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ABSTRACT 

Over the past four years, an informal working group has developed to investigate existing 

sensitivity analysis methods, examine new methods, and identify best practices. The focus is on 

the use of sensitivity analysis in case studies involving geologic disposal of spent nuclear fuel or 

nuclear waste. To examine ideas and have applicable test cases for comparison purposes, we have 

developed multiple case studies. Four of these case studies are presented in this report: the GRS 

clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. We present the 

different sensitivity analysis methods investigated by various groups, the results obtained by 

different groups and different implementations, and summarize our findings. 
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HLW High level waste 



 

xv 

Abbreviation Definition 

IAEA International atomic energy agency 

IBRAE Nuclear safety institute of the Russian academy of sciences 

IGSC integration group for the safety case 

IHLRWM International High-Level Radioactive Waste Management Conference 

INTESC International Experiences in Safety Case for Geological Repositories 

IRSN Institute for Radiological Protection and Nuclear Safety (France) 

KS Kolmogorov-Smirnov 

LILW Low and intermediate level waste 

MARS Multivariate adaptive regression splines 

MC Monte-Carlo  

MIM Borgonovo moment independent importance measure 

MOSEL 
Investigation of modern methods of probabilistic sensitivity analysis of final 
repository performance assessment models 

MTHM Metric ton of heavy metal 

NEA Nuclear Energy Agency 

NM  New Mexico 

OECD Organization for Economic Cooperation and Development 

ONDRAF/NIRAS Belgian National Agency for Radioactive Waste and enriched Fissile Material 

PA performance analysis 

PAWN Pianosi and Wagener Importance Measure 

PCE Polynomial chaos expansion 

PC-PRCC Partial (rank) correlation coefficient 

PEAR Pearson correlation coefficient 

PFLOTRAN Groundwater flow and transport code developed by DOE 

POSIVA Finnish company focused on final disposal solutions 

PWR Pressurized water reactor 

QMC Quasi Monte Carlo 

RCC Rank correlation coefficient 

RI Regionalized information 

RBD Random balanced design 

RN Radionuclide 

RS-HDMR Response Surface – High dimensional model representation 

SA Sensitivity analysis 

SCK-CEN Belgian nuclear research centre 

SD Structure discovery 
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Abbreviation Definition 

SFWST Spent fuel and waste science technology 

𝑆𝑖 
Sensitivity index first-order (also called the main effect index) for variable i.  
Sometimes also denoted as S1 in the text.   

𝑆𝑖2 Sensitivity index second-order.  This is the specific case of the more general S, 

where  represents the interaction of variable i with other variables j.  

SIAM/ASA Society of Industrial and Applied Mathematics/American Statistical Association 

SNF Spent nuclear fuel 

SNL Sandia National Laboratories 

SORM Second-order-reliability-method 

SPEA/SPEAR Spearman correlation coefficient 

SRC Standardized regression coefficient 

SRRC Standardized rank regression coefficient 

SSG Specific safety guide 

SSR Specific safety requirements 

𝑇𝑖 
Sensitivity index total order (also called total effect index).  Sometimes also 
denoted as ST in the text.   

TI Trend identification 

TN Tennessee 

TUC/TU Clausthal Technische Universität Clausthal (Clausthal University of Technology) 

UFD The U.S. Dept. of Energy Used Fuel Disposition 

UK United Kingdom 

UQ/SA Uncertainty quantification and sensitivity analysis 

URF Underground research facility 

USA United States of America 
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1. INTRODUCTION 

Uncertainty quantification and sensitivity analyses (UQ/SA) carried out in the context of the safety 

assessment or performance assessment (PA) of a radioactive waste repository assist in 

understanding the system relationships, optimizing resources, and building confidence in the 

performance of the system and in meeting certain set requirements (e.g., compliance 

demonstrations). Uncertainty management is the process of continuous assessment of the 

uncertainties within a repository project, evaluation of their consequences, and of efforts for 

reducing, avoiding, or mitigating uncertainties.  

Sensitivity analysis, the identification of important variables affecting uncertainty in the 

assessment results, is a critical activity in the uncertainty analysis process. [1] lists the following 

purposes and contexts in which methods of sensitivity analysis might prove useful: 

to build and explore consequence models; 

to explore the relationship between science and consequence models; 

to support the elicitation of judgmental inputs to an analysis; 

to develop efficient computational algorithms; 

to design experiments; 

to guide the making of inferences, forecasts and decisions; 

to explore and build consensus; 

to build understanding. 

Hence, SA methods can be embedded in different stages of a decision-making context. It is 

essential, however, to distinguish between the repository system itself and the numerical model 

used to describe it. The latter is just a simplified image of the real system, depending on a limited 

number of input parameters that are related but, in general, not identical to the physical variables 

governing the system. The real uncertainties have to be mapped appropriately to uncertainties of 

the model parameters. Whenever doing numerical investigations one should not lose sight of the 

fact that one is actually investigating the model and not the real system.  

1.1. Goal of the report 

The purpose of this report is to provide summaries of a sensitivity analysis exercise developed by 

an international working group. The goal of the exercise is to gain a better understanding of the 

strengths and weaknesses of various SA methods, identify cost vs. performance tradeoffs of the 

methods, and highlight best practices and lessons learned. Multiple countries participated and 

demonstrated various SA methods on a series of case studies. For each case study, each group 

presented its results using different sensitivity analysis methods and/or different implementations 

of the same method. The breadth and scope of the case studies as well as the large variety of 

sensitivity analysis methods used provided a rich environment to study and compare results.  

The case studies involve computational models addressing safety assessments for geologic 

disposal of radioactive waste. More detail about the cases is presented in subsequent chapters. We 

note that many studies have compared sensitivity analysis methods on analytic test functions. For 

example, [2] presents a variety of surrogate methods used in variance-based SA calculations and 

demonstrates results on canonical problems such as the Ishigami test function. [3] presents results 
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of finding “effective” dimensions of a model using sampling and SA approaches on three classes 

of analytic test functions. [4] presents density-based SA methods which extend the variance-based 

approaches that have become extremely popular over the past twenty years. And the recent paper 

by Puy et al. [5] provides results of an extensive benchmarking exercise comparing various 

implementations of variance-based SA estimators along with comparisons of their performance on 

ten test functions based on various factors such as input distribution type, number of runs, number 

of pairwise interactions, etc. We support and advocate for more of these studies. In this report, 

however, we focus on the demonstration of SA methods on realistic problems that are of interest 

to the radioactive waste management community. Demonstration on problems of realistic scope 

and scale highlights challenges and aspects that may not be faced on analytic test problems.  

1.2. Safety Assessment for Geologic Disposal 

The formal concept of a safety case for the long-term disposal of Spent Nuclear Fuel (SNF) and 

High Level Waste (HLW) in an engineered facility located in a deep geologic formation was first 

introduced by the Nuclear Energy Agency (NEA) [1] . Initial discussion and documentation on the 

topic as well as setting of standards continued in [7, 8, 9]. More recently, and in concert with the 

development of numerous national safety cases, there have been a number of international 

symposia, conferences, working groups, summary papers, and safety standards devoted to 

understanding, developing, and/or summarizing the nature, purpose, context, and elements of 

safety cases (e.g., [9 – 17]). In these recent summary and overview reports, it is observed that there 

is notable convergence in the understanding and development of safety case documents published 

by national and international organizations. The following excerpt from [14] (Section 3.1) provides 

a definition of a safety case that is current and consistent with the aforementioned documents:  

The safety case is an integration of arguments and evidence that describe, quantify and 

substantiate the safety of the geological disposal facility and the associated level of confidence.  

The concept of a post-closure safety assessment is described by the intergovernmental Nuclear 

Energy Agency [15] (Section 5.1) as an iterative set of assessments for evaluating the performance 

of a repository system and its potential impact that aims to provide reasonable assurance that the 

repository system will achieve sufficient safety and meet the relevant requirements for the 

protection of humans and the environment over a prolonged period. A safety assessment, (i) 

quantifies the repository system performance for all selected situations and (ii) evaluates the level 

of confidence (taking into account the identified uncertainties) in the estimated performance of the 

system. As examples, a description of the regulatory frameworks for the U.S. Waste Isolation Pilot 

Plant [18] and Yucca Mountain [19] are provided. The U.S. Dept. of Energy Used Fuel Disposition 

(UFD) campaign and Spent Fuel and Waste Science Technology campaign (SFWST) have 

published safety case overviews relevant to geologic disposal in the U.S. [20, 21]. 

At a high level, all countries describe uncertainty using qualitative and quantitative uncertainty 

management. In the framework of modeling for the purpose of safety or performance assessment, 

uncertainty quantification is described in the context of data representation, propagation, and 

analysis. That is, first one needs to identify and represent or characterize the uncertain inputs of a 

computational model (through distributions, intervals, empirical data). In this report, we note that 

inputs, parameters, factors, and variables all refer to the same thing: uncertain inputs to a model. 

Then, one needs a method to propagate input uncertainties through the model to obtain 
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uncertainties on output quantities and results of interest. This is frequently done by sampling 

several realizations for the input parameter sets and performing model calculations for each of 

them. Finally, the results need to be postprocessed; if the sampling followed a prescribed joint 

probability distribution for the model input representing its uncertainty, this is where statistical 

analyses are usually done. A related activity is often done concurrently: sensitivity analysis. One 

identifies the most important parameters affecting the results through sensitivity analysis. The goal 

of sensitivity analysis is to determine the contributions of individual uncertain analysis inputs to 

the total uncertainty in analysis results of interest [22, 23]. There is an extensive literature about 

the treatment of uncertainty for risk assessment and performance assessment. References [24 – 28] 

are representative of this broad field.  

1.3. Sensitivity Analysis Working Group 

Over the past five years, an informal working group has developed to investigate existing 

sensitivity analysis methods, examine new methods, and identify best practices. A series of annual 

meetings was held starting with a “Workshop on Handling Uncertainties” in September 2015 at 

Harwell, UK, followed by an “International Workshop on Sensitivity Analysis of Final Repository 

Systems” in Braunschweig, Germany in October 2016, and then by a “Quantification of 

Uncertainty Workshop” in August 2017 in Albuquerque, NM, USA. It was at this latter workshop 

in the U.S. where more collaborative work was initiated among the international participants and 

organizations, as discussed below.  

A follow-on workshop in Brussels, Belgium in October 2018 led to a more formal establishment 

of this collaboration during the subsequent Integration Group for the Safety Case (IGSC) 

Symposium on the Safety Case in Rotterdam, The Netherlands in October 2018. The sensitivity 

analysis group is working under the auspices of Organization for Economic Cooperation and 

Development (OECD)/ NEA’s Integration Group for the Safety Case (IGSC, https://www.oecd-

nea.org/rwm/igsc/). 

The Uncertainty Quantification workshop held in August 2017 in Albuquerque, USA, led to a joint 

sensitivity analysis exercise effort initiated in October 2017, with participation from GRS, Posiva, 

SCK-CEN, SNL, and TUC, and later joined by IBRAE as well as by ENSI, Fortum, IRSN and 

Nagra as observers. The Sensitivity Analysis subgroup discussed various case studies that could 

be examined from a safety assessment context for geologic disposal. These case studies represent 

different modelled systems as a function of time, with varying levels of detail, complexity, data 

uncertainty, and spatial extent. The Sensitivity Analysis subgroup identified seven test cases 

ranked in order of complexity and since then has compared analysis methods on progressively 

more complex models. Each case study owner provided input and output datasets and explanation 

of the case so that others could use the case to demonstrate their sensitivity analysis approaches. 

The group shared results at the next working group meeting—International SA-UQ Workshop—

held in Brussels, Belgium, in 2018. These activities resulted in several papers summarizing interim 

results at the International SA-UQ workshop in Brussels in 2018. Further workshops were held in 

Berlin (November 2019) and online (March 2020, June 2020). 

The concept of the study, the group’s work, and interim results were presented at several occasions, 

e. g. at the Integration Group for the Safety Case (IGSC) Symposium held in Rotterdam in October 

2018 [29 – 31]. Subsequently, a few members participated in the International High-Level 

https://www.oecd-nea.org/rwm/igsc/
https://www.oecd-nea.org/rwm/igsc/
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Radioactive Waste Management Conference held in (Knoxville TN, April 2019) [32, 33], the 2019 

General Assembly of the European Geosciences Union (Vienna, April 2019) [34] and at the Ninth 

International Conference on Sensitivity Analysis of Model Output (Barcelona, October 2019) [35–

38]. 

The focus of the SA working group is on the use of sensitivity analysis in case studies involving 

geologic disposal of spent nuclear fuel with the overall aim of providing guidelines for performing 

such analyses in the context of safety assessments or safety cases for geological repository 

facilities. To examine ideas and have applicable test cases for comparison purposes, we have 

selected multiple existing case studies. Four of these case studies which are based on less complex 

models are presented in this report: the GRS clay case, the SNL shale case, the Dessel case, and 

the IBRAE groundwater case. Multiple groups examined different sensitivity analysis techniques 

on each case. We present the different sensitivity analysis methods, the results obtained by 

different groups and different implementations, and summarize our findings. 

When the working group started to collaborate, we identified several items of interest:  

• Exercise planning: identification and description of various test cases, with participating 

organizations providing computational simulation run results (tables of runs including inputs 

and outputs). 

• Exchange of ideas on SA theory, new developments, as well as practical challenges. 

• Evaluation of SA method performance: demonstration of various SA methods on the case 

studies.  
• Formulate SA guidelines: identification of best practices and lessons learned.  

• Produce joint papers, attend conference and symposia.  

Overall, this informal group has worked collaboratively to meet the goals outlined above. In 

addition to several meetings, we held many online videoconferences which are becoming slightly 

better in the era of limited travel. We anticipate this report to be the first of two volumes, where 

the second volume will describe SA results on more complicated cases, possibly together with a 

synthesis and recommendations on the application of SA in safety cases.  

Chapter 2 details the SA methods investigated by the working group. They include correlation 

analysis, linear and rank regression, higher-order regression, variance-based indices (Sobol’ 

indices), and graphical approaches (e. g. using CUSUNORO curves). The variance-based indices 

are calculated in a variety of ways. Traditionally, such calculations are based on specific sampling 

schemes. The working group, however, focused on existing (given) data and applied other methods 

such as EASI, COSI or approaches employing surrogates or metamodels such as Gaussian 

processes or polynomial chaos expansion.  

Chapter 3 provides an overview of how the cases were selected. The four case studies are the GRS 

clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. These are 

described in Chapters 4-7, respectively. The SA results by different teams and different methods 

are also presented in the chapter where the case is described. Finally, Chapter 8 provides a 

summary of the results and ideas about next steps.  
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2. SENSITIVITY ANALYSIS METHODS 

There are a few general texts dealing with sensitivity analysis (SA) [39 – 43]. Sensitivity analysis 

and uncertainty analysis are often performed concurrently, but we emphasize they have different 

purposes. Uncertainty analysis involves the propagation of uncertainties on input parameters to the 

resulting uncertainty on output quantities. This is frequently done with sampling. In sensitivity 

analysis, the goal is to identify the most influential parameters affecting uncertainty in the 

simulation results. This is often done using samples generated as part of an uncertainty analysis 

process. 

Uncertainty analysis is the description of the output of a simulation model under input uncertainty. 

In order to explore the whole input parameter space, Monte-Carlo methods (MC) are used. Monte 

Carlo methods sample the input uncertainty and run the model simulation for each input realization 

to obtain a sample approximation of the output distribution. There are other “forward uncertainty” 

propagation methods, including reliability methods such as the First-Order Reliability Method 

(FORM) and Second-Order Reliability Method (SORM) [44]. These methods are very efficient at 

finding tail probabilities. There are also methods such as polynomial chaos expansions and 

stochastic differential equations [45, 46], which propagate the uncertainty through the model, but 

these can be more intrusive to the codes and have generally not been adopted for performance 

assessment codes in the radioactive waste management community.  

Sensitivity analysis uses tools for apportioning output properties to the different inputs. For 

sensitivity methods, one can roughly distinguish between [47]: 

• Local analysis: The model is analyzed locally with respect to a reference/working point, 

to identify the steepest gradient as most important direction of change, apportioning local 

change to the different inputs. 

• Screening methods: The model is analyzed with known bounds on the input parameters, 

to identify (screen out) input parameters with little influence, apportioning global change 

to the different inputs. 

• Global methods: The model is analyzed with a known distribution of the inputs, 

apportioning the uncertainty in the output to the different inputs. 

In this report, we focus on uncertainty analysis and global sensitivity methods as both work with 

specified input probabilities generated by Monte Carlo sampling approaches. For linear models, 

local and global analysis coincide. Moreover, screening methods may be applied locally, e.g. 

varying one factor at a time by a small amount, or globally, e.g. as in sequential bifurcation, where 

the model outputs from (carefully chosen) extreme input positions are compared. A table showing 

the various sensitivity analysis methods used in analyses of these cases is shown in Table 2-1, with 

a categorization of classes of methods. Note that in this report, the terms “parameters”, “variables”, 

“factors” and “inputs” are used interchangeably, and all refer to input parameters of a 

computational code.  
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Sensitivity analysis approaches 
Factor 
Prioriti
zation 

Factor 
Fixing 

Trend 
Identification 

Structural 
Discovery 

Regionalized 
Information 
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s (w
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e
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m
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p

u
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c
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Graphical 

Scatterplots ✔  ✔  ✔ 

>
1

0
0

 

Cumulative Sum of 
Normalized 

Reordered Output 
(CUSUNORO) 

✔  ✔ ✔ ✔ 

>
1

0
0

 

Correlation 
& 

Regression 
analysis 

Pearson correlation 
& Partial 

Correlation 
✔  ✔   

>
1

0
0

 

Spearman Rank 
Correlation & 
Partial Rank 
Correlation 

✔  ✔   

>
1

0
0

 

Regression 
coefficients 

(Linear, Rank, 
Stepwise) 

✔  ✔   

>
1

0
0

 

Variance-
based 

Sobol’ indices ✔ ✔  ✔  

>
5

0
0

x
M

 

Fourier Amplitude 
Sensitivity Test 

(FAST), extended 
FAST (eFAST) 

✔ ✔  ✔  

>
 5

0
0
x
M

 

Effective Algorithm 
for Sensitivity 

Indices, Cosine 
Sensitivity (EASI, 

COSI) 

✔   ✔  

>
5

0
0

 

Random Balance 
Designs ✔   ✔  

>
5

0
0

 

Moment-
independent 

Borgonovo’s δ ✔ ✔  ✔ ✔ 

>
1

0
0

0
 

Pianosi and 
Wagener 
(PAWN) 

✔ ✔  ✔ ✔ 

>
5

0
0

x
M

 

Table 2-1.  Sensitivity Analysis Method Classification 

 

The problem setting for global sensitivity analysis is twofold [48]: A description of the input 

uncertainty is needed, as well as a simulation model representing physical properties. In 

accordance with [39] we understand by SA addressing both aspects and considering the input 

uncertainty given by probability distributions. There are different serving objectives for 
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performing global sensitivity analyses. The methods can be framed into different sensitivity 

analysis settings [47, 49]: 

• Factor prioritization (FP): Finding the most important input parameters. 

• Factor fixing (FF): Finding the least important input parameters. 

• Trend identification (TI): Identify monotonicity or convexity properties of the model. 

• Structure discovery (SD): Uncover additivity, linearity, interactions. 

• Regionalized information (RI): Finding active regions of input parameters. 

To fix notation, we consider a (deterministic) simulation model 𝑔: 𝑥 = (𝑥1, ⋯ , 𝑥𝑑) ↦ 𝑦 = 𝑔(𝑥) =
𝑔(𝑥1, ⋯ , 𝑥𝑑) = 𝑔(𝑥𝛼: 𝑥¬𝛼) mapping 𝑑 input parameters into a scalar output. We may split the 

inputs into groups where α is a subset of indices of input parameters (the group of interest) and 

¬α is the complementary index group. The notation (𝑥𝛼: 𝑥¬𝛼), using Owen’s smush operator [50], 

denotes the out-of-order concatenation of functional arguments, vectors and sample matrices. In 

case the physical model produces multivariate (e.g., spatio-temporal) output, we assume that 𝑔 

produces a scalar quantity of interest (maximum of a time series, value at a specific time/location). 

We model the uncertainty by considering a d-dimensional random vector of inputs 𝑋 =
(𝑋1, ⋯ , 𝑋𝑑). Then the quantity of interest of the model output 𝑌=g(X) is a scalar random variable. 

The probability densities of the input 𝑓𝑋 and hence the marginal input densities 𝑓𝑖 are assumed to 

be known. In case of independent inputs, 𝑓(𝑥) = ∏ 𝑓𝑖(𝑥𝑖)𝑑
𝑖=1  holds. The density of the output 𝑓𝑌 

is generally not analytically known, its properties are estimated from an input sample promoted 

through the simulation model (Monte Carlo method). The associated cumulative distribution 

functions (CDFs) of an individual parameter i, of the full random vector of inputs X and of the 

output Y are denoted by Fi, FX, FY, respectively. Sample matrices use the same notation as the 

random variables or vectors, i.e. 𝑋 ∈ 𝑅𝑁×𝑑 is an input sample with 𝑁 realizations 

(observations/runs). 

Jim Gray of Microsoft Research coined the term Data-Driven Science for unifying empirical, 

theoretical and computational paradigms for scientific exploration. Within this framework, we can 

interpret simulation using Monte Carlo techniques as a way of getting from (possibly black-box) 

models to data. If we employ given data techniques for performing Global Sensitivity Analysis, 

then this step might be summarized as data-to-structure. With SA becoming part of a decision-

making context, we obtain a route from simulation to data to information to knowledge to 

decisions.  

In the radioactive waste management community, with time frames for different (national) 

radioactive waste disposal programs and license applications ranging in the order of decades, the 

use of data seems to be more persistent than the use of simulation models (with their dependence 

on implementation specifications such as programming languages, software packages, operating 

systems, hardware, etc.). A re-analysis of the data is possible even if the hardware on which the 

simulation model ran has long been put out-of-service. 

Hence, this report draws special attention to sensitivity analysis methods that will work on given 

datasets (e.g. sample matrices with rows consisting of realizations of the inputs and the associated 

output results from a simulation model). 
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2.1. Correlation analysis 

The Pearson correlation coefficient is a measure of the strength and direction of a linear 

relationship between two variables. Given a random pair of inputs/output (𝑋, 𝑌), the correlation 

between input factor i and the output is given by ρi = ρ(𝑋𝑖 , 𝑌) =
1

√𝕍Xi𝕍Y
(𝔼𝑋𝑖𝑌 − 𝔼𝑋𝑖𝔼𝑌) where 

𝔼 denotes the expectation and 𝕍 the variance. Therefore, it compares the mean of the joint 

distribution with the product of the marginal means. In linear algebraic terms, it is the cosine of 

the angle between the sampled input vector of interest and the sampled simulated output. 

2.1.1. Pearson 

In the following, we will present key properties of sensitivity methods in standardized fashion, 

offering information boxes. The scope entry refers to the use of the method in different settings, 

depending on the framing of the analysis. Here we distinguish between factor fixing (FF), factor 

prioritization (FP), trend identification (TI), structure discovery (SD) and regionalized information 

(RI). The status entry is distinguishing between established methods (e.g. available in spreadsheet 

software or available in all sensitivity analysis software), emerging (available in dedicated 

sensitivity analysis software), early adopter and experimental. If the method works only under 

statistical independence of the random input variables this is remarked under input probability. If 

the method may be used to detect statistical independence between single input factors and the 

output factor (for use with FF) or if insignificance under this method is not independence this is 

found in the notes and caveat sections.  

 

Sensitivity 

Method 

Pearson (Product Moment) Correlation Coefficient 

Acronym PEAR Symbol ρ 

Scope SD: Linear Dependence, Additivity; TI: Monotonicity; FP 

Type Correlation/Regression 

Status Established 

Given Data  Yes Evaluation Costs Least Squares 

Regression 

Input Probability No assumptions, one-dimensional technique 

Notes Visual interpretation from scatterplots 

Caveats Not a measure of independence  

Unclear interpretation in case of dependent inputs 

Dependence on probabilistic assumptions sometimes hidden 

References [51, 52] 
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2.1.2.  Spearman 

The Spearman correlation coefficient is similar to Pearson, but instead of measuring the correlation 

in the raw values, it measures correlations between the ranks of the values. If one replaces the 

inputs and outputs by their ranks (i.e. the smallest values are assigned to 1, the second smallest to 

2, the largest but 1 to N-1, the largest to N), the inverse (empirical) cumulative distribution function 

of the output can be calculated, 𝑉 = 𝐹̂𝑌
−1(𝑌), where the empirical inverse CDF can be estimated 

as the index in the sorted sample (=rank) divided by sample size. The inverse CDFs of the inputs, 

𝑈𝑖 = 𝐹𝑖
−1(𝑋𝑖), are often known but may also be approximated by their empirical versions. One 

then performs the sensitivity analysis in these new coordinates which are now bounded between 0 

and 1 and uniformly distributed to obtain transformation invariant measures. The most common 

of these is Spearman’ rank correlation which is the correlation coefficient between 𝑈𝑖 and 𝑉. 

