a time series, which are then used to return
similar shaped subsequences of other time series in their data set.
The key in query-by-example is the representation of time series
data. Baydogan et al. [1] develop a bag-of-features representation.
They divide time series data into subsequences to account for local
patterns, including the slope of the fitted regression line, mean and
variance. We adopt this solution in our system.

3 THE SEARCH SYSTEM

A search engine is expected to return relevant results given a user
query. In the context of searching across sensor data, results are
temporal streams of real values generated by sensors monitoring a
physical environment. Similar to processing of textual data, model-
ing and indexing time series data are essential for supporting any
useful search functionalities. In this work, we take advantage of
existing sensor metadata — which is a short text string comprised of
several abbreviations that encode the sensor type, location, relation-
ships with other points — to support natural language based queries.
We also index sensor readings with a set of statistical features to
achieve the goal of search by example.

Figure 1 provides an overview of our system architecture. User
queries are sent to the backend, segmented and translated into SQL
statements to retrieve relevant time series data. User queries are
in the form of natural language. They are automatically classified
into one of three types: 1) keyword queries, e.g., “room tempera-
ture”, which are executed by matching against the name entries in
database schema; 2) conditional queries, e.g., “room temperature
above 78”, which are parsed with respect to a set of query syntax to
realize user-specified filtering conditions; and 3) event queries, e.g.,
“fluctuating room temperature”, which specify a shape-matching
template for retrieval in time series data. The retrieved results are
first ranked and then sent back to the frontend and visualized as
line charts for display.
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Figure 1: System diagram for the proposed building sensor
data search engine.

Given the naming schema for sensor metadata in a target build-
ing, our system indexes the sensor points using a relational data-
base. All attributes defined in the schema, e.g., site, room id, and
equipment type, are thus directly searchable. To enable flexible nat-
ural language search, we also create a bag-of-words representation
for sensor points. The text content of a sensor’s attribute names
is tokenized and encoded into n-grams [9]. To support keyword
search, all attribute values are removed, and the terms in attribute
names are expanded using WordNet [11] to improve the coverage
of indexed terms. For example, for a sensor with the attribute texts
“site:SDH, room-id:282, supply fan-id:1”, we create its bag-of-words
representation as [“site”, “building”, “room”, “office”, “supply-fan”].
In addition to the text information, each sensor point is also as-
sociated with its time series readings, which are represented and
indexed by a set of statistical features.

Based on the aforementioned data processing and indexing pro-
cedures, a sensor point in our system is represented in three dif-
ferent forms: 1) a structured form based on the database schema,
which directly supports our keyword and conditional queries; 2) a
semi-structured form based on the parsed attribute names, which
supports our keyword queries; and 3) an unstructured form based
on the statistical features extracted from sensor time series readings,
which supports our event queries. Next, we will discuss our detailed
solutions for handling natural language queries and shape-based
event queries in detail.

3.1 Query by Natural Language

In our system, a user query may consist of natural language search
terms, relational operators, as well as predefined keywords. The
system supports searching across sensor points by attributes or
point names, where users can place constraints on their search re-
sults by using conditional operators to define numeric constraints
for retrieval, and/or grouping search results by attributes of inter-
est. Supported natural language queries can be divided into three
categories: keyword queries, conditional queries, and event queries.
Users can also use the “and”/“or” keywords to chain combinations
of these three query types to express their complex search intents.
Keyword Queries. Keyword queries are the least complex, and
consist exclusively of search terms, such as “temperature” or “supply
fan”. Such queries are evaluated by comparing their tokenized query
terms against each indexed sensor point’s attribute and n-gram
text representation. Due to the domain-specific nature of most
attribute terms, query expansion is needed to increase the coverage
of searchable terms. To give user’s original query higher priority,
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Table 1: Supported query syntax for conditional queries.

