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I BACKGROUND OVERVIEW
Predicting and Mitigating Thermal Runaway

Validated safety and reliability is one of the critical challenges
identified in 2013 Grid Energy Storage Strategic Plan

Safety incidents are rare but possible, including external
causes.

How can we reduce facility investment risk?

Prevent single point failure from cascading to
large-scale system risk.

Current approach is test to safety.
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Large-scale testing is costly and simulations
allow exploration of the design space if well
grounded in reality.

Link source terms to material science -
morning talk by Randy Shurtz.
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3 
I OBJECTIVES
Provide robust system scale safety and reliability

Validated safety and reliability is one of the critical challenges
identified in 2013 Grid Energy Storage Strategic Plan
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Develop methods to mitigate any point failures by avoiding propagation 500
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Develop validated predictive models of cell-to-cell then module-to-
module propagation.

Concurrent experimental program for validation (Loraine Torres-Castro)
Other tasks link predictive heat release to material science (Randy Shurtz)

Identify boundaries of propagation versus mitigatior
Thermal aspects of system design

• Electrical aspects of system design
Battery chemistry and material science
Algorithms for active control strategies.

Develop capabilities to evaluate design tradeoffs. $.76 .462
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Promote a broader acceptance of quality approaches to energy
storage safety.
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I OVERVIEW
Predicting and Mitigating Thermal Runaway

How can we reduce facility investment risk?

Identify boundaries between mitigation and cascading failure
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Torres-Castro, L. et al., (2020) J Electrochem. Soc., 167(9):
090515



5 RESULTS - Predicting Thermal Runaway

Simulation and measurements: 5 x 3 Ah LCO cells, 100% SOC, no plates
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6 I RESULT Predicting Thermal Runaway

Challenge: Calorimetry measurements only at lower temperatures.

Extrapolating thermal runaway models to cascading failure predicts
too-fast propagation.

Lac higher-temp measurements to predict cascading failure.
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• Enables prediction over range of propagation/mitigation.

Kurzawski, A., et al. (accepted 2020). "Predicting cell-to-cell failure propagation and limits of propagation in lithium-ion cell stacks." Proc. Combust. Instit. 38.



I RESULTS - Predicting Thermal Runaway Propagation/Mitigation
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Temperature time propagation measurements and predictions
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Kurzawski, A., et al. (accepted 2020). "Predicting cell-to-cell failure propagation and limits of propagation in lithium-ion cell stacks." Proc. Combust. lnstit. 38.



8 I RESULTS Predicting Thermal Runaway Propagation/Mitigation

Heat capacity/plates and SOC propagation/mitigation summary

State of Charge Experiment Simulation

100% SOC

80% SOC

Propagation Propagation

50/50 Propagation Propagation

75% SOC No Propagation No Propagation

50% SOC No Propagation No Propagation

Effective Heat Capacity

778 J/kg/K (no spacers)

893 J/kg/K (1/32" Al)

941 J/kg/K (1/32" Cu)

1009 J/kg/K (1/16" Al)

1103 J/kg/K (1/16" Cu)

Experiment

Propagation Propagation

Propagation Propagation

Propagation Propagation

No Propagation No Propagation

No Propagation No Propagation

Torres-Castro, L. et al., (2020) J Electrochem. Soc., 167(9): 090515

Kurzawski, A., et al. (accepted 2020). Proc. Combust. lnstit. 38.

Quantified: Increased heat
capacity per stored energy can
inhibit cascading propagation.

Can we use thin plates to
dissipate heat to the rest of the
structure/ cooling system?
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I RESULTS - Opportunities with Predictive Simulations
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Demonstrated predictive capabilities allow us to ask design
questions about previous cases:

• What next-cell temperature must be avoided to prevent
propagation?

• Next-cell face temperature shows limiting value.

Face temp of second cell

• Cleaner separation if we simulate inert cathode. 20 

• Also note time delay with plates versus no plates.

r• Time delays are opportunities to dissipate heat.
• But time to conduct heat through plate is long: (20-30 s)
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RESULTS Opportunities with Predictive Simulations
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Thermal resistance between cells reduces the max heat flux between cells.

Cell-to-cell contact resistances on the order 0.002 to 0.004 m2*K/W.

Thermal resistance of a few mm of insulating plastic, ceramic, etc. can increase
this by 10x or more.
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Heat transfer time scales associated with active cooling project
11 next presentation with Loraine Torres-Castro
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Insulation and structural materials delay heat transfer to
adjacent cells/modules and allow for heat dissipation
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Look forward to our forthcoming manuscript with analytic expressions for system design criteria



12  RESULTS - Predicting and Mitigating Thermal Runaway

Limits of cascading thermal runaway 

Model maps delay in propagation: yellow region is infinite delay—failure to propagate.
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Result here is for 3 Ah LCO cells.

Other results can be obtained through model

parameter sweeps.

Developing LIM1TR: open source code (Lithium-

Ion Mitigation for 1-D Thermal Runaway)

Provides design tool for system design community.



13 1 TEAM Predicting and Mitigating Thermal Runaway
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SUMmikk
Predicting and Mitigating Thermal Runaway

Implement new high-temperature
chemistry.

Relate material models to Identified particle diffusion as potential

experimental measurements at high-temp physics limit.

multi-cell level. Provides comprehensive predictions of
propagation and mitigation over range
of conditions.

Address safety modeling
associated with thermal
modifications. Determine limits '  >
of cascading failure.

Mitigate propagation with

increased heat capacity per stored
energy.

thermal resistance between cells.

Mapped out limits.

Provide experimental design.

Quantified relative effectiveness
experimentally and through predictions.
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