Sensitivity 

Method 

Spearman Rank Correlation Coefficient 

Acronym SPEA/SPEAR  Symbol ρ∗ 

Scope SD: Additivity; TI: Monotonicity, FP 

Type Correlation/Regression 

Status Established 

Given Data  Yes Evaluation Costs Least Squares 

Regression 

Input Probability No assumptions, one-dimensional technique 

Notes Visual interpretation from dependograms 

Nonparametric technique 

Related measures like Kendell τ∗ have not been considered 

Caveats Not a measure of independence  

Unclear interpretation in case of dependent inputs 

Dependence on probabilistic assumptions sometimes hidden 

References [52, 53] 

 

2.1.3. Partial 

Partial correlation indicates the amount of association between two random variables xa and y, 

controlling for the effect of other random variables, x¬a which may confound a simple correlation 

analysis. For partial correlation, one builds two linear regression models (see below). The first is 

between xa and x¬a and the second is between y and x¬a. The Pearson correlation between the 

residuals of these two regressions is the partial correlation. This second regression removes the 

input factor of interest from the list of feature maps. The partial correlation coefficient provides a 
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measure of the linear relationship between y and xa with the linear effects of the other variables x¬a 

removed A version working on ranks is known as Partial Rank Correlation Coefficient. 

Sensitivity 

Method 

Partial (Rank) Correlation Coefficient 

Acronym PCC/PRCC Symbol  

Scope SD: Linear Dependence, Additivity; TI: Monotonicity 

Type Correlation/Regression 

Status Established 

Given Data  Yes Evaluation Costs Least Squares 

Regression 

Input Probability No assumptions, multi-dimensional technique 

Notes  

Caveats Not a measure of independence 

PRCC is a nonparametric technique 

Unclear interpretation in case of dependent inputs 

Dependence on probabilistic assumptions sometimes hidden 

References [52, 53] 

 

2.2. Regression 

Regression is a statistical procedure to estimate a functional relationship between a dependent 

variable (the output of interest) and independent variables (the input parameters). A general linear 

regression model (also called response surface) assumes a linear dependence between the inputs 

and the output which is of the form 

η(𝑌) = ∑ βiφi(𝑋) + ε

i

 

where η is the link function, φi are the feature maps (also called basis functions), βi are the 

unknown regression coefficients and ε is a zero-mean error independent of the inputs 𝑋. 

Minimizing the mean square error yields a least square regression problem. For this, the images of 

the feature maps for the input sample are collected in a design matrix D and the least squares 

problem is solved by = (DTD)−1DTη(𝑌). Note that there are specialized solvers available, so one 

should never form this projection matrix explicitly. The prediction from the regression model is 

𝑦̂ = Dβ. Other minimization problems (e.g. using absolute sums instead of sums of squares) lead 

to slightly different results.  
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2.2.1. Linear 

For standardized regression coefficients, one uses the standardization for link and features, 

η(𝑦) =
𝑦−μY

σY
 and φi(𝑥) =

𝑥i−μi

σi
 and reports βi. 

Sensitivity 

Method 

Standardized Regression Coefficient 

Acronym SRC Symbol βi 

Scope SD: Linear Dependence, Additivity; TI: Monotonicity; FP 

Type Correlation/Regression 

Status Established 

Given Data  Yes Evaluation Costs Least Squares 

Regression 

Input Probability No assumptions, multi-dimensional technique 

Notes Estimates the same value as PEAR under independence 

Visual interpretation from scatterplots 

Caveats Not a measure of independence  

Unclear interpretation in case of dependent inputs 

Dependence on probabilistic assumptions sometimes hidden 

References [54, 55] 

 

2.2.2. Rank 

Analogous to the Spearman coefficient, one can perform linear regression with inputs and outputs 

being transformed to their ranks. Under independence of inputs, the Standardized Rank Regression 

Coefficients (SRRC) estimate the same value as Spearman rank correlation. Using ranks yields a 

nonparametric technique. 

2.2.3. Stepwise 

Up to now, we considered only regression models that included one, all, or all-but-one factors. 

Especially in a high-dimensional setting, one may also add a single factor at a time to the regression 

model, and monitor the change in the coefficients and the goodness-of-fit to decide if this factor is 

uninfluential (under a linear model assumption).  

The coefficient of determination is one measure of goodness-of-fit that can be applied in a stepwise 

analysis. This coefficient is denoted 𝑅2. For 𝑛 simulations, let 𝑦𝑖 denote the quantity of interest 
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from the 𝑖𝑡ℎ simulation, 𝑦̅ denote the average of all 𝑦𝑖 for 𝑖 =  1, 2, … , 𝑛, and 𝑦𝑖̂ denote prediction 

of 𝑦𝑖 from the linear regression. Then, 𝑅2 is defined as: 

𝑅2  = 1 − 
∑ (𝑦𝑖 − 𝑦̂ )2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

In a stepwise analysis, 𝑅2 can be re-calculated after each independent variable is added to the 

regression model. If we denote the 𝑅2 calculated when the 𝑗𝑡ℎ independent variable is added to the 

model as 𝑅𝑗
2, then the incremental 𝑅2 for the that variable is 𝑅2

𝑗−𝑅2
𝑗−1 when j>1 and 𝑅2

𝑗 when 

𝑗 = 1. A high incremental 𝑅2 for a variable indicates that the goodness-of-fit of the regression 

model improved when that variable was added to the model. 

2.2.4. Higher Order 

In the regression model, one can include higher order polynomial terms as additional feature maps, 

including also cross-product terms to capture interactions. Goodness-of-fit measures then provide 

feedback about the model properties. Note that power functions are numerically ill-conditioned, 

and one should use orthogonal function systems as a basis for feature maps (see below). 

2.3. Variance-based indices  

Variance-based indices apportion the output variance to the contributions from various input 

parameters. Under input independence each square integrable function can be decomposed into 

orthogonal functions (with respect to the input probability), 

𝑔(𝑥) = 𝑔0 + ∑ 𝑔𝑖(𝑥𝑖) + ∑ 𝑔𝑖,𝑗(𝑥𝑖 , 𝑥𝑗)

j>i

+ ∑ 𝑔𝑖,𝑗,𝑘(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) + ⋯ +

k>j

d

i=1

𝑔1,2,…,𝑑(𝑥)

= 𝑔0 + ∑ ∑ 𝑔𝛼(𝑥𝛼)
|α|=i

d

i=1

 

such that the output variance can be decomposed into 𝕍[𝑌] = σY
2 = ∑ ∑ σα

2
|α|=i

d
i=1  where the 

contribution of input group α is defined recursively via ∫ gα(𝑥α)2𝑓α(𝑥α)d𝑥α = ∑ σβ
2

β⊂α . It also 

holds that 𝕍[𝔼[𝑌|𝑋α]] = ∫ 𝑔α(𝑥α)2𝑓𝛼(𝑥α)d𝑥𝛼, the conditional output variance given the input 

group of interest is obtained by integration from this functional decomposition. This 

decomposition is called functional analysis of variance (ANOVA). 

The relative contribution to the output variance is then the variance-based Sobol’ effect for the 

index group α, Sα =
σα

2

σY
2 . The first order effect is given by Si = S{i} and the total effect is given by 

Ti = ∑ Sαi∈α . Further notions for groups α in this context are the subset importance ∑ Sββ⊂α  and 

the superset importance ∑ Sβα⊂β . The main effective dimension is ∑ Tii = ∑ |α|Sαα  where |α| is 

the number of indices in the group α. The Shapley value Shi = ∑ 1

|α|
Sαi∈α  attributes a fair share to 

each input factor with ∑ Shi
d
i=1 = 1 [50].  
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The total effects are the gold standard in a FF setting, whereas the first order effects (also called 

correlation ratios) yield information on FP and additivity, and group effects give information on 

interactions in SD. The main effective dimension yields information on the complexity of the 

model; Shapley values offer further insights on interactions.  

2.3.1. Sobol’ 

Estimation of the variance contribution via the functional ANOVA decomposition is cumbersome. 

Sobol’ introduced a special design (later called pick’n’freeze) that allows one to estimate 

effectively first and total effects by computing the correlation between the pick’n’freeze sample 

output vector and the reference sample output vector: Given two independent input samples 𝑋𝐴 

and 𝑋𝐵 and a group α of inputs of interest one has 𝕍[𝔼[𝑌|𝑋α]] = ρ2(𝑔(𝑋𝐴), 𝑔(𝑋𝛼
𝐴: 𝑋¬𝛼

𝐵 ))𝕍[𝑌]. 
Group sizes of one give rise to first order effects, group sizes of d-1 yield total effects. Note that 

switching from first to total is accomplished by exchanging A and B sample blocks, without re-

evaluation of the pick’n’freeze sample. Furthermore, Quasi-Monte Carlo Sampling techniques are 

used for decreasing the numerical errors in variance estimation.  

Sensitivity 

Method 

Sobol’ Method for Variance-Based Sensitivity Effects,  

Ishigami-Homma-Saltelli method, Jansen estimator 

Acronym Pick’n’freeze Symbol Si,Ti 

Scope FP: Functional Dependence; SD: Additivity, Interactions; FF via total 

effects 

Type Variance-based 

Status EmergingTi 

Given Data  No Evaluation Costs Sample block size 

times Dimension 

Input Probability Independent input distributions 

Notes Best available estimation technique (within this class) still under scientific 

discussion 

Extension to group sensitivity possible 

Iterative enlargement of sample size possible 

Ti a gold standard for FF  

Caveats Si not a measure of independence  

Unclear interpretation in case of dependent inputs 

Variance used as measure of uncertainty 

For first order effects, algorithms with better convergence properties are 

available 

QMC for small sample size and large dimension might fail 

Quadratic decay in the coefficients only for continuous models 

References [39 –41] 
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2.3.2. FAST / EFAST 

Another approach to variance decomposition is provided by Parseval’s Theorem (a functional 

equivalence to the Pythagorean Theorem). Given an orthonormal functional basis, {φi: Rd → R}, 

such that 𝑔(𝑥) = ∑ βiφi(X)i  then σY
2 = ∑ βi

2
i  (this is sometimes called spectral energy, hence the 

methods are called spectral methods). If the decomposition also contains univariate, bi-variate, tri-

variate, etc. input functions then the individual, pairwise, triple contributions from inputs or groups 

of inputs to the output variance can be identified.  

The FAST method constructs its functional decomposition with the help of a Fourier 

transformation: Each input factor is assigned a frequency. The frequency contribution from the 

output in resonance with this input frequency is assigned to first order effects (sum of squares of 

the coefficients of the basic frequency and few of its higher harmonics) while the superposition 

principle allows for identification of interactions. For total effects, EFAST assigns a high 

frequency to the factor of interest while all other factors are set to a low frequency. Then all 

variance contributions above a threshold frequency can be assigned the factor of interest and its 

interaction with other terms. The base functions used here are all dependent on a single parameter 

which is an artificial time argument. We may therefore speak of the realizations being sampled 

signals. The FAST methods then separate the output sample variance into noise and signal part, 

the latter of which can be attributed to a specific input frequency. 

Sensitivity 

Method 

(Extended) Fourier Amplitude Sensitivity Test 

Acronym (E)FAST Symbol Si,Ti 

Scope FP: Functional Dependence; SD: Additivity, Interactions; FF via total 

effects 

Type Variance-based 

Status Emerging 

Given Data  No Evaluation Costs FFT, dependent on 

Input dimension for 

EFAST 

Input Probability Independent input distributions 

Notes Iterative enlargement of sample size not available 

Nyquist Frequency of Shannon Sampling Theorem gives precision of 

algorithm 

Caveats Frequency selection scheme produces sometimes samples of questionable 

quality 

Variance used as measure of uncertainty 

Quadratic decay in the coefficients only for continuous models 

References [56 – 58] 
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2.3.3. RBD 

A simplification of FAST is the RBD method that uses just one basic frequency but permutes the 

associated model output for the different inputs. Undoing the permutation associated with factor, 

say 𝑖, on the output, one can identify via a FFT analysis the output variance in resonance with this 

factor. This gives estimates for first order effects. 

Sensitivity 

Method 

Random Balanced Design 

Acronym RBD Symbol Si 

Scope FP: Functional Dependence; SD: Additivity 

Type Variance-based 

Status Emerging 

Given Data  No Evaluation Costs Flexible sample size, 

FFT 

Input Probability Independent input distributions, also for independent groups of inputs 

Notes Groups of inputs may be considered 

Iterative enlargement of sample size not available 

Caveats Variance as measure of uncertainty 

Quadratic decay in the coefficients only for continuous models 

References [59] 

 

2.3.4. EASI / COSI 

Noting that the permutation needed for RBD can be constructed from an available sample, a given 

data technique was developed in [60] which constructs the permutation needed. Again, undoing 

the permutation associated with one input factor on the output, one can identify via a FFT analysis 

the output variance in resonance with this factor. This gives estimates for first order effects. As 

one deals with real signals, the FFT can be replaced with a discrete cosine transformation (DCT). 

Then the permutation is obtained by sorting the output using the input of interest as a key. 

Sensitivity 

Method 

Effective Algorithm for Sensitivity Indices, Cosine Sensitivity for 

Sensitivity Indices 

Acronym EASI, COSI Symbol Si 

Scope FP: Functional Dependence; SD: Additivity 

Type Variance-based 

Status Emerging 
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Given Data  Yes Evaluation Costs FFT, DCT 

Input Probability No assumptions 

Notes Higher order effects by sorting along search curves in higher dimensions 

Under input dependence still interpretable as a goodness-of-fit-measure 

for a functional dependence 

SALib (Python) lists EASI under RBD_FAST 

Caveats Variance used as measure of uncertainty 

Quadratic decay in the coefficients only for continuous models 

References [60, 61] 

 

2.3.5. Use of surrogates or metamodels to calculate Sobol’ indices 

A surrogate model or metamodel is a simplified model which is easily evaluated. Hence it takes 

the idea of a response surface a step further. One can substitute the metamodel in place of the 

computationally costly original model. Some techniques allow one to extract sensitivity 

information directly from the representation of the metamodel without further evaluations. 

Metamodels need to be trained, tested, and validated. The results obtained using metamodels are 

“conditional” to the training data, the training therefore becomes an important factor for the quality 

of metamodels. Some techniques allow one to train the metamodel in parallel with the build-up of 

the sample from the input/output realizations of the simulation model.  

The function 𝕍[𝔼[𝑌|𝑋𝛼]] can be interpreted as the component of the output variance that can be 

explained by a functional dependence on 𝑋α, or, using the variance decomposition formula, 

𝕍[𝔼[𝑌|𝑋𝛼]] = 𝕍[𝑌] − 𝔼[𝕍[𝑌|𝑋α]], as the average decrease in output variance when one receives 

perfect information on  Xα. The relative term, when dividing by 𝕍[𝑌], is therefore a goodness-of-

fit measure/coefficient of determination of the nonlinear regression curve/response surface 

φα(𝑥𝛼) = 𝔼[𝑌|𝑋𝛼 = 𝑥α]. Thus, one can obtain variance-based sensitivity index estimates from 

any regression surface / surrogate / metamodeling technique. 

2.3.5.1. PCE  

Polynomial chaos expansion (PCE) methods approximate the functional dependence of the 

simulation response on uncertain model parameters by representing it as a linear combination of 

terms from an orthogonal polynomial basis. If one chooses univariate powers as a starting point 

for the regression model, then an orthogonalization with respect to a uniform input distribution 

yields shifted Legendre polynomials as an orthonormal basis. For interactions, all product terms 

should be included (the design matrix is then composed of the tensor product of the feature maps), 

however this might quickly exhaust the available sample size. Some sort of pruning is needed. 

High Dimensional Model Representation (HDMR) only considers interactions of order up to two, 

while other PCE methods use information criteria for truncating the number of important feature 

combinations. 
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Sensitivity 

Method 

High Dimensional Model Representation, Polynomial Chaos Expansion 

Acronym (RS)-HDMR, (BS)-

PCE 

Symbol Si, Sα, Ti, 

Scope FP: Functional Dependence; SD: Additivity, Interactions; FF via approx. 

total effects 

Type Variance-based 

Status Established, Early Adopter for BSPCE 

Given Data  Yes Evaluation Costs Multiple Least Squares 

Input Probability No assumptions 

Notes Total effects may use 𝑑 − 1 dimensional regression model 

Caveats Variance as measure of uncertainty 

Under input dependence, orthogonality in the functional basis may be lost 

Total effects are reported for a truncated basis (hence may miss high-

order contributions) 

References [45, 62, 63] 

 

2.3.5.2. Gaussian Processes  

Gaussian processes are popular metamodels for computational simulations due to their ability to 

model complicated functional forms and to provide an uncertainty estimate of their predicted 

response value at a new input point. The core idea is based on geostatistical kriging models, where 

the responses at input points that are close should be correlated [64]. A Gaussian process (GP) is 

a stochastic process for which any finite set of Y-variables has a joint multivariate Gaussian 

distribution; a GP is fully specified by its mean and covariance function. Gaussian process 

regression not only provides conditional means, but also error bounds on the regression curves, 

hence enabling one to obtain confidence intervals for the sensitivity estimates. 

Sensitivity 

Method 

Metamodeling via Gaussian Processes / Kriging 

Acronym GP Symbol  

Scope Metamodel 

Type  

Status Established 

Given Data  Yes Evaluation Costs Inversion of Kernel 

Matrices 
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Input Probability  

Notes Any non-given data method may be supplied with GP metamodel 

Variance-based sensitivity indicators can be computed efficiently 

Error bounds 

Caveats Additional to sampling error, a metamodeling error is encountered 

Choice of variogram / covariance / kernel function 

References [64–66]  

2.3.6. Nearest Neighbors Methods 

We can combine the ideas behind COSI (sorting the data) and pick’n’freeze design by noting that 

a pick’n’freeze design can be approximated by choosing the nearest neighbor (with respect to 

different input dimensions and combinations) from an available sample. For first order effects, this 

amounts to computing Ŝi=1−
∑ (yπ(j)−yπ(j+1))

2N−1
j=1

2 ∑ (yj−y̅)
2N

j=1

 where π denotes the permutation that sorts the input 

of interest. For higher order effects, one may obtain information on the neighborhood of a 

realization using the set of p-th nearest neighbors (of minimal distance to the realization under 

inspection), Euclidean minimal spanning trees connecting nearest neighbors — trees have one root 

and each node except the root has a parent node —, search curves approximating space filling 

curves or traveling salesperson solutions where each node (except start and end) of the curve has 

one previous and one next element (all distances are taken restricted to the input dimensions of 

interest). Then one may order the realizations with the help of these methods in higher dimensions 

and use a formula like the above one, using the squared difference of the outputs of between the 

current and the previous or next element. 

Sensitivity 

Method 

Nearest Neighbor Methods 

Acronym  Symbol Si, Sα, Ti, 

Scope FP, FF: Functional Dependence; SD: Additivity, Interactions 

Type Variance-based 

Status Experimental 

Given Data  Yes Evaluation Costs Sort/Nearest Neighbors 

Input Probability  

Notes Needs relatively large sample size 

Caveats Does not work with QMC 

References [67] 
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2.3.7. Methods for Identifying Interactions 

Note that the most common usage (current state-of-the-art) is to report main and total effects 

indices, but not higher order indices.  If one has access to the higher order Sobol’ indices, then 

candidates responsible for interactions can be identified. However, as theoretically expected, 

orthogonality in the tensor products of the polynomial chaos expansion is not necessarily respected 

in sample space, the results are error-prone. [68] suggest using first order effects of higher order 

conditional moments. This requires the lower dimensional regression curves to be estimated. [69] 

instead suggest removing the direct functional effects by passing to the second order finite 

difference of the output, analyzing 2yπ(i) − yπ(i−1) − yπ(i+1) instead of y where π denotes the 

permutation that orders the input of interest. Feeding these transformed outputs into a first-order 

variance sensitivity estimator gives therefore hints on which input factors participate in 

interactions in the simulation models, but one has no information on the composition of the groups 

of interacting factors.  Indeed, a nearest neighbor estimator for the residual variance is provided 

by:  

 

Hence the analysis of the first-order effect of the second-order finite difference offers an indication 

of whether or not the conditional variance changes. This effect, if present, is also called 

heteroskedasticity. Under input independence, a change of the conditional variance is only possible 

when there are active interactions. 

2.4. Moment-Independent Sensitivity Measures 

What if variance is not an appropriate measure of uncertainty? One idea might be to extend the 

analysis to higher moments (skewness, kurtosis). However, then we face the problem of a multi-

attribute decision problem, taking into account all these different sources of information. To avoid 

this, one can revert to functional distances. One can compute a distance between the joint 

input/output density and the product of the marginal densities, 𝑑(𝑓𝑖𝑓𝑌, 𝑓𝑋𝑖,𝑌), replacing the 

difference of expectations, 𝔼[𝑌𝑋𝑖] − 𝔼[𝑌]𝔼[𝑋𝑖], in correlation analysis by an abstract notion of a 

distance between density functions.  

Instead of the two dimensional distance, one may compute the expected distance between the 

output density conditional to the input 𝑋𝑖 and the unconditional output density, 𝔼[𝑑(𝑓𝑌, 𝑓𝑌|𝑋𝑖
)]. 

Here, the inner distance measure (also called separation) is a random quantity in Xi. Therefore, the 

expected distance yields a sensitivity measure quantifying the distance to independence. 

Computation requires (kernel) density estimators of the unconditional and the conditional output 

density. Instead of considering distances between densities, distances between cumulative 

distribution functions or between characteristic functions are also under discussion.  

2.4.1. Density-Based: Borgonovo’s 𝜹 

Using the integrated absolute value as a distance, one has 

δi =
1

2
∬|𝑓𝑌(𝑦) − 𝑓𝑌|𝑋𝑖=𝑥𝑖

(𝑦)| 𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖𝑑𝑦 =
1

2
∬|𝑓𝑖(𝑥𝑖)𝑓𝑌(𝑦) − 𝑓𝑋𝑖,𝑌(𝑥𝑖 , 𝑦)| 𝑑𝑥𝑖𝑑𝑦. 

For this choice of a distance measure, the two formulations as expected conditional distance and 
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as the distance between the product of marginals and the joint density coincide. Moreover, this 

measure is invariant with respect to monotonic transformations of the inputs and outputs, hence it 

is a nonparametric technique. 

Sensitivity 

Method 

Borgonovo Moment Independent Importance Measure 

Acronym MIM Symbol δi 

Scope FF: Functional Dependence; SD: Interactions; RI: via separations 

Type Density based 

Status Early Adopter 

Given Data  Yes Evaluation Costs Kernel Density 

Input Probability  

Notes Distance to stochastic independence 

Nonparametric technique 

Kuiper measure (range of CDF differences) may serve as proxy 

Improved properties with QMC sample 

Caveats Conditional kernel density requires large sample size 

Large numerical noise 

References [70, 74] 

 

2.4.2. Distribution-Based: Pianosi and Wagener 

Using the Kolmogorov/Smirnov distance between unconditional and conditional cumulative 

distribution function as a separation measure, KSi(𝑥i) = max
y

|𝐹𝑌(𝑦) − 𝐹𝑌|𝑋𝑖=𝑥𝑖
(𝑦)|, one can 

eliminate the dependence on xi by considering a statistic over these distance values. [71] suggests 

mean, median or max. [72, 73] remark that only the choice of using the mean leads to a sensitivity 

measure that allows interpretation as a value of information. In this case, given data estimators are 

available [72, 73]. 

Sensitivity 

Method 

Pianosi and Wagener Importance Measure 

Acronym PAWN Symbol  

Scope FF: Functional Dependence; SD: Interactions; RI: via separations 

Type Distribution based 

Status Early Adopter 

Given Data  Yes Evaluation Costs  

Input Probability Independent input distributions 
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Notes Given data estimators available 

Choice of the outer statistic and the number of conditioning intervals must 

be communicated when using PAWN.  

Caveats Large numerical noise due to outliers being picked up by the maximum in 

KS. 

Reference implementation is cost-intensive since it uses double-loop 

design. 

Different implementations use different approaches of splitting the variability range into 

subintervals. Splitting by parameter values could lead (e.g. in the cases with lognormal 

distributions) to the occurrence of the underpopulated subsamples, and correspondingly 

questionable sensitivity analysis results.  

