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> I Motivation: rapid design-to-analysis

hermetic
connector

Possible discretization techniques

* FEA, tet/hex/polyhedral meshing
* FEA, isogeometric

 FEA fictitious domain

* meshfree

stress field




1 Value proposition for meshfree

> ease of discretization
 use of point cloud and surface representation
» robust large deformation

* shape functions defined on reference configuration

> |local adaptivity |

* hp adaptivity - easy to change approximation order



" Modeling challenges for meshfree

> surface representation

 explicit vs. implicit representation
 adaptivity on surface

> nonconvex domains

« weight/shape functions around re-entrant corners
» assemblies of parts, material interfaces
» consistent quadrature, stabilization |

* stress points vs. nodal integration
* integration consistency (to pass patch test)



Meshfree approach for this talk

« Use two meshfree clouds: one for d.o.f., one for quadrature

« Use sufficient number of quadrature points to avoid use of artificial stabilization.
» Use Reproducing Kernel (RK) shape function construction.

« For quadrature, define points and weights using shape functions

« For quadrature consistency, need to smooth shape function derivatives by projecting |
onto RK-d.o.f. cloud.



Governing equations (total-Lagrangian formulation)

strong form

weak form

LS N
ox T

u=u on Iy and P-N=t;, on I}

find the trial functions u € H' () such that

/ to-vdS — P:(0v/0X)dX = pot - vdX
F6 Qo Qo

for all test functions v € H}(Qo)



Moving Least Squares (Reproducing Kernel)

The MLS shape functions ¢;(X)are defined as a
spatial modulation of the nodal weight functions.

01(X) = cr(X)wr (X)

where the modulation function ¢;(X) is found through a
least square minimization process resulting in

cr/(X) = g' (XA (X)g(X))
where

AX)= ), wi(X)g(X;)g' (X;)  (sum over neighbors)
IeV

g'(X)={1X; X,} (linear reproducibility)

Note: shape function construction is algebraic.

nodal weight function
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Meshtree approach

Use two meshfree clouds: one for d.o.f., one for quadrature.

e dof point

X 2 to-
e quad point 5 0 quad-to-dof

10 x 40 point ratio = 4

*  What ratio of quad points to dof points is needed for stability?
* How to define quadrature weights?
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quadrature points

How to define quadrature points?

Voronoi structure

<Y LoanYad
A I

/

Voronoi cell with area A

Quadrature weight defined as wg = Ag

« Traditional approach is to construct a Voronoi diagram and
assign the quadrature weight as the area of the Voronoi cell.

« This is challenging for geometrically complex domains,

especially those that are non-convex.

Instead, can define using reproducing conditions: Y _#1(x) =1 ) xrér(x) =x
1 1



n I Quadrature

Start with reproducing conditions ZXK Or(X) =X (sum overK quadrature points)
K
Integrate both sides (1) /ZXK O (x) = / b
0 Q
(2) ZXK/ Pk (x) = / X
o Q Q

Define quadrature weight as WKZ/(bK(X) then ZWKXK:/X
Q % Q

Quadrature points are just xg

This gives a linear-exact quadrature scheme.




2 I Quadrature

Also, note that ZWK:Z/quK(x):/QZgbK(X):/Ql:V

Now have a second-order integration scheme that can integrate
linear functions exactly.

ZWK:V and ZWKXK:/X
K K 2

Can extend to higher-order integration using higher-order
reproducing conditions.
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Quadrature

How to calculate? / ¢K(X)
Y/

Use a local virtual back-ground grid around each quadrature point.

Calculate ¢« at each grid vertex.

Integrate using trapezoidal rule for first-order RK, Simpson’s rule for second-order RK.
Use discontinuous techniques for cut cells.

Only constructed locally (no global data structure needed)
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Quadrature example

uniform point cloud

random point cloud

5 x 10 t

10X 20 |50t

oooooooooooooooooo

e =

. 00 |
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Quadrature example

weight
function

wI(:E? y)

shape
function

gb[(x?y)

random point cloud

uniform point cloud

®
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weights
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Quadrature weights

uniform cloud
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wic = | ox(x)

random cloud

0.04
0.035 |
0.03 |
0.025 |
0.02 | .o
oot [ Lo T
0005 ¥t Tete T e T et
7 g
Y
0.005 |
0.01 - . ,
50 100 150 200
number

Note: For higher-order RK, will start to see some weights
going negative which can cause stability issues.
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Integration convergence

f(z,y) = sin(mx/2) sin(7y)

=[5

error

1074 F

linear RK

quadratic RK

10-8 PP |
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Example: Integration Convergence
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Integration convergence

error = i/f —sz’fz'

10°0F

107 F

error

1072 F

meg

linear RK

107"
spacing



20 . .
Integration consistency

Need to ensure integration consistency of shape function derivatives and quadrature
scheme. (Krongauz & Belytschko, 1997; ... Chen et al, 2001)

Project the shape function derivatives to a consistent space to ensure integration
consistency condition.

Only performed once in a pre-processing step.
Maintain the reproducing properties of the derivatives.

for interior node /ng[ =0 but, in general ZWKV¢IK # 0
(by Gauss' thrm) %

To correct this, for each shape function |, project gradient onto quadrature shape function K.

__ 1
Define V@i = E/ ¢ Vor
Q
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Verification example: cantilever beam with shear load

BVP

H x 20
meshfree
discretization

10 x 40

e rk dof
® quad point
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Beam with shear load

von Mises stress field

uniform cloud random cloud
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» | Beam with shear load: convergence

norm of
displacement error

displacement error

stress error
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Optimal rates of convergence
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Summary

1. New approach to quadrature for meshfree methods based on
reproducing conditions.

2. For 2D elasticity, need to project/correct shape function derivatives to be
consistent with quadrature scheme.

3. Observed optimal convergence rates for 2D elasticity.

4. Exploring use of a local PDE on embedded domain to define weight
functions on non-convex domain.



