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ABSTRACT

Over the past four years, an informal working group has developed to investigate existing
sensitivity analysis methods, examine new methods, and identify best practices. The focus is on
the use of sensitivity analysis in case studies involving geologic disposal of spent nuclear fuel or
nuclear waste. To examine ideas and have applicable test cases for comparison purposes, we have
developed multiple case studies. Four of these case studies are presented in this report: the GRS
clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. We present the
different sensitivity analysis methods investigated by various groups, the results obtained by
different groups and different implementations, and summarize our findings.
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1. INTRODUCTION

Uncertainty quantification and sensitivity analyses (UQ/SA) carried out in the context of the safety
assessment or performance assessment (PA) of a radioactive waste repository assist in
understanding the system relationships, optimizing resources, and building confidence in the
performance of the system and in meeting certain set requirements (e.g., compliance
demonstrations). Uncertainty management is the process of continuous assessment of the
uncertainties within a repository project, evaluation of their consequences, and of efforts for
reducing, avoiding, or mitigating uncertainties.

Sensitivity analysis, the identification of important variables affecting uncertainty in the
assessment results, is a critical activity in the uncertainty analysis process. [1] lists the following
purposes and contexts in which methods of sensitivity analysis might prove useful:

to build and explore consequence models;

to explore the relationship between science and consequence models;
to support the elicitation of judgmental inputs to an analysis;

to develop efficient computational algorithms;

to design experiments;

to guide the making of inferences, forecasts and decisions;

to explore and build consensus;

to build understanding.

Hence, SA methods can be embedded in different stages of a decision-making context. It is
essential, however, to distinguish between the repository system itself and the numerical model
used to describe it. The latter is just a simplified image of the real system, depending on a limited
number of input parameters that are related but, in general, not identical to the physical variables
governing the system. The real uncertainties have to be mapped appropriately to uncertainties of
the model parameters. Whenever doing numerical investigations one should not lose sight of the
fact that one is actually investigating the model and not the real system.

1.1. Goal of the report

The purpose of this report is to provide summaries of a sensitivity analysis exercise developed by
an international working group. The goal of the exercise is to gain a better understanding of the
strengths and weaknesses of various SA methods, identify cost vs. performance tradeoffs of the
methods, and highlight best practices and lessons learned. Multiple countries participated and
demonstrated various SA methods on a series of case studies. For each case study, each group
presented its results using different sensitivity analysis methods and/or different implementations
of the same method. The breadth and scope of the case studies as well as the large variety of
sensitivity analysis methods used provided a rich environment to study and compare results.

The case studies involve computational models addressing safety assessments for geologic
disposal of radioactive waste. More detail about the cases is presented in subsequent chapters. We
note that many studies have compared sensitivity analysis methods on analytic test functions. For
example, [2] presents a variety of surrogate methods used in variance-based SA calculations and
demonstrates results on canonical problems such as the Ishigami test function. [3] presents results



of finding “effective” dimensions of a model using sampling and SA approaches on three classes
of analytic test functions. [4] presents density-based SA methods which extend the variance-based
approaches that have become extremely popular over the past twenty years. And the recent paper
by Puy et al. [5] provides results of an extensive benchmarking exercise comparing various
implementations of variance-based SA estimators along with comparisons of their performance on
ten test functions based on various factors such as input distribution type, number of runs, number
of pairwise interactions, etc. We support and advocate for more of these studies. In this report,
however, we focus on the demonstration of SA methods on realistic problems that are of interest
to the radioactive waste management community. Demonstration on problems of realistic scope
and scale highlights challenges and aspects that may not be faced on analytic test problems.

1.2. Safety Assessment for Geologic Disposal

The formal concept of a safety case for the long-term disposal of Spent Nuclear Fuel (SNF) and
High Level Waste (HLW) in an engineered facility located in a deep geologic formation was first
introduced by the Nuclear Energy Agency (NEA) [1] . Initial discussion and documentation on the
topic as well as setting of standards continued in [7, 8, 9]. More recently, and in concert with the
development of numerous national safety cases, there have been a number of international
symposia, conferences, working groups, summary papers, and safety standards devoted to
understanding, developing, and/or summarizing the nature, purpose, context, and elements of
safety cases (e.g., [9 — 17]). In these recent summary and overview reports, it is observed that there
is notable convergence in the understanding and development of safety case documents published
by national and international organizations. The following excerpt from [14] (Section 3.1) provides
a definition of a safety case that is current and consistent with the aforementioned documents:

The safety case is an integration of arguments and evidence that describe, quantify and
substantiate the safety of the geological disposal facility and the associated level of confidence.

The concept of a post-closure safety assessment is described by the intergovernmental Nuclear
Energy Agency [15] (Section 5.1) as an iterative set of assessments for evaluating the performance
of a repository system and its potential impact that aims to provide reasonable assurance that the
repository system will achieve sufficient safety and meet the relevant requirements for the
protection of humans and the environment over a prolonged period. A safety assessment, (i)
quantifies the repository system performance for all selected situations and (ii) evaluates the level
of confidence (taking into account the identified uncertainties) in the estimated performance of the
system. As examples, a description of the regulatory frameworks for the U.S. Waste Isolation Pilot
Plant [18] and Yucca Mountain [19] are provided. The U.S. Dept. of Energy Used Fuel Disposition
(UFD) campaign and Spent Fuel and Waste Science Technology campaign (SFWST) have
published safety case overviews relevant to geologic disposal in the U.S. [20, 21].

At a high level, all countries describe uncertainty using qualitative and quantitative uncertainty
management. In the framework of modeling for the purpose of safety or performance assessment,
uncertainty quantification is described in the context of data representation, propagation, and
analysis. That is, first one needs to identify and represent or characterize the uncertain inputs of a
computational model (through distributions, intervals, empirical data). In this report, we note that
inputs, parameters, factors, and variables all refer to the same thing: uncertain inputs to a model.
Then, one needs a method to propagate input uncertainties through the model to obtain



uncertainties on output quantities and results of interest. This is frequently done by sampling
several realizations for the input parameter sets and performing model calculations for each of
them. Finally, the results need to be postprocessed; if the sampling followed a prescribed joint
probability distribution for the model input representing its uncertainty, this is where statistical
analyses are usually done. A related activity is often done concurrently: sensitivity analysis. One
identifies the most important parameters affecting the results through sensitivity analysis. The goal
of sensitivity analysis is to determine the contributions of individual uncertain analysis inputs to
the total uncertainty in analysis results of interest [22, 23]. There is an extensive literature about
the treatment of uncertainty for risk assessment and performance assessment. References [24 — 28]
are representative of this broad field.

1.3. Sensitivity Analysis Working Group

Over the past five years, an informal working group has developed to investigate existing
sensitivity analysis methods, examine new methods, and identify best practices. A series of annual
meetings was held starting with a “Workshop on Handling Uncertainties” in September 2015 at
Harwell, UK, followed by an “International Workshop on Sensitivity Analysis of Final Repository
Systems” in Braunschweig, Germany in October 2016, and then by a “Quantification of
Uncertainty Workshop” in August 2017 in Albuquerque, NM, USA. It was at this latter workshop
in the U.S. where more collaborative work was initiated among the international participants and
organizations, as discussed below.

A follow-on workshop in Brussels, Belgium in October 2018 led to a more formal establishment
of this collaboration during the subsequent Integration Group for the Safety Case (IGSC)
Symposium on the Safety Case in Rotterdam, The Netherlands in October 2018. The sensitivity
analysis group is working under the auspices of Organization for Economic Cooperation and
Development (OECD)/ NEA’s Integration Group for the Safety Case (IGSC, https://www.oecd-
nea.org/rwm/igsc/).

The Uncertainty Quantification workshop held in August 2017 in Albuquerque, USA, led to a joint
sensitivity analysis exercise effort initiated in October 2017, with participation from GRS, Posiva,
SCK-CEN, SNL, and TUC, and later joined by IBRAE as well as by ENSI, Fortum, IRSN and
Nagra as observers. The Sensitivity Analysis subgroup discussed various case studies that could
be examined from a safety assessment context for geologic disposal. These case studies represent
different modelled systems as a function of time, with varying levels of detail, complexity, data
uncertainty, and spatial extent. The Sensitivity Analysis subgroup identified seven test cases
ranked in order of complexity and since then has compared analysis methods on progressively
more complex models. Each case study owner provided input and output datasets and explanation
of the case so that others could use the case to demonstrate their sensitivity analysis approaches.
The group shared results at the next working group meeting—International SA-UQ Workshop—
held in Brussels, Belgium, in 2018. These activities resulted in several papers summarizing interim
results at the International SA-UQ workshop in Brussels in 2018. Further workshops were held in
Berlin (November 2019) and online (March 2020, June 2020).

The concept of the study, the group’s work, and interim results were presented at several occasions,
e. g. at the Integration Group for the Safety Case (IGSC) Symposium held in Rotterdam in October
2018 [29 — 31]. Subsequently, a few members participated in the International High-Level
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Radioactive Waste Management Conference held in (Knoxville TN, April 2019) [32, 33], the 2019
General Assembly of the European Geosciences Union (Vienna, April 2019) [34] and at the Ninth

International Conference on Sensitivity Analysis of Model Output (Barcelona, October 2019) [35—
38].

The focus of the SA working group is on the use of sensitivity analysis in case studies involving
geologic disposal of spent nuclear fuel with the overall aim of providing guidelines for performing
such analyses in the context of safety assessments or safety cases for geological repository
facilities. To examine ideas and have applicable test cases for comparison purposes, we have
selected multiple existing case studies. Four of these case studies which are based on less complex
models are presented in this report: the GRS clay case, the SNL shale case, the Dessel case, and
the IBRAE groundwater case. Multiple groups examined different sensitivity analysis techniques
on each case. We present the different sensitivity analysis methods, the results obtained by
different groups and different implementations, and summarize our findings.

When the working group started to collaborate, we identified several items of interest:

e Exercise planning: identification and description of various test cases, with participating
organizations providing computational simulation run results (tables of runs including inputs
and outputs).

e [Exchange of ideas on SA theory, new developments, as well as practical challenges.

e Evaluation of SA method performance: demonstration of various SA methods on the case
studies.

e Formulate SA guidelines: identification of best practices and lessons learned.

e Produce joint papers, attend conference and symposia.

Overall, this informal group has worked collaboratively to meet the goals outlined above. In
addition to several meetings, we held many online videoconferences which are becoming slightly
better in the era of limited travel. We anticipate this report to be the first of two volumes, where
the second volume will describe SA results on more complicated cases, possibly together with a
synthesis and recommendations on the application of SA in safety cases.

Chapter 2 details the SA methods investigated by the working group. They include correlation
analysis, linear and rank regression, higher-order regression, variance-based indices (Sobol’
indices), and graphical approaches (e. g. using CUSUNORO curves). The variance-based indices
are calculated in a variety of ways. Traditionally, such calculations are based on specific sampling
schemes. The working group, however, focused on existing (given) data and applied other methods
such as EASI, COSI or approaches employing surrogates or metamodels such as Gaussian
processes or polynomial chaos expansion.

Chapter 3 provides an overview of how the cases were selected. The four case studies are the GRS
clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. These are
described in Chapters 4-7, respectively. The SA results by different teams and different methods
are also presented in the chapter where the case is described. Finally, Chapter 8 provides a
summary of the results and ideas about next steps.



2. SENSITIVITY ANALYSIS METHODS

There are a few general texts dealing with sensitivity analysis (SA) [39 — 43]. Sensitivity analysis
and uncertainty analysis are often performed concurrently, but we emphasize they have different
purposes. Uncertainty analysis involves the propagation of uncertainties on input parameters to the
resulting uncertainty on output quantities. This is frequently done with sampling. In sensitivity
analysis, the goal is to identify the most influential parameters affecting uncertainty in the
simulation results. This is often done using samples generated as part of an uncertainty analysis
process.

Uncertainty analysis is the description of the output of a simulation model under input uncertainty.
In order to explore the whole input parameter space, Monte-Carlo methods (MC) are used. Monte
Carlo methods sample the input uncertainty and run the model simulation for each input realization
to obtain a sample approximation of the output distribution. There are other “forward uncertainty”
propagation methods, including reliability methods such as the First-Order Reliability Method
(FORM) and Second-Order Reliability Method (SORM) [44]. These methods are very efficient at
finding tail probabilities. There are also methods such as polynomial chaos expansions and
stochastic differential equations [45, 46], which propagate the uncertainty through the model, but
these can be more intrusive to the codes and have generally not been adopted for performance
assessment codes in the radioactive waste management community.

Sensitivity analysis uses tools for apportioning output properties to the different inputs. For
sensitivity methods, one can roughly distinguish between [47]:

e Local analysis: The model is analyzed locally with respect to a reference/working point,
to identify the steepest gradient as most important direction of change, apportioning local
change to the different inputs.

e Screening methods: The model is analyzed with known bounds on the input parameters,
to identify (screen out) input parameters with little influence, apportioning global change
to the different inputs.

¢ Global methods: The model is analyzed with a known distribution of the inputs,
apportioning the uncertainty in the output to the different inputs.

In this report, we focus on uncertainty analysis and global sensitivity methods as both work with
specified input probabilities generated by Monte Carlo sampling approaches. For linear models,
local and global analysis coincide. Moreover, screening methods may be applied locally, e.g.
varying one factor at a time by a small amount, or globally, e.g. as in sequential bifurcation, where
the model outputs from (carefully chosen) extreme input positions are compared. A table showing
the various sensitivity analysis methods used in analyses of these cases is shown in Table 2-1, with
a categorization of classes of methods. Note that in this report, the terms “parameters”, “variables”,
“factors” and “inputs” are used interchangeably, and all refer to input parameters of a

computational code.
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The problem setting for global sensitivity analysis is twofold [48]: A description of the input
uncertainty is needed, as well as a simulation model representing physical properties. In
accordance with [39] we understand by SA addressing both aspects and considering the input
uncertainty given by probability distributions. There are different serving objectives for



performing global sensitivity analyses. The methods can be framed into different sensitivity
analysis settings [47, 49]:

e Factor prioritization (FP): Finding the most important input parameters.

e Factor fixing (FF): Finding the least important input parameters.

e Trend identification (TI): Identify monotonicity or convexity properties of the model.
e Structure discovery (SD): Uncover additivity, linearity, interactions.

e Regionalized information (RI): Finding active regions of input parameters.

To fix notation, we consider a (deterministic) simulation model g: x = (x1, -, x4) » ¥y = g(x) =
g(xg, -+, xq) = g(xq: x_,) mapping d input parameters into a scalar output. We may split the
inputs into groups where a is a subset of indices of input parameters (the group of interest) and
—a is the complementary index group. The notation (x4: x_4), using Owen’s smush operator [50],
denotes the out-of-order concatenation of functional arguments, vectors and sample matrices. In
case the physical model produces multivariate (e.g., spatio-temporal) output, we assume that g
produces a scalar quantity of interest (maximum of a time series, value at a specific time/location).

We model the uncertainty by considering a d-dimensional random vector of inputs X =
(X1,+, X4). Then the quantity of interest of the model output Y=g(X) is a scalar random variable.
The probability densities of the input fy and hence the marginal input densities f; are assumed to
be known. In case of independent inputs, f(x) = [T%, f;(x;) holds. The density of the output f;
is generally not analytically known, its properties are estimated from an input sample promoted
through the simulation model (Monte Carlo method). The associated cumulative distribution
functions (CDFs) of an individual parameter i, of the full random vector of inputs X and of the
output Y are denoted by Fi, Fx Fy, respectively. Sample matrices use the same notation as the
random variables or vectors, i.e. X € RV*% is an input sample with N realizations
(observations/runs).

Jim Gray of Microsoft Research coined the term Data-Driven Science for unifying empirical,
theoretical and computational paradigms for scientific exploration. Within this framework, we can
interpret simulation using Monte Carlo techniques as a way of getting from (possibly black-box)
models to data. If we employ given data techniques for performing Global Sensitivity Analysis,
then this step might be summarized as data-to-structure. With SA becoming part of a decision-
making context, we obtain a route from simulation to data to information to knowledge to
decisions.

In the radioactive waste management community, with time frames for different (national)
radioactive waste disposal programs and license applications ranging in the order of decades, the
use of data seems to be more persistent than the use of simulation models (with their dependence
on implementation specifications such as programming languages, software packages, operating
systems, hardware, etc.). A re-analysis of the data is possible even if the hardware on which the
simulation model ran has long been put out-of-service.

Hence, this report draws special attention to sensitivity analysis methods that will work on given
datasets (e.g. sample matrices with rows consisting of realizations of the inputs and the associated
output results from a simulation model).



21. Correlation analysis

The Pearson correlation coefficient is a measure of the strength and direction of a linear
relationship between two variables. Given a random pair of inputs/output (X,Y), the correlation

between input factor i and the output is given by p; = p(X;,Y) = \/ﬁ (EX;Y — EX;EY) where

E denotes the expectation and V the variance. Therefore, it compares the mean of the joint
distribution with the product of the marginal means. In linear algebraic terms, it is the cosine of
the angle between the sampled input vector of interest and the sampled simulated output.

2.1.1. Pearson

In the following, we will present key properties of sensitivity methods in standardized fashion,
offering information boxes. The scope entry refers to the use of the method in different settings,
depending on the framing of the analysis. Here we distinguish between factor fixing (FF), factor
prioritization (FP), trend identification (TI), structure discovery (SD) and regionalized information
(RI). The status entry is distinguishing between established methods (e.g. available in spreadsheet
software or available in all sensitivity analysis software), emerging (available in dedicated
sensitivity analysis software), early adopter and experimental. If the method works only under
statistical independence of the random input variables this is remarked under input probability. If
the method may be used to detect statistical independence between single input factors and the
output factor (for use with FF) or if insignificance under this method is not independence this is
found in the notes and caveat sections.

Sensitivity Pearson (Product Moment) Correlation Coefficient

Method

Acronym PEAR Symbol p

Scope SD: Linear Dependence, Additivity; TI: Monotonicity; FP

Type Correlation/Regression

Status Established

Given Data Yes Evaluation Costs Least Squares
Regression

Input Probability | No assumptions, one-dimensional technique

Notes Visual interpretation from scatterplots

Caveats Not a measure of independence

Unclear interpretation in case of dependent inputs
Dependence on probabilistic assumptions sometimes hidden
References [51,52]




2.1.2. Spearman

The Spearman correlation coefficient is similar to Pearson, but instead of measuring the correlation
in the raw values, it measures correlations between the ranks of the values. If one replaces the
inputs and outputs by their ranks (i.e. the smallest values are assigned to 1, the second smallest to
2, the largest but 1 to N-1, the largest to N), the inverse (empirical) cumulative distribution function
of the output can be calculated, V = F; *(Y), where the empirical inverse CDF can be estimated
as the index in the sorted sample (=rank) divided by sample size. The inverse CDFs of the inputs,
U; = F71(X;), are often known but may also be approximated by their empirical versions. One
then performs the sensitivity analysis in these new coordinates which are now bounded between 0
and 1 and uniformly distributed to obtain transformation invariant measures. The most common
of these is Spearman’ rank correlation which is the correlation coefficient between U; and V.

Sensitivity Spearman Rank Correlation Coefficient

Method

Acronym SPEA/SPEAR Symbol p*
Scope SD: Additivity; TI: Monotonicity, FP

Type Correlation/Regression

Status Established

Given Data Yes Evaluation Costs Least Squares

Regression

Input Probability | No assumptions, one-dimensional technique

Notes Visual interpretation from dependograms
Nonparametric technique

Related measures like Kendell T have not been considered

Caveats Not a measure of independence
Unclear interpretation in case of dependent inputs
Dependence on probabilistic assumptions sometimes hidden

References [52, 53]

2.1.3. Partial

Partial correlation indicates the amount of association between two random variables xa and y,
controlling for the effect of other random variables, x-a which may confound a simple correlation
analysis. For partial correlation, one builds two linear regression models (see below). The first is
between xa and x-a and the second is between y and x-.. The Pearson correlation between the
residuals of these two regressions is the partial correlation. This second regression removes the
input factor of interest from the list of feature maps. The partial correlation coefficient provides a



measure of the linear relationship between y and xa with the linear effects of the other variables x-4
removed A version working on ranks is known as Partial Rank Correlation Coefficient.

