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BACKGROUND OVERVIEW

\/ Stationary storage

Predicting and Mitigating Thermal Runaway |
Validated safety and reliability is one of the critical challenges $
identified in 2013 Grid Energy Storage Strategic Plan o ossm
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Safety incidents are rare but possible, including external (O S :
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How can we reduce facility investment risk? SN Lo e ’

* Prevent single point failure from cascading to

system 1000s or more

large-scale system risk. individual cels
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« Current approach is test to safety.

Large-scale testing is costly and simulations

allow exploration of the design space if well

grounded in reality. .
- Link source terms to material science - Py i |
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morning talk by Randy Shurtz.
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OBJECTIVES

Provide robust system scale safety and reliability

Validated safety and reliability is one of the critical challenges
identified in 2013 Grid Energy Storage Strategic Plan

Develop methods to mitigate any point failures by avoiding propagation

module propagation.

> Concurrent experimental program for validation (Loraine Torres-Castro)
o Other tasks link predictive heat release to material science (Randy Shurtz)

2. ldentify boundaries of propagation versus mitigatior
> Thermal aspects of system design
o Electrical aspects of system design
- Battery chemistry and material science
- Algorithms for active control strategies.

3. Develop capabilities to evaluate design tradeoffs. “‘m .

4. Promote a broader acceptance of quality approaches to energy
storage safety.
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OVERVIEW
Predicting and Mitigating Thermal Runaway

How can we reduce facility investment risk?
* ldentify boundaries between mitigation and cascading failure

Short circuit Thermal
simulated in modifications
first cell acts —> (Reduced
as boundary Baseline conductivity,
condition cell stack: increased
Thermal contact
runaway resistance):
propagates Propagation
mitigated.

Torres-Castro, L. et al., (2020) ) Electrochem. Soc., 167(9):
090515




RESULTS - Predicting Thermal Runaway

Simulation and measurements: 5 x 3 Ah LCO cells, 100% SOC, no plates

Time: 0.10s
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RESULTS - Predicting Thermal Runaway

Challenge: Calorimetry measurements only at lower temperatures.

- Extrapolating thermal runaway models to cascading failure predicts
too-fast propagation.

. Lac’< higher-temp measurements to predict cascading failure.
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 Identified particle diffusion limit at cell propagation temperatures

« Enables prediction over range of propagation/mitigation.
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Kurzawski, A., et al. (accepted 2020). "Predicting cell-to-cell failure propagation and limits of propagation in lithium-ion cell stacks.” Proc. Combust. Instit. 38.
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RESULTS - Predicting Thermal Runaway Propagation/Mitigation

Temperature-time propagation measurements and predictions
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8 I RESULTS - Predicting Thermal Runaway Propagation/Mitigation

Heat capacity/plates and SOC propagation/mitigation summary

Guantifed: Tncressed e
100% S0C Propagation Propagation capacity per stored energy can
80% SOC 50/50 Propagation  Propagation inhibit cascading propagation.
75% SOC No Propagation No Propagation
50% SOC No Propagation No Propagation Can we use thin plates to

dissipate heat to the rest of the

Effective Heat Capacity structure/cooling system?

778 J/kg/K (no spacers) Propagation Propagation
893 J/kg/K (1/32” Al) Propagation Propagation
941 J/kg/K (1/32” Cu) Propagation Propagation

1009 J/kg/K (1/16” Al) No Propagation  No Propagation
1103 J/kg/K (1/16” Cu) No Propagation  No Propagation

Torres-Castro, L. et al., (2020) J Electrochem. Soc., 167(9): 090515
Kurzawski, A., et al. (accepted 2020). Proc. Combust. Instit. 38.




RESULTS - Opportunities with Predictive Simulations

600

Demonstrated predictive capabilities allow us to ask design
questions about previous cases:

N
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* What next-cell temperature must be avoided to prevent
propagation?

xt cell temp., [C]

» Next-cell face temperature shows limiting value. /m Y,

* Cleaner separation if we simulate inert cathode. .
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[- Time delays are opportunities to dissipate heat. ]

 But time to conduct heat through plate is long: (20-30 s) sof- |

- Simulated inert cathode
- prevents propagation




RESULTS - Opportunities with Predictive Simulations
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Heat transfer time scales associated with active cooling project
11 | next presentation with Loraine Torres-Castro

Insulation and structural materials delay heat transfer to
adjacent cells/modules and allow for heat dissipation
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Look forward to our forthcoming manuscript with analytic expressions for system design criteria



12 I RESULTS - Predicting and Mitigating Thermal Runaway

Limits of cascading thermal runaway

Model maps delay in propagation: yellow region is infinite delay—failure to propagate.
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13 I TEAM Predicting and Mitigating Thermal Runaway

Sandia Battery Test i : Center for Integrated
Sandia Battery Abuse Lab Sandia Fire Sciences Nanotechnologies
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SUMMARY

b Predicting and Mitigating Thermal Runaway

> Implement new high-temperature

chemistry.
> Relate material models to > |dentified particle diffusion as potential
experimental measurements at ‘ high-temp physics limit.
multi-cell level. > Provides comprehensive predictions of
propagation and mitigation over range
of conditions.

> Mitigate propagation with

’ Addrgss safe’Fy modeling ° increased heat capacity per stored
associated with thermal energy.

modifications. Determine limits ‘

: . o thermal resistance between cells.
of cascading failure.

° Mapped out limits.
° Provide experimental design.

> Quantified relative effectiveness
experimentally and through predictions.
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