References [71 ⎼ 74] 

2.4.3. Distribution-Based: Flavor Measure 

A numerically benign variant that works on CDF distances is currently attracting attention and is 

given by γi = 6 ∬ (𝐹𝑌(𝑦) − 𝐹𝑌|𝑋𝑖=𝑥𝑖
(𝑦))

2
𝑓𝑖(𝑥𝑖)𝑓𝑦(𝑦)𝑑𝑥𝑖𝑑𝑦. This is a transformation-invariant 

version of a Gini mean distance, a Cramér/von Mises distance or an energy distance, replacing the 

absolute maximum in the Kolmogorov/Smirnov measure by an integrated squared distance. [75] 

show that a given-data estimator of this sensitivity measure can be obtained as an average of 

quantile sensitivity measures for which on can employ a first-order variance estimation technique, 

replacing the output 𝑦 ∈ RN with the indicator function I{𝑦 ≤ 𝑦(𝑗)} coding the output quantile 𝑗

𝑁
 

where 𝑦(j) is the order statistic of 𝑦. With this technique, one circumvents the use of kernel density 

estimators. Moreover, with this quantile indicator function, there are strong links to both variance-

based sensitivity and reliability methods. As it is transformation-invariant, it is a nonparametric 

technique. 

2.5. Graphical Analysis 

2.5.1. Scatterplots 

Scatterplots allow for the presentation of univariate dependences. Here, the conditionalization used 

in the previously discussed methods is available as localization: The conditional mean is then a 

curve through the backbone of the point cloud (and a deviation from constancy indicates a 

dependence). The conditional variance measures the spread of the output realizations at a given 

point for the input of interest (and a deviation from a constant tube about the conditional mean 

signals heteroscedasticity that is a sign of interactions under input independence). A cut though 

the scatterplot along a vertical line gives rise to conditional densities of the output. If these differ 

from the unconditional output density, then this is a sign of pairwise interaction between the input 

of interest and the output. 
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Sensitivity 

Method 

Scatterplot, Point Cloud 

Acronym  Estimator  

Scope FP: Linear and Functional Dependence; SD: Interactions; RI: Regional 

Effects; TI 

Type Visualization technique 

Status Established 

Given Data  Yes Evaluation Costs Space for Presentation 

Input Probability  

Caveats Human eye tends to over-interpret structures 

References  

2.5.2. CUSUNORO Curves 

One problem with scatterplots is the need to consider all inputs separately which can become 

tiresome for simulation models that feature high input dimensions. Hence, one tries to condense 

the information of one scatterplot into a curve, so that many scatterplots map into one graph with 

many curves. For this, [76] suggests a method that considers the conditional mean below this input 

value instead of conditional output mean at a given input value. Monitoring the change as this 

value passes through all available realizations then gives the CUSUNORO curve. Deviation from 

the zero-line signals importance (more precisely the mean squared gradient of this curve relates to 

first order effects), linear segments are related to flat conditional means, and sharp bends show 

discontinuities in the data. 

Sensitivity 

Method 

Cumulative Sum of Normalized Reordered Output 

Acronym CUSUNORO Estimator  

Scope FP: Functional Dependence; TI: Curve Orientation; RI: Curve curvature 

Type Variance-based  

Status Early Adopter 

Given Data  Yes Evaluation Costs  

Input Probability  

Notes Variants for use with time series 

Significance ellipsoid gives hint on importance 

First order effects estimation replaces regression by interpolation 

Caveats Variability of conditional mean, higher moments require tricks 

References [76] 



 

23 

2.5.3. Copula Distance, Rank CUSUNORO 

Two common themes in sensitivity measures are the comparison of the joint distribution with the 

product of marginal and the transformation invariance. Combining both ideas one obtains the 

copula distance [0,1] → [−
1

2
,

1

2
], 𝑢 ↦ 𝑢 ⋅ 𝑣 − 𝐶(𝑢, 𝑣) where 𝑢 = 𝐹𝑖(𝑥𝑖), 𝑣 = 𝐹̂𝑌(𝑦) are the 

(empirical marginal) uniform transformations, and 𝐶(𝑢, 𝑣) = 𝐹𝑋𝑖,𝑌 (𝐹𝑖
−1(𝑢), 𝐹̂𝑌

−1(𝑣)) is the 

empirical bivariate copula between Xi and Y. This copula is compared to the product copula that 

describes independence. Hence, any deviance of the copula-distance point-cloud from the zero line 

denotes dependence in the data. Plotting the Cusunoro curve with respect to the ranks forms a 

regression curve through these points [77]. 

2.5.4. Power Weighted Reordered Output 

A way to include local information from the input into the output is to consider weighted means 

where the weights depend on the input locations. An idea related to extreme quantiles is to reshape 

the marginal input distribution 𝐹𝑖(𝑥𝑖) so that extreme values are obtaining more weights, 

considering maximum and minimum distributions of k independent copies of 𝑋𝑖 have cdfs given 

by 𝐹𝑖(𝑥𝑖)𝑘 and 1 − (1 − 𝐹i(𝑥i))
k
, respectively. Hence forming a weighted output mean with 1

N
 

replaced by (
𝑗

𝑁
)

𝑘
− (

𝑗−1

𝑁
)

𝑘
 or (

𝑁−𝑗+1

𝑁
)

𝑘
− (

𝑁−𝑗

𝑁
)

𝑘
 for the jth ranked input, respectively, gives 

information on the localization of information. We can map the interval (0,1) continuously into 

these weights, so that one can produce a continuous set of curves from putting all weight on the 

minimum over the standard mean with equidistributed weights to all weight being put on the 

maximum. 

2.6. Derivative-Based Global Sensitivity Measures 

The gradient of a function carries information about the local behavior. Averaging over the 

gradient therefore gives a measure of global sensitivity. If the simulation is given by differential 

equations, then this derivative information is readily available. Otherwise, techniques of automatic 

differentiation might be used. There are theoretical links to the variance-based total effects. For 

more information, consider [78]. Especially, screening may benefit from using derivative-based 

sensitivity measures. 

2.7. Global Sensitivity Methods and Settings 

We have qualified the applicability of different sensitivity methods into settings. For an overview, 

we collect this information in a matrix format shown in Table 2-2.  
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 Factor 

Prioritization 

Factor 

Fixing 

Trend 

Identification 

Structural 

Discovery 

Regionalized 

Information 

Pearson, 

Spearman, 

Standardized 

Regression 

Coefficients 

☑  ☑   

Sobol’ 

Method, 

EFAST 

☑ ☑  ☑  

RBD, EASI, 

COSI 
☑   ☑  

Moment 

Independent 

Methods 

☑ ☑  ☑ ☑ 

CUSUNORO 

Curves 
☑  ☑ ☑ ☑ 

Scatterplots ☑  ☑  ☑ 

 Table 2-2.  Purposes of SA Methods 

 

2.8. Software Availability 

Sensitivity analysis has established itself as a part of the scientific modeling and simulation 

workflow. While the software coverage for methods based on linear regression is generally good, 

variance-based and moment-independent sensitivity measures are not generally found in standard 

software products. Different data-analytic programming languages offer toolboxes and script 

collections. The coverage of methods differs; some packages are updated more often than others. 

There are a few ones which are mainly dedicated to uncertainty quantification. 

In Table 2-3 below, we present software tools and a link to a website where appropriate. We note 

that some of these tools provide a set of functions or a library from which various elements can be 

called, while others are more self-encapsulated, standalone programs which perform an entire 

workflow from the sampling to surrogate modeling to sensitivity index calculations. There are a 



 

25 

few commercial products listed but most of these are publicly available. Note that this is not meant 

to be a comprehensive list but to show that there are a significant number of options for people 

wanting to use sensitivity analysis methods. 

 

Toolbox/Package Language Website 

UQLab MatLab / 

Octave 

www.uqlab.com 

SAFE (Sensitivity 

Analysis for Everybody) 

Matlab. Also 

R, Python 

www.safetoolbox.info 

GUI-HDMR Matlab www.gui-hdmr.de 

Sensitivity R cran.r-

project.org/web/packages/sensitivity/index.html 

openTURNS Python openturns.github.io/www/ 

SALib Python salib.readthedocs.io/en/latest/ 

mads. Model Analysis and 

Decision Support 

Julia/C mads.lanl.gov 

EcoLego Set of 

toolboxes 

www.ecolego.se 

SobolGSA  C# www.imperial.ac.uk/process-systems-

engineering/research/free-software/sobolgsa-

software/ 

SimLab   C++/R ec.europa.eu/jrc/en/samo/simlab 

NOTE: SimLab is currently not available publicly 

but it was used by GRS in their analyses.  

Dakota   dakota.sandia.gov 

MUQ: MIT Uncertainty 

Quantification Library 

  http://muq.mit.edu/ 

More UQ focused, Bayesian calibration 

NESSUS   www.swri.org/nessus 

More UQ, Reliability and failure estimation 

focused. 

UQTk C++/Python http://www.sandia.gov/UQToolkit/ 

  

PSUADE   github.com/LLNL/psuade 

computing.llnl.gov/projects/psuade-uncertainty-

quantification 

SmartUQ   www.smartuq.com/software/sensitivity-analysis/ 
Table 2-3.  UQ Software tools and packages available 

 

 

 

 

 

http://www.gui-hdmr.de/
http://www.ecolego.se/
http://muq.mit.edu/
http://www.swri.org/nessus
http://www.sandia.gov/UQToolkit/
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3. CALCULATION CASE SELECTION 

When conceptualizing the sensitivity analysis exercise, an inventory of calculation cases which 

might be appropriate to address the aims of the exercise (see Section 1.1) was compiled. A 

prerequisite for including a case in the exercise was that the “case owner” was in a position to 

provide data files containing input parameter and output values for a reasonable number of 

realizations in order to allow the exercise participants to test their own SA methods and tools using 

these “existing data” without the need to perform model runs. Furthermore, it was important to 

create a set of cases covering a variety of features the SA methods and tools can be tested against. 

To this end, a questionnaire was created addressing these features. For each candidate case, 

information on the following issues was to be provided: 

Phenomenological description. This includes a description of the system being modeled such 

as a repository, the waste forms and engineered barriers, the geology, physical and chemical 

processes being modeled, potential release pathways, etc. 

Input characteristics. The input characteristics refer primarily to various aspects of the 

computational simulations, including the number of parameters being varied, the sampling 

methods used, and the number of runs that were generated. The input characteristics also 

include details about how uncertain parameters are described in the case study: are they 

continuous, categorical, or discrete inputs? Are there any inputs which vary in space and/or 

time? What probability distributions were used to represent and model the uncertain 

parameters? Were any uncertain parameters modeled with approaches other than probability 

distributions (e.g. with intervals, fuzzy sets, etc.)? Were there dependencies amongst the inputs 

and how were they treated (for example, with a joint probability distribution)? Finally, if a 

distinction between aleatory and epistemic uncertainty was made in the case study, it was 

requested that the case owners provide a listing of the epistemic vs. aleatory parameters and 

describe how the difference was handled in the case study. 

Output characteristics: The output characteristics focus mainly on the quantities of interest, 

including a description of these quantities and details about whether the output quantities are 

scalar values or values varying in space and/or time (e.g. vector valued outputs).  

Other aspects of the output that the case owners were asked to address include some analysis 

of the model output, such as known specific points concerning the model behavior which might 

be of importance for sensitivity analysis. Some examples include non-linearity, non-

monotonicity, discontinuities, and regime changes at input thresholds. Listing parameter 

values for which simulation runs failed for physical or numerical reasons is also part of the 

output characterization. The case owner was also asked to suggest any issues such as possible 

bias or additional uncertainty introduced by a surrogate model or other issues the sensitivity 

analysts would find helpful. Finally, the case study owners were asked to provide some basic 

detail on the data they provided for the case study in terms of file organization and file formats. 

Based on this information, seven cases were identified. It was agreed that each organization would 

address these models with their own methods and approaches. This report covers the first four 

cases. 
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4. GRS CLAY CASE 

4.1. Case Description 

This model system, which was already used as a test model for sensitivity analysis in former 

projects [79, 80], describes the release of radionuclides from a generic repository for spent nuclear 

fuel (SNF) and high-level vitrified waste from reprocessing (HLW) in a Northern German clay 

formation. It is based on considerations made in the context of the project GENESIS [81] and is 

described in detail in [79]. The repository is assumed to be located in the middle of the Apt layer 

in the Lower Cretaceous Clay in Lower Saxony, see Figure 4-1.  

 

 
Figure 4-1.  Cross-section of the model area in Northern Germany 

 
 

 
 

Figure 4-2.  Schematic presentation of the model chain 
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The model comprises the near field with the waste containers, three clay layers (bentonite buffer, 

Apt and Alb), the far field and the biosphere, see Figure 4-2. The far field is modeled as a generic 

transport path of about 10 kilometers through a typical porous rock medium, including dilutive 

water flow. For biosphere modeling, standardized dose conversion factors are used, which take 

account of all relevant exposure paths for a population taking their water from a contaminated 

reservoir. The output is the annual effective dose to an adult human individual. As the parameters 

for far field and biosphere calculation were not varied in the probabilistic investigations, they are 

of no specific interest here. 

The radionuclide mobilization and the (purely diffusive) transport through the clay layers were 

calculated with the near field code CLAYPOS (version 3.01, [79]). The far field represents a 1-D 

transport path through a generic porous medium and was modelled with the code module 

CHETLIN (version 4.1). For the biosphere (i. e. calculation of radiological consequences to 

humans from radionuclide flows) the code module EXMAS (version 2.1) was used. The simulation 

time was 108 years. Though it is unrealistic to assume that a real system could remain stable over 

such a long time frame, it was nevertheless decided to consider the total period, as the system’s 

isolation capabilities turned out to be so effective that nothing interesting happens during the 

“normal” time frame of 1 million years. 100 points in time were evaluated.  

Six near field parameters were selected for investigation. These are listed in Table 4-2. 

 

Reference case name Description 

Waste form Spent nuclear fuel in specific spent fuel element containers 

Engineered barriers Steel container, bentonite buffer 

Repository description 1070 boreholes with 5 containers each, reference depth 400 m 

Natural system Lower Cretaceous Clays, formations Apt and Alb 

Far Field Generic 10-km transport path through a typical rock medium 

Biosphere Exposure pathways considered via pre-defined dose conversion 

factors, groundwater flow10-5 m³/yr 

Conceptual release 

pathways 

Purely diffusive transport through bentonite, Apt and Alp, stylized 

far field  

Processes modeled Degradation of waste matrix, radionuclide dissolution, solubility in 

container water, diffusive transport and retention in buffer and clay 

layers, 1-D advective-diffusive transport through far field 

Software codes used CLAYPOS3, CHETLIN4, EXMAS2 

Reference for full 

description of case 

Rübel, A. et al.: Development of Performance Assessment 

Methodologies. GRS-259, Braunschweig 2010 

Table 4-1.  GRS Clay Case Description 

4.2. Description of inputs and outputs  

The model has six input parameters, for which the names and distributions given in Table 4-2 were 

used. Samples of 4096 and 8192 randomly drawn sets of parameter values were provided for the 

investigations. All variables were treated independently and in the same way, no correlation was 

assumed. 
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Input parameter  Type Range 

DiffClay2: Diffusion constant clay formation 1 Log-uniform 8.3E-12 - 8.3E-10 

DiffClay3: Diffusion constant clay formation 2  Log-uniform 8.3E-12 - 8.3E-10 

KdBent: Kd value bentonite (U)  Log-uniform 4 - 400 

KdClay2: Kd value clay formation 1 (U) Log-uniform 2 - 200 

KdClay3: Kd value clay formation 2 (U) Log-uniform 2 - 200 

PorClay: Porosity clay formation 2 Uniform 0.06 - 0.24 

Table 4-2.  GRS Clay Case Input Parameters 

The same ranges are valid for both clay layers, but the actual values for each run are drawn 

independently. The element-specific diffusion coefficients in both clay formations as well as the 

porosity in formation 2 are valid for all elements except Cl, Se, Mo and I. For these four elements 

a fifth of the drawn values for diffusion coefficients and half of the value for the porosity were 

used due to anion exclusion. The given ranges for Kd values are valid for uranium; those of the 

other elements are coupled to these by formation-specific factors. H, C, Cl, Se, Rb and Pd have Kd 

equal to zero. 

The investigated model output, as listed in Table 4-3, is the annual effective dose rate to an adult 

human individual, calculated using pre-defined biosphere dose conversion factors that take into 

account all relevant exposure paths. 

Output Quantity  Type Other 

Annual effective 

dose rate to adult 

individual 

time-dependent 

194 points in time 

between 1.000E0 and 9.955E7 years 

 

 

Table 4-3.  GRS Clay Case Output QoIs 

The model does not include any problematic properties and is not expected to exhibit significant 

nonlinearities or discontinuities with regard to variation of the input parameters. The model was 

run many thousands of times, based on parameter samples of different sizes and drawn with 

different techniques. For the joint sensitivity analysis exercise the results obtained from random 

samples with sizes of 4096 and 8192 as well as an EFAST sample of size 8214 were provided. 

4.3. Salient features and behavior of the model 

The scatterplots for the six parameters of the clay system are presented in Figure 4-3 for a model 

time point of 106 years on the basis of 512 runs (random sample). Even with this small sample size 

it can be seen that the model output, the annual dose rate in Sv/year, is distributed over many orders 

of magnitude and obviously, only two of the parameters – the diffusion constants in the two clay 

regions – have a clear influence. 
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Figure 4-3.  Scatterplots for the clay system, 106 years 

 

The equivalent scatterplots for the system at the end of the calculated scenario are presented in 

Figure 4-4. The points concentrate below the value of 3·10-6 Sv/yr, which seems to be an upper 

limit. All parameters seem to have a certain influence on the model output.  

 
Figure 4-4.  Scatterplots for the clay system, 108 years 

 

The scatterplots seem to suggest that during the relevant assessment period of 1 million years the 

system is predominantly controlled by the diffusion in the clay regions, while the sorption and the 

clay porosity gain some importance only in the very late phase, in which the model is no longer 
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valid for describing the reality and which is interesting only for model understanding. This, 

however, might be a misinterpretation, as simple scatterplots are not appropriate for showing 

coupled influences of parameters. Since the individual dots look all the same and indicate the value 

of only one parameter, it is not discernible whether or not there is a tendency to produce higher or 

lower model output if two or more parameters act together. 

Figure 4-5 shows how the maximum, the mean and the median of the model output develop over 

time. The figure was made on the basis of 2048 random runs. 

 
Figure 4-5.  Time-development of maximum, mean and median of the clay system  
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4.4. Sensitivity Analysis Results 

4.4.1. Results from GRS 

GRS performed a lot of investigations with this model [80]. For the purpose of the report at hand, 

some basic investigations are presented as described in Table 4-4. 

GRS Clay Description 

Sensitivity Analysis Method Scatterplots, CUSUNORO, 

Linear correlation, linear regression, rank 

correlation, rank regression, 

EFAST, EASI,  

RS-HDMR [83, 84] 

Sensitivity measures generated  Pearson CC, Spearman RCC, SRC, SRRC, 𝑆𝑖 and 𝑇𝑖 

Special considerations (None) 

Surrogate models used Surrogate model included in RS-HDMR software 

Transformations (None) 

QoIs addressed Annual dose rate to an adult human individual 

Number of samples used Random 4096, Random 8192, EFAST 8214 

Table 4-4.  Sensitivity analysis of GRS clay model by GRS 

Table 4-5 and Table 4-6 present the calculated sensitivity measures for two different points in time, 

namely 1 million years and 100 million years. For each sensitivity measure the three leading 

parameters are marked in red, green and blue. All indices agree about the parameter DiffClay3 

being the most important one at both points in time. On the second rank DiffClay2 appears at 1 

million years and KdBent at 100 million years. The further ranking depends on the method of 

analysis. 

 

Input 

parameter 

Pearson  

 CC 

Spearman 

 RCC 

Regression 

 SRC 

Rank regression 

SRRC 

  106 yr 108 yr 106 yr 108 yr 106 yr 108 yr 106 yr 108 yr 

1. DiffClay2 0.206 0.111 0.270 0.195 0.204 0.116 0.287 0.208 

2. DiffClay3 0.258 0.579 0.907 0.761 0.257 0.587 0.912 0.761 

3. KdBent -0.014 -0.265 0.002 -0.245 -0.013 -0.274 -0.001 -0.242 

4. KdClay2 -0.038 -0.118 -0.012 -0.146 -0.026 -0.150 0.000 -0.121 

5. KdClay3 -0.032 -0.131 -0.008 -0.222 -0.018 -0.146 -0.001 -0.217 

6. PorClay 0.041 0.123 0.022 0.149 0.037 0.131 0.020 0.147 

Table 4-5.  Correlation-/regression-based SA of GRS Clay model by GRS (Random 4096) 
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Input 

parameter 

Si 

(EASI) 

Si 

(EFAST) 

Ti 

(EFAST) 

Si 

(RS-HDMR) 

Ti 

(RS-HDMR) 

  106 yr 108 yr 106 yr 108 yr 106 yr 108 yr 106 yr 108 yr 106 yr 108 yr 

1. DiffClay2 0.047 0.050 0.078 0.063 0.829 0.193 0.052 0.056 0.587 0.109 

2. DiffClay3  0.093 0.510 0.178 0.530 0.857 0.782 0.157 0.513 0.706 0.638 

3. KdBent 0.004 0.083 0.000 0.095 0.040 0.213 0.001 0.088 0.015 0.153 

4. KdClay2 0.004 0.025 0.000 0.020 0.030 0.066 0.001 0.019 0.016 0.040 

5. KdClay3 0.004 0.026 0.000 0.024 0.042 0.098 0.001 0.021 0.012 0.060 

6. PorClay 0.003 0.025 0.001 0.016 0.085 0.053 0.001 0.016 0.013 0.032 

Table 4-6.  Variance-based SA of GRS clay model by GRS (EASI: Random 4096, EFAST: 8214) 

 

  
Figure 4-6.  Regression- and correlation-based sensitivity analysis with direct (left) and rank-

transformed (right) data for the clay model (Random 4096) 

 
Figure 4-7.  Variance-based sensitivity analysis for the clay model; first-order (left) and total-order 

(right) analysis (EASI and RS-HDMR: Random 8192, EFAST: 8214) 

Figure 4-6 and Figure 4-7 show the time-development of the correlation-/regression-based 

sensitivity indices and the variance-based indices of first and total order. The methods agree 

satisfyingly about the sensitivities and show the same tendencies, although there are considerable 
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differences in detail at specific points in time. The total index curves obtained from the EFAST 

and RS-HDMR methods, however, are not in a good agreement, which shows that there are still 

shortcomings in the calculation schemes. 

All applied sensitivity analysis methods agree qualitatively in that they find very low sensitivity 

of the model to all six input parameters in the time phase up to 1 million years. Only the diffusion 

coefficients in the clay layers seem to indicate a certain sensitivity, while the sensitivity indices 

for the other parameters are nearly zero. The variance-based first-order analysis does not recognize 

any significant sensitivity of parameters 4 to 6 in the "early" time frame. Interestingly however, 

the correlation or regression analysis detects a low systematic sensitivity for these parameters, if 

performed directly on the model output values, but it is not visible in their rank-based forms. This 

can be interpreted as a hint that there is a certain effect of these parameters only on the highest 

model output values, which is essentially mitigated by rank transformation. 

In the very long time-frame, all methods detect an increasing sensitivity of the second parameter 

(DiffClay3). At the end of the model time, the first-order index of this parameter is calculated as 

~0.5. Also, the other parameters, specifically parameter 3 (KdBent), gain more importance during 

the late time period. 

At the time of 106 years, the sum of all 𝑆𝑖 is far below 1, which means that there are considerable 

parameter interactions. The EFAST analysis shows that the total indices of parameters 1 and 2 are 

high, while the others are close to zero. From this, one can conclude that the model is dominated 

by interaction of these two parameters.  

Physically, this can be understood, as the diffusion coefficients in both subsequent clay layers have 

to be high to produce a high radionuclide outflow at an "early" time. If in one of the layers there 

is low diffusion, this layer acts as a retarding barrier, considerably reducing the influence of the 

other one. At very late times, however, the system is dominated by parameter 2, which is the 

diffusion coefficient in the outer clay layer. The long time is in any case sufficient for the long-

lived radionuclides to traverse the inner clay layer, so that the importance of the interaction with 

DiffClay2 decreases considerably. The above-mentioned observation that at 106 years parameters 

4 to 6 seem to have a small but detectable influence on the highest model output values can also 

be understood physically, as such values result from those rare situations that allow significant 

radionuclide release, and only these can be influenced at all by the non-dominating parameters. 
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Figure 4-8.  Variance-based sensitivity analysis for the clay model; second-order analysis (RS-

HDMR: Random 8192) 

Figure 4-8 shows the time-evolution of the 2nd-order sensitivity indices calculated with the RS-

HDMR metamodeling method (to yield significant results this method needs careful adjustment of 

the polynomial orders taken into account, but this is a complex topic, which we do not discuss 

here, we used 𝑘 = 10, 𝑙 = 5). Obviously, the only interaction that plays a significant role is that 

between the diffusion coefficients in the two clay layers. This can be understood as it needs a high 

diffusion coefficient in layer 2 to allow the diffusion in layer 3 to become significant at all. 