Keyword Usage Example
Specifies data constraint « .
< 5>,2,= temp > 75
on relevant sensors
Returns sensor data from “temp and
and/or . . "
multiple queries occupancy
Returns sensor data in “temp by
by [query term] groups based on specified room-id"
query term
Returns sensor data in
_ | groups based on specified “temp by
by [query term] = query term and required room-id = 123"
corresponding value

query expansion is only executed when no result can be retrieved
for the user’s original query. The BM25 ranking function [9], which
is the most effective keyword-based ranking method, is used to
measure the relevance of matched sensor points for result ranking.
In addition, we also used a pretrained sentence encoder [3] to embed
the historical queries. If the expanded query still cannot match any
result in the database, we will search against those historical queries
in this embedding space and return their associated search results
(i.e., this query expansion method has the lowest priority).
Conditional Queries. Conditional queries are recognized and
parsed against a set of predefined syntax in our system. This type
of queries extend users’ search scope by allowing them to specify
search conditions jointly over sensor metadata and time series data.
Table 1 summarizes the supported query syntax in our system.

We identify the conditional queries by matching against the
keywords defined in our query syntax, as shown in Table 1. Once
recognized, a conditional query is parsed into the corresponding
SQL statement to match against the sensor metadata and time series.
Our simple query syntax helps mitigate the difficulty of query
segmentation in the sense of distinguishing search terms from
constraints, while imposing very little cost to the users. Since there
are only three built-in keywords (as well as 5 relational operators)
with predefined meanings, a user can employ natural language with
a wide range of flexibility to express their search intents.

All queries are split into a group of simple and/or conditional
queries and mapped to the appropriate SQL statements. For ex-
ample, evaluating the “and” keyword and relational operator “>”
in the query “temp > 75 and occupied” leads to two sub-queries
“temperature > 75” and “occupancy > 0”. Each is mapped to corre-
sponding SQL statements to retrieve relevant time series data. Once
a relevant sensor is retrieved, filtering conditions are evaluated by
examining the time series data table joined by the sensor id. The
resulting SQL query is similar to “SELECT timestamp, sensor_value
FROM timeseries_data WHERE sensor = [relevant sensor]”. This
query is evaluated for all sensors deemed relevant in the first query.

Although our query syntax is simple, it empowers users to spec-

ify expressive conditional filtering statements without requiring
deep domain knowledge or experience with SQL. In addition, the
lower level organization of sensor data is also completely shielded
away from the users.
Event Queries. Event queries will be identified by matching against
the user-registered event names. WordNet-based query expansion
is also applied here to relax exact keyword matching in event names.
When a registered event is matched, it will be executed to retrieve
the related sensor time series. If multiple events are matched, we
will keep the one with the highest BM25 score [9], i.e., the most
relevant event, to search for the time series data.
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Figure 2: A sample search result from our query by example
scheme. The left panel is the user-created event query, and
the right panel is the top ranked search result.

3.2 Query by Example

Users like building managers usually have a good sense of what
they are looking for visually in the data, e.g., sudden shifts in con-
sumption, or values that seem to stagnate at the same level for some
period of time. Yet, even provided the support of natural language
queries, describing such patterns is still non-trivial. To this end, we
aim to equip users with the capability to query by example, which
allows them to visually define what they consider to be a significant
event and search for similar shapes using the specified event name.

Specifically, users create an example event by highlighting a
portion of a time series for a single sensor and registering a name
for the event. Once an event has been created, users can search
for the event by name. The search results consist of the originally
created event as well as any subsequences of other sensor time
series data with a similar shape. To provide fast and accurate result
retrieval, we implemented two solutions to measure and rank time
series by sequence-to-sequence similarity.

Our first solution involves significantly reducing and standard-
izing the dimensionality of the search problem then searching for
similarities in parallel. We begin by splitting each indexed time
series into fixed-length overlapping windows, and then transform
each window into a vector of 14 statistical features [10]. We first
compute 7 features in a given window, including mean value, stan-
dard deviation, skewness, Kurtosis, absolute energy, sum of absolute
changes, and percentage of values above mean. We then extract
the same set of features from the differential vector of this input
subsequence. The differential vector is computed by the difference
between the input subsequence and this subsequence with a pre-
defined time lap, e.g., shift the input sequence backwards by two
points. This feature generation happens offline and the feature vec-
tors are stored in our database and cached. When a user creates an
event, the system finds and returns a list of all the feature vectors
within its start and end timestamp. Afterwards, we compare that
list of feature vectors with every other list of identical length in
our database using a sliding window. Between each pair of lists,
we compute the cosine similarity and store the top n lists with the
highest cosine similarity.