Sensitivity Partial (Rank) Correlation Coefficient

Method

Acronym PCC/PRCC Symbol

Scope SD: Linear Dependence, Additivity; TI: Monotonicity

Type Correlation/Regression

Status Established

Given Data Yes Evaluation Costs Least Squares

Regression

Input Probability | No assumptions, multi-dimensional technique

Notes

Caveats Not a measure of independence

PRCC is a nonparametric technique

Unclear interpretation in case of dependent inputs
Dependence on probabilistic assumptions sometimes hidden

References [52, 53]

2.2, Regression

Regression is a statistical procedure to estimate a functional relationship between a dependent
variable (the output of interest) and independent variables (the input parameters). A general linear
regression model (also called response surface) assumes a linear dependence between the inputs
and the output which is of the form

n¥) = Z Bipi(X) + ¢

where 1 is the link function, ¢; are the feature maps (also called basis functions), 3; are the
unknown regression coefficients and € is a zero-mean error independent of the inputs X.
Minimizing the mean square error yields a least square regression problem. For this, the images of
the feature maps for the input sample are collected in a design matrix D and the least squares
problem is solved by = (DTD)~*DTn(Y). Note that there are specialized solvers available, so one
should never form this projection matrix explicitly. The prediction from the regression model is
¥y = Df. Other minimization problems (e.g. using absolute sums instead of sums of squares) lead
to slightly different results.
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2.2.1. Linear

For standardized regression coefficients, one uses the standardization for link and features,

n(y) = % and @;(x) = xi;iui and reports ;.
Sensitivity Standardized Regression Coefficient
Method
Acronym SRC Symbol Bi
Scope SD: Linear Dependence, Additivity; TI: Monotonicity; FP
Type Correlation/Regression
Status Established
Given Data Yes Evaluation Costs Least Squares

Regression

Input Probability | No assumptions, multi-dimensional technique
Notes Estimates the same value as PEAR under independence

Visual interpretation from scatterplots

Caveats Not a measure of independence
Unclear interpretation in case of dependent inputs
Dependence on probabilistic assumptions sometimes hidden

References [54, 55]

2.2.2. Rank

Analogous to the Spearman coefficient, one can perform linear regression with inputs and outputs
being transformed to their ranks. Under independence of inputs, the Standardized Rank Regression
Coefficients (SRRC) estimate the same value as Spearman rank correlation. Using ranks yields a
nonparametric technique.

2.2.3. Stepwise

Up to now, we considered only regression models that included one, all, or all-but-one factors.
Especially in a high-dimensional setting, one may also add a single factor at a time to the regression
model, and monitor the change in the coefficients and the goodness-of-fit to decide if this factor is
uninfluential (under a linear model assumption).

The coefficient of determination is one measure of goodness-of-fit that can be applied in a stepwise
analysis. This coefficient is denoted R?. For n simulations, let y; denote the quantity of interest
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from the it simulation, ¥ denote the average of all y; fori = 1,2, ...,n, and ¥, denote prediction
of y; from the linear regression. Then, R? is defined as:

Y=y )?
2ie (i — ¥)?

In a stepwise analysis, R? can be re-calculated after each independent variable is added to the
regression model. If we denote the R? calculated when the j* independent variable is added to the
model as R;?, then the incremental R? for the that variable is R?;}—R?;_; when j>1 and R?; when
j = 1. A high incremental R? for a variable indicates that the goodness-of-fit of the regression
model improved when that variable was added to the model.

R> =1-—

2.2.4. Higher Order

In the regression model, one can include higher order polynomial terms as additional feature maps,
including also cross-product terms to capture interactions. Goodness-of-fit measures then provide
feedback about the model properties. Note that power functions are numerically ill-conditioned,
and one should use orthogonal function systems as a basis for feature maps (see below).

2.3. Variance-based indices

Variance-based indices apportion the output variance to the contributions from various input
parameters. Under input independence each square integrable function can be decomposed into
orthogonal functions (with respect to the input probability),

d
gx) =go + Z gi(x;) + Z 9ij(xi,x;) + Z gi,j,k(xiw lexk) + -+ g12,.a()
i=1 i>1 >

d

=go + Z Z 9a(xa)

i=1 |a|=i

such that the output variance can be decomposed into V[Y] = o% = Z?=12|a|=i6(21 where the
contribution of input group o is defined recursively via [ g, (x,)%f, (X, )dx, = YBca 0"23. It also

holds that V[E[Y|X]] = [ g9u(xe)?fy(x)dx,, the conditional output variance given the input
group of interest is obtained by integration from this functional decomposition. This
decomposition is called functional analysis of variance (ANOVA).

The relative contribution to the output variance is then the variance-based Sobol’ effect for the
2

index group a, S, = % The first order effect is given by S; = Sg;; and the total effect is given by
Y

Ti = Yica S«- Further notions for groups a in this context are the subset importance Y, Sg and

the superset importance Y.4cg Sg. The main effective dimension is Y; Ty = Y.q|alS, where |af is
the number of indices in the group a. The Shapley value Sh; = Yie, %ISO( attributes a fair share to

each input factor with ¥4, Sh; = 1 [50].
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The total effects are the gold standard in a FF setting, whereas the first order effects (also called
correlation ratios) yield information on FP and additivity, and group effects give information on
interactions in SD. The main effective dimension yields information on the complexity of the
model; Shapley values offer further insights on interactions.

2.3.1. Sobol’

Estimation of the variance contribution via the functional ANOVA decomposition is cumbersome.
Sobol’ introduced a special design (later called pick’n’freeze) that allows one to estimate
effectively first and total effects by computing the correlation between the pick’n’freeze sample
output vector and the reference sample output vector: Given two independent input samples X4
and XB and a group a of inputs of interest one has V[E[Y|X,]] = p?(g(X4), g(X&: XE ) V[Y].
Group sizes of one give rise to first order effects, group sizes of d-1 yield total effects. Note that
switching from first to total is accomplished by exchanging A and B sample blocks, without re-
evaluation of the pick’n’freeze sample. Furthermore, Quasi-Monte Carlo Sampling techniques are
used for decreasing the numerical errors in variance estimation.

Sensitivity Sobol’ Method for Variance-Based Sensitivity Effects,

Method Ishigami-Homma-Saltelli method, Jansen estimator

Acronym Pick’n’freeze Symbol Si. T

Scope FP: Functional Dependence; SD: Additivity, Interactions; FF via total
effects

Type Variance-based

Status EmergingT;

Given Data No Evaluation Costs Sample block size

times Dimension

Input Probability | Independent input distributions

Notes Best available estimation technique (within this class) still under scientific
discussion

Extension to group sensitivity possible
Iterative enlargement of sample size possible
T; a gold standard for FF

Caveats S; not a measure of independence

Unclear interpretation in case of dependent inputs
Variance used as measure of uncertainty

For first order effects, algorithms with better convergence properties are
available

QMC for small sample size and large dimension might fail
Quadratic decay in the coefficients only for continuous models
References [39 —41]
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2.3.2. FAST/EFAST

Another approach to variance decomposition is provided by Parseval’s Theorem (a functional
equivalence to the Pythagorean Theorem). Given an orthonormal functional basis, {(pi: R4 > R},

such that g(x) = ¥; Bi@;(X) then 6% = Y; BZ (this is sometimes called spectral energy, hence the
methods are called spectral methods). If the decomposition also contains univariate, bi-variate, tri-
variate, etc. input functions then the individual, pairwise, triple contributions from inputs or groups
of inputs to the output variance can be identified.

The FAST method constructs its functional decomposition with the help of a Fourier
transformation: Each input factor is assigned a frequency. The frequency contribution from the
output in resonance with this input frequency is assigned to first order effects (sum of squares of
the coefficients of the basic frequency and few of its higher harmonics) while the superposition
principle allows for identification of interactions. For total effects, EFAST assigns a high
frequency to the factor of interest while all other factors are set to a low frequency. Then all
variance contributions above a threshold frequency can be assigned the factor of interest and its
interaction with other terms. The base functions used here are all dependent on a single parameter
which is an artificial time argument. We may therefore speak of the realizations being sampled
signals. The FAST methods then separate the output sample variance into noise and signal part,
the latter of which can be attributed to a specific input frequency.

Sensitivity (Extended) Fourier Amplitude Sensitivity Test
Method
Acronym (E)FAST Symbol Si. T
Scope FP: Functional Dependence; SD: Additivity, Interactions; FF via total
effects
Type Variance-based
Status Emerging
Given Data No Evaluation Costs FFT, dependent on
Input dimension for
EFAST
Input Probability | Independent input distributions
Notes Iterative enlargement of sample size not available
Nyquist Frequency of Shannon Sampling Theorem gives precision of
algorithm
Caveats Frequency selection scheme produces sometimes samples of questionable
quality

Variance used as measure of uncertainty
Quadratic decay in the coefficients only for continuous models
References [56 — 58]
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2.3.3. RBD

A simplification of FAST is the RBD method that uses just one basic frequency but permutes the
associated model output for the different inputs. Undoing the permutation associated with factor,
say I, on the output, one can identify via a FFT analysis the output variance in resonance with this
factor. This gives estimates for first order effects.

Sensitivity Random Balanced Design

Method

Acronym RBD Symbol Si

Scope FP: Functional Dependence; SD: Additivity

Type Variance-based

Status Emerging

Given Data No Evaluation Costs Flexible sample size,

FFT

Input Probability | Independent input distributions, also for independent groups of inputs

Notes Groups of inputs may be considered

Iterative enlargement of sample size not available

Caveats Variance as measure of uncertainty
Quadratic decay in the coefficients only for continuous models

References [59]

2.3.4. EASI/COSI

Noting that the permutation needed for RBD can be constructed from an available sample, a given
data technique was developed in [60] which constructs the permutation needed. Again, undoing
the permutation associated with one input factor on the output, one can identify via a FFT analysis
the output variance in resonance with this factor. This gives estimates for first order effects. As
one deals with real signals, the FFT can be replaced with a discrete cosine transformation (DCT).
Then the permutation is obtained by sorting the output using the input of interest as a key.

Sensitivity Effective Algorithm for Sensitivity Indices, Cosine Sensitivity for
Method Sensitivity Indices

Acronym EASI, COSI Symbol Si
Scope FP: Functional Dependence; SD: Additivity

Type Variance-based

Status Emerging
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Given Data Yes Evaluation Costs FFT, DCT

Input Probability | No assumptions

Notes Higher order effects by sorting along search curves in higher dimensions

Under input dependence still interpretable as a goodness-of-fit-measure
for a functional dependence

SALib (Python) lists EASI under RBD FAST

Caveats Variance used as measure of uncertainty
Quadratic decay in the coefficients only for continuous models

References [60, 61]

2.3.5. Use of surrogates or metamodels to calculate Sobol’ indices

A surrogate model or metamodel is a simplified model which is easily evaluated. Hence it takes
the idea of a response surface a step further. One can substitute the metamodel in place of the
computationally costly original model. Some techniques allow one to extract sensitivity
information directly from the representation of the metamodel without further evaluations.
Metamodels need to be trained, tested, and validated. The results obtained using metamodels are
“conditional” to the training data, the training therefore becomes an important factor for the quality
of metamodels. Some techniques allow one to train the metamodel in parallel with the build-up of
the sample from the input/output realizations of the simulation model.

The function V[E[Y|X,]] can be interpreted as the component of the output variance that can be
explained by a functional dependence on X,, or, using the variance decomposition formula,
V[E[Y|X,]] = V[Y] — E[V[Y|X,]], as the average decrease in output variance when one receives
perfect information on X. The relative term, when dividing by V[Y], is therefore a goodness-of-
fit measure/coefficient of determination of the nonlinear regression curve/response surface
@y(x,) = E[Y|X, = x4]. Thus, one can obtain variance-based sensitivity index estimates from
any regression surface / surrogate / metamodeling technique.

2.3.51. PCE

Polynomial chaos expansion (PCE) methods approximate the functional dependence of the
simulation response on uncertain model parameters by representing it as a linear combination of
terms from an orthogonal polynomial basis. If one chooses univariate powers as a starting point
for the regression model, then an orthogonalization with respect to a uniform input distribution
yields shifted Legendre polynomials as an orthonormal basis. For interactions, all product terms
should be included (the design matrix is then composed of the tensor product of the feature maps),
however this might quickly exhaust the available sample size. Some sort of pruning is needed.
High Dimensional Model Representation (HDMR) only considers interactions of order up to two,
while other PCE methods use information criteria for truncating the number of important feature
combinations.
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Sensitivity High Dimensional Model Representation, Polynomial Chaos Expansion

Method

Acronym (RS)-HDMR, (BS)- Symbol Si, Sos T,
PCE

Scope FP: Functional Dependence; SD: Additivity, Interactions; FF via approx.
total effects

Type Variance-based

Status Established, Early Adopter for BSPCE

Given Data Yes Evaluation Costs Multiple Least Squares

Input Probability | No assumptions

Notes Total effects may use d — 1 dimensional regression model

Caveats Variance as measure of uncertainty
Under input dependence, orthogonality in the functional basis may be lost
Total effects are reported for a truncated basis (hence may miss high-
order contributions)

References [45, 62, 63]

2.3.5.2. Gaussian Processes

Gaussian processes are popular metamodels for computational simulations due to their ability to
model complicated functional forms and to provide an uncertainty estimate of their predicted
response value at a new input point. The core idea is based on geostatistical kriging models, where
the responses at input points that are close should be correlated [64]. A Gaussian process (GP) is
a stochastic process for which any finite set of Y-variables has a joint multivariate Gaussian
distribution; a GP is fully specified by its mean and covariance function. Gaussian process
regression not only provides conditional means, but also error bounds on the regression curves,
hence enabling one to obtain confidence intervals for the sensitivity estimates.

Sensitivity Metamodeling via Gaussian Processes / Kriging

Method

Acronym GP Symbol

Scope Metamodel

Type

Status Established

Given Data Yes Evaluation Costs Inversion of Kernel

Matrices
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Input Probability

Notes Any non-given data method may be supplied with GP metamodel
Variance-based sensitivity indicators can be computed efficiently

Error bounds

Caveats Additional to sampling error, a metamodeling error is encountered
Choice of variogram / covariance / kernel function
References [64—66]

2.3.6. Nearest Neighbors Methods

We can combine the ideas behind COSI (sorting the data) and pick’n’freeze design by noting that
a pick’n’freeze design can be approximated by choosing the nearest neighbor (with respect to

different input dimensions and combinations) from an available sample. For first order effects, this

N-1(y o )

251 (V) ~YnG+1)
2

2 ZJN=1(YJ' -3)
of interest. For higher order effects, one may obtain information on the neighborhood of a
realization using the set of p-th nearest neighbors (of minimal distance to the realization under
inspection), Euclidean minimal spanning trees connecting nearest neighbors — trees have one root
and each node except the root has a parent node —, search curves approximating space filling
curves or traveling salesperson solutions where each node (except start and end) of the curve has
one previous and one next element (all distances are taken restricted to the input dimensions of
interest). Then one may order the realizations with the help of these methods in higher dimensions
and use a formula like the above one, using the squared difference of the outputs of between the
current and the previous or next element.

amounts to computing §;=1 where m denotes the permutation that sorts the input

Sensitivity Nearest Neighbor Methods

Method

Acronym Symbol Si, Se> T
Scope FP, FF: Functional Dependence; SD: Additivity, Interactions
Type Variance-based

Status Experimental

Given Data Yes Evaluation Costs Sort/Nearest Neighbors
Input Probability

Notes Needs relatively large sample size

Caveats Does not work with QMC

References [67]
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2.3.7. Methods for Identifying Interactions

Note that the most common usage (current state-of-the-art) is to report main and total effects
indices, but not higher order indices. If one has access to the higher order Sobol’ indices, then
candidates responsible for interactions can be identified. However, as theoretically expected,
orthogonality in the tensor products of the polynomial chaos expansion is not necessarily respected
in sample space, the results are error-prone. [68] suggest using first order effects of higher order
conditional moments. This requires the lower dimensional regression curves to be estimated. [69]
instead suggest removing the direct functional effects by passing to the second order finite
difference of the output, analyzing 2y iy — ¥ngi-1) — Yn(i+1) instead of y where 1 denotes the
permutation that orders the input of interest. Feeding these transformed outputs into a first-order
variance sensitivity estimator gives therefore hints on which input factors participate in
interactions in the simulation models, but one has no information on the composition of the groups
of interacting factors. Indeed, a nearest neighbor estimator for the residual variance is provided

by:

1 N-1 2
6N = 2]Z|'—2 ((Yag=1) = ¥y + Feginy — ¥

Hence the analysis of the first-order effect of the second-order finite difference offers an indication
of whether or not the conditional variance changes. This effect, if present, is also called
heteroskedasticity. Under input independence, a change of the conditional variance is only possible
when there are active interactions.

24. Moment-Independent Sensitivity Measures

What if variance is not an appropriate measure of uncertainty? One idea might be to extend the
analysis to higher moments (skewness, kurtosis). However, then we face the problem of a multi-
attribute decision problem, taking into account all these different sources of information. To avoid
this, one can revert to functional distances. One can compute a distance between the joint
input/output density and the product of the marginal densities, d(f;fy,fx,y), replacing the
difference of expectations, E[Y X;] — E[Y]E[X;], in correlation analysis by an abstract notion of a
distance between density functions.

Instead of the two dimensional distance, one may compute the expected distance between the
output density conditional to the input X; and the unconditional output density, IE[d (fy, fr| Xi)]'

Here, the inner distance measure (also called separation) is a random quantity in X;. Therefore, the
expected distance yields a sensitivity measure quantifying the distance to independence.
Computation requires (kernel) density estimators of the unconditional and the conditional output
density. Instead of considering distances between densities, distances between cumulative
distribution functions or between characteristic functions are also under discussion.

2.4.1. Density-Based: Borgonovo’s §

Using the integrated absolute value as a distance, one has

5= 2 [[ 10D = Frxen ] ey =+ [ G ) = fr G| didy,

For this choice of a distance measure, the two formulations as expected conditional distance and
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as the distance between the product of marginals and the joint density coincide. Moreover, this
measure is invariant with respect to monotonic transformations of the inputs and outputs, hence it
is a nonparametric technique.

Sensitivity Borgonovo Moment Independent Importance Measure
Method
Acronym MIM Symbol i
Scope FF: Functional Dependence; SD: Interactions; RI: via separations
Type Density based
Status Early Adopter
Given Data Yes Evaluation Costs Kernel Density
Input Probability
Notes Distance to stochastic independence
Nonparametric technique
Kuiper measure (range of CDF differences) may serve as proxy
Improved properties with QMC sample
Caveats Conditional kernel density requires large sample size
Large numerical noise
References I70, 74]
2.4.2. Distribution-Based: Pianosi and Wagener

Using the Kolmogorov/Smirnov distance between unconditional and conditional cumulative
distribution function as a separation measure, KS;(x;) = max|Fy (y) —Fy|Xl.=xl.(y)|, one can
y

eliminate the dependence on x; by considering a statistic over these distance values. [71] suggests
mean, median or max. [72, 73] remark that only the choice of using the mean leads to a sensitivity
measure that allows interpretation as a value of information. In this case, given data estimators are
available [72, 73].

Sensitivity Pianosi and Wagener Importance Measure

Method

Acronym PAWN Symbol

Scope FF: Functional Dependence; SD: Interactions; RI: via separations
Type Distribution based

Status Early Adopter

Given Data Yes Evaluation Costs

Input Probability | Independent input distributions
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Notes Given data estimators available

Choice of the outer statistic and the number of conditioning intervals must
be communicated when using PAWN.

Caveats Large numerical noise due to outliers being picked up by the maximum in
KS.

Reference implementation is cost-intensive since it uses double-loop
design.

Different implementations use different approaches of splitting the variability range into
subintervals. Splitting by parameter values could lead (e.g. in the cases with lognormal
distributions) to the occurrence of the underpopulated subsamples, and correspondingly
questionable sensitivity analysis results.

References [71 —74]

2.4.3. Distribution-Based: Flavor Measure

A numerically benign variant that works on CDF distances is currently attracting attention and is

2

given by y; = 6 [[ (Fy () — Fy, Xi=xi(y)) fi(x;)fy(¥)dx;dy. This is a transformation-invariant
version of a Gini mean distance, a Cramér/von Mises distance or an energy distance, replacing the
absolute maximum in the Kolmogorov/Smirnov measure by an integrated squared distance. [75]
show that a given-data estimator of this sensitivity measure can be obtained as an average of
quantile sensitivity measures for which on can employ a first-order variance estimation technique,
replacing the output y € RN with the indicator function I{y < ¥ j)} coding the output quantile %
where y ) is the order statistic of y. With this technique, one circumvents the use of kernel density
estimators. Moreover, with this quantile indicator function, there are strong links to both variance-
based sensitivity and reliability methods. As it is transformation-invariant, it is a nonparametric
technique.