4.4.2. Results from SNL 

GRS Clay Description 

Sensitivity Analysis Method Surrogate Modeling, PEAR, SPEAR 

Sensitivity measures generated  Si, Ti, Pearson CC, Spearman RCC 

Special considerations   

Surrogate models used PCE (order 5), GP 

Transformations Rank 

QoIs addressed Annual dose rate to an adult human individual at 194 time 

points 

Number of samples used 4096 (non-GP surrogate methods) or 1024 (GP) 

Table 4-7.  Sensitivity analysis of GRS Clay case by SNL 

The sensitivity analysis performed by SNL on the GRS Clay case shown in Table 4-7 included 

calculation of the PEAR (Figure 4-9), SPEAR (Figure 4-10), PCC, and PRCC (Figure 4-11) 

sensitivity measures. A figure is not included for the PCC results because they are very similar to 

the PEAR results. Sobol’ indices were also estimated using an order 5 PCE surrogate model fit to 

4096 simulations or a GP model fit to 1024 simulations. The main Sobol’ index estimates from 

the PCE surrogate model are plotted in Figure 4-12 and the total Sobol’ index estimates from the 

PCE surrogate model are plotted in Figure 4-13. 

At 106 years into the simulation, the sensitivity measures from all the sensitivity analysis methods 

applied by SNL are highest for DiffClay3. The independent variable with the second highest 

sensitivity measure is DiffClay2. None of the other independent variables appear to have a 

significant effect at 106 years. The methods identify DiffClay3 and KdBent as the most important 

variables at the end of the simulation (108 years).  

[DiffClay3][DiffClay2
] 
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The difference between the Si (Figure 4-12) and the Ti (Figure 4-13) measures indicates that there 

are significant interaction effects according to the PCE model. Estimates of dominant 2nd and 3rd 

order interaction effects are listed in Table 4-8. At 106 years, the dominant interaction is between 

the diffusion variables. The Sobol’ index for this interaction is an order of magnitude higher than 

the other interaction indices. At 108 years, there is no dominant interaction, though interactions 

between the diffusion and Kd variables appear to be more important than interactions involving 

porosity. 

The GP surrogate model construction does not work well with more than about 1000 samples, so 

the number of simulations used to fit this model were reduced to 1024 compared to the 4096 

samples used for the other methods. Even with this restriction, it takes substantially longer to 

estimate sensitivity measures with the GP model than any of the other methods. The results from 

the GP model also did not offer additional insights beyond the interactions identified by the PCE 

model. 

 

 

Figure 4-9.  PEAR sensitivity results over time for the annual individual dose rate QoI from the 
SNL analysis of the GRS Clay case. Each axis in the plot highlights one of the independent 

variables 
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Figure 4-10.  SPEAR sensitivity results over time for the annual individual dose rate QoI from the 

SNL analysis of the GRS Clay case. Each axis in the plot highlights one of the independent 
variables 

 

Figure 4-11.  PRCC sensitivity results over time for the annual individual dose rate QoI from the 
SNL analysis of the GRS Clay case. Each axis in the plot highlights one of the independent 

variables 
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Figure 4-12.  Main Sobol’ index sensitivity results over time for the annual individual dose rate QoI 
estimated using an order 5 PCE surrogate model. Results are from the SNL analysis of the GRS 

Clay case. Each axis in the plot highlights one of the independent variables 

 

Figure 4-13.  Total Sobol’ index sensitivity results over time for the annual individual dose rate QoI 
estimated using an order 5 PCE surrogate model. Results are from the SNL analysis of the GRS 

Clay case 
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Interaction Si (PCE) Interaction Si (PCE) 

106 years  108 years  

DiffClay2, DiffClay3 5.03E-01 DiffClay3, KdBent 4.31E-02 

DiffClay2, DiffClay3, KdClay2 3.53E-02 DiffClay3, KdClay3 3.76E-02 

DiffClay2, DiffClay3, KdBent 3.00E-02 DiffClay2, DiffClay3, KdBent 3.68E-02 

PorClay, DiffClay2, DiffClay3 2.45E-02 DiffClay2, DiffClay3 1.90E-02 

DiffClay2, DiffClay3, KdClay3 1.83E-02 DiffClay3, KdBent, KdClay3 1.45E-02 

Table 4-8.  Interaction terms from sensitivity analysis of GRS Clay case by SNL 

 

4.4.3. Results from TUC 

The sensitivity analysis methods used by TUC are shown in Table 4-9 with the results listed in 

Table 4-10. 

Case Name Description 

Sensitivity Analysis Method Linear regression, EASI, CUSUNORO, PCE, MIM 

Sensitivity measures generated SRC, 𝑆𝑖 first order, 𝑆𝑖2  second order, Borgonovo delta 

Special considerations Polynomial chaos uses harmonic base functions 

Surrogate models used  

Transformations Second order finite difference for interactions 

QoIs addressed SA for each time step 

Number of samples used 4096 / all 

Dataset mc4096-6-siton-r* 

Software MatLab/Octave: in-house software 

Table 4-9.  Sensitivity analysis of GRS Clay by TU Clausthal 

 
 

Input parameter CUSUNORO SRC (at 

𝒕 =108 yrs) 

EASI (at 

𝒕 =108 yrs) 

LASI (Harmonic 

PCE) 

DiffClay2 Minor, nonlinear, +, 

effects at 33% 

.11- .05 Early interaction 

between 1 &2 (.20) 

DiffClay3 

 

Major, nonlinear, +, 

effects at 90% (early), 

66% (late) 

.58- .52 Early interaction 

between 1 &2 (.20) 

KdBent Minor, linear, - -.28+ .08  

KdClay2 Small, - -.11+ .03  

KdClay3 Small, - -.12+ .03  

PorClay Small, + .12+ .03  

Table 4-10.  SA Results of GRS Clay by TU Clausthal 
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The Cusunoro curve [82] contains information from both linear analysis (local sign of changes and 

global monotonicity property), as well as nonlinear analysis (SRC2  ≠  𝑆𝑖) signals nonlinear 

contributions). All the methods agree on rankings.  

  
Figure 4-14.  Time-Dependent CUSUNORO plots. Dark gray codes early, light gray late times. 

Figure 4-14 demonstrates the use of CUSUNORO curves. Monotonicity properties are visible, 

detected by curves always above or below 0. Non-linear behavior is visible by sharp bends in the 

curves.  

Moment-independent methods see DiffClay3 as most important, followed by DiffClay2 (up to 

𝑡 =107 years). From 107 years, parameters 5 and 3 gain importance. As this increasing behavior 

stretches over the end of the simulation time, one needs to argue. As MIM do not differentiate 

between parameters reducing or amplifying output effects, we might see parameters beneficial to 

system performance. 

For interactions, TUC analyzed the first order effect on second finite differences of the (reordered) 

output using the method sketched in Section 2.3.7. Here, heteroskedasticity (variable variance) is 

used as a proxy for interaction effects. Heteroskedasticity is a measure for the variability of the 

conditional variance, visible as inhomogeneity of the scatterplot. If for some fixed value of the 

parameter of interest the output values are widely spread, there is considerable influence of other 

parameters. If the scatter range changes over the parameter interval, this is a strong hint to the 

presence of interactions with other parameters. Figure 4-15 reports the rankings obtained from 

quantifying the sensitivity of the residual variance for each time-step. Lighter shades of gray 

indicate higher heteroskedasticity and with that a stronger suspicion of interactions. For the first 

10 time-steps the ranking does not change from the default, most likely due to a zero output of the 

transport simulation. It also additionally suggests interactions involving parameters 1 and 2 (up to 

time  4·107 years) and late interactions involving parameters 2 and 3. However, it should be noted 

that this method suggests the presence of interactions, but not that these parameters actually 

interact. 
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Figure 4-15.  Heteroskedasticity: higher order effects may be due to interactions with parameters 2 
and 5 

From a linear analysis, the influence of parameter 6 is increasing at the end of the simulation time: 

Again, this needs careful arguments in commenting on possible extrapolation of the behavior. 

4.4.4. Results from IBRAE 

Case Name GRS Clay 

Sensitivity Analysis Method PAWN, RBD-FAST, Correlation and regression  

Sensitivity measures generated PAWN index, 𝑆𝑖 first order, Pearson correlation, 

Spearman rank correlation, partial correlation, 

partial rank correlation, regression and rank 

regression coefficients 

Special considerations Mean and median KS for PAWN. Number of 

conditioning intervals 𝑛 = 8. 

Surrogate models used   

Transformations   

QoIs addressed SA for each time step, SA for peak value, SA for 

integral 

Number of samples used 8192,4096 

Dataset mc8192-6-siton-r_SD_row.dat, mc4096-6-siton-

r_SD_row.dat 

Software Python SaLib, Python in-house software 

Table 4-11.  Sensitivity analysis of GRS Clay by IBRAE 

 

The sensitivity analysis by IBRAE as documented in Table 4-11 was performed using both 

available datasets (4096 and 8192 model runs). The summary of results is provided in Table 4-12. 

Figure 4-16 through Figure 4-21 demonstrate results by PAWN and RBD-FAST methods for 

different sample sizes. Note that RBD-FAST is identical to EASI in the software implementation 
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used. The results for the correlation- and regression-based method are mostly consistent with the 

results of other groups, so figures for them are not shown.  

Overall sensitivity indices for DiffClay3 are the highest, the second significant parameter is 

DiffClay2. However, the differences for the different methods and sample sizes occurred in the 

relative significance of the DiffClay2 and DiffClay3 at the "early" time steps. DiffClay3 indices are 

higher according to the RBD method, while according to the PAWN method DiffClay3 indices are 

equal to DiffClay2 on the 8192 sample, and their mutual ranking fluctuates on the sample of 4096 

realizations. Another ambiguity among different methods and sample sizes regards the ranking of 

the parameters of secondary significance (DiffClay2, KdBent, KdClay3) at the end of the 

simulation (108 years).  

 
Figure 4-16.  Sensitivity analysis of GRS Clay case by IBRAE: PAWN method (mean statistics, 

“dummy” parameter subtracted), 4096 realizations 
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Figure 4-17.  Sensitivity analysis of GRS Clay case by IBRAE: PAWN method (median statistics, 

“dummy” parameter subtracted), 4096 realizations 
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Figure 4-18.  Sensitivity analysis of GRS Clay case by IBRAE: RBD-FAST method, 4096 

realizations 
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Figure 4-19.  Sensitivity analysis of GRS Clay case by IBRAE: PAWN method (mean statistics, 

“dummy” parameter subtracted), 8192 realizations 
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Figure 4-20.  Sensitivity analysis of GRS Clay case by IBRAE: PAWN method (median statistics, 

“dummy” parameter subtracted), 8192 realizations 
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Figure 4-21.  Sensitivity analysis of GRS Clay case by IBRAE: RBD-FAST method, 8192 

realizations 
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Input 

parameter 

PAWN RBD-FAST Correlation & regression 

methods 

Parameter 1 

DiffClay2 

Overall small 

significance (~0.15 

for integral and 

peak value).  

One of only 2 

influencing 

parameters at early 

stages (105<𝑡<106 

years) 

Overall small 

significance 

(~0.08 for 

integral and peak 

value).  

One of 2 present 

parameters at 

early stages 

(105<𝑡<106 

years) 

Second significant parameter for 

integral and peak value by 

regression and partial rank 

correlation methods (+0.5÷0.75). 

Parameter 2 

DiffClay3 

Most significant at 

𝑡>106 years (0.25-

0.45, 0.35 at the 

end of simulation), 

for integral and 

peak value. 

Overall 

dominating 

significance 

(~0.1 at early 

stages, 0.5 at the 

end of 

simulation) 

Most significant for integral and 

peak value by whole group of 

methods (+0.5÷1). 

Parameter 3 

KdBentonit1 

Insignificant at 

𝑡<106 years.  

Second 

significance for the 

end of simulation 

(0.2)  

Insignificant at 

𝑡<106 yreas.  

Second 

significance for 

the end of 

simulation (0.09) 

Insignificant for integral and peak 

value by regression method, small 

significance by the rest (-0.1÷0.3) 

Parameter 4 

KdClay2 

Insignificant at 

𝑡<106 years.  

Small significance 

for the end of 

simulation (0.1) 

Insignificant at 

𝑡<106 years.  

Small 

significance for 

the end of 

simulation (0.05) 

Insignificant for integral and peak 

value by regression method, small 

significance by the rest (-0.1÷0.25) 

Parameter 5 

KdClay3 

Insignificant at 

𝑡<106 years.  

Third significance 

for the end of 

simulation (0.18) 

Insignificant at 

𝑡<106 years.  

Small 

significance for 

the end of 

simulation (0.02) 

Insignificant for integral and peak 

value by regression method, small 

significance by Pearson, Spearman, 

Partial correlation, Rank regression 

(-0.1÷0.25), medium significance 

by Partial rank correlation (-0.6)  

Parameter 6 

PoroClay 

Insignificant at 

𝑡<106 years.  

Small significance 

for the end of 

simulation (0.05) 

Insignificant at 

𝑡<106 years.  

Small 

significance for 

the end of 

simulation (0.02) 

Insignificant for integral and peak 

value by regression method, small 

significance by Pearson, Spearman, 

Partial correlation, Rank regression 

(+0.1÷0.15), medium significance 

by Partial rank correlation (+0.55) 

Table 4-12.  SA Results of GRS Clay by IBRAE 
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4.4.5.  Results from POSIVA 

The overview of the analyses conducted by Posiva is presented in Table 4-13. The transformation 

applied for Quantity of Interest (annual dose rate to an adult human individual) in addition to rank 

transformation is to consider maximum (or peak) dose across all time points in each realization. 

For this transformation, the motivation is to understand the behavior of the upper bound of model 

output because the maximum dose rate is typically an interesting quantity occurring at different 

times in different realizations. The same analyses are conducted for the maximum dose rate 

distribution in order to study importance of input parameters on the maximum of the QoI also. 

GRS Clay  Description 

Sensitivity Analysis Method Linear correlation, linear regression, rank correlation, rank 

regression, EASI 

Sensitivity measures generated  PEAR, SPEAR, SRC, SRRC, Si 

Special considerations - 

Surrogate models used - 

Transformations Rank, QoI maximum over time points 

QoIs addressed Annual dose rate to an adult human individual at 194 time 

points 

Number of samples used 4096 and 8192 

Software Ecolego software and Sensitivity Analysis toolbox 

(https://www.ecolego.se/) 
Table 4-13.  The overview of the analysis details conducted by Posiva for the GRS Clay Case 

The summary of results with the applied methodology is presented in Table 4-14 and Table 4-15 

for the dataset with 4096 samples. The selected time points are 106 and 108 years based on time 

evolution of model output (see Section 3.3) and they represent the early phase, where the model 

output increases above zero and the last calculated time point. The highest model output values 

are captured by observing the maximum values of the output and applying the presented methods 

on the resulting distribution. These results are presented in the "Max" column because the time 

point varies in each realization. 

Input 

parameter  

PEAR SPEAR PCC 

  106 yr 108 yr Max 106 yr 108 yr Max 106 yr 108 yr Max 

1. DiffClay2 0.206 0.116 0.233 0.265 0.195 0.287 0.211 0.151 0.274 

2. DiffClay3 0.258 0.587 0.502 0.889 0.761 0.809 0.263 0.625 0.529 

3. KdBent -0.014 -0.274 -0.165 0.001 -0.245 -0.195 -0.014 -0.345 -0.196 

4. KdClay2 -0.038 -0.150 -0.135 -0.013 -0.146 -0.171 -0.027 -0.161 -0.134 

5. KdClay3 -0.032 -0.146 -0.151 -0.010 -0.222 -0.307 -0.019 -0.179 -0.163 

6. PorClay 0.041 0.131 0.098 0.022 0.149 0.147 0.040 0.168 0.114 
Table 4-14.  Part 1/2 of sensitivity analysis measures produced by Posiva for the GRS Clay Case. 

The coloring indicates the two parameters with the highest absolute values of each sensitivity 
measure (red and blue are applied for positive and negative values, respectively) 

 

https://www.ecolego.se/
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Input   

parameter  

SRC SRRC Si (EASI) 

  106 yr 108 yr Max 106 yr 108 yr Max 106 yr 108 yr Max 

1. DiffClay2 0.204 0.111 0.226 0.281 0.208 0.298 0.044 0.046 0.061 

2. DiffClay3 0.257 0.579 0.495 0.894 0.761 0.812 0.090 0.508 0.256 

3. KdBent -0.013 -0.265 -0.159 -0.002 -0.242 -0.193 0.001 0.080 0.039 

4. KdClay2 -0.026 -0.118 -0.107 0.000 -0.121 -0.146 0.001 0.022 0.019 

5. KdClay3 -0.018 -0.131 -0.131 -0.003 -0.217 -0.299 0.001 0.023 0.025 

6. PorClay 0.037 0.123 0.091 0.020 0.147 0.144 0.000 0.022 0.008 
Table 4-15.  Part 2/2 of sensitivity analysis measures produced by Posiva for the GRS Clay Case. 

The coloring indicates the two parameters with the highest absolute values of each sensitivity 
measure (red and blue are applied for positive and negative values, respectively) 

Sensitivity analysis methods applied here are only correlation and regression analyses. The values 

of correlation measures as a function of time were studied in all time points but deemed not 

necessary to present for this summary. Also, similar behavior of the sensitivity methods applied 

here were observed with the dataset of 8192 samples and separate conclusions are not drawn. 

Overall, the measures agree qualitatively in that they show relatively low sensitivity of the model 

to all six input parameters in the time phase up to 1 million years (DiffClay2 and DiffClay3 indicate 

only some sensitivity while the contribution of other parameters seems to be close to zero). 

Although the sensitivity indices show low values up to 1 million years, the correlation or regression 

analysis are (almost) systematic within the applied sensitivity measures. The coefficient of 

determination (so-called R2) values in the "early" time frame stay relatively low with about 0.6 at 

maximum for PEAR, indicating low linear correlation between the output and input parameters. 

At the end of the full time-frame (108years), all applied methods show an increasing sensitivity of 

the DiffClay3 parameter compared to other parameters. Also, KdBent gains more importance 

during the late time period, being the parameter with the lowest negative coefficient against the 

output. In terms of first-order sensitivity indices (𝑆𝑖), DiffClay3 is clearly the most important 

parameter for the model output but because the sum of indices is largely below 1, the interactions 

between parameters are evident. Further analyses would be needed to examine the contribution of 

other parameters with the DiffClay3 parameter to the model output. 

The maximum of the output is clearly sensitive also to DiffClay3 but also DiffClay2 is important. 

From the negative sensitivity measures against the model output, contributions of KdBent and 

KdClay3 are the most important but exact order of importance remains uncertain due changes in 

measures with non-transformed and rank-transformed model output.  

4.4.6. Case Summary of Sensitivity Results 

The system was analyzed by the different partners using a variety of sensitivity analysis methods. 

In view of identifying the most influential parameters, the results are in good agreement with each 

other and yield the following statements: 

The diffusion coefficient in the outer clay formation (DiffClay3) has the highest influence on the 

model output. Most evaluations agree that this is valid over the total model time period.  
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For model times below 107 years, the second most influential parameter is the diffusion coefficient 

in the inner clay formation (DiffClay2). 

For model times below 106 years there is no significant influence of any of the other parameters. 

At late times, the influence of DiffClay2 decreases while those of the other parameters increase. 

Total indices reach their maximum values between 106 and 107 years. Parameter interactions seem 

to play a decreasing role at later times.  

Physically, these findings can be understood as follows: The outer clay formation is the most 

effective barrier, as it has an extent of 250 m, which is more than three times the thickness of the 

inner clay formation (80 m) and 25 times the thickness of the bentonite buffer (10 m). The 

contaminant transport through the clay layers is carried by diffusion, so it is plausible that 

DiffClay3, the diffusion coefficient of the outer clay dominates the release of contaminants. The 

same argumentation holds for DiffClay2 being the second most important parameter. On the first 

sight, it may seem surprising that the Kd values in the clay layers only play a minor role, but this 

is due to the fact that in all1 simulations the effective dose rate is exclusively dominated by 129I (at 

later times), which has very low sorption coefficients in all layers, and by 79Se(at medium times), 

which does not sorb at all. Better sorbing radionuclides remain trapped in the clay layers for a very 

long time, and it does not make a difference at which point in the formation they finally end up. 

At any time, relevant influence of Kd values on the model output can only come from129I. 

 As mentioned in Section 4.4, from the comparison of direct and rank-based sensitivity analysis 

one can conclude that in the time frame between 1 million and 4 million years, there is an influence 

of the Kd values (and also the bentonite porosity) only on the highest model output values. This 

effect comes from those runs in which the radionuclides move relatively fast and cause a 

significant dose rate already at medium times. Then the Kd value of Iodine, although on a low 

level, has an additional influence on the time of appearance of the Iodine peak, and with that on 

the output value. 

The linear sensitivity measures calculated by the different partners agree more or less exactly, as 

all use the same algorithms. The calculated values of variance-based sensitivity indices, however, 

depend on the method applied. First-order indices have been calculated using EASI/RBD-FAST, 

EFAST, PCE and RS-HDMR. The results are not identical but in fair agreement with each other 

as well as with those of the regression/correlation analysis. Total-order indices were calculated by 

GRS using EFAST and RS-HDMR as well as by SNL using the PCE surrogate model. While the 

EFAST and PCE results are in a fair agreement, those obtained with RS-HDMR differ 

significantly. This may, at least in part, be due to the fact that RS-HDMR does not really calculate 

the total-order indices but approximates them by summing up the first- and all second-order indices 

of a parameter, neglecting all higher orders of interaction. Indeed, the total-order indices calculated 

by RS-HDMR are always below those obtained with EFAST. Generally, it can be seen that the 

total-order indices of all parameters reach their maximum values between 1 million and 10 million 

years and decrease at later times. Obviously, in the late time frame the system is less controlled by 

 
1 A set of 512 random model runs was sanalysed in view of the contributions of all radionuclides to the effective 

dose rate. Among these, not a single run was found in which any other radionuclide than 129I and 79Se plays a non-

negligible role. 
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parameter interactions but increasingly by the sole influence of DiffClay3, which reaches a first-

order index of 0.5 at the end of the model time.  

Two- and three-parameter interactions, quantified by second- and third-order indices, were 

calculated by SNL using the PCE surrogate model. While at the end of the modeling period, the 

values are rather low, the second-order index of DiffClay2 and DiffClay3 reaches about 0.5 at 1 

million years. These results are confirmed by the calculations of GRS with RS-HDMR. The high 

influence of interaction of these parameters can easily be understood physically, as both diffusion 

coefficients have to be high to allow significant amounts of radionuclides to be released already 

after 1 million years. 

The PAWN analysis performed by IBRAE tells a similar story about the system as the total-order 

analysis. Although PAWN is a density-based approach and conceptually different from the 

variance-based methods, it quantifies, in a certain sense, the total influence of a parameter. Unlike 

the total-order indices, however, the PAWN curves do not show a significant decrease at the end 

of the simulation time.  

The investigations of TU Clausthal are well appropriate to provide a different view on the system 

sensitivities, less focused on the usual time curves of quantities that condense the sensitivity to a 

single value between 0 and 1 (or -1 and +1). CUSUNORO curves allow resolving the sensitivity 

over the parameter range. These plots show that for all parameters except PorClay, the lower part 

of the parameter range is most influential, and at least for the leading parameters DiffClay3 and 

DiffClay2, the influential range is further shifted to the lower end with increasing time. This is 

understandable as high diffusion coefficients cause relatively fast transport, so that at late times, 

the main peak has already been released and variation of the diffusion coefficients between high 

values does not change anything essential. The moment-independent analysis performed by TU 

Clausthal confirms the general findings about the temporal evolution of sensitivities.  
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5. SNL SHALE CASE 

The model describes a generic repository for commercial spent nuclear fuel in a shale host rock. 

Over the million-year simulation, the repository is undisturbed – no disruptive geological events 

and no human intrusion. The near field and far field are simulated in a single 3-D model domain, 

containing layered stratigraphy, the repository, and a household well (a simple biosphere) 

downgradient of the repository. The repository is in a thick, low permeability shale with higher 

permeability aquifers above and below the shale. It holds thousands of waste packages, each of 

which is a heat and radionuclide source. A waste package radionuclide source term is activated at 

the time of waste package breach (which depends on temperature and a sampled waste package 

degradation rate constant). Radionuclide transport away from the repository is primarily diffusive 

until radionuclides reach the aquifers, when advection driven by an applied pressure gradient 

becomes important. This case study is documented in [85]. 

