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3 Motivation: rapid design-to-analysis

Possible discretization techniques

• FEA, tet/hex/polyhedral meshing
• FEA, isogeometric
• FEA, fictitious domain
• meshfree

hermetic
connector

stress field

Max Principal Stress (ksi)

 -



4 Value proposition for meshfree

➢ ease of discretization
• use of point cloud and surface representation

➢ robust large deformation
• shape functions defined on reference configuration

➢ local adaptivity
• hp adaptivity - easy to change approximation order



5 Modeling challenges for meshfree

➢ surface representation
• explicit vs. implicit representation
• adaptivity on surface

➢ nonconvex domains
• weight/shape functions around re-entrant corners

➢ assemblies of parts, material interfaces

➢ consistent quadrature, stabilization
• stress points vs. nodal integration
• integration consistency (to pass patch test)
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6 Meshfree approach for this talk i

• Use two meshfree clouds: one for d.o.f., one for quadrature

• Use sufficient number of quadrature points to avoid use of artificial stabilization.

• Use Reproducing Kernel (RK) shape function construction.

• For quadrature, define points and weights using shape functions

• For quadrature consistency, need to smooth shape function derivatives by projecting
onto RK-d.o.f. cloud.

1

1
i



7 1 Governing equations (total-Lagrangian formulation)

strong form OP 
: I = po it

OX

u = fit on rot and P • N = to on Fto

weak form find the trial functions u E H1(Q0) such that

f to • v dS — I P : (Dv IOX) dX = f po U • v dX
rt, Qo Qo

for all test functions v E 1-1(1-(Q0)



I Moving Least Squares (Reproducing Kernel)

The MLS shape functions 0/(x)are defined as a
spatial modulation of the nodal weight functions.

OI(X) = ci(X)wi(X)

where the modulation function ci(x) is found through a
least square minimization process resulting in

ci(X) = gT(X)A-1(X)g(Xi)

where

A(X) = 142/(X)g(Xi)gT(Xr)
IE,A7

(sum over neighbors)

gT(X) = k (linear reproducibility)

Note: shape function construction is algebraic.

nodal weight function
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Meshfree approach i

Use two meshfree clouds: one for d.o.f., one for quadrature.
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• What ratio of quad points to dof points is needed for stability?

• How to define quadrature weights?
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point ratio = 4

• What ratio of quad points to dof points is needed for stability?

• How to define quadrature weights?
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1° I How to define quadrature points?

quadrature points
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Voronoi structure

Voronoi cell with area AK

Quadrature weight defined as vvic = AK

• Traditional approach is to construct a Voronoi diagram and
assign the quadrature weight as the area of the Voronoi cell.

• This is challenging for geometrically complex domains,
especially those that are non-convex.

Instead, can define using reproducing conditions: 01-(x) = 1 x/ Oi(x) = x



ii Quadrature

Start with reproducing conditions E 3c,, 0,, (x) = x
K

Integrate both sides (1)

(2)

K 0 K (X) = I X
Q

OK (X) = f X
Q

fDefine quadrature weight as WK 1-((x) then
Q

(sum over K quadrature points)

EWK 3c_K = f x
K Q

Quadrature points are just xx

This gives a linear-exact quadrature scheme.



12 Quadrature

Also, note that E WK = Ef 0K(x) — fc, 0K(x) = Li, V
QK K

Now have a second-order integration scheme that can integrate
linear functions exactly.

EWK = V and EWKXK = f X
K K Q

Can extend to higher-order integration using higher-order
reproducing conditions.



13 Quadrature

How to calculate? 12 K (x)

• Use a local virtual back-ground grid around each quadrature point.
• Calculate K at each grid vertex.
• Integrate using trapezoidal rule for first-order RK, Simpson's rule for second-order RK.
• Use discontinuous techniques for cut cells.
• Only constructed locally (no global data structure needed)
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14 Quadrature example
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15 Quadrature example

weight
function

wi (x, y)

shape
function

oi(x, y)

uniform point cloud
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16 Quadrature weights WK = f cbK(x)
Q
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17 1

Integration convergence

f(x, y) = sin(Trx/2) sin(7y)

error =I f - >.: w i fi
i
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18 I Example: Integration Convergence

f(,), [1- (t)21 [1- (?j21
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19 Integration convergence i

error =I f v2:: ?Di fi

i
error

1
.
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I
Integration consistency i

• Need to ensure integration consistency of shape function derivatives and quadrature
scheme. (Krongauz & Belytschko, 1997; ... Chen et al, 2001)

• Project the shape function derivatives to a consistent space to ensure integration
consistency condition.

• Only performed once in a pre-processing step.

• Maintain the reproducing properties of the derivatives.

/for interior node VOi = 0 but, in general
(by Gauss' thrm)

WKVOIK /o
To correct this, for each shape function l, project gradient onto quadrature shape function K.

Define VOIR-
1WK LOKVOI

1

1
I
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21 Verification example: cantilever beam with shear load

meshfree
discretization

BVP

5 x 20

10 x 40
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“ Beam with shear load

von Mises stress field

uniform cloud
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23 Beam with shear load: convergence
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I
Summary i

1. New approach to quadrature for meshfree methods based on
reproducing conditions.

2. For 2D elasticity, need to project/correct shape function derivatives to be
consistent with quadrature scheme.

3. Observed optimal convergence rates for 2D elasticity.

4. Exploring use of a local PDE on embedded domain to define weight
functions on non-convex domain.
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