2.5. Graphical Analysis
2.5.1.  Scatterplots

Scatterplots allow for the presentation of univariate dependences. Here, the conditionalization used
in the previously discussed methods is available as localization: The conditional mean is then a
curve through the backbone of the point cloud (and a deviation from constancy indicates a
dependence). The conditional variance measures the spread of the output realizations at a given
point for the input of interest (and a deviation from a constant tube about the conditional mean
signals heteroscedasticity that is a sign of interactions under input independence). A cut though
the scatterplot along a vertical line gives rise to conditional densities of the output. If these differ
from the unconditional output density, then this is a sign of pairwise interaction between the input
of interest and the output.
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Sensitivity Scatterplot, Point Cloud

Method

Acronym Estimator

Scope FP: Linear and Functional Dependence; SD: Interactions; RI: Regional
Effects; TI

Type Visualization technique

Status Established

Given Data Yes Evaluation Costs Space for Presentation

Input Probability

Caveats Human eye tends to over-interpret structures

References

2.5.2. CUSUNORO Curves

One problem with scatterplots is the need to consider all inputs separately which can become

tiresome for simulation models that feature high input dimensions. Hence, one tries to condense
the information of one scatterplot into a curve, so that many scatterplots map into one graph with
many curves. For this, [76] suggests a method that considers the conditional mean below this input
value instead of conditional output mean at a given input value. Monitoring the change as this
value passes through all available realizations then gives the CUSUNORO curve. Deviation from
the zero-line signals importance (more precisely the mean squared gradient of this curve relates to
first order effects), linear segments are related to flat conditional means, and sharp bends show

discontinuities in the data.

Sensitivity Cumulative Sum of Normalized Reordered Output
Method
Acronym CUSUNORO Estimator
Scope FP: Functional Dependence; TI: Curve Orientation; RI: Curve curvature
Type Variance-based
Status Early Adopter
Given Data Yes Evaluation Costs
Input Probability
Notes Variants for use with time series
Significance ellipsoid gives hint on importance
First order effects estimation replaces regression by interpolation
Caveats Variability of conditional mean, higher moments require tricks
References [76]
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2.5.3. Copula Distance, Rank CUSUNORO

Two common themes in sensitivity measures are the comparison of the joint distribution with the
product of marginal and the transformation invariance. Combining both ideas one obtains the

copula distance [0,1] — [—%%], ueu-v—C(uv) where u=F;(x;), v=Fy(y) are the

(empirical marginal) uniform transformations, and C(u,v) = Fy,y (Fi"l(u),ﬁy" 1(17)) is the

empirical bivariate copula between X; and Y. This copula is compared to the product copula that
describes independence. Hence, any deviance of the copula-distance point-cloud from the zero line
denotes dependence in the data. Plotting the Cusunoro curve with respect to the ranks forms a
regression curve through these points [77].

2.5.4. Power Weighted Reordered Output

A way to include local information from the input into the output is to consider weighted means
where the weights depend on the input locations. An idea related to extreme quantiles is to reshape
the marginal input distribution F;(x;)so that extreme values are obtaining more weights,
considering maximum and minimum distributions of £ independent copies of X; have cdfs given

K . . . :
by F;(x;)* and 1 — (1 — Fi(x;)) , respectively. Hence forming a weighted output mean with N

replaced by (#)k - (%)k or (%)k - (%)k for the j™ ranked input, respectively, gives

information on the localization of information. We can map the interval (0,1) continuously into
these weights, so that one can produce a continuous set of curves from putting all weight on the
minimum over the standard mean with equidistributed weights to all weight being put on the
maximum.

2.6. Derivative-Based Global Sensitivity Measures

The gradient of a function carries information about the local behavior. Averaging over the
gradient therefore gives a measure of global sensitivity. If the simulation is given by differential
equations, then this derivative information is readily available. Otherwise, techniques of automatic
differentiation might be used. There are theoretical links to the variance-based total effects. For
more information, consider [78]. Especially, screening may benefit from using derivative-based
sensitivity measures.

2.7. Global Sensitivity Methods and Settings

We have qualified the applicability of different sensitivity methods into settings. For an overview,
we collect this information in a matrix format shown in Table 2-2.
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Factor Factor Trend Structural Regionalized
Prioritization Fixing Identification Discovery Information
Pearson,
Spearman,
Standardized
Regression
Coefficients
Sobol’
Method,
EFAST
RBD, EASI,
COSI
Moment
Independent
Methods
CUSUNORO
Curves
Scatterplots
Table 2-2. Purposes of SA Methods
2.8. Software Availability

Sensitivity analysis has established itself as a part of the scientific modeling and simulation
workflow. While the software coverage for methods based on linear regression is generally good,
variance-based and moment-independent sensitivity measures are not generally found in standard
software products. Different data-analytic programming languages offer toolboxes and script
collections. The coverage of methods differs; some packages are updated more often than others.
There are a few ones which are mainly dedicated to uncertainty quantification.

In Table 2-3 below, we present software tools and a link to a website where appropriate. We note
that some of these tools provide a set of functions or a library from which various elements can be
called, while others are more self-encapsulated, standalone programs which perform an entire
workflow from the sampling to surrogate modeling to sensitivity index calculations. There are a
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few commercial products listed but most of these are publicly available. Note that this is not meant
to be a comprehensive list but to show that there are a significant number of options for people
wanting to use sensitivity analysis methods.

Toolbox/Package Language Website
UQLab MatLab / www.uglab.com
Octave

SAFE (Sensitivity Matlab. Also | www.safetoolbox.info

Analysis for Everybody) R, Python

GUI-HDMR Matlab www.gui-hdmr.de

Sensitivity R cran.r-
project.org/web/packages/sensitivity/index.html

openTURNS Python openturns.github.io/www/

SALib Python salib.readthedocs.io/en/latest/

mads. Model Analysis and | Julia/C mads.lanl.gov

Decision Support

EcoLego Set of www.ecolego.se

toolboxes

SobolGSA C# www.imperial.ac.uk/process-systems-
engineering/research/free-software/sobolgsa-
software/

SimLab C++/R ec.europa.eu/jrc/en/samo/simlab
NOTE: SimLab is currently not available publicly
but it was used by GRS in their analyses.

Dakota dakota.sandia.gov

MUQ: MIT Uncertainty http://muq.mit.edu/

Quantification Library More UQ focused, Bayesian calibration

NESSUS WWW.SWT1.0rg/nessus
More UQ, Reliability and failure estimation
focused.

UQTk C++/Python | http://www.sandia.gov/UQToolkit/

PSUADE github.com/LLNL/psuade
computing.lInl.gov/projects/psuade-uncertainty-
quantification

SmartUQ www.smartug.com/software/sensitivity-analysis/

Table 2-3. UQ Software tools and packages available

25



http://www.gui-hdmr.de/
http://www.ecolego.se/
http://muq.mit.edu/
http://www.swri.org/nessus
http://www.sandia.gov/UQToolkit/

This page is intentionally left blank

26



3. CALCULATION CASE SELECTION

When conceptualizing the sensitivity analysis exercise, an inventory of calculation cases which
might be appropriate to address the aims of the exercise (see Section 1.1) was compiled. A
prerequisite for including a case in the exercise was that the “case owner” was in a position to
provide data files containing input parameter and output values for a reasonable number of
realizations in order to allow the exercise participants to test their own SA methods and tools using
these “existing data” without the need to perform model runs. Furthermore, it was important to
create a set of cases covering a variety of features the SA methods and tools can be tested against.
To this end, a questionnaire was created addressing these features. For each candidate case,
information on the following issues was to be provided:

Phenomenological description. This includes a description of the system being modeled such
as a repository, the waste forms and engineered barriers, the geology, physical and chemical
processes being modeled, potential release pathways, etc.

Input characteristics. The input characteristics refer primarily to various aspects of the
computational simulations, including the number of parameters being varied, the sampling
methods used, and the number of runs that were generated. The input characteristics also
include details about how uncertain parameters are described in the case study: are they
continuous, categorical, or discrete inputs? Are there any inputs which vary in space and/or
time? What probability distributions were used to represent and model the uncertain
parameters? Were any uncertain parameters modeled with approaches other than probability
distributions (e.g. with intervals, fuzzy sets, etc.)? Were there dependencies amongst the inputs
and how were they treated (for example, with a joint probability distribution)? Finally, if a
distinction between aleatory and epistemic uncertainty was made in the case study, it was
requested that the case owners provide a listing of the epistemic vs. aleatory parameters and
describe how the difference was handled in the case study.

Output characteristics: The output characteristics focus mainly on the quantities of interest,
including a description of these quantities and details about whether the output quantities are
scalar values or values varying in space and/or time (e.g. vector valued outputs).

Other aspects of the output that the case owners were asked to address include some analysis
of the model output, such as known specific points concerning the model behavior which might
be of importance for sensitivity analysis. Some examples include non-linearity, non-
monotonicity, discontinuities, and regime changes at input thresholds. Listing parameter
values for which simulation runs failed for physical or numerical reasons is also part of the
output characterization. The case owner was also asked to suggest any issues such as possible
bias or additional uncertainty introduced by a surrogate model or other issues the sensitivity
analysts would find helpful. Finally, the case study owners were asked to provide some basic
detail on the data they provided for the case study in terms of file organization and file formats.

Based on this information, seven cases were identified. It was agreed that each organization would
address these models with their own methods and approaches. This report covers the first four
cases.

27



This page is intentionally left blank

28



4. GRS CLAY CASE
4.1. Case Description

This model system, which was already used as a test model for sensitivity analysis in former
projects [79, 80], describes the release of radionuclides from a generic repository for spent nuclear
fuel (SNF) and high-level vitrified waste from reprocessing (HLW) in a Northern German clay
formation. It is based on considerations made in the context of the project GENESIS [81] and is
described in detail in [79]. The repository is assumed to be located in the middle of the Apt layer
in the Lower Cretaceous Clay in Lower Saxony, see Figure 4-1.
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Figure 4-1. Cross-section of the model area in Northern Germany
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Figure 4-2. Schematic presentation of the model chain
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The model comprises the near field with the waste containers, three clay layers (bentonite buffer,
Apt and Alb), the far field and the biosphere, see Figure 4-2. The far field is modeled as a generic
transport path of about 10 kilometers through a typical porous rock medium, including dilutive
water flow. For biosphere modeling, standardized dose conversion factors are used, which take
account of all relevant exposure paths for a population taking their water from a contaminated
reservoir. The output is the annual effective dose to an adult human individual. As the parameters
for far field and biosphere calculation were not varied in the probabilistic investigations, they are
of no specific interest here.

The radionuclide mobilization and the (purely diffusive) transport through the clay layers were
calculated with the near field code CLAYPOS (version 3.01, [79]). The far field represents a 1-D
transport path through a generic porous medium and was modelled with the code module
CHETLIN (version 4.1). For the biosphere (i. e. calculation of radiological consequences to
humans from radionuclide flows) the code module EXMAS (version 2.1) was used. The simulation
time was 10% years. Though it is unrealistic to assume that a real system could remain stable over
such a long time frame, it was nevertheless decided to consider the total period, as the system’s
isolation capabilities turned out to be so effective that nothing interesting happens during the
“normal” time frame of 1 million years. 100 points in time were evaluated.

Six near field parameters were selected for investigation. These are listed in Table 4-2.

Reference case name Description

Waste form Spent nuclear fuel in specific spent fuel element containers

Engineered barriers Steel container, bentonite buffer

Repository description 1070 boreholes with 5 containers each, reference depth 400 m

Natural system Lower Cretaceous Clays, formations Apt and Alb

Far Field Generic 10-km transport path through a typical rock medium

Biosphere Exposure pathways considered via pre-defined dose conversion
factors, groundwater flow10 m?/yr

Conceptual release Purely diffusive transport through bentonite, Apt and Alp, stylized

pathways far field

Processes modeled Degradation of waste matrix, radionuclide dissolution, solubility in
container water, diffusive transport and retention in buffer and clay
layers, 1-D advective-diffusive transport through far field

Software codes used CLAYPOS3, CHETLIN4, EXMAS2

Reference for full Riibel, A. et al.: Development of Performance Assessment

description of case Methodologies. GRS-259, Braunschweig 2010

Table 4-1. GRS Clay Case Description
4.2, Description of inputs and outputs

The model has six input parameters, for which the names and distributions given in Table 4-2 were
used. Samples of 4096 and 8192 randomly drawn sets of parameter values were provided for the
investigations. All variables were treated independently and in the same way, no correlation was
assumed.
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Input parameter Type Range

DiffClay2: Diffusion constant clay formation 1 Log-uniform 8.3E-12 - 8.3E-10

DiffClay3: Diffusion constant clay formation 2 Log-uniform 8.3E-12 - 8.3E-10

KdBent: Kd value bentonite (U) Log-uniform 4 - 400
KdClay2: K4 value clay formation 1 (U) Log-uniform 2-200
KdClay3: Ka value clay formation 2 (U) Log-uniform 2-200
PorClay: Porosity clay formation 2 Uniform 0.06 - 0.24

Table 4-2. GRS Clay Case Input Parameters

The same ranges are valid for both clay layers, but the actual values for each run are drawn
independently. The element-specific diffusion coefficients in both clay formations as well as the
porosity in formation 2 are valid for all elements except Cl, Se, Mo and I. For these four elements
a fifth of the drawn values for diffusion coefficients and half of the value for the porosity were
used due to anion exclusion. The given ranges for Kq values are valid for uranium; those of the
other elements are coupled to these by formation-specific factors. H, C, Cl, Se, Rb and Pd have Kq
equal to zero.

The investigated model output, as listed in Table 4-3, is the annual effective dose rate to an adult
human individual, calculated using pre-defined biosphere dose conversion factors that take into
account all relevant exposure paths.

Output Quantity | Type Other
Annual effective | time-dependent

dose rate to adult | 194 points in time
individual between 1.000E0 and 9.955E7 years

Table 4-3. GRS Clay Case Output Qols

The model does not include any problematic properties and is not expected to exhibit significant
nonlinearities or discontinuities with regard to variation of the input parameters. The model was
run many thousands of times, based on parameter samples of different sizes and drawn with
different techniques. For the joint sensitivity analysis exercise the results obtained from random
samples with sizes of 4096 and 8192 as well as an EFAST sample of size 8214 were provided.

4.3. Salient features and behavior of the model

The scatterplots for the six parameters of the clay system are presented in Figure 4-3 for a model
time point of 10° years on the basis of 512 runs (random sample). Even with this small sample size
it can be seen that the model output, the annual dose rate in Sv/year, is distributed over many orders
of magnitude and obviously, only two of the parameters — the diffusion constants in the two clay
regions — have a clear influence.
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Figure 4-3. Scatterplots for the clay system, 108 years

The equivalent scatterplots for the system at the end of the calculated scenario are presented in
Figure 4-4. The points concentrate below the value of 3-10° Sv/yr, which seems to be an upper
limit. All parameters seem to have a certain influence on the model output.

10 10° 10

107 107 107 -
E H 3
3 3 3
3 E] 3
2 10" r 2 10" " 2 10"+ -
K K] K]
2 E E

107~ + 107 S 107 S

107 . . : 10 " . 10% . : .

10 10" 107 10° 107 10" 10" 10° 10° 10' 10°
DiffClay2 DiffClay3 KdBent

10 10° 10

107 o 107 - 107 -
E H 3
3 3 3
3 E] 3
2 10" = 2 10"+ E ° 10" -
K K] K]
2 E E

107~ + 107 L 107 -] L

10% — : 10% ‘ — 10% \ N \ \

10° 10" 10° 10° 10° 10' 10° 10° 0.05 0.2 0.25

0.1 0.15
KdClay2 KdClay3 PorClay

Figure 4-4. Scatterplots for the clay system, 108 years

The scatterplots seem to suggest that during the relevant assessment period of 1 million years the
system is predominantly controlled by the diffusion in the clay regions, while the sorption and the
clay porosity gain some importance only in the very late phase, in which the model is no longer
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valid for describing the reality and which is interesting only for model understanding. This,
however, might be a misinterpretation, as simple scatterplots are not appropriate for showing
coupled influences of parameters. Since the individual dots look all the same and indicate the value
of only one parameter, it is not discernible whether or not there is a tendency to produce higher or
lower model output if two or more parameters act together.

Figure 4-5 shows how the maximum, the mean and the median of the model output develop over
time. The figure was made on the basis of 2048 random runs.
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Figure 4-5. Time-development of maximum, mean and median of the clay system
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44, Sensitivity Analysis Results

4.4.1. Results from GRS

GRS performed a lot of investigations with this model [80]. For the purpose of the report at hand,
some basic investigations are presented as described in Table 4-4.

GRS Clay

Description

Sensitivity Analysis Method

Scatterplots, CUSUNORO,
Linear correlation, linear regression, rank
correlation, rank regression,

EFAST, EASI,
RS-HDMR [83, 84]

Sensitivity measures generated

Pearson CC, Spearman RCC, SRC, SRRC, S; and T;

Special considerations

(None)

Surrogate models used

Surrogate model included in RS-HDMR software

Transformations

(None)

Qols addressed

Annual dose rate to an adult human individual

Number of samples used

Random 4096, Random 8192, EFAST 8214

Table 4-4. Sensitivity analysis of GRS clay model by GRS

Table 4-5 and Table 4-6 present the calculated sensitivity measures for two different points in time,
namely 1 million years and 100 million years. For each sensitivity measure the three leading
parameters are marked in red, green and blue. All indices agree about the parameter DiffClay3
being the most important one at both points in time. On the second rank DiffClay2 appears at 1
million years and KdBent at 100 million years. The further ranking depends on the method of

analysis.

Input Pearson Spearman Regression Rank regression
parameter CC RCC SRC SRRC

10yr | 10%yr [ 10°yr | 10%yr [ 105yr [10%yr | 10%yr | 108yr
1. DiffClay2 0.206 0.111 0.270 0.195 0.204 0.116 0.287 0.208
2. DiffClay3 0.258 0.579 0.907 0.761 0.257 0.587 0.912 0.761
3. KdBent -0.014 | -0.265 |0.002 -0.245 | -0.013 | -0.274 ] -0.001 | -0.242
4. KdClay2 -0.038 [-0.118 [-0.012 |-0.146 |-0.026 | -0.150 | 0.000 -0.121
5. KdClay3 -0.032 [-0.131 ]-0.008 ]-0.222 ]-0.018 |-0.146 |-0.001 |-0.217
6. PorClay 0.041 0.123 0.022 0.149 0.037 0.131 0.020 0.147

Table 4-5. Correlation-/regression-based SA of GRS Clay model by GRS (Random 4096)
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Input Si Si T; Si Ti
parameter | (EASI) (EFAST) (EFAST) (RS-HDMR) | (RS-HDMR)
10°yr [10%yr [10°yr [10%yr |10°yr |10%yr |10%yr |10%yr [10%yr [10% yr
1. DiffClay2 (0.047 [0.050 [0.078 [0.063 10.829 10.193 10.052 ]0.056 [0.587 0.109
2. DiffClay3 [0.093 [0.510 [0.178 ]0.530 ]0.857 ]0.782 10.157 ]0.513 ]0.706 [0.638
3. KdBent 0.004 10.083 10.000 [0.095 [0.040 0.213 ]0.001 ]0.088 10.015 [0.153
4. KdClay2 10.004 10.025 ]0.000 1]0.020 ]0.030 ]0.066 [0.001 [0.019 [0.016 [0.040
5. KdClay3 10.004 [0.026 [0.000 [0.024 [0.042 [0.098 10.001 ]0.021 ]0.012 ]0.060
6. PorClay (0.003 [0.025 (0.001 (0.016 [0.085 (0.053 ]0.001 ]0.016 ]0.013 ]0.032

Table 4-6. Variance-based SA of GRS clay model by GRS (EASI: Random 4096, EFAST: 8214)
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Figure 4-6 and Figure 4-7 show the time-development of the correlation-/regression-based
sensitivity indices and the variance-based indices of first and total order. The methods agree
satisfyingly about the sensitivities and show the same tendencies, although there are considerable
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differences in detail at specific points in time. The total index curves obtained from the EFAST
and RS-HDMR methods, however, are not in a good agreement, which shows that there are still
shortcomings in the calculation schemes.

All applied sensitivity analysis methods agree qualitatively in that they find very low sensitivity
of the model to all six input parameters in the time phase up to 1 million years. Only the diffusion
coefficients in the clay layers seem to indicate a certain sensitivity, while the sensitivity indices
for the other parameters are nearly zero. The variance-based first-order analysis does not recognize
any significant sensitivity of parameters 4 to 6 in the "early" time frame. Interestingly however,
the correlation or regression analysis detects a low systematic sensitivity for these parameters, if
performed directly on the model output values, but it is not visible in their rank-based forms. This
can be interpreted as a hint that there is a certain effect of these parameters only on the highest
model output values, which is essentially mitigated by rank transformation.