5.1. Case Description 

The SNL shale calculation case assumes a mined repository located approximately 500 m below 

land surface, accessed by vertical shafts, and containing 70,000 MTHM of commercial SNF. PA 

simulations use a half-symmetry model domain, in which approximately 15% (10,962 MTHM) of 

the 70,000 MTHM inventory is explicitly gridded. With the reflection boundary condition, 30% 

(21,924MTHM) of the 70,000 MTHM inventory is included in PA simulations.  

The generic stratigraphic column for the shale calculation case consists of (from the bottom up): a 

450 m thickness of indurated shale interrupted by a 30-m thick sandstone aquifer; a 75-m thick 

limestone aquifer; a 585 m thickness of sealing shale including a 90 m thickness of a silty shale 

unit; a 60-m thick sandstone aquifer; and a 30 m thickness of unconsolidated overburden.  

In this calculation case, emplacement of pressurized water reactor (PWR) SNF occurs in a mined 

repository located in a deep, homogeneous, thickly bedded, essentially flat-lying stratum in a 

geologically simple and stable environment. The calculation case assumes horizontal, in-drift 

emplacement with 12-PWR waste packages elevated on plinths of compacted bentonite and drifts 

buffered and filled with compacted bentonite pellets and/or bricks in one or two layers. PA 

simulations assume that access drift and shafts are filled with compacted bentonite buffer (low 

permeability, high sorption capacity). The simulations employ a single bentonite buffer with 

material properties appropriate for a compacted mixture of 70% bentonite and 30% quartz sand 

[85 – 87]. 

 

SNL Shale Description 

Waste form Spent nuclear fuel in 12-PWR canisters 

Engineered barriers Bentonite buffer with material properties appropriate for a 

compacted mixture of 70% bentonite and 30% quartz sand  

Repository description Repository has 515-m depth with 84 drifts, 4 shafts, and an 

emplacement footprint of 2.6 km2. 4200 waste packages 

emplaced with 50 packages per drift and 20-m center-to-center 

spacing.  
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Natural system 450 m thick indurated shale interrupted by a 30 m thick sandstone 

aquifer; a 75 m thick limestone aquifer; a 585 m thickness of 

sealing shale including a 90 m thickness of silty shale unit; a 60 

m thick sandstone aquifer; 30 m thickness of unconsolidated 

overburden. 

Biosphere Well water ingestion dose model 

Conceptual release 

pathways 

Advection, diffusion, element-based solubility, medium-specific 

sorption, decay in all phases 

Processes modeled Waste package degradation, waste form (UO2) dissolution, 

equilibrium-controlled radionuclide sorption and precipitation/ 

dissolution, radioactive decay and ingrowth in all phases 

(aqueous, adsorbed, precipitate), coupled heat and fluid flow, and 

radionuclide transport via advection and diffusion. 

Software codes used PFLOTRAN, Dakota 

Reference for full 

description of case 

P. E. MARINER et al., Advances in Geologic Disposal System 

Modeling and Shale Reference Cases. SFWD-SFWST-2017-

000044 / SAND2017-10304R. Sandia National Laboratories, 

Albuquerque, NM (2017) [85]. 

Table 5-1.  SNL Shale Case Description 

5.2. Description of Inputs and Outputs 

Two hundred simulations were run in PFLOTRAN. Dakota was used to apply Latin hypercube 

sampling to the 10 uncertain variables listed in Table 5-2. The uncertain variables were assumed 

to be independent and there was only one sampling loop with no separation of uncertainties. The 

quantities of interest were the maximum (over time) 129I concentration at three sandstone locations 

and three limestone locations as listed in Table 5-3. These output quantities are also denoted as 

response functions (RF) #1-#6. Sensitivity for these quantities of interest was performed using 

Dakota and Python.  

Input parameter  Distribution Range Units 

SNF Dissolution Rate (rateSNF) Log uniform 10-8 - 10-6  yr-1 

Mean Waste Package Degradation Rate (rateWP) Log uniform  10-5.5 - 10-4.5 yr-1 

Upper Sandstone k (kSand) Log uniform 10-15 - 10-13 m2 

Limestone k (kLime) Log uniform 10-17 - 10-14 m2 

Lower Sandstone k (kLSand) Log uniform 10-14 - 10-12 m2 

Buffer k (kBuffer)  Log uniform 10-20 - 10-16 m2 

DRZ k (kDRZ) Log uniform 10-18 - 10-16 m2 

Host Rock (Shale) Porosity (pShale) Uniform  0.1-0.25 -- 

Np Kd Buffer (bNpKd) Log uniform 0.1-702 m3kg-1 

Np Kd Shale (sNpKd) Log uniform 0.047-20 m3kg-1 

Table 5-2.  SNL Shale Case Input Parameters [85] 
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Output QoI  Type Other 

sand_obs1, 

sand_obs2, 

sand_obs3 

Scalars: Maximum 129I concentration over time at three 

observation points in the sandstone aquifer. The first 

observation point is closest to the repository and the 

third is the farthest. 

 Also called 

RF1, RF2, 

and RF3. 

lime_obs1, 

lime_obs2, 

lime_obs3 

Scalars: Maximum 129I concentration over time at three 

observation points in the limestone aquifer. The first 

observation point is closest to the repository and the 

third is the farthest. 

RF4,  

RF5, and 

RF6. 

Table 5-3.  SNL Shale Case Output QoIs 

5.3. Salient features and behavior of the model 

Horsetails of the 129I concentrations at the closest and farthest sandstone and limestone observation 

points from the repository are shown in Figure 5-1. At the observation points farthest from the 

repository, the 129I concentration remains at the background concentration level, 10-20 [M], in 

approximately half of the realizations at most time steps; the median is visible late in the simulation 

for sand_obs3, but never visible in the plot for lime_obs3. The concentration curves are also 

monotonic, so the maximum concentrations, which are shown in scatterplots, are at the end of the 

simulation for all realizations. These simulations present a challenge for sensitivity analyses in 

which the maximum concentration over time is the quantity of interest; there are many realizations 

with the same low maximum concentration and the rest of the simulations have maximum 

concentrations that span many orders of magnitude.  

The maximum 129I concentrations for the sandstone aquifer observation points are plotted with the 

uncertain input variables in Figure 5-2. The neptunium Kd uncertain variables are not included 

since they do not affect 129I concentrations. The maximum 129I concentrations are calculated as the 

maximum over time. From these scatterplots, it appears that the shale porosity is the most 

important uncertain variable near the repository, with the upper sandstone k gaining importance 

farther from the repository. 
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Figure 5-1.  Horsetails for 129I concentration at the closest (obs1) and furthest (obs3) points from 

the repository in the sandstone and limestone aquifers for the SNL Shale calculation case 

 

 
Figure 5-2.  Scatterplots of 129I concentrations for three observations points in the sandstone and 

limestone aquifers for the SNL Shale calculation case  
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5.4. Sensitivity Analysis Results 

5.4.1. Results from GRS 

GRS performed a number of investigations with both available datasets (50 and 200 realizations). 

The sample sizes are fairly small, so the sensitivity analysis should be interpreted carefully. 

Nevertheless, some obviously valid statements about sensitivities can be derived even from the 

smaller dataset. 

Case Name  Description 

Sensitivity Analysis Method CUSUNORO, 

Linear correlation, linear regression, rank 

correlation, rank regression, 

EASI 

Sensitivity measures generated  

  
Pearson CC, Spearman RCC, SRC, SRRC, 𝑆𝑖 

Special considerations - 

Surrogate models used - 

Transformations - 

QoIs addressed Response functions 1 to 6 

Number of samples used 50 / 200 

Table 5-4.  Sensitivity analysis of SNL shale model by GRS 

The CUSUNORO analysis is presented in Figure 5-3. For RF1 it shows a clear deviation from the 

horizontal line only for the parameter pShale. Although, at least in the set with 200 runs, there 

seems to be a certain bend also in the curves for kSand and rateWP, this cannot be judged as 

significant. The situation is similar for RF2 and RF3, except that the direction of influence of kSand 

is obviously reversed. For RF4 the parameter rateSNF seems to gain some importance. For RF5 

and RF6, kLime is the most conspicuous parameter, but its curves follow more or less straight 

lines, except a sharp bend around an input contribution of 0.8, corresponding to a permeability 

value of about 2.5E-15 m². This shape of the CUSUNORO curves suggests some change in the 

model behavior in a small range of values of kLime.  

The number of simulations is too low for clearly identifying less significant sensitivities by using 

CUSUNORO. 
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Figure 5-3.  CUSUNORO analysis of the shale system 

The results of the sensitivity analysis for RF1 using the correlation-/regression-based methods as 

well as the first-order sensitivity indices calculated using EASI are presented in Table 5-5. 
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Input 

parameter  

Pearson CC Spearman 

Rank CC 

Regression 

SRC 

Rank 

Regression 

SRRC 

EASI 

 𝐒𝐢 

  50 200 50 200 50 200 50 200 50 200 

rateWP 0.256 0.217 0.099 0.138 0.306 0.224 0.132 0.149 0.284 0.113 

pShale 0.655 0.587 0.983 0.941 0.609 0.586 0.985 0.943 0.770 0.590 

rateSNF 0.036 0.106 0.009 0.001 -0.009 0.095 0.020 -0.010 0.344 0.049 

kSand -0.190 -0.155 -0.116 -0.084 -0.121 -0.161 -0.064 -0.081 0.206 0.080 

kLime 0.088 -0.042 0.041 -0.002 -0.108 -0.087 0.023 -0.006 0.265 0.071 

kLSand 0.008 -0.003 0.027 -0.023 -0.120 -0.033 0.015 -0.015 0.176 0.032 

kBuffer 0.583 0.168 -0.042 0.002 0.462 0.121 -0.001 0.010 0.511 0.086 

kDRZ 0.171 0.090 -0.003 -0.010 0.050 0.063 0.001 -0.006 0.182 0.044 

sNpKd 0.113 0.016 -0.018 -0.014 0.016 0.039 -0.014 -0.011 0.176 0.069 

bNpKd -0.060 0.097 0.011 -0.019 -0.173 0.111 0.006 -0.018 0.177 0.068 

Table 5-5.  SA Results of SNL shale model by GRS – RF1. The three leading parameters are 
marked in red, blue and green 

For the set with 200 runs, all methods agree about the ranking of the first two parameters (pShale 

and rateWP). The third one is sometimes kBuffer and sometimes kSand. The value-based 

correlation or regression methods calculate very similar sensitivities for these two parameters. It 

is, however, conspicious that the rank-based methods seem to be much more unambiguous in this 

respect and rate kSand at least 8 times higher than kBuffer. This can be a hint that kBuffer acts 

mainly on the high model output values, which are essentially mitigated by rank transformation. 

For the set with 50 runs, only the leading parameter pShale is identified sufficiently clearly, there 

is no agreement about the ranking of the other ones. However, the observation concerning the 

difference between direct and rank-based evaluation for kBuffer is basically the same as described 

above. 

5.4.2. Results from SNL 

Case Name  Description 

Sensitivity Analysis Method Surrogate modeling, PEAR, SPEAR, stepwise 

linear regression 

Sensitivity measures generated  

  

Si, Ti, Pearson CC, Spearman RCC, SRC, 

incremental R2 

Special considerations   

Surrogate models used GP, PCE (order 4) 

Transformations Scaling by 1013 

QoIs addressed Maximum (over time) 129I concentrations at 3 

sandstone and 3 limestone observation points. 

Number of samples used All (200) 

Table 5-6.  Sensitivity analysis of SNL Shale case by SNL 

The PCE surrogate model in Dakota could not estimate sensitivity measures for some of the 

quantities of interest due to low variance. This is because many of the maximum 129I concentrations 
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are low (background) at observation points farther from the repository. To resolve this, the 

concentrations were all multiplied by 1013. Scaling by 1020 was also performed and this did not 

significantly change the sensitivity measures. The PCE model was also fit using log-transformed 
129I concentrations. 

At observation points in the sandstone aquifer, all methods identified pShale, rateWP, and kSand 

as the input variables with the greatest influence on maximum129I concentration. Sensitivity to 

pShale decreases with distance from the repository, while sensitivity to kSand increases with 

distance. At the observation point closest to the repository (obs1), maximum 129I concentration is 

negatively correlated with kSand; at observation points 2 and 3, it is positively correlated. 

Substituting kLime for kSand, behavior at the limestone observation points is very similar to 

behavior at the sandstone observation points, with kLime behaving analogously to kSand. 

Correlations that are larger on rank-transformed data (simple rank, partial rank in the plots) than 

correlations on raw values (simple and partial in the plots), as for kSand at sand_obs2 and 

sand_obs3, suggest a monotonic but nonlinear correlation between input and output. Partial 

correlation coefficients (partial and partial rank in the plots) that are larger than a simple correlation 

coefficient (simple and simple rank in the plots), as for rateWP at sand_obsl and for pShale at 

sand_obs2 and sand_obs3, reveals a correlation that was partially masked by the influence of other 

inputs in the calculation of the simple correlation coefficient.  

Stepwise linear regression and sensitivity indices provide a measure of the fraction of the variance 

in the output due to the variance in an input. For stepwise linear regression, this fraction is taken 

to be the difference between the R2 obtained by the most recent addition of a variable to the 

regression and R2 at the previous step of the regression (incremental R2). Table 5-7 compares the 

fraction of the variance accounted for by stepwise linear regression with the fraction of the variance 

accounted for by main sensitivity indices obtained using either the GP or PCE surrogate model at 

sand_obs2. Individual input variables (without interactions) account for less than half of the 

variance in the maximum 129I concentration at sand_obs2, regardless of the surrogate model used.  

For pShale, kSand, and rateWP, the total sensitivity index is several times larger than the main 

sensitivity index, indicating the importance of parameter interactions. When the effects of 

parameter interactions are included, variance in the sampled input pShale accounts for 0.601 or 

0.744 of the total variance in maximum 1291 concentration at sand_obs2, almost twice that 

accounted for by main effects (of all input parameters) alone.  
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Variable Incremental 

R2 

 Si (PCE) Si (GP) Ti (PCE) Ti (GP) 

pShale 1.73E-01 1.79E-01 2.95E-01 6.01E-01 7.44E-01 

kSand 6.20E-02 9.40E-02 1.33E-01 5.31E-01 5.75E-01 

rateWP 2.10E-02 3.80E-02 2.00E-02 2.53E-01 1.59E-01 

kLSand 1.80E-02 2.00E-03 0.00E+00 1.28E-01 0.00E+00 

Fraction of variance 

accounted for: 

2.75E-01 3.12E-01 4.49E-01     

Table 5-7.  Sensitivity measures from sensitivity analysis of SNL Shale case by SNL 

The sensitivity analysis results from each of the methods are shown for all quantities of interest in 

Figure 5-4 and Figure 5-5. 

 
Figure 5-4.  Sensitivity measures for the sandstone aquifer maximum 129I concentration at 

observation point 1 from the SNL analysis of the SNL Shale calculation case 
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Figure 5-5.  Sensitivity measures for the sandstone aquifer maximum 129I concentration at 

observation point 3 from the SNL analysis of the SNL Shale calculation case 

 
 

Figure 5-6.  Sensitivity measures for the limestone aquifer maximum 129I concentration at 
observation point 1 from the SNL analysis of the SNL Shale calculation case 
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Figure 5-7.  Sensitivity measures for the limestone aquifer maximum 129I concentration at 

observation point 3 from the SNL analysis of the SNL Shale calculation case 

5.4.3. Results from TUC  

The sensitivity analysis methods used by TUC are shown in Table 5-8 with the results listed in 

Table 5-9. 

Case Name  Description 

Sensitivity Analysis Method CUSUNORO, Copula distance, PCE, MIM 

Sensitivity measures generated 𝑆𝑖  first order, 𝑆𝑖2 second order 

Special considerations Polynomial chaos uses harmonic base functions 

Surrogate models used  

Transformations None, Log, Rank, Second order finite difference for 

interactions 

QoIs addressed SA for each output 

Number of samples used 200 / all 

Dataset SNLShaleRep2_SAND2018-0517O_Rev1 

Software MatLab/Octave: in-house software 

Table 5-8.  Sensitivity analysis of SNL Shale by TU Clausthal 
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Input 

parameter 

CUSUNORO 2nd order finite 

differences 

Parameter 1 

rateWP 

Small influence in all responses (<10%)  

Parameter 2 

pShape 

Minor (20%-60%) influence in 4 responses Cause of interactions 

in 4 responses 

Parameter 3 

rateSNF 

Small influence in all responses (<10%)  

Parameter 4 

kSand 

Small influence in all responses (<20%)  

Parameter 5 

kLime 

Major (>60%) in two responses (limeobs2, 

3), else small 

Cause of interactions 

in 2 response 

(limeobs2,3) 

 

Parameter 6 

kLSand 

Negligible influence in all responses (<5%)  

Parameter 7 

kBuffer 

Negligible influence in all responses (<5%)  

Parameter 8 

kDRZ 

Negligible influence in all responses (<5%)  

Parameter 9 

sNpKd 

Small influence in all responses (<10%)  

Parameter 10 

bNpKd 

Negligible influence in all responses (<5%)  

Table 5-9.  SA Results of SNL Shale by TU Clausthal 

 

Depending on model response analyzed, very different behaviors can be observed, see Table 5-9 

and Figure 5-8. Some parameters are of minor influence throughout all outputs. While the analysis 

provides some clues on possible interactions, switching to a log-scale is without clear findings. 

This might be a sign that the interaction is multiplicative, such that the logarithm transfers the 

model into an essentially additive one with no interaction term present. 
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Figure 5-8.  First order sensitivity measures for the maximum 129I concentration. Sandstone 

aquifer observation points: fn 1 - fn 3, limestone aquifer observation points: fn 4 - fn 6 

5.4.4. Results from IBRAE 

Case Name  SNL Shale 

Sensitivity Analysis Method PAWN, RBD-FAST, Correlation and regression  

Sensitivity measures generated PAWN index, 𝑆𝑖 first order, Pearson correlation, 

Spearman rank correlation, partial correlation, partial 

rank correlation, regression and rank regression 

coefficients 

Special considerations Mean and median KS for PAWN. Number of 

conditioning intervals 𝑛 = 8 for larger sample and 

𝑛 = 5 for smaller sample. 

Surrogate models used   

Transformations   

QoIs addressed Response functions sand_obsi, lime_obsi 𝑖 = [1. . .3] 
(maximum 129I concentration at 3 sandstone and 3 

limestone locations) 

Number of samples used 200, 50 

Dataset SNLShaleRep2_SAND2018-0517O_Rev1.txt, 

SNLShaleRep1_SAND2017-11069O_Rev1.txt 

Software Python SaLib, Python in-house software 

Table 5-10.  Sensitivity analysis of SNL Shale by IBRAE 
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IBRAE performed the sensitivity analysis using both available datasets (50 and 200 realizations).  

The results are shown in Table 5-11, Figure 5-9, and Figure 5-10. Figures for correlation-based 

and regression-based methods are omitted due to their similarity with the results of other groups. 

In short, pShale is most significant for sand_obs1 and lime_obs1, kSand accompanies pShale for 

sand_obs2 and sand_obs3, kLime shows major influence for lime_obs2 and lime_obs3. 

Overall results for both samples are almost similar, some discrepancies though occurred. In 

particular, the RBD variant of the FAST method with the smaller sample indicates kBuffer for 

sand_obs1, rateWP and kSand for lime_obs1, rateSNF for lime_obs2, rateWP and rateSNF for 

lime_obs3 as influencing while with larger sample these parameters are detected as insignificant.  

PAWN approach on the contrary fails to detect the influence of the pShale for the sand_obs3 using 

smaller sample. 
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Figure 5-9.  Sensitivity analysis of SNL Shale case (QoI 1-6) by IBRAE: RBD-FAST and PAWN 
methods (for PAWN “dummy” parameter is subtracted), 50 realizations 
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Figure 5-10.  Sensitivity analysis of SNL Shale case (QoI 1-6) by IBRAE: RBD-FAST and PAWN 
methods (for PAWN “dummy” parameter is subtracted), 200 realizations 
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Input 

parameter  

PAWN RBD-FAST Correlation & regression 

methods 

rateWP Small significance for 

sand_obs2, sand_obs3, 

lime_obs1. Insignificant 

for the rest. 

Small significance for 

sand_obs1, sand_obs2, 

sand_obs3, lime_obs1. 

Almost insignificant for 

lime_obs2, lime_obs3. 

Medium influence for sand_obs1, 

lime_obs1 

Small significance for the reset.  

pShale Most significant for 

sand_obs1, sand_obs2, 

lime_obs1. Medium 

influence for sand_obs3.  

Most significant for 

sand_obs1-lime_obs1. 

Small influence for 

lime_obs2, lime_obs3. 

Major influence for sand_obs1, 

sand_obs2, sand_obs3, lime_obs1, 

small for lime_obs2, lime_obs3 

rateSNF insignificant for all 

responses 

Insignificant for 

sand_obs1, lime_obs2, 

lime_obs3. Small 

influence for sand_obs2, 

sand_obs3, lime_obs1. 

Only significant parameter by 

linear regression method. 

Medium influence for lime_obs1 

and small for the rest by other 

methods. 

kSand significant for responses 

sand_obs2, sand_obs3. 

Insignificant for the rest. 

Insignificant for 

sand_obs1, lime_obs2, 

lime_obs3. Medium 

influence for sand_obs2, 

sand_obs3, small 

influence for lime_obs1.  

Medium significance for 

sand_obs1, sand_obs2, sand_obs3. 

Small influence for lime_obs1, 

lime_obs2, lime_obs3. 

  

kLime Major influence for 

lime_obs2. Insignificant 

for the rest. 

Insignificant for 

sand_obs1, sand_obs2, 

sand_obs3. Major 

influence for lime_obs2, 

lime_obs3, small 

influence for lime_obs1. 

Major influence for lime_obs2, 

lime_obs3, minor for the rest. 

kLSand Small significance for 

all responses. 

Insignificant for all 

responses. 

Almost insignificant for all 

responses. 

kBuffer Minor influence for 

response lime_obs2, 

insignificant for the rest 

Insignificant for 

sand_obs2, sand_obs3, 

lime_obs1. Almost 

insignificant for 

sand_obs1, lime_obs2, 

lime_obs3. 

Almost insignificant for all 

responses. 

kDRZ insignificant for all 

responses 

Insignificant for 

sand_obs2, lime_obs2, 

lime_obs3. Small 

influence for sand_obs1, 

sand_obs3, lime_obs1. 

Almost insignificant for all 

responses. 

sNpKd insignificant for all 

responses 

Insignificant for all 

responses. 

Almost insignificant for all 

responses. 

bNpKd Minor significance for 

sand_obs2, insignificant 

for the rest 

Small significance for 

sand_obs2, sand_obs3. 

Insignificant for the rest. 

Almost insignificant for all 

responses. 

Table 5-11.  SA Results of SNL Shale by IBRAE 
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5.4.5. Case Summary of Sensitivity Results 

Recall that six QoIs were considered for the SNL Shale case. The QoIs were labeled as response 

functions 1 through 6. The first three response functions were the peak (maximum over time) 129I 

concentrations at observation points 1, 2, and 3 respectively. These observations points are in the 

sandstone aquifer and are numbered based on increasing distance from the repository; response 

function 1 is the peak 129I concentration at the sandstone aquifer observation point closest to the 

repository and response function 3 is the peak 129I concentration at the sandstone aquifer 

observation point farthest from the repository. The last three QoIs are analogous, being peak 129I 

concentration at observations within the limestone aquifer at increasing distances from the 

repository. SA results are summarized individually by QoI in this section to emphasize comparison 

between methods. However, some discussion is also included regarding differences in SA results 

between the different QoIs and how these differences relate to the repository. 129I concentrations 

at observation points 2 and 5 are not detailed, since these results are consistent with shifting 

sensitivities between the nearest and farthest observation points relative to the repository. 

Multiple participants applied linear regression models and calculated correlation coefficients 

(GRS, SNL, IBRAE) and CUSUNORO curves (GRS, TUC). Additionally, SNL applied stepwise 

linear regression and VBD via PCE and GP surrogate modeling, TUC applied Copula distance and 

MIM, and IBRAE applied PAWN and RBD-FAST. Scaling, rank transformations, and log 

transformation were also utilized in some of the analyses.  

• Response Function 1: Peak 129I at the observation point in the sandstone aquifer closest to the 

repository 

 

Methods applied by the participants agreed in ranking pShale as the parameter with the 

highest sensitivity metrics. This observation point is near the repository, meaning transport 

from the repository to the observation point is predominantly through the shale layer, so 

sensitivity to shale porosity makes sense. Methods typically ranked kSand and rateWP as the 

second and third most important parameters, however it was not always clear if this 

significance is meaningful. Sensitivity to kSand was noted by multiple participants to 

increase when rank-based methods were applied. 