Our second solution repurposes Dynamic Time Warping (DTW)
[12]. DTW is a popular technique to determine similarity between
time series by warping the time axis so they are aligned. We modify
its original implementation [15] to return the top results instead of
only the best result, and our DTW implementation can compute
the ranked results across millions of datapoints in seconds. After
computing the ranked top n results from cosine similarity and DTW
algorithms, we use Borda rank aggregation method [4] to merge
the two rankings.
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4 EVALUATION

Dataset and Experiment Settings. We use a dataset consisting
of 3,322 unique sensors from an office building with 21 distinct
sensor types. The sensor timestamps range over 498 days with
varying sampling rates depending on the sensor type. In addition,
the set of sensors have 151 unique metadata attributes, such as
room id, sensor type, and equipment id; and each sensor has 1 to 8
attributes associated with it. We index the entire dataset based on
the approaches described in Section 3.

Effectiveness of Natural Language Queries. We asked 12 par-
ticipants familiar with building facilities management terms to
attempt to use our system to solve real-world problems. Each par-
ticipant was asked to solve two predefined tasks using our system
with detailed problem statements. The first task is designed for
them to look for specific type of sensors; and the second is to verify
if the sensor reading supports a given assertion. For example, Task
1: “You are looking for sensors that detect the temperature of rooms.
Can you provide a list of sensor names that are associated with the
temperature of rooms?”; Task 2: “Someone just reported Room 300
in building SODA was too cold, i.e., its room temperature was below
65 degree. Please determine whether this event occurred.” From
their interactions (e.g., their issued queries and clicked results), we
identified high quality natural language queries from their attempts
at solving these problems. Each participant evaluated the relevancy
of the results returned by their queries. From these evaluations, we
determined the search effectiveness with mean averaged-precision
(MAP), normalized discounted cumulative gain (NDCG), and mean
reciprocal rank (MRR). Table 2 summarizes the evaluation results,
which support the value of our support in natural language based
queries for building management scenarios.

Table 2: Natural language query evaluation results.

MAP | NDCG | MRR
0.569 0.633 0.597

Effectiveness of Event Queries. We performed our user study
over 13 carefully selected event queries on Amazon Mechanical
Turk to capture different shapes and curvatures in the sensor time
series. We asked 42 participants to look at shapes derived from time-
series data and evaluate the relevance of the top 12 shapes returned
by the system for each query. We interleaved results returned by
cosine similarity, DTW, and a mixture of cosine similarity and DTW
combined using weighted borda score (0.3 for cosine and 0.7 for
DTW). The average inter-annotator agreement rate measured by
kappa statistic is 0.3953, which reflects the difficulty in evaluating
time series queries.

Table 3: Comparison across different ranking methods.

Cosine | DTW | 0.3XCosine+0.7xDTW
90 103 100

Table 3 reports the count of results annotators marked as rele-
vant for each algorithm during our interleaved test. We see that all
three algorithms performed similarly, with DTW being slightly pre-
ferred over cosine similarity. We then used majority vote to select
relevance labels from the crowdsourcing labels and report reports
the ranking performance of event queries under MAP, NDCG and
MRR metrics in Table 4. The high ranking performance demon-
strate demonstrated the effectiveness of our system in handling a
wide variety of queries.
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Table 4: Performance of Query-by-Examples.

MAP | NDCG | MRR
0.751 0.870 0.833

5 CONCLUSION

In this paper, a search engine system is developed for navigating
through building sensor data. It allows users to directly interact with
sensor time series via natural language queries and shape-based
event queries. The system automatically parses user queries and
maps them against the underlying database schema for relevance-
driven result ranking. In addition, it uses bag-of-features and Dy-
namic Time Warping to represent time series data to support query
by example. Our quantitative evaluation and user studies confirm
the value of the developed system in assisting users to navigate
through building sensor data.

Our current system assumes the existence of mapped metadata
on each sensor point, which might not be readily available in many
buildings. It is important to integrate our system with existing
metadata mapping solutions [7] to improve its generalizability.
Currently our search-by-example component only handles static
time series data; it would be helpful to handle dynamic stream data
in real time. Moreover, it is critical to support interactive retrieval
to better help users explore the search space. For example, provide
query suggestions, or actively ask users for clarifications when
query parsing encounters ambiguities or unknown terms.
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