In the very long time-frame, all methods detect an increasing sensitivity of the second parameter
(DiffClay3). At the end of the model time, the first-order index of this parameter is calculated as
~0.5. Also, the other parameters, specifically parameter 3 (KdBent), gain more importance during
the late time period.

At the time of 10° years, the sum of all S; is far below 1, which means that there are considerable
parameter interactions. The EFAST analysis shows that the total indices of parameters 1 and 2 are
high, while the others are close to zero. From this, one can conclude that the model is dominated
by interaction of these two parameters.

Physically, this can be understood, as the diffusion coefficients in both subsequent clay layers have
to be high to produce a high radionuclide outflow at an "early" time. If in one of the layers there
is low diffusion, this layer acts as a retarding barrier, considerably reducing the influence of the
other one. At very late times, however, the system is dominated by parameter 2, which is the
diffusion coefficient in the outer clay layer. The long time is in any case sufficient for the long-
lived radionuclides to traverse the inner clay layer, so that the importance of the interaction with
DiffClay2 decreases considerably. The above-mentioned observation that at 10° years parameters
4 to 6 seem to have a small but detectable influence on the highest model output values can also
be understood physically, as such values result from those rare situations that allow significant
radionuclide release, and only these can be influenced at all by the non-dominating parameters.
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Figure 4-8 shows the time-evolution of the 2nd-order sensitivity indices calculated with the RS-
HDMR metamodeling method (to yield significant results this method needs careful adjustment of
the polynomial orders taken into account, but this is a complex topic, which we do not discuss
here, we used k = 10, [ = 5). Obviously, the only interaction that plays a significant role is that
between the diffusion coefficients in the two clay layers. This can be understood as it needs a high
diffusion coefficient in layer 2 to allow the diffusion in layer 3 to become significant at all.

4.4.2. Results from SNL

GRS Clay Description

Sensitivity Analysis Method Surrogate Modeling, PEAR, SPEAR
Sensitivity measures generated | Si, 77, Pearson CC, Spearman RCC
Special considerations

Surrogate models used PCE (order 5), GP

Transformations Rank

Qols addressed Annual dose rate to an adult human individual at 194 time
points

Number of samples used 4096 (non-GP surrogate methods) or 1024 (GP)

Table 4-7. Sensitivity analysis of GRS Clay case by SNL

The sensitivity analysis performed by SNL on the GRS Clay case shown in Table 4-7 included
calculation of the PEAR (Figure 4-9), SPEAR (Figure 4-10), PCC, and PRCC (Figure 4-11)
sensitivity measures. A figure is not included for the PCC results because they are very similar to
the PEAR results. Sobol’ indices were also estimated using an order 5 PCE surrogate model fit to
4096 simulations or a GP model fit to 1024 simulations. The main Sobol’ index estimates from
the PCE surrogate model are plotted in Figure 4-12 and the total Sobol’ index estimates from the
PCE surrogate model are plotted in Figure 4-13.

At 10% years into the simulation, the sensitivity measures from all the sensitivity analysis methods
applied by SNL are highest for DiffClay3. The independent variable with the second highest
sensitivity measure is DiffClay2. None of the other independent variables appear to have a
significant effect at 10° years. The methods identify DiffClay3 and KdBent as the most important
variables at the end of the simulation (10® years).

37



The difference between the S; (Figure 4-12) and the 7: (Figure 4-13) measures indicates that there
are significant interaction effects according to the PCE model. Estimates of dominant 2nd and 3rd
order interaction effects are listed in Table 4-8. At 10° years, the dominant interaction is between
the diffusion variables. The Sobol’ index for this interaction is an order of magnitude higher than
the other interaction indices. At 10® years, there is no dominant interaction, though interactions
between the diffusion and Ka variables appear to be more important than interactions involving
porosity.

The GP surrogate model construction does not work well with more than about 1000 samples, so
the number of simulations used to fit this model were reduced to 1024 compared to the 4096
samples used for the other methods. Even with this restriction, it takes substantially longer to
estimate sensitivity measures with the GP model than any of the other methods. The results from
the GP model also did not offer additional insights beyond the interactions identified by the PCE
model.
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Figure 4-9. PEAR sensitivity results over time for the annual individual dose rate Qol from the
SNL analysis of the GRS Clay case. Each axis in the plot highlights one of the independent
variables

38



PorClay DiffClay2

1 1
9 0.5F 1 0.5}
‘ ERIREH]|
__._—-"—_-_'
5 ol e
w
-05f {1 -osf
A R
108 108 107 108 10° 108 107 108
] DiffClay3 ] KdBent
%
woo 0 — ]
w
0.5 0.5
-1 L L L -1 L L L
10° 10° 107 108 10° 108 107 108
1 KdClay2 ) ] KdClay3
0.5F 1 0.5}
x|
w0 — ] 0 i
w —\_—/
05k 1 -05r
-1 L L L -1 L L L
10° 10° 107 108 10° 108 107 108
Time (years) Time (years)
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SNL analysis of the GRS Clay case. Each axis in the plot highlights one of the independent
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Figure 4-11. PRCC sensitivity results over time for the annual individual dose rate Qol from the
SNL analysis of the GRS Clay case. Each axis in the plot highlights one of the independent
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Figure 4-12. Main Sobol’ index sensitivity results over time for the annual individual dose rate Qol
estimated using an order 5 PCE surrogate model. Results are from the SNL analysis of the GRS
Clay case. Each axis in the plot highlights one of the independent variables
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Figure 4-13. Total Sobol’ index sensitivity results over time for the annual individual dose rate Qol
estimated using an order 5 PCE surrogate model. Results are from the SNL analysis of the GRS
Clay case
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Interaction Si (PCE) | Interaction Si (PCE)

10° years 10® years
DiffClay2, DiffClay3 5.03E-01 | DiffClay3, KdBent 4.31E-02
DiffClay2, DiffClay3, KdClay2 3.53E-02 | DiffClay3, KdClay3 3.76E-02

DiffClay2, DiffClay3,

KdBent 3.00E-02 | DiffClay2, DiffClay3, KdBent | 3.68E-02

PorClay, DiffClay2, DiffClay3 2.45E-02 | DiffClay2, DiffClay3 1.90E-02

DiffClay2, DiffClay3,

KdClay3 1.83E-02 | DiffClay3, KdBent, KdClay3 1.45E-02

Table 4-8. Interaction terms from sensitivity analysis of GRS Clay case by SNL

4.4.3. Results from TUC

The sensitivity analysis methods used by TUC are shown in Table 4-9 with the results listed in

Table 4-10.
Case Name Description
Sensitivity Analysis Method Linear regression, EASI, CUSUNORO, PCE, MIM
Sensitivity measures generated SRC, §; first order, S;, second order, Borgonovo delta
Special considerations Polynomial chaos uses harmonic base functions

Surrogate models used

Transformations Second order finite difference for interactions
Qols addressed SA for each time step

Number of samples used 4096 / all

Dataset mc4096-6-siton-r*

Software MatLab/Octave: in-house software

Table 4-9. Sensitivity analysis of GRS Clay by TU Clausthal

Input parameter CUSUNORO SRC (at EASI (at LASI (Harmonic
t =10% yrs) | t =108 yrs) | PCE)

DiffClay?2 Minor, nonlinear, +, A1- .05 Early interaction
effects at 33% between 1 &2 (.20)

DiffClay3 Major, nonlinear, +, .58- 52 Early interaction
effects at 90% (early), between 1 &2 (.20)
66% (late)

KdBent Minor, linear, - -.28+ .08

KdClay? Small, - - 11+ .03

KdClay3 Small, - -.12+ .03

PorClay Small, + A2+ .03

Table 4-10. SA Results of GRS Clay by TU Clausthal
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The Cusunoro curve [82] contains information from both linear analysis (local sign of changes and
global monotonicity property), as well as nonlinear analysis (SRC? # S;) signals nonlinear
contributions). All the methods agree on rankings.
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Figure 4-14. Time-Dependent CUSUNORO plots. Dark gray codes early, light gray late times.

Figure 4-14 demonstrates the use of CUSUNORO curves. Monotonicity properties are visible,
detected by curves always above or below 0. Non-linear behavior is visible by sharp bends in the
curves.

Moment-independent methods see DiffClay3 as most important, followed by DiffClay2 (up to
t =107 years). From 107 years, parameters 5 and 3 gain importance. As this increasing behavior
stretches over the end of the simulation time, one needs to argue. As MIM do not differentiate
between parameters reducing or amplifying output effects, we might see parameters beneficial to
system performance.

For interactions, TUC analyzed the first order effect on second finite differences of the (reordered)
output using the method sketched in Section 2.3.7. Here, heteroskedasticity (variable variance) is
used as a proxy for interaction effects. Heteroskedasticity is a measure for the variability of the
conditional variance, visible as inhomogeneity of the scatterplot. If for some fixed value of the
parameter of interest the output values are widely spread, there is considerable influence of other
parameters. If the scatter range changes over the parameter interval, this is a strong hint to the
presence of interactions with other parameters. Figure 4-15 reports the rankings obtained from
quantifying the sensitivity of the residual variance for each time-step. Lighter shades of gray
indicate higher heteroskedasticity and with that a stronger suspicion of interactions. For the first
10 time-steps the ranking does not change from the default, most likely due to a zero output of the
transport simulation. It also additionally suggests interactions involving parameters 1 and 2 (up to
time 4-107 years) and late interactions involving parameters 2 and 3. However, it should be noted
that this method suggests the presence of interactions, but not that these parameters actually
interact.
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Figure 4-15. Heteroskedasticity: higher order effects may be due to interactions with parameters 2
and 5

From a linear analysis, the influence of parameter 6 is increasing at the end of the simulation time:
Again, this needs careful arguments in commenting on possible extrapolation of the behavior.

4.4.4. Results from IBRAE

Case Name GRS Clay
Sensitivity Analysis Method PAWN, RBD-FAST, Correlation and regression
Sensitivity measures generated PAWN index, S; first order, Pearson correlation,

Spearman rank correlation, partial correlation,
partial rank correlation, regression and rank
regression coefficients

Special considerations Mean and median KS for PAWN. Number of
conditioning intervals n = 8.

Surrogate models used

Transformations

Qols addressed SA for each time step, SA for peak value, SA for
integral

Number of samples used 8192,4096

Dataset mc8192-6-siton-r SD row.dat, mc4096-6-siton-
r SD row.dat

Software Python SaLib, Python in-house software

Table 4-11. Sensitivity analysis of GRS Clay by IBRAE

The sensitivity analysis by IBRAE as documented in Table 4-11 was performed using both
available datasets (4096 and 8192 model runs). The summary of results is provided in Table 4-12.
Figure 4-16 through Figure 4-21 demonstrate results by PAWN and RBD-FAST methods for
different sample sizes. Note that RBD-FAST is identical to EASI in the software implementation
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used. The results for the correlation- and regression-based method are mostly consistent with the
results of other groups, so figures for them are not shown.

Overall sensitivity indices for DiffClay3 are the highest, the second significant parameter is
DiffClay2. However, the differences for the different methods and sample sizes occurred in the
relative significance of the DiffClay2 and DiffClay3 at the "early" time steps. DiffClay3 indices are
higher according to the RBD method, while according to the PAWN method DiffClay3 indices are
equal to DiffClay2 on the 8192 sample, and their mutual ranking fluctuates on the sample of 4096
realizations. Another ambiguity among different methods and sample sizes regards the ranking of
the parameters of secondary significance (DiffClay2, KdBent, KdClay3) at the end of the
simulation (10® years).
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Figure 4-16. Sensitivity analysis of GRS Clay case by IBRAE: PAWN method (mean statistics,
“dummy” parameter subtracted), 4096 realizations
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Figure 4-17. Sensitivity analysis of GRS Clay case by IBRAE: PAWN method (median statistics,
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Figure 4-19. Sensitivity analysis of GRS Clay case by IBRAE: PAWN method (mean statistics,
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Figure 4-20. Sensitivity analysis of GRS Clay case by IBRAE: PAWN method (median statistics,
“dummy” parameter subtracted), 8192 realizations
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Figure 4-21. Sensitivity analysis of GRS Clay case by IBRAE: RBD-FAST method, 8192
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Input PAWN RBD-FAST Correlation & regression
parameter methods
Parameter 1 Overall small Overall small Second significant parameter for
DiffClay?2 significance (~0.15 | significance integral and peak value by

for integral and (~0.08 for regression and partial rank

peak value).

One of only 2
influencing
parameters at early
stages (10°<t<10°

integral and peak
value).

One of 2 present
parameters at
early stages

correlation methods (+0.5+0.75).

years) (10°<t<10°
years)
Parameter 2 Most significant at | Overall Most significant for integral and
DiffClay3 t>10° years (0.25- | dominating peak value by whole group of
0.45, 0.35 at the significance methods (+0.5+1).

end of simulation),
for integral and
peak value.

(~0.1 at early
stages, 0.5 at the
end of
simulation)

Parameter 3
KdBentonitl

Insignificant at
t<10° years.
Second
significance for the
end of simulation
(0.2)

Insignificant at
t<10% yreas.
Second
significance for
the end of
simulation (0.09)

Insignificant for integral and peak
value by regression method, small
significance by the rest (-0.1+0.3)

Parameter 4
KdClay?

Insignificant at
t<10° years.

Small significance
for the end of
simulation (0.1)

Insignificant at
<10 years.
Small
significance for
the end of
simulation (0.05)

Insignificant for integral and peak
value by regression method, small
significance by the rest (-0.1+0.25)

Parameter 5
KdClay3

Insignificant at
t<10° years.
Third significance
for the end of
simulation (0.18)

Insignificant at
t<10° years.
Small
significance for
the end of
simulation (0.02)

Insignificant for integral and peak
value by regression method, small
significance by Pearson, Spearman,
Partial correlation, Rank regression
(-0.1+0.25), medium significance
by Partial rank correlation (-0.6)

Parameter 6
PoroClay

Insignificant at
t<10° years.

Small significance
for the end of
simulation (0.05)

Insignificant at
t<10° years.
Small
significance for
the end of
simulation (0.02)

Insignificant for integral and peak
value by regression method, small
significance by Pearson, Spearman,
Partial correlation, Rank regression
(+0.1+0.15), medium significance
by Partial rank correlation (+0.55)

Table 4-12. SA Results of GRS Clay by IBRAE
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4.4.5. Results from POSIVA

The overview of the analyses conducted by Posiva is presented in Table 4-13. The transformation
applied for Quantity of Interest (annual dose rate to an adult human individual) in addition to rank
transformation is to consider maximum (or peak) dose across all time points in each realization.
For this transformation, the motivation is to understand the behavior of the upper bound of model
output because the maximum dose rate is typically an interesting quantity occurring at different
times in different realizations. The same analyses are conducted for the maximum dose rate
distribution in order to study importance of input parameters on the maximum of the Qol also.

GRS Clay Description

Sensitivity Analysis Method Linear correlation, linear regression, rank correlation, rank
regression, EASI

Sensitivity measures generated | PEAR, SPEAR, SRC, SRRC, §;

Special considerations -
Surrogate models used -

Transformations Rank, Qol maximum over time points

Qols addressed Annual dose rate to an adult human individual at 194 time
points

Number of samples used 4096 and 8192

Software Ecolego software and Sensitivity Analysis toolbox

(https://www.ecolego.se/)
Table 4-13. The overview of the analysis details conducted by Posiva for the GRS Clay Case

The summary of results with the applied methodology is presented in Table 4-14 and Table 4-15
for the dataset with 4096 samples. The selected time points are 10° and 10® years based on time
evolution of model output (see Section 3.3) and they represent the early phase, where the model
output increases above zero and the last calculated time point. The highest model output values
are captured by observing the maximum values of the output and applying the presented methods
on the resulting distribution. These results are presented in the "Max" column because the time
point varies in each realization.

Input PEAR SPEAR PCC
parameter

108yr [ 10%yr | Max | 10%yr [ 10%yr [ Max | 10%yr | 10%yr Max
1. DiffClay2 0.206 [0.116 ]0.233 ]0.265 [0.195 [0.287 | 0.211 0.151 0.274
2. DiffClay3 0.258 10.587 [0.502 [0.889 [0.761 [0.809 | 0.263 0.625 0.529
3. KdBent -0.014 [ -0.274 1 -0.165 | 0.001 [ -0.245|-0.195 | -0.014 | -0.345 -0.196
4. KdClay2 -0.038 [ -0.150 | -0.135 | -0.013 | -0.146 [ -0.171 | -0.027 [ -0.161 -0.134
5. KdClay3 -0.032 | -0.146 | -0.151 | -0.010 | -0.222 | -0.307 | -0.019 | -0.179 -0.163
6. PorClay 0.041 [0.131 ]0.098 |0.022 [0.149 [0.147 ] 0.040 0.168 0.114

Table 4-14. Part 1/2 of sensitivity analysis measures produced by Posiva for the GRS Clay Case.
The coloring indicates the two parameters with the highest absolute values of each sensitivity

measure (red and blue are applied for positive and negative values, respectively)
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Input SRC SRRC Si (EASI)
parameter

10°yr [ 10%yr | Max 106yr | 108yr | Max 10°yr [ 10® yr | Max

1. DiffClay2 { 0.204 [ 0.111 ] 0.226 | 0.281 [0.208 | 0.298 | 0.044 | 0.046 | 0.061
2. DiffClay3 [ 0.257 10.579 [0.495 [0.894 [0.761 [0.812 [0.090 [0.508 | 0.256
3. KdBent -0.013 | -0.265 [-0.159 [-0.002 [-0.242 [-0.193 [0.001 [0.080 | 0.039
4. KdClay2? |-0.026 |-0.118 [-0.107 {0.000 |-0.121 [-0.146 [ 0.001 [0.022 | 0.019
5. KdClay3 |-0.018 [-0.131 | -0.131 | -0.003 [-0.217 | -0.299 ] 0.001 | 0.023 | 0.025

6. PorClay | 0.037 0.123 0.091 |0.020 0.147 0.144 [ 0.000 | 0.022 | 0.008
Table 4-15. Part 2/2 of sensitivity analysis measures produced by Posiva for the GRS Clay Case.
The coloring indicates the two parameters with the highest absolute values of each sensitivity
measure (red and blue are applied for positive and negative values, respectively)

Sensitivity analysis methods applied here are only correlation and regression analyses. The values
of correlation measures as a function of time were studied in all time points but deemed not
necessary to present for this summary. Also, similar behavior of the sensitivity methods applied
here were observed with the dataset of 8192 samples and separate conclusions are not drawn.

Overall, the measures agree qualitatively in that they show relatively low sensitivity of the model
to all six input parameters in the time phase up to 1 million years (DiffClay2 and DiffClay3 indicate
only some sensitivity while the contribution of other parameters seems to be close to zero).
Although the sensitivity indices show low values up to 1 million years, the correlation or regression
analysis are (almost) systematic within the applied sensitivity measures. The coefficient of
determination (so-called R?) values in the "early" time frame stay relatively low with about 0.6 at
maximum for PEAR, indicating low linear correlation between the output and input parameters.

At the end of the full time-frame (10%years), all applied methods show an increasing sensitivity of
the DiffClay3 parameter compared to other parameters. Also, KdBent gains more importance
during the late time period, being the parameter with the lowest negative coefficient against the
output. In terms of first-order sensitivity indices (S;), DiffClay3 is clearly the most important
parameter for the model output but because the sum of indices is largely below 1, the interactions
between parameters are evident. Further analyses would be needed to examine the contribution of
other parameters with the DiffClay3 parameter to the model output.

The maximum of the output is clearly sensitive also to DiffClay3 but also DiffClay?2 is important.
From the negative sensitivity measures against the model output, contributions of KdBent and
KdClay3 are the most important but exact order of importance remains uncertain due changes in
measures with non-transformed and rank-transformed model output.

4.4.6. Case Summary of Sensitivity Results

The system was analyzed by the different partners using a variety of sensitivity analysis methods.
In view of identifying the most influential parameters, the results are in good agreement with each
other and yield the following statements:

The diffusion coefficient in the outer clay formation (DiffClay3) has the highest influence on the
model output. Most evaluations agree that this is valid over the total model time period.
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For model times below 107 years, the second most influential parameter is the diffusion coefficient
in the inner clay formation (DiffClay?2).

For model times below 10° years there is no significant influence of any of the other parameters.
At late times, the influence of DiffClay2 decreases while those of the other parameters increase.