 

• Response Function 3: Peak 129I at the observation point in the sandstone aquifer farthest from 

the repository 

 

This observation point is farther from the repository and this distance is reflected in changes 

in the SA results compared to observation point 1. Porosity of the shale still has an effect, but 

significant transport also occurs through the aquifer, so aquifer permeability (kSand) gains 

significance with distance. The relationship between kSand and the peak 129I concentration 

also changes from a negative correlation at observation point 1 to a positive correlation at 

observation point 3. There was some inconsistency between methods at this observation 

point, with some (RBD-FAST, PCE and GP surrogates) ranking pShale higher than kSand, 

but most ranking kSand as the most important parameter.  

 

As shown in Figure 5-2 a large portion of the simulations result in very low 129I 

concentrations at this observation point. This may be why methods disagree more on the top-
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ranked parameter for this QoI. The SNL sensitivity results from surrogate modeling differ in 

their ranking of the top parameter and the importance of conjoint effects depending on 

whether scaling (which maintains high variance in the QoI) or log-transformation (which 

reduces variance in the QoI) was used. This is consistent with the linear methods, which also 

attribute much more of the variance to kSand when based on a rank transformation (SPEAR, 

PRCC) than without a rank transformation. 

 

• Response Function 4: Peak 129I at the observation point in the limestone aquifer closest to the 

repository 

 

Most methods ranked pShale highest at this observation point, however PCC (from SNL) 

ranked kLime the highest. The linear methods disagreed on the second and third most 

important parameters, rateSNF and rateWP. Surrogate model results based on a log-

transformation rank rateWP as more important, whereas surrogate model results based on 

scaling rank rateSNF higher with more substantial interaction effects. The PAWN results 

(IBRAE) agree with other methods on ranking pShale the most important parameter but 

ranks the buffer permeability (kBuffer) as the second most important parameter.  

 

• Response Function 6: Peak 129I at the observation point in the limestone aquifer farthest from 

the repository) 

 

Permeability of the limestone aquifer (kLime) is consistently ranked the most important 

parameter at this observation point, across methods and participants. There is again 

disagreement on the parameters of secondary importance, with CUSUNORO (GRS), 

surrogate modeling on scaled concentrations (SNL), and RBD-FAST (IBRAE) identifying 

pShale as the second most important parameter. When surrogate modeling was applied to 

log-transformed concentrations, no other parameters had significant sensitivity indices.  

 

In general, the sensitivity analyses across participants identified the same first most important 

parameter but differed on the importance of lower ranked parameters. This may be due to 

differences between methods in detecting variable significance, particularly because the QoIs in 

this case span many orders of magnitude. Variables of secondary importance may need to be 

identified by connecting less clear sensitivity analysis results with physical phenomenology. 

Results also tended to differ depending on which transformations were applied to the 129I 

concentrations. Validation or fit metrics, in the context of surrogate modeling or regression 

analysis, may help select the most appropriate transformation to use for sensitivity analysis.  

There is also a lack of consensus between participants on the delineation between sensitivity 

measure values that indicate secondary sensitivity versus sensitivity measure values that indicate 

negligible sensitivity. This highlights a need for development of consensus methods for testing or 

justifying conclusions regarding lower-ranked parameters.  
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6. DESSEL CASE 

This case study considers the near field model for the assessment of the long-term safety of a near-

surface repository at Dessel (Belgium) for Intermediate and Low-Level radioactive waste. This 

model was used in the license application file that was submitted on 4 February 2019 by 

ONDRAF/NIRAS to the FANC, the Belgian regulatory body for Nuclear Control.  

The implementation of the near field model is based on the expected evolution scenario (EES). 

The expected evolution of the disposal facility and its barriers is described in Chapter 14 of the 

safety report [88], and builds on the phenomenological knowledge basis of the engineered barriers 

in their environment described in Chapter 5 of the Safety Report [89]. The expected evolution of 

the disposal system over the relevant timeframes up to 2,000 years from t0 builds on the 

characteristics and processes defining the long-term behavior of the engineered barriers and the 

transport of radionuclides. 

The near field model is described in detail in the SCKCEN report ER-0336 [90]. Only the leaching 

of the 129I radionuclide from conditioned waste in Type I monoliths is considered in this case study. 

6.1. Case Description 

In this exercise, the degradation of the earth cover and underlying cementitious barriers starts from 

𝑡0 + 650 y. This will be the starting point for the radionuclide (RN) leaching simulations and is 

representative for the part of the disposal facility that degrades earlier than expected.  

The EES near field model considers a two-dimensional geometry representing half of a monolith 

stack as shown in Figure 6-1. In the vertical direction, the simulation domain consists of the: 

Structural top slab and precast shielding slabs, combined in a redistributing layer 

Stack of 6 type I monoliths  

Module support slab 

Columns and filled inspection rooms 

Foundation slab 

Embankment 
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Figure 6-1.  Geometry of a modelled domain (dimensions are in cm); Type I monoliths, Colors 
indicate different material types (backfilled inter-monolith spaces and fractures are denoted in 

resp. light green and blue color). The geometry is shown for the initial (left), and degraded state 
(right) 

 

Dessel Case Description 

Waste form Steel drums of homogeneously cemented LILW  

Engineered barriers Type I concrete monoliths (with backfill mortar),  

Repository description Near surface disposal facility  

Natural system Not considered 

Biosphere Not considered 

Conceptual release 

pathways 

Diffusion in concrete and mortar, advective transport in fracture 

and conductive sorbing media (inspection room & embankment) 

Processes modeled Advective-dispersive/diffusive transport  

Software codes used Comsol Multiphysics 3.5a 

Reference for full 

description of case 

[90] 

Table 6-1.  Dessel Case Description 
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6.2. Description of Inputs and Outputs 

Twenty-two input parameters with uniform or log-uniform distributions. The ranges are given in 

Table 6-2 and Table 6-3, either for general or radionuclide specific parameters. 

Based on the parameter ranges given in previous tables, 256 / 1024 parameters combinations were 

generated using the Matlab Sobolset method, with MatousekAffineOwen scrambling. The first 222 

points were skipped to avoid a poor burn-in of the Sobol’ sequence. All evaluations presented here 

are based on the larger dataset. Comparisons for different sample sizes have been undertaken but 

are not reported here. 

To compute a benchmark solution for the sensitivity indices, in particular the higher order, a larger 

dataset was generated for an analysis based on Sobol’s method. The 24,000 samples were 

generated and analyzed with Matlab scripts based on the methods described in [91], which were 

obtained from https://ec.europa.eu/jrc/en/samo. 

parameter unit min max distribution 
EES value 

(BE) 

drain_bio mm/a 250 480 Uniform 480 

flux_increase_time a 30 700 Uniform 350 

transmissivity_ratio - 0.01 1 loguniform 0.04 

w_fracture mm 0.1 1 Uniform 0.3 

D_concrete_caisson m2/s 5.14E-14 4.43E-10 loguniform 7E-11 

D_concrete m2/s 5.14E-14 4.43E-10 loguniform 7E-11 

D_mortar m2/s 1.85E-12 3.21E-10 loguniform 2E-11 

D_waste m2/s 1.85E-12 6E-10 loguniform 6E-10 

D_inspectionroom m2/s 5E-10 8E-10 uniform 8E-10 

D_embankment m2/s 2E-11 1E-10 uniform 6E-11 

poro_concrete - 0.07 0.12 uniform 0.1 

poro_mortar - 0.07 0.12 uniform 0.1 

poro_waste  0.2 0.3 uniform 0.25 

poro_inspectionroom - 0.4 0.6 uniform 0.55 

poro_embankment  0.29 0.35 uniform 0.33 

alpha_L_all m 0.01 1 loguniform 0.1 

Table 6-2.  Used parameter ranges, distributions, and best estimate (BE) 
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parameter unit min max distribution 
EES value 

(BE) 

Kd_eff_I_con_caisson L/kg 1E-5 57 log uniform 0.19 

Kd_eff_I_con_module L/kg 1E-5 57 log uniform 0.19 

Kd_eff_I_mortar L/kg 1E-5 290 log uniform 2.9 

Kd_eff_I_waste L/kg 1E-5 100 log uniform 1 

Kd_eff_I_insp L/kg 1E-5 57 log uniform 0.19 

Kd_eff_I_emb L/kg 1E-5 50 log uniform 0.5 

Table 6-3.  RN-specific (129I) sorption parameter ranges, distributions and best estimate (BE) 

 

Output Quantity Type Other 

Activity flux 

(Bq/a) 

Time series (200 values between 0 - 

2000 years) 

 

129I activity flux out of the 

embankment to the geosphere  

Table 6-4.  Dessel Case Output QoIs 

 

6.3. Salient features and behavior of the model 

The statistics on the time-dependent output (129I flux to the geosphere) are calculated and plotted 

in Figure 6-2. It shows that peak fluxes are occurring during the ~700 to 800-year time frame. 

Here, the uncertainty on the peak fluxes is the highest. Differences between extreme percentile 

values and the mean of the activity flux range over more than one order of magnitude, which could 

indicate a non-linear model response. 
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Figure 6-2.  Uncertainty on the time-dependent 129I radionuclide flux based on 1024 sample runs 

6.4. Sensitivity Analysis Results 

6.4.1. Results from GRS 

GRS has analyzed the Dessel model with a number of sensitivity analysis methods, as shown in 

Table 6-5, for all points in time. Some results are compiled below. 

Dessel model  Description 

Sensitivity Analysis Method CUSUNORO, 

Linear regression, rank correlation, rank regression, 

EASI 

Sensitivity measures generated  

  
SRC, SRRC, 𝑆𝑖   

Special considerations - 

Surrogate models used - 

Transformations Shifted log-transformation 

QoIs addressed 129I outflow 

Number of samples used 1024 

Table 6-5.  Sensitivity analysis of Dessel model by GRS 

Some CUSUNORO curves are presented in Figure 6-3. The following conclusions can be drawn 

from this analysis: 

99-perc 

95-perc 

mean 

50-perc 
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• Only 3 parameters have relevant influences at later times: Kd_waste, Kd_emb and D_waste2. 

• There is no relevant influence of Kd_waste below the 10-2 fraction and of Kd_emb below the 

10-1 fraction. This is understandable as very little sorption is as good as no sorption. 

• Kd_waste has a mainly negative influence over most of the time. This is understandable as 

increasing Kd means decreasing outflow. 

• At later times, Kd_waste has a positive influence at a small value interval between fractions 

10-2 and 10-1, for high values, however, the influence is again negative. This might be due to 

retarded release. 

• Except from the earliest times, Kd_emb has a relevant influence only at values above 5; this 

influence is positive, but for medium times (around 1000 years) it changes to negative for 

the highest parameter values (> ~20). Little sorption is as good as no sorption, but it is not 

directly understandable why increasing Kd leads to increasing outflow here. 

• D_waste2 changes its direction of influence from positive to negative with time around 1400 

years.  

 

 

Figure 6-3.  CUSUNORO analysis of Dessel model by GRS 

Kd_waste 

Kd_emb 

Kd_waste 

Kd_waste Kd_waste 

Kd_waste 
Kd_waste 

drain_bio 

drain_bio 

drain_bio 

drain_bio 

Kd_mortar 

Kd_emb 

Kd_emb 
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In Table 6-6, the results of the regression-based as well as the variance-based analysis are 

presented. Correlation-based methods were not applied as, at least for uncorrelated input, its results 

can be expected to be very similar to those of the regression-based analysis and not to provide 

additional information. Instead, the regression analysis was additionally performed after applying 

the transformation 𝑦 ↦ log2(1 + 𝑦/𝑎). For high values (y >> a), this transformation is practically 

a log transformation, but unlike the latter, it avoids overweighting of low and very low values and 

even allows zeros. The parameter a is mapped to 1 and represents the "threshold" between low and 

high values. The transformation has a similar effect as the rank transformation as it mitigates the 

influences of very high values, but it is reversible and keeps all information.    

Table 6-6 also contains the R² values for the regression investigations and the sum of all 1storder 

indices for the EASI investigation. 

Input parameter  Regression 

SRC 

Rank 

Regression 

SRRC 

SRC with 

transformation 

 (𝒂=10-4) 

SRC with 

transformation 

 (𝒂=10-7) 

EASI 

 𝐒𝐢   

  797 yrs 1401 yrs  797 yrs 1401 yrs  797 yrs 1401 yrs  797 yrs 1401 yrs  797 yrs 1401 yrs  

drain_bio 0.013 -0.034 0.014 -0.011 0.045 -0.030 0.050 -0.027 0.008 0.014 

flux_increase_time 0.013 0.072 -0.102 0.081 -0.080 0.073 -0.136 0.057 0.017 0.022 

transmissivity_ratio -0.019 -0.015 0.063 -0.047 0.001 -0.021 0.020 0.001 0.024 0.014 

w_fracture -0.008 -0.024 -0.015 -0.027 -0.018 -0.033 -0.024 -0.051 0.013 0.020 

D_concrete_caisson -0.003 0.043 0.009 0.090 0.011 0.077 0.003 0.059 0.010 0.013 

D_concrete 0.039 -0.020 0.018 0.021 0.034 -0.014 0.034 -0.028 0.009 0.006 

D_mortar_2 0.018 -0.017 0.010 0.002 0.006 0.001 -0.010 -0.001 0.016 0.012 

D_waste_2 0.324 0.024 0.324 -0.078 0.222 -0.095 0.140 -0.154 0.167 0.020 

D_inspectionroom_2 -0.007 -0.063 0.020 -0.017 -0.005 -0.037 0.003 -0.018 0.010 0.017 

D_embankment 0.010 -0.031 -0.014 -0.037 0.005 -0.022 0.011 -0.008 0.012 0.014 

poro_concrete -0.024 0.014 -0.048 -0.007 -0.039 0.006 -0.051 0.021 0.015 0.008 

poro_mortar 0.020 0.019 0.014 0.004 0.011 0.002 0.001 -0.019 0.015 0.008 

poro_waste -0.027 -0.006 0.001 0.022 -0.022 0.009 -0.023 0.022 0.013 0.010 

poro_inspectionroom 0.024 -0.009 -0.034 -0.013 -0.015 -0.012 -0.003 -0.024 0.011 0.019 

poro_embankment 0.057 -0.061 0.003 -0.065 0.019 -0.067 -0.012 -0.054 0.014 0.022 

alpha_L_all 0.000 -0.016 0.021 0.000 0.017 0.005 0.058 0.026 0.009 0.007 

Kd_con_caisson -0.103 -0.021 -0.083 0.034 -0.102 0.032 -0.065 0.066 0.022 0.015 

Kd_con_module -0.001 0.002 -0.001 0.051 -0.014 0.023 -0.004 0.052 0.022 0.008 

Kd_mortar -0.150 -0.060 -0.158 -0.003 -0.135 -0.040 -0.091 -0.014 0.063 0.021 

Kd_waste -0.286 -0.234 -0.485 -0.233 -0.451 -0.372 -0.392 -0.373 0.344 0.141 

Kd_insp -0.042 0.045 0.019 0.051 -0.050 0.040 -0.046 0.052 0.010 0.008 

Kd_emb -0.232 0.459 -0.261 0.103 -0.448 0.275 -0.687 0.158 0.158 0.134 

r² / 1st order sum 0.298 0.300 0.510 0.101 0.527 0.266 0.721 0.228 0.982 0.553 

Table 6-6.  SA Results of Dessel model by GRS. The three leading parameters are marked in red, 
blue and green 
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The ranking of parameters does not seem very unique, but Kd_waste, Kd_emb and D_waste_2 

appear most often on the leading ranks. Several parameters switch their direction of influence 

between the early and the late point in time.  

It can be seen that the R² value is increased by rank transformation as well as by the shifted log-

transformation, but only at the early point in time. At the late point in time, it is decreased by all 

investigated types of transformation, even by a factor of three if rank transformation is performed. 

This might be a hint that there is some randomness in the small model output values at the late 

point in time. 

Figure 6-4 presents a comparison between SRC and EASI analysis. The results agree qualitatively. 

One can see that: 

D_waste2 changes its direction of influence from positive to negative with time around 1400 

years (see CUSUNORO analysis). 

Kd_emb changes its dominating direction of influence from negative to positive around 1000 

years. 
 

 

Figure 6-4.  SRC (left) and EASI (right) analysis of the Dessel model 

Figure 6-5 shows the effect of the transformation with different values of the transformation 

parameter a. This value separates “small” model output values (which are left more or less as they 

are) from “high” ones (which are practically logarithmized). The transformation smooths the 

curves and makes them more pronounced, R² is increased.  

A transformation parameter of a = 10-7 is clearly below the modus of the distribution of model 

output values, except for very early times. In effect, this transformation pronounces the differences 

between values in the sensitivity evaluation, compared to non-transformed data or data 

transformed with a higher a value. At the same time, it mitigates the differences between very high 

values. As the curve of Kd_emb seems most sensitive to the transformation parameter, one can 

conclude that its range of primary influence changes over time. At early times the influence of 

Kd_emb concerns mainly the medium values, at later times the higher values. 

Kd_waste 

D_waste_2 

SRC r2 

Kd_emb 

Kd_waste 

EASI 1st order sum 

Kd_emb 
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Figure 6-5.  SRC analysis of the Dessel model with transformation 

6.4.2. Results from SCK 

SCKCEN has analyzed the Dessel model with a number of sensitivity analysis methods for all 

points in time, see Table 6-7. A selection of results is presented in Table 6-8 below. 

Case Name  Description 

Sensitivity Analysis Method PEAR, SPEAR, EASI, Sobol’ Method 

Sensitivity measures generated  

  

Si, Ti, Pearson CC, Spearman RCC 

Special considerations   

Surrogate models used GP, PCE (order 2), DNN 

Transformations   

QoIs addressed Activity flux 

Number of samples used 1024 

Table 6-7.  Sensitivity analysis of Dessel reference case by SCKCEN 

 

D_waste_2 

Kd_waste 

D_waste_2 

SRC r2 

Kd_emb 

Kd_waste 

Kd_emb 

SRC r2 

Kd_waste 

Kd_emb 

SRC r2 

D_waste_2 

Kd_waste 

Kd_emb 

D_waste_2 

SRC r2 
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Input parameter  SPEAR/EASI Total order Ti (Sobol - 24k) 

Kd_emb Dominating 1200-1500 yrs Important (800-1000 yrs) 

Flux increase time Dominating (<750 yrs) Important (800-1000 yrs) 

Kd_waste Dominating 750-1200 yrs, 1500 yrs-  

D_waste_2 Moderate importance around 800 yrs increasing importance towards 

the end of time range 

Kd_con_module Moderate importance in very early time 

frame (650-700 yrs) 

 

alpha_L Moderate importance in very early time 

frame (650-700 yrs) 

 

Table 6-8.  Summary of SA Results of Dessel Case by SCKCEN 

6.4.2.1. Standard SA Techniques  

In Figure 6-6 and Figure 6-7, the results of the regression-based (SRRC) as well as the variance-

based analysis (EASI) are presented. Results of the correlation-based methods are not reported, as 

the results are very similar to those of the regression-based analysis. The six most influential 

parameters are chosen based on the ranking of their maximum SRRC across the time series. The 

same six parameters are plotted in the variance-based analysis, although the ranking might differ. 

 

Figure 6-6.  SRRC sensitivity results over time from the SCKCEN analysis of the Dessel case. 
Each axis in the plot highlights one of the independent variables 

Kd_emb Kd_waste 

flux_increase_time D_waste_2 

Kd_con_module alpha_L 



 

85 

 

Figure 6-7.  EASI first order sensitivity index over time from the SCKCEN analysis of the Dessel 
case. Each axis in the plot highlights one of the independent variables 

6.4.2.2. Surrogate Model-Based Techniques 

Apart from classical SA techniques, efforts were made to use state-of-the-art metamodelling 

techniques in order to compute first order- and total-effects. 

The true first-order (𝑆𝑖) and total-order (𝑇𝑖) Sobol’ indices were computed using the classical 

approach described by Saltelli et al. [91] and a total of 𝑁𝑡𝑜𝑡𝑎𝑙  = 24,000 forward model runs (𝑁 =
 1000 base samples, k = 22 parameters, 𝑁𝑡𝑜𝑡𝑎𝑙  =  𝑁 ∗ (𝑘 + 2)). 

The considered surrogate methods are polynomial chaos expansion (PCE), Gaussian processes 

(GP) and fully connected deep neural networks (DNN). The total number of forward runs used to 

construct the surrogate models are either 256 or 1024.  

For the PCE surrogates, the chaospy toolbox was used (https://chaospy.readthedocs.io/en/master/). 

Both standard and sparse PCEs were tested, up to order 3 expansion. The PCE coefficients were 

fitted by least-square regression (point collocation method). The GPs were built using the GPflow 

package (https://gpflow.readthedocs.io/en/master/notebooks/intro.html). The selected GPs relied 

on an anisotropic exponential kernel a linear mean function, of which the parameters were 

estimated by marginal likelihood optimization). Cross-validation was used to select the optimal 

PCE expansion order and GP hyperparameters. The DNN surrogates were constructed using the 

Kd_emb Kd_waste 

flux_increase_time D_waste_2 

Kd_con_module alpha_L 

https://chaospy.readthedocs.io/en/master/
https://gpflow.readthedocs.io/en/master/notebooks/intro.html
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Keras interface (https://keras.io/) to Tensorflow (https://www.tensorflow.org). The DNNs had 3 

hidden layers of 64, 128 and 256 neurons with a rectified linear unit (Relu) activation function and 

an output layer of 22 neurons with linear activation. During training of the DNNs, a l2 

regularization of the DNN weights was used in addition to a mean square loss for data fitting. 

The results of the different metamodeling techniques are in good agreement with each other. 

However, for the total-order sensitivity indices, some important interactions are not captured. This 

is discussed later. 

 

Figure 6-8.  Results of first order sensitivity indices calculated by either the Sobol’ method with 
24,000 direct simulations (‘True’), or by different metamodeling techniques based on 1024 sample 

- dataset 

 

Kd_eff_I_waste 

Kd_eff_I_emb 
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Kd_eff_I_emb 

Kd_eff_I_emb 
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Figure 6-9.  Results of total order sensitivity indices calculated by either the Sobol’ method with 
24,000 direct simulations (‘True’), or by different metamodeling techniques based on 1024 sample 

dataset 

6.4.3. Results from SNL 

Case Name  Description 

Sensitivity Analysis Method Surrogate modeling, PEAR, SPEAR 

Sensitivity measures generated  

  

Si, Ti, PEAR, SPEAR 

Special considerations   

Surrogate models used GP, PCE (order 2) 

Transformations   

QoIs addressed Activity flux 

Number of samples used 256, 1024 (for comparison) 

Table 6-9.  Sensitivity analysis of Dessel reference case by SNL 

 

Sensitivity measures from the different linear methods applied by SNL are plotted in Figure 6-10 

through Figure 6-13. Sobol’ indices calculated using an order 2 surrogate are plotted in Figure 

6-14 and Figure 6-15. All of these analyses were performed using 256 samples and 1024 samples 

and it was determined that using 1024 samples reduces noise in correlation coefficients. 

Application of rank transformation further reduces noise in the correlation coefficients. Simple 

D_waste_2 

Kd_eff_I_emb 
Kd_eff_I_waste 

Kd_eff_I_mortar 

D_waste_2 
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rank (SPEAR, Figure 6-11) and partial rank correlation coefficients (PRCC, Figure 6-13) have 

nearly identical values. 2ndorder PCE identifies the same important variables as other methods but 

indicates different timing of importance and possible importance of interactions.  

The Gaussian process surrogate model did not appear to be appropriate for this dataset (see Figure 

6-16). 

 
Figure 6-10.  PEAR sensitivity results over time from the SNL analysis of the Dessel case. Each 

axis in the plot highlights one of the independent variables 
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Figure 6-11.  SPEAR sensitivity results over time from the SNL analysis of the Dessel case. Each 

axis in the plot highlights one of the independent variables  
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Figure 6-12.  PCC sensitivity results over time from the SNL analysis of the Dessel case. Each axis 

in the plot highlights one of the independent variables 
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Figure 6-13.  PRCC sensitivity results over time from the SNL analysis of the Dessel case. Each 

axis in the plot highlights one of the independent variables 
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Figure 6-14.  Main Sobol’ index results from sensitivity analysis of the Dessel reference case by 
SNL estimated using a second order PCE surrogate. Each axis in the plot highlights one of the 

independent variables 
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Figure 6-15.  Total Sobol’ index results from sensitivity analysis of the Dessel reference case by 
SNL estimated using a second order PCE surrogate. Each axis in the plot highlights one of the 

independent variables 
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Figure 6-16.  Total Sobol’ index results from sensitivity analysis of the Dessel reference case by 

SNL estimated using a GP surrogate. Each axis in the plot highlights one of the independent 
variables 

6.4.4. Results from TUC 

The sensitivity analysis methods used by TUC are shown in Table 6-10 with the results listed in 

Table 6-11. 

