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Regression Based Approach for Robust Finite Element Analysis on Arbitrary Grids

Overview

Goal

Enable accurate and stable simulations on poor-quality meshes.
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Overview

How is it done today? Limits?

Standard FEM basis functions interpolate degrees of freedom tied to underlying mesh entities. Below are
the two most common 3D elements used for solid mechanics.

DOI:10.1109/GMAP.2002.1027501

Hexahedron Tetrahedrun
Often requires human-intervention to Open challenge to automatically create
complete the meshing process* hlgh quallty meshes for complex geometries

Our approach is applicable to general polyhedra, allowing impact to both workflows while endowing next-
generation automatic tet-meshers with improved robustness at less cost.

3/12 *Hardwick, M., Clay, R., Boggs, P., Walsh, E., Larzelere, E., Altshuler, A.: DART system analysis. SAND2005-4647.
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Generalized Moving Least Squares

» Arigorous mathematical ‘
Px . = argmin ()\Z. (u) —\; (p))2 W( . framework for approximating
’ peP 7 linear functionals from scattered
1clx

degrees of freedom

h Provi :
T-(U) = T= (D= rovides necessary theoretical
( ) % (px’u)7 infrastructure to back approach

with rigorous proofs

Compadre Toolkit in Trilinos
provides GPU-accelerated

. software to support easy

T e implementation

* https://www.github.com/SNLComputation/compadre
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Example of Symmetric Interior Penalty Discontinuous-Galerkin (SIPG) framework
applied to reaction-diffusion
Oe
A(w,v) = f KVw - Vv -}-[ awv + , / w||v : : :
Z_ E 0 Z . |e|Po ‘,l o Standard reaction-diffusion terms
Eed h ecl')Ulp
. /{KVU' - Y [ (KVe NG Traditional SIPG stabilization terms

ecl',Ulp ¥ ecl'),Ulp o

GMLS basis may provide better penalty parameters for DG

than traditional finite elements
L(U):f fv + Z fuuN — Z /(KVv-n(,)u, v
Q .
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| — Nodal FEM
—— Classical MLS/RKPM
08 Proposed GMLS

* GMLS basis amounts to projection of traditional
meshfree elements onto piecewise polynomial space

* Require stabilization to handle variational crime from
discontinuity at cell interfaces

* Mature DG technology allows rigorous out-of-the-box
treatment of many problems T =

5/12
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Variational form relation to Generalized Moving Least Squares (GMLS)

CL(U,U) — Zé\fil ak(uav) and f(?)) — Z]kvze1 fk(v)7 where a'k(’a ) and fk() are

restrictions of a(-,-) and f(-) to element Ky

Let bxdenote the barycenter of element T,. (ak(¢a Cb))st — . Vs - Vordr
~ kE ,k k k k
ap(uy,u;) == c(e;;by) - ar(d, @) - c(e]; by)
(fe(@)y = | [osdu.

K
- ~ . k
A, ) = > @ of) and f() = > Jeoh), [li= ) xeuy,

KreQh KreQh ICr el
6/12 * P. Bochev, N. Trask, P. Kuberry, and M. Perego, Mesh-hardened finite element analysis through a Generalized Moving Least-Squares approximation of

variational problems, International Conference on Large-Scale Scientific Computing, pp. 67-75. Springer, Cham, 2020. doi: 10.1007/978-3-030-41032-2_7.
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Demonstrate feasibility of approach on poor quality meshes

"ees of shear Consider 3 meshes representative of

common use cases:

« Shear Many obtuse angle elements
occurring in shear deformation

* Crushed Sliver elements occurring
during penetration/contact

» Distorted box Degenerate elements
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Demonstration of feasibility of approach on poor quality meshes (reaction-diffusion)

I::'ug":.{L2 Error)
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For L2 and H' errors, our approach beats traditional CG-FEM using the reference particle set
and has a smaller slope than CG-FEM with either particle set configuration
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Demonstration of feasibility of approach on poor quality meshes (linear-elasticity)

9/

More accurate solution while allowing larger timestep on low-quality meshes
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Linear elasticy (p=1, A=1, solution=sin(x)sin(y)) timestep size study
0012 « T T T T T T

Timestep size: -
Larger is better

{=]

o

Timestep size (g

0004 -

0002 —

a 1 1 | 1 I
CG FEM REBAR pen=500 REBAR,pen=250 REBAR,pen=100 DG pen=100 DG pan=5
Method

1
Shear 2

1
Shear 1

AMAnk

N
‘\

L2 error on bad mesh: 5.5x lower than CG
H1 error on bad mesh: 5.73x lower than CG
Stable timestep: 3.74-8.38x larger than CG

Punchline
~5 times better answer at ~3-8 times cheaper cost!
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Demonstration of feasibility of approach on poor quality meshes

Improved timestep restriction resulting from discretization on poor-quality meshes [Cont.]

Linear elasticy (=1, A=1, solution=sin(x)}sin(y)) timestep size study
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GMLS basis timestep beats CG FEM with penalty of 100. With a penalty of 1, it does even better!

CG FEM
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Big gains from investigating sharp estimates for the penalty.
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Pressure stability for saddle-point problems (Stokes flow)

DG stabilization endows method with stability in important engineering limits, such as near-
incompressibility (instrumental for handling material like rubber, or plastic deformation leading to ductile

failure).

Divergence-free sinusoidal solution on Timoshenko mesh sequence

Velocity order=1, Pressure order=1

Vel. L2 Error Rate Vel. H1 Error Rate
1.12E-03 - 4.45E-02 -
2.02E-04 2.47 2.04E-02 1.12
4.10E-05 2.30 9.69E-03 1.07
9.33E-06 2.13 4.71E-03 1.04
2.10E-06 2.15 2.30E-03 1.03

Optimal convergence rates illustrate stability, even
for polynomial pairs that are unstable for CG FEM.

Inf-sup unstable formulation:

vs. using GMLS basis in stabilized DG framework?*:

Computed pressure field on Timoshenko mesh
with divergence-free manufactured solution.

Smooth pressure field demonstrates no checker-
boarding, which is characteristic of pressure locking.

* Burman, E., Hansbo, P. (2007). A unified stabilized method for Stok

11/12 35-51, https://doi.org/10.1016/j.cam.2005.11.022

es’ and Darcy's equations, Journal of Computational and Applied Mathematics, 198(1),
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Conclusions

* Developed variational PDE formulation using meshless techniques (GMLS),
generating shape functions that are polynomial and discontinuous between cells
* Mesh is used for integration ( quadrature points and weights )
* Solution lies on particle sets ( independent of mesh vertices / midpoints / etc..)
* Piecewise polynomial shape functions ensure exact integration

* Demonstrated on strongly-elliptic problem (reaction-diffusion) and linear elasticity that the approach:

* Optimal rates of convergence
* Performs well on poor quality meshes relative to traditional CG-FEM

* On saddle-point problem (Stokes flow), demonstrated that:
* Minor, well-understood modification within SIPG enables stability for
traditionally inf-sup unstable low-order velocity/pressure pairs

* Inf-sup stability is maintained for velocity/pressure pairs of polynomial degree
traditionally stable in CG-FEM (e.g., P2/PI)