Total indices reach their maximum values between 10° and 10 years. Parameter interactions seem
to play a decreasing role at later times.

Physically, these findings can be understood as follows: The outer clay formation is the most
effective barrier, as it has an extent of 250 m, which is more than three times the thickness of the
inner clay formation (80 m) and 25 times the thickness of the bentonite buffer (10 m). The
contaminant transport through the clay layers is carried by diffusion, so it is plausible that
DiffClay3, the diffusion coefficient of the outer clay dominates the release of contaminants. The
same argumentation holds for DiffClay?2 being the second most important parameter. On the first
sight, it may seem surprising that the K4 values in the clay layers only play a minor role, but this
is due to the fact that in all' simulations the effective dose rate is exclusively dominated by '*’I (at
later times), which has very low sorption coefficients in all layers, and by "°Se(at medium times),
which does not sorb at all. Better sorbing radionuclides remain trapped in the clay layers for a very
long time, and it does not make a difference at which point in the formation they finally end up.
At any time, relevant influence of Ka values on the model output can only come from!'*I.

As mentioned in Section 4.4, from the comparison of direct and rank-based sensitivity analysis
one can conclude that in the time frame between 1 million and 4 million years, there is an influence
of the Kq values (and also the bentonite porosity) only on the highest model output values. This
effect comes from those runs in which the radionuclides move relatively fast and cause a
significant dose rate already at medium times. Then the K4 value of lodine, although on a low
level, has an additional influence on the time of appearance of the lodine peak, and with that on
the output value.

The linear sensitivity measures calculated by the different partners agree more or less exactly, as
all use the same algorithms. The calculated values of variance-based sensitivity indices, however,
depend on the method applied. First-order indices have been calculated using EASI/RBD-FAST,
EFAST, PCE and RS-HDMR. The results are not identical but in fair agreement with each other
as well as with those of the regression/correlation analysis. Total-order indices were calculated by
GRS using EFAST and RS-HDMR as well as by SNL using the PCE surrogate model. While the
EFAST and PCE results are in a fair agreement, those obtained with RS-HDMR differ
significantly. This may, at least in part, be due to the fact that RS-HDMR does not really calculate
the total-order indices but approximates them by summing up the first- and all second-order indices
of a parameter, neglecting all higher orders of interaction. Indeed, the total-order indices calculated
by RS-HDMR are always below those obtained with EFAST. Generally, it can be seen that the
total-order indices of all parameters reach their maximum values between 1 million and 10 million
years and decrease at later times. Obviously, in the late time frame the system is less controlled by

' A set of 512 random model runs was sanalysed in view of the contributions of all radionuclides to the effective
dose rate. Among these, not a single run was found in which any other radionuclide than *’I and *Se plays a non-
negligible role.
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parameter interactions but increasingly by the sole influence of DiffClay3, which reaches a first-
order index of 0.5 at the end of the model time.

Two- and three-parameter interactions, quantified by second- and third-order indices, were
calculated by SNL using the PCE surrogate model. While at the end of the modeling period, the
values are rather low, the second-order index of DiffClay2 and DiffClay3 reaches about 0.5 at 1
million years. These results are confirmed by the calculations of GRS with RS-HDMR. The high
influence of interaction of these parameters can easily be understood physically, as both diffusion
coefficients have to be high to allow significant amounts of radionuclides to be released already
after 1 million years.

The PAWN analysis performed by IBRAE tells a similar story about the system as the total-order
analysis. Although PAWN is a density-based approach and conceptually different from the
variance-based methods, it quantifies, in a certain sense, the total influence of a parameter. Unlike
the total-order indices, however, the PAWN curves do not show a significant decrease at the end
of the simulation time.

The investigations of TU Clausthal are well appropriate to provide a different view on the system
sensitivities, less focused on the usual time curves of quantities that condense the sensitivity to a
single value between 0 and 1 (or -1 and +1). CUSUNORO curves allow resolving the sensitivity
over the parameter range. These plots show that for all parameters except PorClay, the lower part
of the parameter range is most influential, and at least for the leading parameters DiffClay3 and
DiffClay2, the influential range is further shifted to the lower end with increasing time. This is
understandable as high diffusion coefficients cause relatively fast transport, so that at late times,
the main peak has already been released and variation of the diffusion coefficients between high
values does not change anything essential. The moment-independent analysis performed by TU
Clausthal confirms the general findings about the temporal evolution of sensitivities.
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5. SNL SHALE CASE

The model describes a generic repository for commercial spent nuclear fuel in a shale host rock.
Over the million-year simulation, the repository is undisturbed — no disruptive geological events
and no human intrusion. The near field and far field are simulated in a single 3-D model domain,
containing layered stratigraphy, the repository, and a household well (a simple biosphere)
downgradient of the repository. The repository is in a thick, low permeability shale with higher
permeability aquifers above and below the shale. It holds thousands of waste packages, each of
which is a heat and radionuclide source. A waste package radionuclide source term is activated at
the time of waste package breach (which depends on temperature and a sampled waste package
degradation rate constant). Radionuclide transport away from the repository is primarily diffusive
until radionuclides reach the aquifers, when advection driven by an applied pressure gradient
becomes important. This case study is documented in [85].

5.1. Case Description

The SNL shale calculation case assumes a mined repository located approximately 500 m below
land surface, accessed by vertical shafts, and containing 70,000 MTHM of commercial SNF. PA
simulations use a half-symmetry model domain, in which approximately 15% (10,962 MTHM) of
the 70,000 MTHM inventory is explicitly gridded. With the reflection boundary condition, 30%
(21,924MTHM) of the 70,000 MTHM inventory is included in PA simulations.

The generic stratigraphic column for the shale calculation case consists of (from the bottom up): a
450 m thickness of indurated shale interrupted by a 30-m thick sandstone aquifer; a 75-m thick
limestone aquifer; a 585 m thickness of sealing shale including a 90 m thickness of a silty shale
unit; a 60-m thick sandstone aquifer; and a 30 m thickness of unconsolidated overburden.

In this calculation case, emplacement of pressurized water reactor (PWR) SNF occurs in a mined
repository located in a deep, homogeneous, thickly bedded, essentially flat-lying stratum in a
geologically simple and stable environment. The calculation case assumes horizontal, in-drift
emplacement with 12-PWR waste packages elevated on plinths of compacted bentonite and drifts
buffered and filled with compacted bentonite pellets and/or bricks in one or two layers. PA
simulations assume that access drift and shafts are filled with compacted bentonite buffer (low
permeability, high sorption capacity). The simulations employ a single bentonite buffer with
material properties appropriate for a compacted mixture of 70% bentonite and 30% quartz sand
[85 —87].

SNL Shale Description
Waste form Spent nuclear fuel in 12-PWR canisters
Engineered barriers Bentonite buffer with material properties appropriate for a

compacted mixture of 70% bentonite and 30% quartz sand
Repository description Repository has 515-m depth with 84 drifts, 4 shafts, and an
emplacement footprint of 2.6 km?. 4200 waste packages
emplaced with 50 packages per drift and 20-m center-to-center
spacing.
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Natural system

450 m thick indurated shale interrupted by a 30 m thick sandstone
aquifer; a 75 m thick limestone aquifer; a 585 m thickness of
sealing shale including a 90 m thickness of silty shale unit; a 60
m thick sandstone aquifer; 30 m thickness of unconsolidated

overburden.
Biosphere Well water ingestion dose model
Conceptual release Advection, diffusion, element-based solubility, medium-specific
pathways sorption, decay in all phases

Processes modeled

Waste package degradation, waste form (UQOz) dissolution,
equilibrium-controlled radionuclide sorption and precipitation/
dissolution, radioactive decay and ingrowth in all phases
(aqueous, adsorbed, precipitate), coupled heat and fluid flow, and
radionuclide transport via advection and diffusion.

Software codes used

PFLOTRAN, Dakota

Reference for full
description of case

P. E. MARINER et al., Advances in Geologic Disposal System
Modeling and Shale Reference Cases. SFWD-SFWST-2017-
000044 / SAND2017-10304R. Sandia National Laboratories,
Albuquerque, NM (2017) [85].

Table 5-1. SNL Shale Case Description

5.2. Description of Inputs and Outputs

Two hundred simulations were run in PFLOTRAN. Dakota was used to apply Latin hypercube
sampling to the 10 uncertain variables listed in Table 5-2. The uncertain variables were assumed
to be independent and there was only one sampling loop with no separation of uncertainties. The
quantities of interest were the maximum (over time) '*°I concentration at three sandstone locations
and three limestone locations as listed in Table 5-3. These output quantities are also denoted as
response functions (RF) #1-#6. Sensitivity for these quantities of interest was performed using

Dakota and Python.

Input parameter Distribution Range Units
SNF Dissolution Rate (rateSNF) Log uniform 10%-106 | yr!
Mean Waste Package Degradation Rate (rateWP) | Log uniform 10°° - 1043 | yr!
Upper Sandstone k (kSand) Log uniform 105-10" | m?
Limestone k (kLime) Log uniform 107-10"* | m?
Lower Sandstone k (kLSand) Log uniform 10-10"? | m?
Buffer k (kBuffer) Log uniform 102°- 101 | m?
DRZ k (kDRZ) Log uniform 108-101° | m?
Host Rock (Shale) Porosity (pShale) Uniform 0.1-0.25 --

Np Ka Buffer (bNpKd) Log uniform 0.1-702 m’kg’
Np K Shale (sNpKd) Log uniform | 0.047-20 m’kg”

Table 5-2. SNL Shale Case Input Parameters [85]
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Output Qol Type Other
sand obsl, Scalars: Maximum '?°I concentration over time at three | Also called
sand obs2, observation points in the sandstone aquifer. The first RF1, RF2,
sand obs3 observation point is closest to the repository and the and RF3.
third is the farthest.
lime obsl, Scalars: Maximum '*’I concentration over time at three | RF4,
lime obs2, observation points in the limestone aquifer. The first RF5, and
lime obs3 observation point is closest to the repository and the RF6.
third is the farthest.

Table 5-3. SNL Shale Case Output Qols
5.3. Salient features and behavior of the model

Horsetails of the '?°I concentrations at the closest and farthest sandstone and limestone observation
points from the repository are shown in Figure 5-1. At the observation points farthest from the
repository, the '*’I concentration remains at the background concentration level, 102° [M], in
approximately half of the realizations at most time steps; the median is visible late in the simulation
for sand obs3, but never visible in the plot for lime obs3. The concentration curves are also
monotonic, so the maximum concentrations, which are shown in scatterplots, are at the end of the
simulation for all realizations. These simulations present a challenge for sensitivity analyses in
which the maximum concentration over time is the quantity of interest; there are many realizations
with the same low maximum concentration and the rest of the simulations have maximum
concentrations that span many orders of magnitude.

The maximum '?°I concentrations for the sandstone aquifer observation points are plotted with the
uncertain input variables in Figure 5-2. The neptunium Kz uncertain variables are not included
since they do not affect '*’I concentrations. The maximum '*’I concentrations are calculated as the
maximum over time. From these scatterplots, it appears that the shale porosity is the most
important uncertain variable near the repository, with the upper sandstone k gaining importance
farther from the repository.
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Figure 5-1. Horsetails for '?° concentration at the closest (obs1) and furthest (obs3) points from
the repository in the sandstone and limestone aquifers for the SNL Shale calculation case
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Figure 5-2. Scatterplots of '?°l concentrations for three observations points in the sandstone and
limestone aquifers for the SNL Shale calculation case
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5.4. Sensitivity Analysis Results
5.4.1. Results from GRS

GRS performed a number of investigations with both available datasets (50 and 200 realizations).
The sample sizes are fairly small, so the sensitivity analysis should be interpreted carefully.
Nevertheless, some obviously valid statements about sensitivities can be derived even from the
smaller dataset.

Case Name Description
Sensitivity Analysis Method CUSUNORO,
Linear correlation, linear regression, rank
correlation, rank regression,
EASI
Sensitivity measures generated Pearson CC, Spearman RCC, SRC, SRRC, S;
Special considerations -
Surrogate models used -
Transformations -
Qols addressed Response functions 1 to 6
Number of samples used 50/200

Table 5-4. Sensitivity analysis of SNL shale model by GRS

The CUSUNORO analysis is presented in Figure 5-3. For RF1 it shows a clear deviation from the
horizontal line only for the parameter pShale. Although, at least in the set with 200 runs, there
seems to be a certain bend also in the curves for kSand and rateWP, this cannot be judged as
significant. The situation is similar for RF2 and RF3, except that the direction of influence of kSand
is obviously reversed. For RF4 the parameter rateSNF seems to gain some importance. For RF5
and RF6, kLime is the most conspicuous parameter, but its curves follow more or less straight
lines, except a sharp bend around an input contribution of 0.8, corresponding to a permeability
value of about 2.5E-15 m?. This shape of the CUSUNORO curves suggests some change in the
model behavior in a small range of values of kLime.

The number of simulations is too low for clearly identifying less significant sensitivities by using
CUSUNORO.
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Figure 5-3. CUSUNORO analysis of the shale system

The results of the sensitivity analysis for RF1 using the correlation-/regression-based methods as
well as the first-order sensitivity indices calculated using EASI are presented in Table 5-5.
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Input Pearson CC |Spearman Regression Rank EASI
parameter Rank CC SRC Regression S;
SRRC

50 200 50 200 50 200 50 200 50 200
rate WP 0.256] 0.217[ 0.099] 0.138] 0.306] 0.224| 0.132] 0.149] 0.284| 0.113
pShale 0.655] 0.587{ 0.983] 0.941[ 0.609] 0.586{ 0.985] 0.943[ 0.770] 0.590
rateSNF 0.036( 0.106{ 0.009| 0.001] -0.009] 0.095| 0.020{ -0.010{ 0.344] 0.049
kSand -0.190] -0.155( -0.116] -0.084| -0.121] -0.161| -0.064] -0.081[ 0.206] 0.080
kLime 0.088] -0.042{ 0.041] -0.002{ -0.108] -0.087{ 0.023] -0.006{ 0.265] 0.071
kLSand 0.008( -0.003{ 0.027] -0.023] -0.120] -0.033| 0.015{ -0.015| 0.176] 0.032
kBuffer 0.583] 0.168] -0.042] 0.002| 0.462] 0.121{ -0.001] 0.010f 0.511] 0.086
kDRZ 0.171] 0.090{ -0.003] -0.010] 0.050] 0.063| 0.001]| -0.006] 0.182]| 0.044
sNpKd 0.113 0.016{ -0.018] -0.014] 0.016] 0.039| -0.014( -0.011| 0.176] 0.069
bNpKd -0.060] 0.097( 0.011] -0.019{ -0.173] 0.111{ 0.006] -0.018| 0.177] 0.068

Table 5-5. SA Results of SNL shale model by GRS — RF1. The three leading parameters are
marked in red, blue and green

For the set with 200 runs, all methods agree about the ranking of the first two parameters (pShale
and rateWP). The third one is sometimes kBuffer and sometimes kSand. The value-based
correlation or regression methods calculate very similar sensitivities for these two parameters. It
is, however, conspicious that the rank-based methods seem to be much more unambiguous in this
respect and rate kSand at least 8 times higher than kBuffer. This can be a hint that kBuffer acts
mainly on the high model output values, which are essentially mitigated by rank transformation.

For the set with 50 runs, only the leading parameter pShale is identified sufficiently clearly, there
is no agreement about the ranking of the other ones. However, the observation concerning the
difference between direct and rank-based evaluation for kBuffer is basically the same as described

above.

5.4.2. Results from SNL

Case Name

Description

Sensitivity Analysis Method

Surrogate modeling, PEAR, SPEAR, stepwise
linear regression

Sensitivity measures generated

Si, T, Pearson CC, Spearman RCC, SRC,
incremental R?

Special considerations

Surrogate models used

GP, PCE (order 4)

Transformations

Scaling by 10"

Qols addressed

Maximum (over time) '*°I concentrations at 3
sandstone and 3 limestone observation points.

Number of samples used

All (200)

Table 5-6. Sensitivity analysis of SNL Shale case by SNL

The PCE surrogate model in Dakota could not estimate sensitivity measures for some of the
quantities of interest due to low variance. This is because many of the maximum '*I concentrations
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are low (background) at observation points farther from the repository. To resolve this, the
concentrations were all multiplied by 10'?. Scaling by 10** was also performed and this did not
significantly change the sensitivity measures. The PCE model was also fit using log-transformed
1291 concentrations.

At observation points in the sandstone aquifer, all methods identified pShale, rateWP, and kSand
as the input variables with the greatest influence on maximum'?’I concentration. Sensitivity to
pShale decreases with distance from the repository, while sensitivity to kSand increases with
distance. At the observation point closest to the repository (obs1), maximum '*°I concentration is
negatively correlated with kSand; at observation points 2 and 3, it is positively correlated.
Substituting kLime for kSand, behavior at the limestone observation points is very similar to
behavior at the sandstone observation points, with kLime behaving analogously to kSand.

Correlations that are larger on rank-transformed data (simple rank, partial rank in the plots) than
correlations on raw values (simple and partial in the plots), as for kSand at sand obs2 and
sand obs3, suggest a monotonic but nonlinear correlation between input and output. Partial
correlation coefficients (partial and partial rank in the plots) that are larger than a simple correlation
coefficient (simple and simple rank in the plots), as for rateWP at sand obsl and for pShale at
sand obs2 and sand_obs3, reveals a correlation that was partially masked by the influence of other
inputs in the calculation of the simple correlation coeftficient.

Stepwise linear regression and sensitivity indices provide a measure of the fraction of the variance
in the output due to the variance in an input. For stepwise linear regression, this fraction is taken
to be the difference between the R* obtained by the most recent addition of a variable to the
regression and R? at the previous step of the regression (incremental R?). Table 5-7 compares the
fraction of the variance accounted for by stepwise linear regression with the fraction of the variance
accounted for by main sensitivity indices obtained using either the GP or PCE surrogate model at
sand_obs2. Individual input variables (without interactions) account for less than half of the
variance in the maximum '?°I concentration at sand_obs2, regardless of the surrogate model used.

For pShale, kSand, and rateWP, the total sensitivity index is several times larger than the main
sensitivity index, indicating the importance of parameter interactions. When the effects of
parameter interactions are included, variance in the sampled input pShale accounts for 0.601 or
0.744 of the total variance in maximum '?°1 concentration at sand obs2, almost twice that
accounted for by main effects (of all input parameters) alone.
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Variable Incremental [ S; (PCE) | S:(GP) T; (PCE) T: (GP)
RZ

pShale 1.73E-01 1.79E-01 | 2.95E-01 6.01E-01 7.44E-01
kSand 6.20E-02 9.40E-02 1.33E-01 5.31E-01 5.75E-01
rateWP 2.10E-02 3.80E-02 | 2.00E-02 | 2.53E-01 1.59E-01
kLSand 1.80E-02 2.00E-03 | 0.00E+00 | 1.28E-01 0.00E+00
Fraction of variance 2.75E-01 3.12E-01 4.49E-01

accounted for:

Table 5-7. Sensitivity measures from sensitivity analysis of SNL Shale case by SNL

The sensitivity analysis results from each of the methods are shown for all quantities of interest in

Figure 5-4 and Figure 5-5.
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Figure 5-4. Sensitivity measures for the sandstone aquifer maximum '?°| concentration at
observation point 1 from the SNL analysis of the SNL Shale calculation case
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Figure 5-5. Sensitivity measures for the sandstone aquifer maximum '?°| concentration at
observation point 3 from the SNL analysis of the SNL Shale calculation case
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Figure 5-6. Sensitivity measures for the limestone aquifer maximum '?°I concentration at
observation point 1 from the SNL analysis of the SNL Shale calculation case
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Figure 5-7. Sensitivity measures for the limestone aquifer maximum '?°| concentration at
observation point 3 from the SNL analysis of the SNL Shale calculation case

5.4.3. Results from TUC

The sensitivity analysis methods used by TUC are shown in Table 5-8 with the results listed in
Table 5-9.