Case Name Description 

Sensitivity Analysis Method CUSUNORO, EASI, PCE, MIM 

Sensitivity measures generated 𝑆𝑖 first order, 𝑆𝑖2 second order, CvM 

Special considerations Polynomial chaos uses harmonic base functions 

Surrogate models used  

Transformations Second order finite difference for interactions 

QoIs addressed Flux 

Number of samples used 1024 (largest available) 

Dataset SA_TI_I129 

Software MatLab/Octave: in-house software 

Table 6-10.  Sensitivity analysis of Dessel Case by TU Clausthal 
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Input parameter  CUSUNORO 2nd order Sij Cramér / von Mises 

 No major contributor   

Parameter 22 

Kd_emb 

Instant release, dominating 

1200-1500 yrs 

Interaction with 

Kd_waste and 

D_waste_2 

Dominating <800 yrs, 

minor >800 yrs 

Parameter 2 

Flux increase time 

Dominating (<750 yrs)  Minor <800 yrs 

Parameter 20 

Kd_waste 

Dominating 750-1200 yrs, 

1500 yrs- 

* Dominating >800 yrs 

Parameter 8 

D_waste_2 

Minor * Minor >800 yrs 

Parameter 19 

Kd_mortar 

Small (700-1000 yrs)   

Parameter 3 

Transmissivity ratio 

Small (<850 yrs)   

Table 6-11.  SA Results of Dessel Case by TU Clausthal 

Figure 6-17 shows the CUSUNORO curve at timestep 𝑡 = 1004 years. Despite the large input 

dimension, only few of the input parameters are outside the significance ellipsoid for this sample 

size. 

 
Figure 6-17.  CUSUNORO curve with significance ellipsoid 
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6.4.5. Results from IBRAE 

Case Name  Dessel 

Sensitivity Analysis Method PAWN, RBD-FAST 

Sensitivity measures generated PAWN index, 𝑆𝑖 first order 

Special considerations  Mean and median KS for PAWN. Number of 

conditioning intervals 𝑛 = 8 was used. 

Surrogate models used  

Transformations   

QoIs addressed SA for each time step, SA for peak value, SA for 

integral 

Number of samples used 256, 1024, 24000 

Dataset Results_SA_TI_I129_256_SobolSamples.h5, 

Results_SA_TI_I129_1024_SobolSamples.h5, 

Results_SA_TI_I129_Sobol24k.h5 

Software Python SaLib, Python in-house software 

Table 6-12.  Sensitivity analysis of Dessel Case by IBRAE 

IBRAE performed sensitivity measures evaluation for the Dessel case using samples of 256, 1024 

and 2400 realizations. The findings are listed in Table 6-13. 

Figure 6-18 through Figure 6-26 show results for small (256), medium (1024 model runs), and the 

larger (24000 model runs) samples correspondingly. 

The 5 most significant parameters are flux_increase_time (at the beginning of the simulation only), 

Kd_waste, D_waste_2, Kd_emb, Kd_mortar.  

The differences can be seen in the rating of the parameters at the end of the simulation. For 

example, the influence of Kd_con_caisson and Kd_mortar parameters is medium according to 

PAWN but minor according to RBD. Also, D_waste_2 at the end of the simulation is most 

significant by the PAWN method and only 3rd (after Kd_waste and Kd_emb) by RBD-FAST. On 

the contrary, at t≈1300 years influence of Kd_emb is significant by RDB-FAST and minor by 

PAWN. 

Smaller samples allow detecting the most influential parameters, the ranking of the parameters of 

secondary significance though is less clear. 
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Figure 6-18.  Sensitivity analysis of Dessel case by IBRAE: PAWN method (mean statistics, 
“dummy” parameter subtracted), 256 realizations 



 

98 

 

Figure 6-19.  Sensitivity analysis of Dessel case by IBRAE: PAWN method (median statistics, 
“dummy” parameter subtracted), 256 realizations 
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Figure 6-20.  Sensitivity analysis of Dessel case by IBRAE: RBD-FAST method, 256 realizations 
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Figure 6-21.  Sensitivity analysis of Dessel case by IBRAE: PAWN method (mean statistics, 
“dummy” parameter subtracted), 1024 realizations 
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Figure 6-22.  Sensitivity analysis of Dessel case by IBRAE: PAWN method (median statistics, 
“dummy” parameter subtracted), 1024 realizations 



 

102 

 

Figure 6-23.  Sensitivity analysis of Dessel case by IBRAE: RBD-FAST method, 1024 realizations 
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Figure 6-24.  Sensitivity analysis of Dessel case by IBRAE: PAWN method (mean statistics, 
“dummy” parameter subtracted), 24000 realizations 
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Figure 6-25.  Sensitivity analysis of Dessel case by IBRAE: PAWN method (median statistics, 
“dummy” parameter subtracted), 24000 realizations 
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Figure 6-26.  Sensitivity analysis of Dessel case by IBRAE: RBD-FAST method, 24000 realizations 
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Input parameter  PAWN RBD-FAST 

flux_increase_time Dominating at 𝑡 ≈ 700 

years, almost 

insignificant after 

Dominating at 𝑡 ≈ 700 

years, almost 

insignificant after 

transmissivity_ratio Mostly minor 

significance 

 Mostly minor 

significance 

D_waste_2 Second at  

700 < 𝑡 < 900 years, 

most influencing at the 

end of the simulation 

Second at  
700 < 𝑡 < 900 years 

and at the end of the 

simulation 

Kd_con_caisson Medium significance at 

t~900 years, small 

significance after that 

Mostly minor 

significance 

 Kd_con_module Mostly minor 

significance 

Mostly minor 

significance 

Kd_mortar Medium significance at 

700 < 𝑡 < 900 years 

and at the end of the 

simulation 

Fourth at 700 < 𝑡 < 900 

years  

Kd_waste Third at 𝑡 < 800 years, 

dominating at  
800 < 𝑡 < 1500 years 

Dominating at  

800 < 𝑡 < 1100 

years, 𝑡 > 1500 years 

Kd_emb Second at 𝑡 < 800 years, 

small significance at 

𝑡 > 1900 years 

Dominating at  

1100 < 𝑡 < 1500 years, 

second at the end of the 

simulation 

drain_bio, 

w_fracture, 

D_concrete_caisson, 

D_concrete, 

D_mortar_2, 

D_inspectionroom_2, 

D_embankment, 

poro_concrete, 

poro_mortar, 

poro_waste, 

poro_inspectionroom, 

poro_embankment, 

alpha_L_all, Kd_insp 

  

Minor or insignificant Minor or insignificant 

Table 6-13.  SA Results of Dessel Case by IBRAE 
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6.4.6. Case Summary of Sensitivity Results 

In Figure 6-27, selected scatterplots are presented. These show the dependency of the model output 

on the values of the five most conspicuous parameters for several points in time. Obviously, the 

sensitivity of at least some of the parameters is distinctly time-dependent.  

The shape of the scatterplots indicates possible threshold effects for sorption in the embankment 

and waste matrix (Kd_waste and Kd_emb), and non-monotonicity of the diffusion coefficient in 

the waste (D_waste2). 

To analyze this in detail, the participants independently calculated the evolution over time of 

different sensitivity estimators using their available tools. While correlation- and regression-based 

methods yield values between -1 and 1, the sign indicating the direction of influence, variance-

based methods are designed to calculate Sobol’s sensitivity indices, which lie between 0 and 1. 

Table 6-14 gives an overview of the time-dependent evaluations, including the method of 

calculation in the case of variance-based sensitivity indices. The standardized regression 

coefficients (SRC) and sensitivity indices calculated using EASI (Effective Algorithm for 

Computing Global Sensitivity Indices, [92]) are in very good agreement between all participants, 

which is not too surprising as the mathematical algorithms applied are the same. This is a good 

mutual verification of the software tools.  

More interesting from a scientific point of view is the comparison between the results for 1st-order 

Si, calculated with EASI (SCKCEN/GRS), with PCE (SNL, [93], SCKCEN) and CUSUNORO 

slope (TUC, [94]) as presented in Figure 6-28. While the curves show similar qualitative behavior, 

there are considerable differences in detail. PCE computes higher index values for Kd_waste and, 

specifically, Kd_emb. This is probably due to the fact that PCE uses an internal surrogate model, 

which itself requires additional assumptions and parameters that have to be well adjusted. For this 

investigation, second-order polynomials were used. 

Figure 6-29 presents the comparison of a direct and a rank-based sensitivity analysis, using the 

SRC and standardized rank regression coefficients (SRRC) methods. The rank transformation 

makes the time curves smoother and yields higher sensitivities for some of the parameters in the 

early phase. Typically, ranking leads to more pronounced differences of low values but less 

pronounced differences of high values. It can be concluded that the parameters flux_increase_time, 

Kd_waste and Kd_emb mainly influence the low model output values at early times. Kd_emb 

changes its direction of influence around 1000 years after disposal; after that time its influence 

becomes positive (higher value implies higher output) but seems to affect mainly the high model 

output values, as SRC is much higher than SRRC at medium times. The same conclusion can be 

drawn for Kd_waste at late times. Ranking input and output data did seem to improve the 

goodness-of-fit R2 in the most interesting time-frame. 
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Sensitivity measure SNL SCKCEN GRS TUC IBRAE 

Standardized Regression Coefficients 

(SRC) 

  X X    

Standardized Rank Regression 

Coefficients (SRRC) 

  X X    

SRC with transformation     X    

Pearson’s Correlation Coefficients (CC) X        

Spearman’ Rank Correlation 

Coefficients (RCC) 

X        

Partial Correlation Coefficients (PCC) X        

Partial Rank Correlation Coefficients 

(PRCC) 

X X      

1st order Sensitivity Index (𝑆𝑖) PCE PCE/EASI EASI EASI/CSN  

2nd order Sensitivity Index (𝑆𝑖2)       Harmonic 

Regress. 

 

Total order Sensitivity Index (𝑇𝑖) PCE PCE      

Table 6-14.  Time-dependent sensitivity measures calculated by different participants 
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Figure 6-27.  Scatterplots for the five most conspicuous parameters and several points in time 
(SNL) 
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The different sensitivity estimators agree about the most influential parameters, although, at each 

point in time, they calculate slightly different rankings. Parameter ranking, however, should not 

be regarded as the only relevant result of sensitivity analysis. In fact, a well-understood sensitivity 

analysis with different methods, each addressing its specific aspects, can essentially increase 

detailed understanding of model behavior and thus the confidence in the model. 

 

Figure 6-28.  1st-order sensitivity index, calculated with PCE, EASI and CUSUNORO. Left: SNL 
(PCE), middle: GRS (EASI), right: TUC (CUSUNORO slope) 

  
Figure 6-29.  SRC vs. SRRC (GRS) 

6.4.7. Interactions 

If the functional dependence of the output upon the inputs is not explained by linear or additive 

functions (i.e. in form of a low goodness-of-fit R2or a low sum of first order effects) then the 

missing part can be explained by the presence of interactions. First-order effects (and therefore 

also CUSUNORO plots) are not able to detect interactions. Figure 6-30 demonstrates this where, 

especially for the large output variance in the time span between 680 to 800 years, a large part 

remains unaccounted for by first order effects. In this figure, absolute rather than relative 

contributions to the variance are shown, which reveals additional information when considering 

sensitivities evolving over time. One may be tempted to screen-out parameters which do not 

contribute to first order effects but may be important in driving interactions. 
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Figure 6-30.  Sum of first order effects and absolute contribution to total output variance 
(SCKCEN) 

Figure 6-31 compares results of total order sensitivity indices calculated by either the Sobol’ 

method with 24,000 direct simulations (‘True’), or by different metamodeling techniques, which 

were calibrated on the 1024 simulations – dataset. If factor fixing is the main objective of the SA, 

total effects need to be calculated. 

The qualitative behavior of 𝑇𝑖 in the critical time span closely follows that of first order effects. 

However, it appears that all metamodeling methods seem to miss important higher-order effects. 

The large-sample Sobol-method indicated high 𝑇𝑖 values of flux_increase_time & Kd_emb in the 

period from 750 to 1000 years.  
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Figure 6-31.  Results of total order sensitivity indices calculated by either the Sobol’ method with 
24,000 direct simulations (‘True’), or by different metamodeling techniques 

 

6.5. Interpretation of Sensitivity Analysis in the Light of Model Understanding 
(Model Owners Feedback) 

6.5.1. Behavior of the Model with Respect to Sorption in the Waste Matrix 
(Kd_waste) 

It is no surprise that Kd_waste is identified as the most important parameter by all methods. The 

sorption in the waste matrix determines the initial liquid concentrations, which scale almost 

directly with the advective outflux. The threshold effect can be explained by the back-up sorption 

capacity that the surrounding materials offer. As long as sorption in the mortar and concrete of the 

monolith caisson is larger than sorption in the waste matrix, the activity will quickly be transferred 

and attenuated in these surrounding, cementitious components.  

6.5.2. Behavior of the Model with Respect to Sorption in the Embankment 
(Kd_emb) 

Changing sign: Higher values of Kd_emb lead to lower outflow at early times (< 1000 years), but 

to higher outflow at late times. Why? 
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The embankment is the last component in the disposal facility which RNs encounter in their 

migration to the geosphere. The transport in the embankment is purely advective, similar to a one-

dimensional plug flow. Higher Kd values lead to a higher retardation factor. A larger retardation 

will therefor result in a larger shift in time of the breakthrough curve. This is why at later times 

(after 1000𝑎), the influence changes its sign.  

Penalizing combinations of parameters (e.g. fast increase in water flux and low retention in the 

waste matrix) result in sharp and early breakthrough curves (650 – 750 years). Only high Kd_emb 

values are able to significantly shift these steep breakthrough curves backwards in time, which 

explains the threshold effect at 10-1 L/kg.  

6.5.3. Behavior of the Model with respect to diffusion in the Waste Matrix 
(Dp_waste) 

In the scatterplots of Figure 6-27, non-monotonic behavior could be spotted for the Dp_waste 

parameter. Indeed, the diffusion coefficient in the waste matrix has a dual effect on the activity 

flux. On one hand, it accelerates the initial diffusion to the fracture on the right, which increases 

the peak activity flux once as water starts entering the system. On the other hand, it will also 

increase diffusion to the upper, lower and left direction where mortar is present, which accumulates 

and attenuates the activity. This effect would reduce the main peak flux and increase the tailing of 

the peak.  

 

Figure 6-32.  Non-monotonous effect of diffusion in the waste matrix. Diffusion in the orange 
direction will decrease peak flux, green will increase peak flux 

6.6.  Conclusions 

For the studied Dessel example, the standard set of SA methods does not sufficiently explain the 

model behavior. To be able to detect such a situation, goodness-of-fit measures of the used 

sensitivity method must be reported to obtain information on its explanatory power for the case 

under consideration. Possible ways to address this issue are output transformations or moment-

independent methods which take into account the whole distribution instead of point-estimators of 

conditional means or variances.  
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7. IBRAE GROUNDWATER CASE 

This model describes a cross-section groundwater flow in the heterogeneous geological media of 

Nizhnekansky massif (Krasnoyarsk territory) where construction of a site-specific underground 

research facility (URF) is considered. Site-specific means that the research facility for acquiring 

expertise to develop a radioactive waste repository is located in the same formation as the planned 

repository. The granitoid rock of Nizhnekansky massif indicates the presence of geological 

structural elements influencing significantly the permeability features such as dykes, faults, 

crushing zones (Figure 7-1). Boundary conditions are depicted in Figure 7-2. The modeling is 

performed using GeRa groundwater flow and transport modeling computer code [95]. 

 
Figure 7-1.  Geological model: hydraulic conductivities of structural elements 

7.1. Case description 

 

Reference case name Description 

Waste form High-level radioactive waste 

Engineered barriers Stainless steel overpack, bentonite buffer 

Repository description 450–500 m depth, 75 m deep boreholes containing waste 

packages 

Natural system 500 m thick low permeability rock 

Biosphere Not considered 

Conceptual release pathways Not considered 

Processes modeled Single-phase fluid flow 

Software codes used GERA [95] 

Reference for full description 

of case 

[96, 97] 

Table 7-1.  IBRAE Case Description 
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7.2. Description of inputs and outputs  

The groundwater flow model has 12 input parameters (Table 7-2): 7 hydraulic conductivities for 

geologic structural elements (quaternary deposits, weathering crust, fissured dikes, dikes, fissured 

gneiss, crushing zone, gneiss) and 5 boundary conditions (flow rates for 3 zones at the left 

boundary, infiltration, and drainage).  

 
Figure 7-2.  Groundwater flow model: boundary conditions 

Samples were constructed by Saltelli modification of Sobol’ sequence [98] presented in Python 

SAlib library [99]. This method treats parameters as independent, each variated within a given 

range. To study if there is a dependence of sensitivity analysis results on the number of samples 

were constructed 4 sample sets containing 140, 1400, 14,000, and 28,000 samples. 

Input parameter Distribution (uniform) 

Hydraulic conductivities [m/day] min Max 

KF1 1.00E-03 1.00E+00 

KF2 1.00E-06 1.00E-02 

KF3 1.00E-06 3.50E-02 

KF4 1.00E-03 5.00E-01 

KF5 1.00E-06 1.00E-03 

KF6 5.00E-03 1.00E-01 

KF7 1.00E-02 1.00E+00 

Boundary conditions [m3/day] min Max 

BC1 -1.00E-02 -1.00E-06 

BC2 -1.00E-02 -1.00E-06 

BC3 -1.00E-02 -1.00E-06 

BCtop 1.00E-06 1.00E-04 

BCbot -1.00E-06 1.00E-03 

Table 7-2.  IBRAE Case Input Parameters 

The model has an output composed of 37 values of hydraulic heads located corresponding to the 

locations of experimental observations later used in model calibration. Points 1-14 are from the 
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first borehole, 15-26 from the second, and 27-37 from the third. They can be considered separately 

as 37 outputs, although their behavior is similar (Figure 7-3). 

Output QoI  Type Other 

Output 1 Vector – 37 hydraulic heads [m] 

located in different spatial points 

Can be considered separately  

Table 7-3.  IBRAE Case Output QoIs 

7.3. Salient features and behavior of the model 

Distributions of outputs for different sample sets are shown in Figure 7-3. Each output is presented 

by its color. The distributions look normal-like, do not significantly depend on sample set size, 

and are rather similar for different outputs. 

The result of the groundwater flow simulation (isolines of the hydraulic heads in the whole 

modeling space) is presented in Figure 7-4.  

Scatterplots for first five outputs are shown in Figure 7-5. 

 

Figure 7-3.  Output distributions for different sample sizes 
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Figure 7-4.  Simulation results 

 
Figure 7-5.  Scatterplots for first five outputs of groundwater model 

 

7.4. Sensitivity Analysis Results 

7.4.1. Results from GRS 

Case Name  Description 

Sensitivity Analysis Method CUSUNORO,  

linear regression, rank regression, EASI 

Sensitivity measures generated  SRC, SRRC, 𝑆𝑖  

Special considerations - 

Surrogate models used - 

Transformations - 

QoIs addressed 37 hydraulic heads 

Number of samples used 140 / 1400 / 14000 / 28000 

Table 7-4.  Sensitivity analysis of IBRAE case by GRS 
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The investigations were performed with all available sets of input and output. To keep the number 

of figures manageable, we present the results for the smallest and the largest dataset only.  

The CUSUNORO plots of the 37 QoIs look very similar, at least for the set of 140 runs. As an 

example, Figure 7-6 compares the plots for the output quantities 1 and 37. Even the random details 

of the curves correspond, only a very sharp look at the figures reveals minor differences (for 

instance, between the pale orange and the pink curve around 0.7). Obviously, the different 

observation points reflect the same system properties, (nearly) only differing by a monotonic 

relationship. 

 

Figure 7-6.  CUSUNORO analysis of IBRAE groundwater flow model by GRS (140 runs) for 
observation points 1 (left) and 37 (right) 

The larger sets of runs, however, produce CUSUNORO plots that do not only look smoother but 

also seem to convey a different message. In Figure 7-7 and Figure 7-8, the plots for the output 

quantities 1 and 37, generated from the sets of 1400 runs and 28,000 runs, respectively, are 

presented. In comparison to the previous figure, it is conspicuous that the purple curve (BCtop) 

deviates only very slightly from the horizontal axis, indicating very low sensitivity. From the 140-

runs-set it would have been identified as the second most important input parameter. Moreover, 

the 28,000-runs-curves show more distinct differences between the two output quantities. While 

BC2 is clearly the most important parameter, the second one is BC3 at observation point 1 but 

BCbot at observation point 37. Even so, the CUSUNORO plots look very similar for all 

observation points, also for the larger sets of runs.  

BC2 

KF2 KF2 

BC2 
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Figure 7-7.  CUSUNORO analysis of IBRAE groundwater flow model by GRS (1400 runs) for 
observation points 1 (left) and 37 (right) 

 

Figure 7-8.  CUSUNORO analysis of IBRAE groundwater flow model by GRS (28,000 runs) for 
observation points 1 (left) and 37 (right) 

 

From this example it can be concluded that a sample size of 140 is not large enough for a reliable 

sensitivity analysis of the groundwater flow model. Although the most important parameter BC2 

is identified correctly, BCtop is falsely identified as important and the curves of the other 

parameters are not adequate to allow any kind of statement. But even the CUSUNORO curves 

based on 1400 model runs do not allow clear identification and ranking of the sensitive parameters 

as there is still too much randomness. 

Figure 7-9 shows the results of the direct and rank-based regression analysis for all 37 observation 

points, calculated from the 28,000-set of runs. Both sets of curves look nearly identical, which is 

a clear hint that the model is highly linear. This is confirmed by the R² value, which is nearly 1, no 

matter if a rank transformation is performed or not. The evaluation agrees with CUSUNORO 

insofar as it identifies the input parameter BC2 as the clearly most important one, followed by 

BCbot, BC3, KF1 and KF4. The other parameters play only minor roles. Moreover, these curves 

confirm that there is only little dependence of the sensitivities on the observation point. As the 

BC2 BC2 

BC2 BC2 
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system has been found to behave linearly, it is not necessary to perform a variance-based sensitivity 

analysis.  

 

Figure 7-9.  Direct (left) and rank-based regression analysis of IBRAE groundwater flow model by 
GRS (28,000 runs) for all observation points 

7.4.2. Results from SNL 

Case Name  Description 

Sensitivity Analysis Method Surrogate Modeling, PEAR, SPEAR 

Sensitivity measures generated  Si, Ti, Pearson CC, Spearman RCC 

Special considerations   

Surrogate models used PCE (order 2), MARS, Quadratic Regression. 

Linear Regression 

Transformations Rank 

QoIs addressed 37 hydraulic heads 

Number of samples used 140, 1400, 14000, 28000 

Table 7-5.  Sensitivity analysis of IBRAE case by SNL 

The correlation coefficient sensitivity analysis results for the dataset of 1400 realizations are shown 

in Figure 7-10 (left). According to these results, KF1, KF4, KF6, and the BC parameters may be 

significant, however, BC2 has the dominant effect. The use of a rank transformation does not 

appear to impact results. Differences between the partial correlation coefficients and the simple 

correlation coefficients suggest effects may be masked by other parameters.  

The sensitivity indices calculated from linear, quadratic, MARS, and PCE (order 2) surrogate 

models (also for the dataset of 1400 realizations) are shown in Figure 7-10 (right). The results are 

essentially identical regardless of model type, indicating that no model is necessarily more 

appropriate for this data set than the others. Simpler (less costly) surrogate models or sensitivity 

measures are appropriate for this data set. Compared to the correlation results, the surrogate model 

results emphasize BC2 as the most important parameter with smaller effects associated with other 

parameters than in the correlation results. The total index values are not significantly different 

from the main index values, so none of the models detect significant interaction. 

BC2 BC2 



 

122 

 

 
Figure 7-10.  Sensitivity analysis results for hydraulic head 1 from the SNL analysis of the IBRAE 

reference case (1400 realizations) 

 

This case study included simulation results for numerous increasing sample sizes, from 140 to 

28,000. SNL analyzed the stability of sensitivity analysis results with increasing sample size 

(Figure 7-11 through Figure 7-15). While analyses on the smallest sample size could result in 

inconsistent rankings for parameters other than BC2, 1400 samples were found to be sufficient.  

 



 

123 

 
Figure 7-11.  SNL results: Main Sobol’ index for hydraulic head 1 obtained using increasing 

sample sizes (linear scale) 

 

 
Figure 7-12.  SNL results: Main Sobol’ index for hydraulic head 1 obtained using increasing 

sample sizes (log scale) 
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Figure 7-13.  SNL results: Total Sobol’ index for hydraulic head 1 obtained using increasing 

sample sizes (linear scale) 

 
Figure 7-14.  SNL results: Total Sobol’ index for hydraulic head 1 obtained using increasing 

sample sizes (log scale) 
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Figure 7-15.  SNL results: Correlation sensitivity indices for hydraulic head 1 obtained using 

increasing sample sizes 

7.4.3. Results from TUC 

The sensitivity analysis methods used by TUC are shown in Table 7-6. 