Case Name Description

Sensitivity Analysis Method CUSUNORO, Copula distance, PCE, MIM

Sensitivity measures generated S; first order, S;, second order

Special considerations Polynomial chaos uses harmonic base functions

Surrogate models used

Transformations None, Log, Rank, Second order finite difference for
interactions

Qols addressed SA for each output

Number of samples used 200 / all

Dataset SNLShaleRep2 SAND2018-05170 Revl

Software MatLab/Octave: in-house software

Table 5-8. Sensitivity analysis of SNL Shale by TU Clausthal
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Input CUSUNORO 274 grder finite
parameter differences
Parameter 1 Small influence in all responses (<10%)

rateWP

Parameter 2 Minor (20%-60%) influence in 4 responses | Cause of interactions
pShape in 4 responses
Parameter 3 Small influence in all responses (<10%)

rateSNF

Parameter 4 Small influence in all responses (<20%)

kSand

Parameter 5 Major (>60%) in two responses (limeobs2, Cause of interactions
kLime 3), else small in 2 response

(limeobs2,3)

Parameter 6
kLSand

Negligible influence in all responses (<5%)

Parameter 7
kBuffer

Negligible influence in all responses (<5%)

Parameter 8
kDRZ

Negligible influence in all responses (<5%)

Parameter 9
sNpKd

Small influence in all responses (<10%)

Parameter 10
bNpKd

Negligible influence in all responses (<5%)

Table 5-9. SA Results of SNL Shale by TU Clausthal

Depending on model response analyzed, very different behaviors can be observed, see Table 5-9
and Figure 5-8. Some parameters are of minor influence throughout all outputs. While the analysis
provides some clues on possible interactions, switching to a log-scale is without clear findings.
This might be a sign that the interaction is multiplicative, such that the logarithm transfers the
model into an essentially additive one with no interaction term present.
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Figure 5-8. First order sensitivity measures for the maximum '?°| concentration. Sandstone
aquifer observation points: fn 1 - fn 3, limestone aquifer observation points: fn 4 - fn 6
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5.4.4. Results from IBRAE

Case Name

SNL Shale

Sensitivity Analysis Method

PAWN, RBD-FAST, Correlation and regression

Sensitivity measures generated

PAWN index, S; first order, Pearson correlation,
Spearman rank correlation, partial correlation, partial
rank correlation, regression and rank regression
coefficients

Special considerations

Mean and median KS for PAWN. Number of
conditioning intervals n = 8 for larger sample and
n = 5 for smaller sample.

Surrogate models used

Transformations

Qols addressed

Response functions sand_obsi, lime obsi i = [1...3]
(maximum '?°I concentration at 3 sandstone and 3
limestone locations)

Number of samples used

200, 50

Dataset SNLShaleRep2 SAND2018-05170 Revl.txt,
SNLShaleRepl SAND2017-110690 Revl.txt
Software Python SaLib, Python in-house software

Table 5-10. Sensitivity analysis of SNL Shale by IBRAE
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IBRAE performed the sensitivity analysis using both available datasets (50 and 200 realizations).

The results are shown in Table 5-11, Figure 5-9, and Figure 5-10. Figures for correlation-based
and regression-based methods are omitted due to their similarity with the results of other groups.

In short, pShale is most significant for sand obsl and lime obsl, kSand accompanies pShale for
sand obs2 and sand _obs3, kLime shows major influence for lime obs2 and lime obs3.

Overall results for both samples are almost similar, some discrepancies though occurred. In
particular, the RBD variant of the FAST method with the smaller sample indicates kBuffer for
sand obsl, rateWP and kSand for lime obsl, rateSNF for lime obs2, rateWP and rateSNF for
lime obs3 as influencing while with larger sample these parameters are detected as insignificant.

PAWN approach on the contrary fails to detect the influence of the pShale for the sand obs3 using
smaller sample.
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Figure 5-9. Sensitivity analysis of SNL Shale case (Qol 1-6) by IBRAE: RBD-FAST and PAWN
methods (for PAWN “dummy” parameter is subtracted), 50 realizations

69



Variable

Variable

sandobs1 sandobs2 sanclf)bs3

rateWP rateWP |- 1 rateWP R
pShale pShale - . pShale - .
rateSNF rateSNF 1 rateSNF
kSand kSand b kSand - 1
kLime 2 klimef 12 kKlimer 1
@ @
@ &
kLSand = kLSand - 1 = kLSand a
kBuffer kBuffer - 1 kBuffer - :
kDRZ kDRZ | b kDRZ R
sNpKd sNpKd - b sNpKd b
bNpKd bNpKd . bNpKd :
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
Sensitivity Measure Value Sensitivity Measure Value Sensitivity Measure Value
I PAVWN (mean-dummy) N PAWN (median-dummy) _RBD'FAST (51)
Iimeobs1 Iimeobs2 Iimecobs3
rateWP 1 rateWpP rateWP
pShale 1 pShale pShale
rateSNF - b rateSNF rateSNF
kSand b kSand kSand
kLime 12 klime 2 klime
@ R
@ @
kLSand - 1 = kLSand = kLSand
kBuffer 1 kBuffer kBuffer
kDRZ 1 kDRZ kDRZ
sNpKd b sNpKd sNpKd
bNpKd F 4 bNpKd bNpKd
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
Sensitivity Measure Value Sensitivity Measure Value Sensitivity Measure Value

Figure 5-10. Sensitivity analysis of SNL Shale case (Qol 1-6) by IBRAE: RBD-FAST and PAWN
methods (for PAWN “dummy” parameter is subtracted), 200 realizations
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Input PAWN RBD-FAST Correlation & regression
parameter methods
rateWP Small significance for Small significance for Medium influence for sand_obsl,
sand_obs, sand_obss, sand_obsi, sand_obso, lime obsl
lime_obs;. Insignificant | sand obss, lime obs;. Small significance for the reset.
for the rest. Almost insignificant for
lime obs,, lime obss.
pShale Most significant for Most significant for Major influence for sand obs;,
sand_obsi, sand_obso, sand_obsl-lime_obs;. sand_obsy, sand_obss, lime_obsi,
lime_obs; Medium Small influence for small for lime_obs;, lime obs3
influence for sand obss. | lime obs;, lime obss;.
rateSNF insignificant for all Insignificant for Only significant parameter by
responses sand_obs, lime_obs;, linear regression method.
lime_obss. Small Medium influence for lime_obs;
influence for sand_obs,, and small for the rest by other
sand obss, lime obs;. methods.
kSand significant for responses | Insignificant for Medium significance for
sand_obs,, sand_obss;. sand_obs;, lime obs;, sand obsj, sand obs,, sand obss.
Insignificant for the rest. | lime_obs;. Medium Small influence for lime obs;,
influence for sand_obs;, lime obs,, lime obss.
sand_obss, small
influence for lime obs;.
kLime Major influence for Insignificant for Major influence for lime_obsa,
lime_obs;. Insignificant | sand obsi, sand_obs:, lime_obss, minor for the rest.
for the rest. sand obss. Major
influence for lime_obsy,
lime_obss, small
influence for lime obs;.
kLSand Small significance for Insignificant for all Almost insignificant for all
all responses. responses. responses.
kBuffer Minor influence for Insignificant for Almost insignificant for all
response lime obsa, sand_obsy, sand_obss, responses.
insignificant for the rest | lime obs;. Almost
insignificant for
sand_obs, lime_obs;,
lime obss.
kDRZ insignificant for all Insignificant for Almost insignificant for all
responses sand_obsy, lime_obs;, responses.
lime_obs;. Small
influence for sand obs;,
sand obss, lime obs;.
sNpKd insignificant for all Insignificant for all Almost insignificant for all
responses responses. responses.
bNpKd Minor significance for Small significance for Almost insignificant for all

sand_obs,, insignificant
for the rest

sand_obs;, sand_obs;.

Insignificant for the rest.

responscs.

Table 5-11. SA Results of SNL Shale by IBRAE
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5.4.5. Case Summary of Sensitivity Results

Recall that six Qols were considered for the SNL Shale case. The Qols were labeled as response
functions 1 through 6. The first three response functions were the peak (maximum over time) '*°I
concentrations at observation points 1, 2, and 3 respectively. These observations points are in the
sandstone aquifer and are numbered based on increasing distance from the repository; response
function 1 is the peak '*’I concentration at the sandstone aquifer observation point closest to the
repository and response function 3 is the peak '*’I concentration at the sandstone aquifer
observation point farthest from the repository. The last three Qols are analogous, being peak '*°I
concentration at observations within the limestone aquifer at increasing distances from the
repository. SA results are summarized individually by Qol in this section to emphasize comparison
between methods. However, some discussion is also included regarding differences in SA results
between the different Qols and how these differences relate to the repository. '*’I concentrations
at observation points 2 and 5 are not detailed, since these results are consistent with shifting
sensitivities between the nearest and farthest observation points relative to the repository.

Multiple participants applied linear regression models and calculated correlation coefficients
(GRS, SNL, IBRAE) and CUSUNORO curves (GRS, TUC). Additionally, SNL applied stepwise
linear regression and VBD via PCE and GP surrogate modeling, TUC applied Copula distance and
MIM, and IBRAE applied PAWN and RBD-FAST. Scaling, rank transformations, and log
transformation were also utilized in some of the analyses.

e Response Function 1: Peak '*I at the observation point in the sandstone aquifer closest to the
repository

Methods applied by the participants agreed in ranking pShale as the parameter with the
highest sensitivity metrics. This observation point is near the repository, meaning transport
from the repository to the observation point is predominantly through the shale layer, so
sensitivity to shale porosity makes sense. Methods typically ranked kSand and rateWP as the
second and third most important parameters, however it was not always clear if this
significance is meaningful. Sensitivity to kSand was noted by multiple participants to
increase when rank-based methods were applied.

e Response Function 3: Peak '*I at the observation point in the sandstone aquifer farthest from
the repository

This observation point is farther from the repository and this distance is reflected in changes
in the SA results compared to observation point 1. Porosity of the shale still has an effect, but
significant transport also occurs through the aquifer, so aquifer permeability (kSand) gains
significance with distance. The relationship between kSand and the peak '*°I concentration
also changes from a negative correlation at observation point 1 to a positive correlation at
observation point 3. There was some inconsistency between methods at this observation
point, with some (RBD-FAST, PCE and GP surrogates) ranking pShale higher than kSand,
but most ranking kSand as the most important parameter.

As shown in Figure 5-2 a large portion of the simulations result in very low '
concentrations at this observation point. This may be why methods disagree more on the top-
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ranked parameter for this Qol. The SNL sensitivity results from surrogate modeling differ in
their ranking of the top parameter and the importance of conjoint effects depending on
whether scaling (which maintains high variance in the Qol) or log-transformation (which
reduces variance in the Qol) was used. This is consistent with the linear methods, which also
attribute much more of the variance to kSand when based on a rank transformation (SPEAR,
PRCC) than without a rank transformation.

e Response Function 4: Peak '*I at the observation point in the limestone aquifer closest to the
repository

Most methods ranked pShale highest at this observation point, however PCC (from SNL)
ranked kLime the highest. The linear methods disagreed on the second and third most
important parameters, rateSNF and rateWP. Surrogate model results based on a log-
transformation rank rateWP as more important, whereas surrogate model results based on
scaling rank rateSNF higher with more substantial interaction effects. The PAWN results
(IBRAE) agree with other methods on ranking pShale the most important parameter but
ranks the buffer permeability (kBuffer) as the second most important parameter.

e Response Function 6: Peak '?I at the observation point in the limestone aquifer farthest from
the repository)

Permeability of the limestone aquifer (kLime) is consistently ranked the most important
parameter at this observation point, across methods and participants. There is again
disagreement on the parameters of secondary importance, with CUSUNORO (GRS),
surrogate modeling on scaled concentrations (SNL), and RBD-FAST (IBRAE) identifying
pShale as the second most important parameter. When surrogate modeling was applied to
log-transformed concentrations, no other parameters had significant sensitivity indices.

In general, the sensitivity analyses across participants identified the same first most important
parameter but differed on the importance of lower ranked parameters. This may be due to
differences between methods in detecting variable significance, particularly because the Qols in
this case span many orders of magnitude. Variables of secondary importance may need to be
identified by connecting less clear sensitivity analysis results with physical phenomenology.
Results also tended to differ depending on which transformations were applied to the '*°I
concentrations. Validation or fit metrics, in the context of surrogate modeling or regression
analysis, may help select the most appropriate transformation to use for sensitivity analysis.

There is also a lack of consensus between participants on the delineation between sensitivity
measure values that indicate secondary sensitivity versus sensitivity measure values that indicate
negligible sensitivity. This highlights a need for development of consensus methods for testing or
justifying conclusions regarding lower-ranked parameters.
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6. DESSEL CASE

This case study considers the near field model for the assessment of the long-term safety of a near-
surface repository at Dessel (Belgium) for Intermediate and Low-Level radioactive waste. This
model was used in the license application file that was submitted on 4 February 2019 by
ONDRAF/NIRAS to the FANC, the Belgian regulatory body for Nuclear Control.

The implementation of the near field model is based on the expected evolution scenario (EES).
The expected evolution of the disposal facility and its barriers is described in Chapter 14 of the
safety report [88], and builds on the phenomenological knowledge basis of the engineered barriers
in their environment described in Chapter 5 of the Safety Report [89]. The expected evolution of
the disposal system over the relevant timeframes up to 2,000 years from to builds on the
characteristics and processes defining the long-term behavior of the engineered barriers and the
transport of radionuclides.

The near field model is described in detail in the SCKCEN report ER-0336 [90]. Only the leaching
of the '*°I radionuclide from conditioned waste in Type I monoliths is considered in this case study.

6.1. Case Description

In this exercise, the degradation of the earth cover and underlying cementitious barriers starts from
to + 650 y. This will be the starting point for the radionuclide (RN) leaching simulations and is
representative for the part of the disposal facility that degrades earlier than expected.

The EES near field model considers a two-dimensional geometry representing half of a monolith
stack as shown in Figure 6-1. In the vertical direction, the simulation domain consists of the:

Structural top slab and precast shielding slabs, combined in a redistributing layer
Stack of 6 type I monoliths

Module support slab

Columns and filled inspection rooms

Foundation slab

Embankment
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Figure 6-1. Geometry of a modelled domain (dimensions are in cm); Type | monoliths, Colors
indicate different material types (backfilled inter-monolith spaces and fractures are denoted in
resp. light green and blue color). The geometry is shown for the initial (left), and degraded state

(right)

Dessel Case

Description

Waste form Steel drums of homogeneously cemented LILW

Engineered barriers Type I concrete monoliths (with backfill mortar),

Repository description | Near surface disposal facility

Natural system Not considered

Biosphere Not considered

Conceptual release Diffusion in concrete and mortar, advective transport in fracture
pathways and conductive sorbing media (inspection room & embankment)

Processes modeled

Advective-dispersive/diffusive transport

Software codes used

Comsol Multiphysics 3.5a

Reference for full
description of case

[90]

Table 6-1. Dessel Case Description
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6.2. Description of Inputs and Outputs

Twenty-two input parameters with uniform or log-uniform distributions. The ranges are given in

Table 6-2 and Table 6-3, either for general or radionuclide specific parameters.

Based on the parameter ranges given in previous tables, 256 / 1024 parameters combinations were
generated using the Matlab Sobolset method, with MatousekA ffineOwen scrambling. The first 22
points were skipped to avoid a poor burn-in of the Sobol” sequence. All evaluations presented here
are based on the larger dataset. Comparisons for different sample sizes have been undertaken but

are not reported here.

To compute a benchmark solution for the sensitivity indices, in particular the higher order, a larger
dataset was generated for an analysis based on Sobol’s method. The 24,000 samples were
generated and analyzed with Matlab scripts based on the methods described in [91], which were

obtained from https://ec.europa.eu/jrc/en/samo.

parameter unit min max distribution EE(SB‘E;lue
drain_bio mm/a 250 480 Uniform 480
flux_increase_time a 30 700 Uniform 350
transmissivity ratio - 0.01 1 loguniform 0.04
w_fracture mm 0.1 1 Uniform 0.3
D concrete_caisson m?/s 5.14E-14 | 4.43E-10 | loguniform 7E-11
D concrete m?/s 5.14E-14 | 4.43E-10 | loguniform 7E-11
D _mortar m?/s 1.85E-12 | 3.21E-10 | loguniform 2E-11
D waste m?/s 1.85E-12 6E-10 loguniform 6E-10
D _inspectionroom m?/s SE-10 8E-10 uniform 8E-10
D _embankment m?/s 2E-11 1E-10 uniform 6E-11
poro_concrete - 0.07 0.12 uniform 0.1
poro_mortar - 0.07 0.12 uniform 0.1
poro_waste 0.2 0.3 uniform 0.25
poro_inspectionroom - 0.4 0.6 uniform 0.55
poro_embankment 0.29 0.35 uniform 0.33
alpha L _all m 0.01 1 loguniform 0.1

Table 6-2. Used parameter ranges, distributions, and best estimate (BE)
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parameter unit min max distribution FBEES) value
Kd eff I con caisson L/kg 1E-5 57 log uniform 0.19
Kd eff I con _module L/kg 1E-5 57 log uniform 0.19
Kd eff 1 mortar L/kg 1E-5 290 log uniform 2.9
Kd eff I waste L/kg 1E-5 100 log uniform 1

Kd eff I insp L/kg 1E-5 57 log uniform 0.19
Kd eff I emb L/kg 1E-5 50 log uniform 0.5

Table 6-3. RN-specific ('*°l) sorption parameter ranges, distributions and best estimate (BE)

Output Quantity | Type Other
Activity flux Time series (200 values between 0 - | '*I activity flux out of the
(Bg/a) 2000 years) embankment to the geosphere

Table 6-4. Dessel Case Output Qols

6.3. Salient features and behavior of the model

The statistics on the time-dependent output ('*I flux to the geosphere) are calculated and plotted
in Figure 6-2. It shows that peak fluxes are occurring during the ~700 to 800-year time frame.
Here, the uncertainty on the peak fluxes is the highest. Differences between extreme percentile
values and the mean of the activity flux range over more than one order of magnitude, which could
indicate a non-linear model response.
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Figure 6-2. Uncertainty on the time-dependent 2| radionuclide flux based on 1024 sample runs
6.4. Sensitivity Analysis Results
6.4.1. Results from GRS

GRS has analyzed the Dessel model with a number of sensitivity analysis methods, as shown in
Table 6-5, for all points in time. Some results are compiled below.

Dessel model Description

Sensitivity Analysis Method CUSUNORO,
Linear regression, rank correlation, rank regression,
EASI

Sensitivity measures generated SRC, SRRC, S;

Special considerations -
Surrogate models used -

Transformations Shifted log-transformation
Qols addressed 1291 outflow
Number of samples used 1024

Table 6-5. Sensitivity analysis of Dessel model by GRS

Some CUSUNORO curves are presented in Figure 6-3. The following conclusions can be drawn
from this analysis:
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Only 3 parameters have relevant influences at later times: Kd waste, Kd_emb and D_waste?.
There is no relevant influence of Kd_waste below the 107 fraction and of Kd_emb below the
107! fraction. This is understandable as very little sorption is as good as no sorption.

Kd waste has a mainly negative influence over most of the time. This is understandable as
increasing Kd means decreasing outflow.

At later times, Kd_waste has a positive influence at a small value interval between fractions
102and 107!, for high values, however, the influence is again negative. This might be due to
retarded release.

Except from the earliest times, Kd _emb has a relevant influence only at values above 5; this
influence is positive, but for medium times (around 1000 years) it changes to negative for
the highest parameter values (> ~20). Little sorption is as good as no sorption, but it is not
directly understandable why increasing Kad leads to increasing outflow here.

D waste?2 changes its direction of influence from positive to negative with time around 1400

years.
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Figure 6-3. CUSUNORO analysis of Dessel model by GRS
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In Table 6-6, the results of the regression-based as well as the variance-based analysis are
presented. Correlation-based methods were not applied as, at least for uncorrelated input, its results
can be expected to be very similar to those of the regression-based analysis and not to provide
additional information. Instead, the regression analysis was additionally performed after applying
the transformation y = log,(1 + y/a). For high values (y >> a), this transformation is practically
a log transformation, but unlike the latter, it avoids overweighting of low and very low values and
even allows zeros. The parameter a is mapped to 1 and represents the "threshold" between low and
high values. The transformation has a similar effect as the rank transformation as it mitigates the
influences of very high values, but it is reversible and keeps all information.

Table 6-6 also contains the R? values for the regression investigations and the sum of all 1%'order
indices for the EASI investigation.