Case Name Description 

Sensitivity Analysis Method CUSUNORO, Sobol’ 

Sensitivity measures generated 𝑆𝑖 first order, 𝑇𝑖 total effect 

 

Special considerations Sample from Sobol’ method, CUSUNORO uses 

independent blocks extracted from Sobol’ sample 

Surrogate models used  

Transformations  

QoIs addressed All observation points show comparable behavior: 

head=1 

Number of samples used 2 × 2000 , (2 + 12) × 2000 for Sobol’ 𝑆𝑖 and 𝑇𝑖 

Dataset ibrae_geo_28000.h5 

Software MatLab/Octave: in-house software 

Table 7-6.  Sensitivity analysis of IBRAE Case by TU Clausthal 

The analysis results are shown in Table 7-7. 

 

 

 

in_BC2 in_BC2 
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Input parameter First Order Effect Si Total Effect Ti CUSUNORO 

KF1 5.9% 7.9% negative trend, minor influence 

KF2   sign change with time, small 

KF3   sign change with time, small 

KF4 3.1% 4.3% negative trend, minor influence 

KF5   negative trend, small 

KF6 0.1% 0.3% sign change with time, small 

KF7    

BCtop   positive trend, small  

BC1 0.3% 0.3% negative trend, small 

BC2 72.5% 74.4% negative trend, major influence 

BC3 8.3% 8.9% negative trend, small 

BCbot 6.6% 6.9% negative trend, small 

Table 7-7.  SA Results of IBRAE Case by TU Clausthal 

The sum of first order effects is 0.968, the sum of first and total effects is 2: the behavior is mainly 

additive, the missing 4% of interactions are by pairwise interactions (otherwise the sum of first 

and total effects would be larger than 2). 

7.4.4. Results from IBRAE 

Case Name IBRAE case 

Sensitivity Analysis Method PAWN, Sobol’, RBD-FAST, Correlation and 

regression  

Sensitivity measures generated PAWN index, 𝑆𝑖 first order, 𝑇𝑖 total, Pearson 

correlation, Spearman rank correlation, partial 

correlation, partial rank correlation, regression and 

rank regression coefficients 

Special considerations Mean and median KS for PAWN. Number of 

conditioning intervals 𝑛 = 8 for 28000, 14000,1400 

samples and 𝑛 = 6 for 140 sample. 

Surrogate models used   

Transformations   

QoIs addressed SA for each response 

Number of samples used 28,000;14,000;1400;140 

Dataset ibrae_geo_28000.h5, ibrae_geo_14000.h5, 

ibrae_geo_1400.h5, ibrae_geo_140.h5, 

Software Python SaLib, Python in-house software 

Table 7-8.  Sensitivity analysis of IBRAE by IBRAE 

This case was used in [96] as an illustration of the model development process with the assistance 

of sensitivity analysis and parameter optimization. Accordingly, the samples were initially 

generated specifically for Sobol’ indices evaluation. 
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In this report PAWN, Sobol’, RBD-FAST methods were applied to these samples. Correlation and 

regression methods were also briefly considered; however, investigations were focused on 

variance-based and moment-independent approaches. 

The summary of the findings is provided in Table 7-9. Figure 7-16 illustrates slightly differing 

results for several different observation points. Figure 7-17 shows averaged by all observation 

points results for different sample sizes. 
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Figure 7-16.  Sensitivity analysis of IBRAE Groundwater case by IBRAE: outputs head1, head15, 
head30, head37 
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Figure 7-17.  Sensitivity analysis of IBRAE Groundwater case by IBRAE: different number of 
model runs 
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Input 

parameter 

PAWN Sobol’ RBD-FAST Correlation & 

regression methods 

KF1 Small 

significance 

Very small 

significance 

Very small 

significance 

Small (Pearson, 

Spearman, rank 

regression, partial 

correlation) or no 

influence (regression, 

partial rank correlation) 

KF2 Insignificant Insignificant Insignificant Small (partial 

correlation, partial rank 

correlation) or no 

influence (others) 

KF3 Insignificant Insignificant Insignificant Small (partial 

correlation, partial rank 

correlation) or no 

influence (others) 

KF4 Small 

significance 

Very small 

significance 

Very small 

significance 

Small (PEAR, SPEAR, 

rank regression) or no 

influence (others) 

KF5 Insignificant Insignificant Very small 

significance 

Small (PCC, PRCC) or 

no influence (others) 

KF6 Insignificant Insignificant Insignificant Small (PCC, PRCC) or 

no influence (others) 

KF7 Insignificant Insignificant Insignificant Small (PCC, PRCC) or 

no influence (others) 

BC1 Insignificant Insignificant Insignificant Small (PCC, PRCC) or 

no influence (others) 

BC2 Most 

significant 

parameter 

Most 

significant 

parameter 

Most 

significant 

parameter 

Falsely low influence 

by SRC on small 

sample, high by others 

BC3 Small 

significance 

Small 

significance 

Small 

significance 

High influence by PCC, 

small or no by others 

BCtop Insignificant Insignificant Insignificant Falsely high influence 

by SRC on small 

sample, small (PCC, 

PRCC) or no 

influence(others). 

BCbot Small 

significance 

Small 

significance 

Small 

significance 

Falsely high influence 

by SRC on small 

sample, small or no 

influence by others. 

Table 7-9.  SA Results of IBRAE case by IBRAE 

 



 

131 

7.4.5. Case Summary of Sensitivity Results 

The model is relatively simple with a nearly additive and linear behavior. And results of analysis 

by different groups are mostly in good agreement.  

BC2 is clearly the most important parameter. The physical interpretation of this result is that BC2 

defines the flow rate through the wider part of the left boundary. 

The other 2 groups of parameters: BCbot, BC3 and KF1, KF4 (generally in the order listed) show 

small but detectable influence according to the whole variety of methods. Ranking for the 

parameters of secondary importance though may vary subtly among different observation points 

and methods. For example, the significance of BCbot is greater for the observation points that are 

closer to the bottom boundary of the model. Also, the PAWN method with medium statistics ranks 

BC3 lower than KF1 for approximately half of the observations. 

Results on BC1 and BCtop are slightly controversial: variance-based methods rate them as 

insignificant (with contribution less than 0.5%), while their contribution may falsely seem non-

negligible by some other approaches, especially when using the smaller sample sets. Also, 

correlation and regression methods show the minor significance of KF6, while other methods rank 

this parameter as insignificant. 

Results by CUSUNORO, RBD-FAST, PAWN methods on the smallest sample (140 model runs) 

allow detecting the most significant parameter BC2 but seem not reliable enough for screening out 

insignificant parameters.  

Sensitivity indices calculated by Sobol’ method are mostly consistent (at least for the top five 

influential parameters) among different sample sizes and different surrogate models. Sobol’ 

indices without the use of surrogate models, however, have visible numerical issues for samples 

with 140 and 1400 realizations such as slightly negative main indices 𝑆𝑖 or conversely 𝑆𝑖 slightly 

higher than total indices 𝑇𝑖  for almost insignificant parameters. Meanwhile, results look fine for 

these samples with PCE surrogate model used, because the Sobol’ indices are calculated 

analytically in this case. On the other end of the spectrum, there are no sufficient differences in the 

results for 14,000 realizations and 28,000 realizations. The 14,000 data set for 12 parameters seems 

more than enough.  
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8. SUMMARY 

8.1. The Sensitivity Analysis Exercise 

This report has been produced by an informal, international working group working under the 

auspices of Organization for Economic Cooperation and Development (OECD)/ NEA’s 

Integration Group for the Safety Case (IGSC, https://www.oecd-nea.org/rwm/igsc/) that is 

interested in uncertainty and particularly sensitivity analysis (SA) methods with a focus on 

performance or safety assessments for radioactive waste management. This working group has 

collaborated to identify test cases that are the basis of these studies. Participating organizations 

have provided computational simulation run results (tables of inputs and outputs from the runs) as 

a basis for the analyses presented in this report. The case studies to be addressed were identified 

based on a questionnaire developed at the 2017 Albuquerque workshop (see Section 1.1). The 

questionnaire aimed at categorizing the proposed case studies by their features and complexity in 

order to derive an appropriate strategy for the exercise described in this report. In particular, 

questions were asked about the following characteristics (see Chapter 3):  

Phenomenological description. This includes a description of the system being modeled such 

as a repository, the waste forms and engineered barriers, the geology, physical and chemical 

processes being modeled, potential release pathways, etc. 

Input characteristics. The input characteristics refer primarily to various aspects of the 

computational simulations, including the number of parameters being varied, the sampling 

methods used, and the number of runs that were generated. The input characteristics also 

include details about how uncertain parameters are described in the case study: are they 

continuous, categorical, or otherwise discrete inputs? Are there any inputs which vary in space 

and/or time? What probability distributions were used to represent and model the uncertain 

parameters? Are there correlations or other dependencies?  

Output characteristics. The output characteristics focus mainly on the quantities of interest, 

including a description of these quantities, whether the outputs are scalar values or values 

varying in space and/or time, and if there are known features of the output to consider in the 

context of sensitivity analysis. Considerations include features such as non-linearity, non-

monotonicity, discontinuities, or regime changes.  

The four case studies highlighted in this report are: the GRS clay case, the SNL shale case, the 

Dessel case, and the IBRAE groundwater case. Some of the essentials concerning the input 

characteristics and the output features and behavior are summarized in Table 8-1. These four cases 

are less complex than the remaining three. This group plans to perform a second series of SA on 

the three remaining, more complex case studies in order to complete the exercise, an objective of 

which is to derive guidelines for the application of SA methods. The plan is to summarize the 

remaining cases in Volume 2, a companion report which will be issued later.  

 

 

 

https://www.oecd-nea.org/rwm/igsc/
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    GRS clay SNL shale Dessel IBRAE 

groundwater 

Input Number of 

parameters 

6 10 ~20 12 

  Variable type Scalar, 

continuous 

Scalar, 

continuous 

Most are 

scalar, some 

will change at 

a given point in 

time. 

Different 

material-

dependent 

values in the 

different 

domains 

Continuous 

Scalar, 

continuous 

  Dependencies Inputs are 

independent 

Inputs are 

independent 

Inputs are 

independent 

Inputs are 

independent 

Output Type Time series Vary in time 

and space 

Time series Scalar 

  Specifics / 

complications 

None known None known Proven non-

monotonicity 

of diffusion 

coefficient 

Fracture flow 

Switch from 

diffusive to 

advective 

system 

Response 

surface of the 

model many 

local minima 

Table 8-1.  Input and output characteristics of the four cases according to the questionnaire 
replies 

 

We have surveyed sensitivity analysis methods in Chapter 2 and the detailed sensitivity analysis 

results on the four case studies are presented in Chapters 4-7. For each case study, multiple groups 

presented their results using different sensitivity analysis methods and/or different 

implementations of the same method. The breadth and scope of the case studies as well as the large 

variety of sensitivity analysis methods used (e.g. scatterplots, simple correlation coefficients, rank 

correlation coefficients, standardized regression coefficients, main and total effects variance-based 

Sobol’ indices estimated by methods such as EASI, RBD-FAST, distribution-based methods such 

as PAWN, graphical methods like CUSUNORO, and others) provided a rich environment to study 

and compare results. 

The case studies in this report highlighted some practical challenges such as standardization of 

data formats, standardization of graphical results and tables (as the inputs and outputs were 

extensive for some of the cases and we need better ways to quickly assess differences in results), 
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and the need for methods tailored to perform SA on time series data. With respect to the last item 

should be noted: most of the results involved some quantity over time (e.g. concentration as a 

function of time) and so a separate input-output sensitivity analysis was performed for each point 

in the time series. Some of the SA methods presented here can calculate full time series sensitivity 

indicators in a few seconds, but others require significant postprocessing. As many problems in 

this community involve time scales of thousands to millions of years, generating separate SA 

results per time point can add significant postprocessing computational cost to identify how the 

importance ranking for input parameters within a case study may change over time. The question 

then arises about the lessons and conclusions to be derived from such behavior. The SA results 

showed that changes in importance rankings were observed for the case studies, demonstrating 

value in this type of analysis. The issue of how to calculate sensitivity indices for time series data, 

and how to derive meaningful interpretations of the results, remains an open issue, possibly to be 

addressed by autocorrelation models, principal component analysis, or time-dependent surrogates. 

Development of more efficient and appropriate methods for time-dependent sensitivity analyses 

may be a worthwhile problem for future study. 

8.2. Summary Findings for the Four Case Studies 

8.2.1. GRS Case 

This case study had time-varying results where the parameter importance ranking varied across 

time, but some of the parameters were consistently important. The diffusion coefficient in the outer 

clay formation (DiffClay3) has the highest influence on the model output. Most evaluations agree 

that this is valid over the total model time period. For model times below 107 years, the second 

most influential parameter is the diffusion coefficient in the inner clay formation (DiffClay2). For 

model times below 106 years there is no significant influence of any of the other parameters. At 

late times, the influence of DiffClay2 decreases while those of the other parameters increase. Total 

indices reach their maximum values between 106 and 107 years. Parameter interactions seem to 

play a decreasing role at later times.  

When comparing SA methods, the linear sensitivity measures (correlation and regression 

coefficients) calculated by the different partners agree more or less exactly, as all use the same 

algorithms. The calculated values of variance-based sensitivity indices, however, depend on the 

estimation method applied. First-order indices were calculated for this case using EASI/RBD-

FAST, EFAST, PCE and RS-HDMR. The results are not identical but in fair agreement with each 

other as well as with those of the regression/correlation analysis. One item to highlight: while the 

EFAST and PCE results are in a fair agreement, those obtained with RS-HDMR differ 

significantly. This may, at least in part, be due to the fact that RS-HDMR does not really calculate 

the total-order indices but approximates them by summing up the first- and all second-order indices 

of a parameter, neglecting all higher orders of interaction. Indeed, the total-order indices calculated 

by RS-HDMR are always below those obtained with EFAST. Generally, it can be seen that the 

total-order indices of all parameters reach their maximum values between 1 million and 10 million 

years and decrease at later times for this case study. 
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8.2.2. SNL Shale Case 

For this case study, there were peak 129I concentration results at various locations in two layers: a 

sandstone aquifer layer and an aquifer limestone layer. Different parameters were important for 

the two layers. Peak 129I results were calculated as the maximum 129I concentration taken over 

time, so the QoIs and associated sensitivity analyses for this case study were not time-dependent. 

Multiple participants applied linear regression models and calculated correlation coefficients 

(GRS, SNL, IBRAE) and CUSUNORO curves (GRS, TUC). Additionally, SNL applied stepwise 

linear regression and VBD via PCE and GP surrogate modeling, TUC applied Copula distance and 

MIM, and IBRAE applied PAWN and RBD-FAST. Scaling, rank transformations, and log 

transformation were also utilized in some of the analyses.  

Various SA methods agreed in ranking pShale (shale porosity) most important for response 

function 1, which was the Peak 129I concentration at the observation point in the sandstone aquifer 

closest to the repository. The SA methods typically ranked kSand (sandstone permeability) and 

rateWP (mean waste package degradation rate) as the second and third most important parameters, 

however it was not always clear if this significance is meaningful. Sensitivity to kSand was noted 

by multiple participants to increase when rank-based methods were applied. 

In contrast, there was some disagreement for response function 4, the Peak 129I concentration at 

the observation point in the limestone aquifer closest to the repository. Most methods ranked 

pShale highest at this observation point, however PCC (from SNL) ranked kLime (limestone 

permeability) the highest. The linear methods disagreed on the second and third most important 

parameters, rateSNF (spent nuclear fuel dissolution rate) and rateWP. Surrogate model results 

based on a log transformation ranked rateWP as more important, whereas surrogate model results 

based on scaling ranked rateSNF higher with more substantial interaction effects. The PAWN 

results (IBRAE) agreed with other methods on ranking pShale the most important parameter but 

ranked the buffer permeability (kBuffer) as the second most important parameter. The other 

responses are discussed in more detail in Chapter 5.  

In general, the sensitivity analyses across participants identified the same first most important 

parameter but differed on the importance of lower ranked parameters. This may be due to 

differences between methods in detecting variable significance, particularly because the QoIs in 

this case span many orders of magnitude. Variables of secondary importance may need to be 

identified by connecting less clear sensitivity analysis results with physical phenomenology, 

however the variables of secondary importance for this case seemed reasonable. Results also 

tended to differ depending on which transformations were applied to the 129I concentrations. 

Validation or fit metrics, in the context of surrogate modeling or regression analysis, may help 

select the most appropriate transformation to use for sensitivity analysis.  

There was also a lack of consensus between participants on the delineation between sensitivity 

measure values that indicate secondary sensitivity versus sensitivity measure values that indicate 

negligible sensitivity. This highlights a need for development of consensus methods for testing or 

justifying conclusions regarding lower-ranked parameters.  
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8.2.3. Dessel Case 

In this case study, the parameter influences changed over time and the various sensitivity analysis 

methods tended to show this. Several SA methods were applied at various time points to show the 

change in sensitivity over time. Sorption in the embankment (Kd_emb), the time in which the 

infiltrating water flow ramps up (flux_increase_time) and the diffusion coefficient in the waste 

matrix (D_waste_2) clearly showed this behavior, which is expected given the setup of the model. 

The sensitivity indices calculated using regression and correlation methods are in very good 

agreement between all participants. The ranking of parameters varied along the time range, but 

sorption parameters in waste and embankment (Kd_waste_2, Kd_emb), diffusion coefficient in the 

waste matrix (D_waste_2) and flux_increase_time are consistently identified as most important. 

As in previous cases, the calculated values of variance-based sensitivity indices, depend on the 

estimation method applied. However, the results are fair agreement with each other as well as with 

those of the regression/correlation analysis. 

A large part of the output variance in the time span between 680 to 800 years, remains unaccounted 

for by first order effects. The standard set of SA methods did not sufficiently explain this model 

behavior. However, it appears that all methods using surrogate models used to calculate total order 

effects did not capture this very well. The large-sample Sobol-analysis, performed as a benchmark 

for the surrogate-based methods, indicated high 𝑇𝑖 values of flux_increase_time and Kd_emb in 

the period from 750 to 1000 years. 

Special attention should be made to the behavior of the D_waste_2 parameter, as discussed in §6.5, 

this parameter shows a non-monotonic behavior, however, this is not detected by the applied SA 

techniques. 

8.2.4. IBRAE Case 

The results from various methods (correlation coefficients, CUSUNORO, PCE-based Sobol’ 

indices, FAST, PAWN, etc.) were consistent, pointing to one parameter dominating the results 

(flow rate through the widest part of the left boundary, BC2). The model is relatively simple with 

nearly additive behavior. The results of analysis by different groups are mostly in good agreement.  

While boundary condition associated with the largest zone (BC2) is clearly the most important 

parameter, drainage boundary condition BCbot, flow rate through second-largest zone of the left 

boundary BC3, and hydraulic conductivities for two materials KF1, KF4 show small but detectable 

influence according to the whole variety of methods. Results on smallest boundary part (BC1) and 

infiltration (BCtop) are slightly controversial: variance-based methods rate them as insignificant 

(with contribution less than 0.5%), while their contribution may falsely seem non-negligible when 

applying some other approaches, especially when using the small sample set (140 model runs). 

The IBRAE case study included simulation results for numerous increasing sample sizes, from 

140 to 28,000. Though such a large sample size is often not possible for repository cases, the 

relative simplicity of this groundwater model allowed for a very large sample size. This enabled 

participants to assess the stability of sensitivity analysis results with increasing sample size. While 

analyses on the smallest sample size could result in inconsistent rankings for parameters other 
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than, 1400 samples were found to be sufficient especially with the BC2 use of surrogate models. 

Analysis of sample size sufficiency for sensitivity analysis results may not always be possible with 

existing simulation data depending on the sampling scheme that was used, but it could be 

considered when planning an uncertainty analysis.  

 

8.3. Overall Summary 

In summary, we found that the first order variance-based index estimates are now easily generated 

from observational data (i.e. existing data which were not generated by prescribed sampling 

schemes) using a variety of approaches and are one of the main SA approaches. Linear and rank 

correlation coefficients and regression approaches continue to be used and are informative. More 

advanced methods show results mostly consistent with simpler methods but there are important 

differences. Graphical methods such as CUSUNORO also provide additional visualization which 

can show influences over the range of a variable. It might be advisable to start an analysis by 

applying such methods.  

We found consistency between the linear sensitivity measures (correlation and regression 

coefficients) calculated by the different partners but sometimes the variance-based sensitivity 

indices did not exactly agree with the linear sensitivity measures. Also, there were more differences 

in rankings seen across the several variance-based sensitivity indices, such as EASI/RBD-FAST, 

EFAST, PCE and RS-HDMR. Note that some of the variance-based methods rely on Monte Carlo 

sampling of the function (e.g. the simulation) using different sampling schemes while other 

methods rely on surrogate or metamodel approximations of the simulation. All the methods used 

in this study relied on fixed data sets generated by the case study owners: specialized sampling of 

the simulations was not possible. The various approximations and algorithm implementations used 

in the variance-based approaches may account for some of these differences. For surrogate 

methods, the surrogate type may play a role in the accuracy of the estimation of variance-based 

indices.  

Differences in rankings were also seen depending on the use of data transformations. The 

appropriateness of specific transformations is not always obvious, and justification of such 

transformations may be an opportunity for future study. One key feature of parameters and 

responses in repository studies is that they vary by many orders of magnitude. In such cases, it 

may be appropriate to apply a log transformation. However, this may unduly weight smaller 

values. Validation or goodness-of-fit metrics, in the context of surrogate modeling or regression 

analysis, may help select the most appropriate transformation to use for sensitivity analysis or 

identify the best surrogate model. The appropriate use of the log (or any other) transform depends 

on the particular case study and usage; it remains an open issue and interpretation of SA results 

when transformations are used must be done carefully.  

We often found that the sensitivity analyses across participants identified the same first most 

important parameter but differed on the importance of lower ranked parameters. Variables of 

secondary importance may need to be identified by connecting sensitivity analysis results with 

physical phenomenology. Also, most of the SA methods used in this report are factor prioritization 

methods: the linear sensitivity and variance-based indices perform well in identifying the most 
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important variables and their rankings. Some factor fixing approaches such as DGSM (derivative-

based global sensitivity measure) are better suited to screening and identifying low rank variables 

which can be removed from the SA. We did not use the DGSM factor-fixing approach in these 

studies because derivatives were not available.  

Parameter rankings obtained by Sobol’ method are mostly consistent among different sample sizes 

and different surrogate models, however, there are often visible numerical issues for small sample 

sizes such as: negative main indices or conversely main indices slightly higher than total indices 

for parameters with minor or no significance, or sum of main indices more than one. This can be 

due to insufficient samples to accurately calculate the integrals defining the terms in the Sobol’ 

index calculations and/or surrogate inaccuracies. When using surrogates, the methodology of 

Sobol’ indices is applied to a model of reduced complexity: correct surrogate models are always 

approximations of the original models, they have higher smoothness than the original models, and 

typically higher order and unimportant interactions are eliminated in the surrogate models. For the 

PCE surrogate models, the Sobol’ indices are always contained in the range [0,1] by the way the 

indices are constructed from the PCE coefficients. This is an attractive feature and may make PCE 

surrogates preferable in Sobol’ index calculation. However, one always needs to be aware of 

surrogate inaccuracies.  

With Sobol’ index calculations based on surrogates, the surrogate model may induce 

approximation errors which may be significant. To check the reliability of the sensitivity indices 

based on surrogates, one can:  

• Vary the number of samples and the tuning parameters of the surrogate model 

• Perform the calculations with two or more methods of building surrogates and calculation 

methods to see if there is evidence of significant differences in parameter rankings.  

We also note that the choice of sampling method is of paramount importance to the resulting 

accuracy of both surrogate models and values of Sobol’ indices. However, the studies performed 

on these cases used the samples provided by the case owners and sampling method was not a focus 

of investigation in this report.  

There is also a lack of consensus between participants on the delineation between sensitivity 

measure values that indicate secondary sensitivity versus sensitivity measure values that indicate 

negligible sensitivity. For example, some participants regarded a Sobol’ main effect of 0.1 to be 

small whereas others might call a main effect of 0.2 as small with a threshold below 0.1 to be 

negligible. There also is not consensus on thresholds that should be used for secondary significance 

vs. negligible significant for correlation coefficients or other methods, and the thresholds for the 

various SA measures may differ. This highlights a need for development of consensus methods 

for testing or justifying conclusions regarding lower-ranked parameters.  

Note that one goal of these case studies is to help the community identify best practices and lessons 

learned. We anticipate this report to be the first of two volumes, where the second volume will 

describe SA results on more complicated cases, together with a synthesis and recommendations 

on the application of SA in safety cases.  
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