Input parameter |Regression Rank SRC with SRC with EASI

SRC Regression transformation |transformation | S;

SRRC (a=10% (a=10")

797 yrs 1401 yrs | 797 yrs |1401 yrs | 797 yrs |1401 yrs (797 yrs | 1401 yrs | 797 yrs | 1401 yrs
drain bio 0.013] -0.034] 0.014] -0.011 -0.030( 0.050] -0.027{0.008| 0.014
| flux_increase time 0.013] 0.072] -0.102] 0.081| -0.080[ 0.073] -0.136] 0.057]0.017] 0.022
transmissivity ratio | -0.019] -0.015] 0.063| -0.047 -0.021{ 0.020] 0.001{0.024| 0.014
w_fracture -0.008 [ -0.024| -0.015] -0.027] -0.018| -0.033[ -0.024] -0.051{0.013| 0.020
D concrete caisson | -0.003[ 0.043] 0.009| 0.090 0.077{ 0.003] 0.059]0.010] 0.013
D concrete 0.039{ -0.020] 0.018] 0.021 -0.014( 0.034] -0.028{0.009| 0.006
D mortar 2 0.018] -0.017] 0.010] 0.002 0.001] -0.010] -0.001]0.016{ 0.012
D waste 2 0.324| 0.024] 0.324] -0.078 -0.095] 0.140[ -0.15410.167| 0.020
D inspectionroom 2 | -0.007{ -0.063| 0.020] -0.017| -0.005 -0.037{ 0.003] -0.018{0.010| 0.017
D embankment 0.010] -0.031] -0.014] -0.037 -0.022] 0.011] -0.008{0.012| 0.014
poro _concrete -0.024( 0.014] -0.048] -0.007] -0.039| 0.006( -0.051| 0.021{0.015{ 0.008
poro mortar 0.020f 0.019] 0.014] 0.004 0.002{ 0.001]-0.019{0.015] 0.008
poro waste -0.027] -0.006| 0.001] 0.022] -0.022] 0.009] -0.023] 0.022{0.013] 0.010
poro inspectionroom| 0.024| -0.009| -0.034] -0.013] -0.015( -0.012{ -0.003| -0.024]0.011| 0.019
poro _embankment 0.057] -0.061] 0.003] -0.065 -0.067( -0.012] -0.054{0.014| 0.022
alpha L all 0.000]| -0.016] 0.021] 0.000 0.005{ 0.058] 0.026{0.009| 0.007
Kd con caisson -0.103[ -0.021] -0.083] 0.034] -0.102| 0.032{ -0.065| 0.066{0.022{ 0.015
Kd con module -0.001( 0.002] -0.001] 0.051] -0.014| 0.023[ -0.004| 0.052{0.022{ 0.008
Kd mortar -0.150] -0.060] -0.158] -0.003] -0.135] -0.040] -0.091] -0.014{0.063| 0.021
Kd waste -0.286] -0.234] -0.485] -0.233] -0.451] -0.372] -0.392| -0.373]0.344] 0.141
Kd insp -0.042( 0.045] 0.019] 0.051] -0.050| 0.040{ -0.046] 0.052{0.010{ 0.008
Kd emb -0.232] 0.459] -0.261] 0.103] -0.448[ 0.275{ -0.687| 0.158]0.158| 0.134
12/ 1% order sum 0.298( 0.300] 0.510] 0.101 0.266( 0.721] 0.228]0.982| 0.553

Table 6-6. SA Results of Dessel model by GRS. The three leading parameters are marked in red,

blue and green
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The ranking of parameters does not seem very unique, but Kd waste, Kd_emb and D_waste 2
appear most often on the leading ranks. Several parameters switch their direction of influence
between the early and the late point in time.

It can be seen that the R? value is increased by rank transformation as well as by the shifted log-
transformation, but only at the early point in time. At the late point in time, it is decreased by all
investigated types of transformation, even by a factor of three if rank transformation is performed.
This might be a hint that there is some randomness in the small model output values at the late
point in time.

Figure 6-4 presents a comparison between SRC and EASI analysis. The results agree qualitatively.
One can see that:

D waste2 changes its direction of influence from positive to negative with time around 1400
years (see CUSUNORO analysis).
Kd emb changes its dominating direction of influence from negative to positive around 1000

ycars.
1 | 1 1 L P R
04 p—
i B — Kd_emb F
0.8 - = EASI 15t order sum [
02 | .
, EASI 1" order sum
% 1 L
D _waste_2 = — F
02 1 Kd_waste [
j i 02 ] Kd_emb r
i Kd_waste i ] L
04— = g F
- 0 /T
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Time [years] Time [years]

Figure 6-4. SRC (left) and EASI (right) analysis of the Dessel model

Figure 6-5 shows the effect of the transformation with different values of the transformation
parameter a. This value separates “small” model output values (which are left more or less as they
are) from “high” ones (which are practically logarithmized). The transformation smooths the
curves and makes them more pronounced, R? is increased.

A transformation parameter of @ = 107 is clearly below the modus of the distribution of model
output values, except for very early times. In effect, this transformation pronounces the differences
between values in the sensitivity evaluation, compared to non-transformed data or data
transformed with a higher a value. At the same time, it mitigates the differences between very high
values. As the curve of Kd emb seems most sensitive to the transformation parameter, one can
conclude that its range of primary influence changes over time. At early times the influence of
Kd emb concerns mainly the medium values, at later times the higher values.
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Figure 6-5. SRC analysis of the Dessel model with transformation
6.4.2. Results from SCK

SCKCEN has analyzed the Dessel model with a number of sensitivity analysis methods for all
points in time, see Table 6-7. A selection of results is presented in Table 6-8 below.

Case Name Description
Sensitivity Analysis Method PEAR, SPEAR, EASI, Sobol’ Method
Sensitivity measures generated Si, Ti, Pearson CC, Spearman RCC

Special considerations

Surrogate models used GP, PCE (order 2), DNN
Transformations

Qols addressed Activity flux

Number of samples used 1024

Table 6-7. Sensitivity analysis of Dessel reference case by SCKCEN
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Input parameter | SPEAR/EASI Total order T; (Sobol - 24k)

Kd emb Dominating 1200-1500 yrs Important (800-1000 yrs)
Flux increase time | Dominating (<750 yrs) Important (800-1000 yrs)

Kd waste Dominating 750-1200 yrs, 1500 yrs-

D waste 2 Moderate importance around 800 yrs increasing importance towards

the end of time range

Kd con module Moderate importance in very early time
frame (650-700 yrs)
alpha L Moderate importance in very early time
frame (650-700 yrs)

Table 6-8. Summary of SA Results of Dessel Case by SCKCEN

6.4.2.1. Standard SA Techniques

In Figure 6-6 and Figure 6-7, the results of the regression-based (SRRC) as well as the variance-
based analysis (EASI) are presented. Results of the correlation-based methods are not reported, as
the results are very similar to those of the regression-based analysis. The six most influential
parameters are chosen based on the ranking of their maximum SRRC across the time series. The
same six parameters are plotted in the variance-based analysis, although the ranking might differ.
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Figure 6-6. SRRC sensitivity results over time from the SCKCEN analysis of the Dessel case.
Each axis in the plot highlights one of the independent variables
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Figure 6-7. EASI first order sensitivity index over time from the SCKCEN analysis of the Dessel
case. Each axis in the plot highlights one of the independent variables

6.4.2.2. Surrogate Model-Based Techniques

Apart from classical SA techniques, efforts were made to use state-of-the-art metamodelling
techniques in order to compute first order- and total-effects.

The true first-order (S;) and total-order (7;) Sobol’ indices were computed using the classical
approach described by Saltelli et al. [91] and a total of N;,¢4; = 24,000 forward model runs (N =
1000 base samples, k = 22 parameters, Niyeqr = N * (k + 2)).

The considered surrogate methods are polynomial chaos expansion (PCE), Gaussian processes
(GP) and fully connected deep neural networks (DNN). The total number of forward runs used to
construct the surrogate models are either 256 or 1024.

For the PCE surrogates, the chaospy toolbox was used (https://chaospy.readthedocs.io/en/master/).
Both standard and sparse PCEs were tested, up to order 3 expansion. The PCE coefficients were
fitted by least-square regression (point collocation method). The GPs were built using the GPflow
package (https://gpflow.readthedocs.io/en/master/notebooks/intro.html). The selected GPs relied
on an anisotropic exponential kernel a linear mean function, of which the parameters were
estimated by marginal likelihood optimization). Cross-validation was used to select the optimal
PCE expansion order and GP hyperparameters. The DNN surrogates were constructed using the
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Keras interface (https://keras.io/) to Tensorflow (https://www.tensorflow.org). The DNNs had 3
hidden layers of 64, 128 and 256 neurons with a rectified linear unit (Relu) activation function and
an output layer of 22 neurons with linear activation. During training of the DNNs, a 12
regularization of the DNN weights was used in addition to a mean square loss for data fitting.

The results of the different metamodeling techniques are in good agreement with each other.
However, for the total-order sensitivity indices, some important interactions are not captured. This
is discussed later.
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Figure 6-8. Results of first order sensitivity indices calculated by either the Sobol’ method with
24,000 direct simulations (‘True’), or by different metamodeling techniques based on 1024 sample
- dataset
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Figure 6-9. Results of total order sensitivity indices calculated by either the Sobol’ method with
24,000 direct simulations (‘True’), or by different metamodeling techniques based on 1024 sample

dataset
6.4.3. Results from SNL
Case Name Description
Sensitivity Analysis Method Surrogate modeling, PEAR, SPEAR
Sensitivity measures generated Si, Ti, PEAR, SPEAR
Special considerations
Surrogate models used GP, PCE (order 2)
Transformations
Qols addressed Activity flux
Number of samples used 256, 1024 (for comparison)

Table 6-9. Sensitivity analysis of Dessel reference case by SNL

Sensitivity measures from the different linear methods applied by SNL are plotted in Figure 6-10
through Figure 6-13. Sobol’ indices calculated using an order 2 surrogate are plotted in Figure
6-14 and Figure 6-15. All of these analyses were performed using 256 samples and 1024 samples
and it was determined that using 1024 samples reduces noise in correlation coefficients.
Application of rank transformation further reduces noise in the correlation coefficients. Simple
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rank (SPEAR, Figure 6-11) and partial rank correlation coefficients (PRCC, Figure 6-13) have
nearly identical values. 2"%rder PCE identifies the same important variables as other methods but
indicates different timing of importance and possible importance of interactions.

The Gaussian process surrogate model did not appear to be appropriate for this dataset (see Figure
6-16).
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Figure 6-10. PEAR sensitivity results over time from the SNL analysis of the Dessel case. Each
axis in the plot highlights one of the independent variables
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Figure 6-14. Main Sobol’ index results from sensitivity analysis of the Dessel reference case by
SNL estimated using a second order PCE surrogate. Each axis in the plot highlights one of the
independent variables
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Figure 6-15. Total Sobol’ index results from sensitivity analysis of the Dessel reference case by
SNL estimated using a second order PCE surrogate. Each axis in the plot highlights one of the

93

independent variables



D_wasteT:Z

Kd_mortgr

= 05f

600 800 1000 1200 1400 1600
Time (years)

Kd_wa ste

i, Al g

1800 2000 600 800 1000 1200 1400 1600 1800

O,J-‘h‘l v

Yl ]

Time (years)
Kd_emp

2000

600 1000 1200 1400 1600
Time (years)

flux_increase_time

Time (years)

w_fracture

~ 05}

600 800 1000 1200 1400 1600
Time (years)

WU 4 0

1800 2000 600 800 1000 1200 1400 1600 1800

ML M L ot d |

1800 2000 600 800 1000 1200 1400 1600 1800

2000

Time (years)

2000
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6.4.4. Results from TUC
The sensitivity analysis methods used by TUC are shown in Table 6-10 with the results listed in
Table 6-11.
Case Name Description
Sensitivity Analysis Method CUSUNORO, EASI, PCE, MIM

Sensitivity measures generated

S; first order, S;, second order, CvM

Special considerations

Polynomial chaos uses harmonic base functions

Surrogate models used

Transformations Second order finite difference for interactions
Qols addressed Flux

Number of samples used 1024 (largest available)

Dataset SA TI 1129

Software MatLab/Octave: in-house software

Table 6-10. Sensitivity analysis of Dessel Case by TU Clausthal
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Input parameter CUSUNORO 2" order S; Cramér / von Mises
No major contributor
Parameter 22 Instant release, dominating | Interaction with | Dominating <800 yrs,
Kd emb 1200-1500 yrs Kd waste and minor >800 yrs
D waste 2
Parameter 2 Dominating (<750 yrs) Minor <800 yrs
Flux increase time
Parameter 20 Dominating 750-1200 yrs, | * Dominating >800 yrs
Kd waste 1500 yrs-
Parameter 8 Minor * Minor >800 yrs
D waste 2
Parameter 19 Small (700-1000 yrs)
Kd mortar
Parameter 3 Small (<850 yrs)
Transmissivity ratio

Table 6-11. SA Results of Dessel Case by TU Clausthal

Figure 6-17 shows the CUSUNORO curve at timestep t = 1004 years. Despite the large input
dimension, only few of the input parameters are outside the significance ellipsoid for this sample
size.
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Figure 6-17. CUSUNORO curve with significance ellipsoid
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6.4.5. Results from IBRAE

Case Name Dessel

Sensitivity Analysis Method PAWN, RBD-FAST

Sensitivity measures generated PAWN index, S; first order

Special considerations Mean and median KS for PAWN. Number of

conditioning intervals n = 8 was used.

Surrogate models used

Transformations

Qols addressed SA for each time step, SA for peak value, SA for
integral

Number of samples used 256, 1024, 24000

Dataset Results SA TI 1129 256 SobolSamples.hS,
Results SA TI 1129 1024 SobolSamples.hS,
Results SA TI 1129 Sobol24k.h5

Software Python SaLib, Python in-house software

Table 6-12. Sensitivity analysis of Dessel Case by IBRAE

IBRAE performed sensitivity measures evaluation for the Dessel case using samples of 256, 1024
and 2400 realizations. The findings are listed in Table 6-13.

Figure 6-18 through Figure 6-26 show results for small (256), medium (1024 model runs), and the
larger (24000 model runs) samples correspondingly.

The 5 most significant parameters are flux_increase time (at the beginning of the simulation only),
Kd waste, D _waste 2, Kd emb, Kd_mortar.

The differences can be seen in the rating of the parameters at the end of the simulation. For
example, the influence of Kd con_caisson and Kd_mortar parameters is medium according to
PAWN but minor according to RBD. Also, D waste 2 at the end of the simulation is most
significant by the PAWN method and only 3™ (after Kd_waste and Kd_emb) by RBD-FAST. On
the contrary, at t~1300 years influence of Kd emb is significant by RDB-FAST and minor by
PAWN.

Smaller samples allow detecting the most influential parameters, the ranking of the parameters of
secondary significance though is less clear.
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Figure 6-18. Sensitivity analysis of Dessel case by IBRAE: PAWN method (mean statistics,
“dummy” parameter subtracted), 256 realizations
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Figure 6-20. Sensitivity analysis of Dessel case by IBRAE: RBD-FAST method, 256 realizations
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Figure 6-21. Sensitivity analysis of Dessel case by IBRAE: PAWN method (mean statistics,
“dummy” parameter subtracted), 1024 realizations
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Figure 6-22. Sensitivity analysis of Dessel case by IBRAE: PAWN method (median statistics,
“dummy” parameter subtracted), 1024 realizations
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Figure 6-23. Sensitivity analysis of Dessel case by IBRAE: RBD-FAST method, 1024 realizations
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Figure 6-24. Sensitivity analysis of Dessel case by IBRAE: PAWN method (mean statistics,
“dummy” parameter subtracted), 24000 realizations
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Figure 6-25. Sensitivity analysis of Dessel case by IBRAE: PAWN method (median statistics,
“dummy” parameter subtracted), 24000 realizations
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Figure 6-26. Sensitivity analysis of Dessel case by IBRAE: RBD-FAST method, 24000 realizations

105



Input parameter

PAWN

RBD-FAST

flux_increase_time

Dominating at t = 700
years, almost
insignificant after

Dominating at t = 700
years, almost
insignificant after

transmissivity ratio

Mostly minor

Mostly minor

significance significance

D waste 2 Second at Second at
700 < t <900 years, 700 < t <900 years
most influencing at the and at the end of the
end of the simulation simulation

Kd con_caisson Medium significance at | Mostly minor
t~900 years, small significance

significance after that

Kd con_module

Mostly minor
significance

Mostly minor
significance

Kd mortar Medium significance at | Fourth at 700 < t < 900
700 < t <900 years years
and at the end of the
simulation
Kd waste Third at t < 800 years, | Dominating at
dominating at 800 <t <1100
800 <t < 1500 years | years,t > 1500 years
Kd emb Second at t < 800 years, | Dominating at
small significance at 1100 < t < 1500 years,
t > 1900 years second at the end of the
simulation
drain_bio, Minor or insignificant Minor or insignificant
w_fracture,

D concrete_caisson,
D concrete,

D _mortar 2,

D inspectionroom 2,
D _embankment,
poro_concrete,
poro_mortar,
poro_waste,
poro_inspectionroom,
poro_embankment,
alpha L all, Kd insp

Table 6-13. SA Results of Dessel Case by IBRAE
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6.4.6. Case Summary of Sensitivity Results

In Figure 6-27, selected scatterplots are presented. These show the dependency of the model output
on the values of the five most conspicuous parameters for several points in time. Obviously, the
sensitivity of at least some of the parameters is distinctly time-dependent.

The shape of the scatterplots indicates possible threshold effects for sorption in the embankment
and waste matrix (Kd waste and Kd _emb), and non-monotonicity of the diffusion coefficient in
the waste (D_waste2).

To analyze this in detail, the participants independently calculated the evolution over time of
different sensitivity estimators using their available tools. While correlation- and regression-based
methods yield values between -1 and 1, the sign indicating the direction of influence, variance-
based methods are designed to calculate Sobol’s sensitivity indices, which lie between 0 and 1.
Table 6-14 gives an overview of the time-dependent evaluations, including the method of
calculation in the case of variance-based sensitivity indices. The standardized regression
coefficients (SRC) and sensitivity indices calculated using EASI (Effective Algorithm for
Computing Global Sensitivity Indices, [92]) are in very good agreement between all participants,
which is not too surprising as the mathematical algorithms applied are the same. This is a good
mutual verification of the software tools.

More interesting from a scientific point of view is the comparison between the results for 1st-order
Si, calculated with EASI (SCKCEN/GRS), with PCE (SNL, [93], SCKCEN) and CUSUNORO
slope (TUC, [94]) as presented in Figure 6-28. While the curves show similar qualitative behavior,
there are considerable differences in detail. PCE computes higher index values for Kd waste and,
specifically, Kd emb. This is probably due to the fact that PCE uses an internal surrogate model,
which itself requires additional assumptions and parameters that have to be well adjusted. For this
investigation, second-order polynomials were used.

Figure 6-29 presents the comparison of a direct and a rank-based sensitivity analysis, using the
SRC and standardized rank regression coefficients (SRRC) methods. The rank transformation
makes the time curves smoother and yields higher sensitivities for some of the parameters in the
early phase. Typically, ranking leads to more pronounced differences of low values but less
pronounced differences of high values. It can be concluded that the parameters flux_increase_time,
Kd waste and Kd _emb mainly influence the low model output values at early times. Kd emb
changes its direction of influence around 1000 years after disposal; after that time its influence
becomes positive (higher value implies higher output) but seems to affect mainly the high model
output values, as SRC is much higher than SRRC at medium times. The same conclusion can be
drawn for Kd waste at late times. Ranking input and output data did seem to improve the
goodness-of-fit R? in the most interesting time-frame.
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Sensitivity measure SNL | SCKCEN| GRS TUC IBRAE

Standardized Regression Coefficients X X

(SRC)

Standardized Rank Regression X X

Coefficients (SRRC)

SRC with transformation X

Pearson’s Correlation Coefficients (CC) X

Spearman’ Rank Correlation X

Coefficients (RCC)

Partial Correlation Coefticients (PCC) X

Partial Rank Correlation Coefficients X X

(PRCC)

1°" order Sensitivity Index (S;) PCE | PCE/EASI| EASI| EASI/CSN

2™ order Sensitivity Index (S;;) Harmonic
Regress.

Total order Sensitivity Index (T;) PCE PCE

Table 6-14. Time-dependent sensitivity measures calculated by different participants
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Relative output variance

The different sensitivity estimators agree about the most influential parameters, although, at each
point in time, they calculate slightly different rankings. Parameter ranking, however, should not
be regarded as the only relevant result of sensitivity analysis. In fact, a well-understood sensitivity
analysis with different methods, each addressing its specific aspects, can essentially increase
detailed understanding of model behavior and thus the confidence in the model.

First order effects of Flux
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Figure 6-28. 1st-order sensitivity index, calculated with PCE, EASI and CUSUNORO. Left: SNL
(PCE), middle: GRS (EASI), right: TUC (CUSUNORO slope)
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Figure 6-29. SRC vs. SRRC (GRS)
6.4.7. Interactions

If the functional dependence of the output upon the inputs is not explained by linear or additive
functions (i.e. in form of a low goodness-of-fit R%or a low sum of first order effects) then the
missing part can be explained by the presence of interactions. First-order effects (and therefore
also CUSUNORO plots) are not able to detect interactions. Figure 6-30 demonstrates this where,
especially for the large output variance in the time span between 680 to 800 years, a large part
remains unaccounted for by first order effects. In this figure, absolute rather than relative
contributions to the variance are shown, which reveals additional information when considering
sensitivities evolving over time. One may be tempted to screen-out parameters which do not
contribute to first order effects but may be important in driving interactions.

110



x107®

5 -
4 -
o H.O.
2 Effects
83
<

650 700 750 800 850 900 950 1000
Time after disposal [a]

L.
increase.time
-transmissivity )

ratio
-Wfracture

[ |——
concrete.caisson
. °
concrete
D
- mortar
I °
waste
I °

inspectionroom

- Dembankment
- poro(:t:)ncrete
[ POrO ey
- porowaste
poroinspectianr’oom
l:l poroembankment
[ alphay
O

con.caisson
l:l chon.module
[ K porter
[C]kd

waste
[k

insp
Kd

emb
Total Variance

Figure 6-30. Sum of first order effects and absolute contribution to total output variance
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Figure 6-31 compares results of total order sensitivity indices calculated by either the Sobol’
method with 24,000 direct simulations (‘True’), or by different metamodeling techniques, which
were calibrated on the 1024 simulations — dataset. If factor fixing is the main objective of the SA,

total effects need to be calculated.

The qualitative behavior of T; in the critical time span closely follows that of first order effects.
However, it appears that all metamodeling methods seem to miss important higher-order effects.
The large-sample Sobol-method indicated high T; values of flux increase time & Kd _emb in the

period from 750 to 1000 years.
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Figure 6-31. Results of total order sensitivity indices calculated by either the Sobol’ method with
24,000 direct simulations (‘True’), or by different metamodeling techniques

6.5. Interpretation of Sensitivity Analysis in the Light of Model Understanding
(Model Owners Feedback)

6.5.1.  Behavior of the Model with Respect to Sorption in the Waste Matrix
(Kd_waste)

It is no surprise that Kd waste is identified as the most important parameter by all methods. The
sorption in the waste matrix determines the initial liquid concentrations, which scale almost
directly with the advective outflux. The threshold effect can be explained by the back-up sorption
capacity that the surrounding materials offer. As long as sorption in the mortar and concrete of the
monolith caisson is larger than sorption in the waste matrix, the activity will quickly be transferred
and attenuated in these surrounding, cementitious components.

6.5.2. Behavior of the Model with Respect to Sorption in the Embankment
(Kd_emb)

Changing sign: Higher values of Kd_emb lead to lower outflow at early times (< 1000 years), but
to higher outflow at late times. Why?
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The embankment is the last component in the disposal facility which RNs encounter in their
migration to the geosphere. The transport in the embankment is purely advective, similar to a one-
dimensional plug flow. Higher K4 values lead to a higher retardation factor. A larger retardation
will therefor result in a larger shift in time of the breakthrough curve. This is why at later times
(after 1000a), the influence changes its sign.

Penalizing combinations of parameters (e.g. fast increase in water flux and low retention in the
waste matrix) result in sharp and early breakthrough curves (650 — 750 years). Only high Kd emb
values are able to significantly shift these steep breakthrough curves backwards in time, which
explains the threshold effect at 10! L/kg.

6.5.3. Behavior of the Model with respect to diffusion in the Waste Matrix
(Dp_waste)

In the scatterplots of Figure 6-27, non-monotonic behavior could be spotted for the Dp waste
parameter. Indeed, the diffusion coefficient in the waste matrix has a dual effect on the activity
flux. On one hand, it accelerates the initial diffusion to the fracture on the right, which increases
the peak activity flux once as water starts entering the system. On the other hand, it will also
increase diffusion to the upper, lower and left direction where mortar is present, which accumulates
and attenuates the activity. This effect would reduce the main peak flux and increase the tailing of
the peak.

inter-monolith
< fractures backfill

carbonated layer

Figure 6-32. Non-monotonous effect of diffusion in the waste matrix. Diffusion in the orange
direction will decrease peak flux, green will increase peak flux

6.6. Conclusions

For the studied Dessel example, the standard set of SA methods does not sufficiently explain the
model behavior. To be able to detect such a situation, goodness-of-fit measures of the used
sensitivity method must be reported to obtain information on its explanatory power for the case
under consideration. Possible ways to address this issue are output transformations or moment-
independent methods which take into account the whole distribution instead of point-estimators of
conditional means or variances.
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7.

This model describes a cross-section groundwater flow in the heterogeneous geological media of

IBRAE GROUNDWATER CASE

Nizhnekansky massif (Krasnoyarsk territory) where construction of a site-specific underground
research facility (URF) is considered. Site-specific means that the research facility for acquiring
expertise to develop a radioactive waste repository is located in the same formation as the planned
repository. The granitoid rock of Nizhnekansky massif indicates the presence of geological
structural elements influencing significantly the permeability features such as dykes, faults,
crushing zones (Figure 7-1). Boundary conditions are depicted in Figure 7-2. The modeling is
performed using GeRa groundwater flow and transport modeling computer code [95].
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Figure 7-1. Geological model: hydraulic conductivities of structural elements

7.1. Case description

Reference case name Description

Waste form High-level radioactive waste

Engineered barriers Stainless steel overpack, bentonite buffer

Repository description 450-500 m depth, 75 m deep boreholes containing waste

packages

Natural system

500 m thick low permeability rock

Biosphere

Not considered

Conceptual release pathways

Not considered

Processes modeled

Single-phase fluid flow

Software codes used

GERA [95]

Reference for full description
of case

[96, 97]

Table 7-1. IBRAE Case Description
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7.2. Description of inputs and outputs

The groundwater flow model has 12 input parameters (Table 7-2): 7 hydraulic conductivities for
geologic structural elements (quaternary deposits, weathering crust, fissured dikes, dikes, fissured
gneiss, crushing zone, gneiss) and 5 boundary conditions (flow rates for 3 zones at the left
boundary, infiltration, and drainage).

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
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400 400
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flow rate BC,

. infiltration BC,,
no-flow boundary

. drain BC

. -200
river /

.-—_\

400 — 400

Boundary conditions

600 800 1000 1200 1400 1600 1800 2000 2200 2400

Figure 7-2. Groundwater flow model: boundary conditions

Samples were constructed by Saltelli modification of Sobol” sequence [98] presented in Python
SAlib library [99]. This method treats parameters as independent, each variated within a given
range. To study if there is a dependence of sensitivity analysis results on the number of samples
were constructed 4 sample sets containing 140, 1400, 14,000, and 28,000 samples.

Input parameter Distribution (uniform)
Hydraulic conductivities [m/day] min Max
KF1 1.00E-03 1.00E+00
KF2 1.00E-06 1.00E-02
KF3 1.00E-06 3.50E-02
KF4 1.00E-03 5.00E-01
KF5 1.00E-06 1.00E-03
KF6 5.00E-03 1.00E-01
KF7 1.00E-02 1.00E+00
Boundary conditions [m®/day] min Max
BClI -1.00E-02 -1.00E-06
BC2 -1.00E-02 -1.00E-06
BC3 -1.00E-02 -1.00E-06
BCtop 1.00E-06 1.00E-04
BCbot -1.00E-06 1.00E-03

Table 7-2. IBRAE Case Input Parameters

The model has an output composed of 37 values of hydraulic heads located corresponding to the
locations of experimental observations later used in model calibration. Points 1-14 are from the
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first borehole, 15-26 from the second, and 27-37 from the third. They can be considered separately
as 37 outputs, although their behavior is similar (Figure 7-3).

Output Qol Type Other
Output 1 Vector — 37 hydraulic heads [m] Can be considered separately
located in different spatial points

Table 7-3. IBRAE Case Output Qols
7.3. Salient features and behavior of the model

Distributions of outputs for different sample sets are shown in Figure 7-3. Each output is presented
by its color. The distributions look normal-like, do not significantly depend on sample set size,
and are rather similar for different outputs.

The result of the groundwater flow simulation (isolines of the hydraulic heads in the whole
modeling space) is presented in Figure 7-4.

Scatterplots for first five outputs are shown in Figure 7-5.
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Figure 7-3. Output distributions for different sample sizes
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Figure 7-4. Simulation results
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Figure 7-5. Scatterplots for first five outputs of groundwater model

7.4. Sensitivity Analysis Results
7.4.1. Results from GRS

Case Name Description

Sensitivity Analysis Method CUSUNORO,
linear regression, rank regression, EASI

Sensitivity measures generated SRC, SRRC, S;

Special considerations -
Surrogate models used -
Transformations

Qols addressed 37 hydraulic heads

Number of samples used 140 / 1400 / 14000 / 28000

Table 7-4. Sensitivity analysis of IBRAE case by GRS
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The investigations were performed with all available sets of input and output. To keep the number
of figures manageable, we present the results for the smallest and the largest dataset only.

The CUSUNORO plots of the 37 Qols look very similar, at least for the set of 140 runs. As an
example, Figure 7-6 compares the plots for the output quantities 1 and 37. Even the random details
of the curves correspond, only a very sharp look at the figures reveals minor differences (for
instance, between the pale orange and the pink curve around 0.7). Obviously, the different
observation points reflect the same system properties, (nearly) only differing by a monotonic
relationship.

oH-1@1 |

04| BC2 o [

02

CUSUNORO
CUSUNORO
o
|

02 -

R KF2 L

Figure 7-6. CUSUNORO analysis of IBRAE groundwater flow model by GRS (140 runs) for
observation points 1 (left) and 37 (right)

The larger sets of runs, however, produce CUSUNORO plots that do not only look smoother but
also seem to convey a different message. In Figure 7-7 and Figure 7-8, the plots for the output
quantities 1 and 37, generated from the sets of 1400 runs and 28,000 runs, respectively, are
presented. In comparison to the previous figure, it is conspicuous that the purple curve (BCtop)
deviates only very slightly from the horizontal axis, indicating very low sensitivity. From the 140-
runs-set it would have been identified as the second most important input parameter. Moreover,
the 28,000-runs-curves show more distinct differences between the two output quantities. While
BC?2 is clearly the most important parameter, the second one is BC3 at observation point 1 but
BCbot at observation point 37. Even so, the CUSUNORO plots look very similar for all
observation points, also for the larger sets of runs.
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Figure 7-7. CUSUNORO analysis of IBRAE groundwater flow model by GRS (1400 runs) for
observation points 1 (left) and 37 (right)
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Figure 7-8. CUSUNORO analysis of IBRAE groundwater flow model by GRS (28,000 runs) for
observation points 1 (left) and 37 (right)

From this example it can be concluded that a sample size of 140 is not large enough for a reliable
sensitivity analysis of the groundwater flow model. Although the most important parameter BC2
is identified correctly, BCrop is falsely identified as important and the curves of the other
parameters are not adequate to allow any kind of statement. But even the CUSUNORO curves
based on 1400 model runs do not allow clear identification and ranking of the sensitive parameters
as there is still too much randomness.

Figure 7-9 shows the results of the direct and rank-based regression analysis for all 37 observation
points, calculated from the 28,000-set of runs. Both sets of curves look nearly identical, which is
a clear hint that the model is highly linear. This is confirmed by the R* value, which is nearly 1, no
matter if a rank transformation is performed or not. The evaluation agrees with CUSUNORO
insofar as it identifies the input parameter BC2 as the clearly most important one, followed by
BCbot, BC3, KFI and KF4. The other parameters play only minor roles. Moreover, these curves
confirm that there is only little dependence of the sensitivities on the observation point. As the
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system has been found to behave linearly, it is not necessary to perform a variance-based sensitivity
analysis.
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Figure 7-9. Direct (left) and rank-based regression analysis of IBRAE groundwater flow model by
GRS (28,000 runs) for all observation points

7.4.2. Results from SNL

Case Name Description

Sensitivity Analysis Method Surrogate Modeling, PEAR, SPEAR

Sensitivity measures generated S, T:, Pearson CC, Spearman RCC

Special considerations

Surrogate models used PCE (order 2), MARS, Quadratic Regression.
Linear Regression

Transformations Rank

Qols addressed 37 hydraulic heads

Number of samples used 140, 1400, 14000, 28000

Table 7-5. Sensitivity analysis of IBRAE case by SNL

The correlation coefficient sensitivity analysis results for the dataset of 1400 realizations are shown
in Figure 7-10 (left). According to these results, KF'1, KF4, KF6, and the BC parameters may be
significant, however, BC2 has the dominant effect. The use of a rank transformation does not
appear to impact results. Differences between the partial correlation coefficients and the simple
correlation coefficients suggest effects may be masked by other parameters.

The sensitivity indices calculated from linear, quadratic,c MARS, and PCE (order 2) surrogate
models (also for the dataset of 1400 realizations) are shown in Figure 7-10 (right). The results are
essentially identical regardless of model type, indicating that no model is necessarily more
appropriate for this data set than the others. Simpler (less costly) surrogate models or sensitivity
measures are appropriate for this data set. Compared to the correlation results, the surrogate model
results emphasize BC2 as the most important parameter with smaller effects associated with other
parameters than in the correlation results. The total index values are not significantly different
from the main index values, so none of the models detect significant interaction.
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Figure 7-10. Sensitivity analysis results for hydraulic head 1 from the SNL analysis of the IBRAE
reference case (1400 realizations)

This case study included simulation results for numerous increasing sample sizes, from 140 to
28,000. SNL analyzed the stability of sensitivity analysis results with increasing sample size
(Figure 7-11 through Figure 7-15). While analyses on the smallest sample size could result in
inconsistent rankings for parameters other than BC2, 1400 samples were found to be sufficient.
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Figure 7-11. SNL results: Main Sobol’ index for hydraulic head 1 obtained using increasing
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Figure 7-13. SNL results: Total Sobol’ index for hydraulic head 1 obtained using increasing
sample sizes (linear scale)
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Figure 7-14. SNL results: Total Sobol’ index for hydraulic head 1 obtained using increasing
sample sizes (log scale)
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Figure 7-15. SNL results: Correlation sensitivity indices for hydraulic head 1 obtained using
increasing sample sizes

7.4.3. Results from TUC

The sensitivity analysis methods used by TUC are shown in Table 7-6.

Case Name Description

Sensitivity Analysis Method CUSUNORO, Sobol’

Sensitivity measures generated S; first order, T; total effect

Special considerations Sample from Sobol’ method, CUSUNORO uses

independent blocks extracted from Sobol’ sample

Surrogate models used

Transformations

Qols addressed All observation points show comparable behavior:
head=1

Number of samples used 2 X2000, (24 12) x 2000 for Sobol’ S; and T;

Dataset ibrae geo 28000.h5

Software MatLab/Octave: in-house software

Table 7-6. Sensitivity analysis of IBRAE Case by TU Clausthal

The analysis results are shown in Table 7-7.

125



Input parameter | First Order Effect S; | Total Effect T; | CUSUNORO

KF1 5.9% 7.9% negative trend, minor influence
KF2 sign change with time, small
KF3 sign change with time, small
KF4 3.1% 4.3% negative trend, minor influence
KF5 negative trend, small

KF6 0.1% 0.3% sign change with time, small
KF7

BCtop positive trend, small

BCl1 0.3% 0.3% negative trend, small

BC2 72.5% 74.4% negative trend, major influence
BC3 8.3% 8.9% negative trend, small

BCbot 6.6% 6.9% negative trend, small

Table 7-7. SA Results of IBRAE Case by TU Clausthal

The sum of first order effects is 0.968, the sum of first and total effects is 2: the behavior is mainly
additive, the missing 4% of interactions are by pairwise interactions (otherwise the sum of first
and total effects would be larger than 2).

7.4.4. Results from IBRAE

Case Name IBRAE case

Sensitivity Analysis Method PAWN, Sobol’, RBD-FAST, Correlation and
regression

Sensitivity measures generated PAWN index, S; first order, T; total, Pearson

correlation, Spearman rank correlation, partial
correlation, partial rank correlation, regression and
rank regression coefficients

Special considerations Mean and median KS for PAWN. Number of
conditioning intervals n = 8 for 28000, 14000,1400
samples and n = 6 for 140 sample.

Surrogate models used

Transformations

Qols addressed SA for each response

Number of samples used 28,000;14,000;1400;140

Dataset ibraec_geo 28000.h5, ibrae geo 14000.h5,
ibrae geo 1400.h5, ibrae geo 140.h5,

Software Python SaLib, Python in-house software

Table 7-8. Sensitivity analysis of IBRAE by IBRAE
This case was used in [96] as an illustration of the model development process with the assistance

of sensitivity analysis and parameter optimization. Accordingly, the samples were initially
generated specifically for Sobol’ indices evaluation.
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In this report PAWN, Sobol’, RBD-FAST methods were applied to these samples. Correlation and
regression methods were also briefly considered; however, investigations were focused on
variance-based and moment-independent approaches.

The summary of the findings is provided in Table 7-9. Figure 7-16 illustrates slightly differing
results for several different observation points. Figure 7-17 shows averaged by all observation
points results for different sample sizes.
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Figure 7-16. Sensitivity analysis of IBRAE Groundwater case by IBRAE: outputs head1, head15,
head30, head37
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Figure 7-17. Sensitivity analysis of IBRAE Groundwater case by IBRAE: different number of
model runs
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Input PAWN Sobol’ RBD-FAST | Correlation &

parameter regression methods

KF1 Small Very small Very small | Small (Pearson,

significance significance | significance | Spearman, rank

regression, partial
correlation) or no
influence (regression,
partial rank correlation)

KF?2 Insignificant | Insignificant | Insignificant [ Small (partial
correlation, partial rank
correlation) or no
influence (others)

KF3 Insignificant | Insignificant | Insignificant [ Small (partial
correlation, partial rank
correlation) or no
influence (others)

KF4 Small Very small Very small | Small (PEAR, SPEAR,

significance significance | significance | rank regression) or no
influence (others)

KF5 Insignificant | Insignificant | Very small [ Small (PCC, PRCC) or

significance | no influence (others)

KF6 Insignificant | Insignificant | Insignificant [ Small (PCC, PRCC) or
no influence (others)

KF7 Insignificant | Insignificant | Insignificant [ Small (PCC, PRCC) or
no influence (others)

BClI Insignificant | Insignificant | Insignificant [ Small (PCC, PRCC) or
no influence (others)

BC2 Most Most Most Falsely low influence

significant significant significant | by SRC on small
parameter parameter parameter sample, high by others

BC3 Small Small Small High influence by PCC,

significance significance [ significance [ small or no by others

BCtop Insignificant | Insignificant | Insignificant | Falsely high influence
by SRC on small
sample, small (PCC,
PRCC) or no
influence(others).

BCbot Small Small Small Falsely high influence

significance significance | significance | by SRC on small
sample, small or no
influence by others.
Table 7-9. SA Results of IBRAE case by IBRAE
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7.4.5. Case Summary of Sensitivity Results

The model is relatively simple with a nearly additive and linear behavior. And results of analysis
by different groups are mostly in good agreement.

BC2 is clearly the most important parameter. The physical interpretation of this result is that BC2
defines the flow rate through the wider part of the left boundary.

The other 2 groups of parameters: BCbot, BC3 and KF'1, KF4 (generally in the order listed) show
small but detectable influence according to the whole variety of methods. Ranking for the
parameters of secondary importance though may vary subtly among different observation points
and methods. For example, the significance of BCbot is greater for the observation points that are
closer to the bottom boundary of the model. Also, the PAWN method with medium statistics ranks
BC3 lower than KFI for approximately half of the observations.

Results on BCI and BCrop are slightly controversial: variance-based methods rate them as
insignificant (with contribution less than 0.5%), while their contribution may falsely seem non-
negligible by some other approaches, especially when using the smaller sample sets. Also,
correlation and regression methods show the minor significance of KF6, while other methods rank
this parameter as insignificant.

Results by CUSUNORO, RBD-FAST, PAWN methods on the smallest sample (140 model runs)
allow detecting the most significant parameter BC2 but seem not reliable enough for screening out
insignificant parameters.

Sensitivity indices calculated by Sobol” method are mostly consistent (at least for the top five
influential parameters) among different sample sizes and different surrogate models. Sobol’
indices without the use of surrogate models, however, have visible numerical issues for samples
with 140 and 1400 realizations such as slightly negative main indices S; or conversely S; slightly
higher than total indices T; for almost insignificant parameters. Meanwhile, results look fine for
these samples with PCE surrogate model used, because the Sobol’ indices are calculated
analytically in this case. On the other end of the spectrum, there are no sufficient differences in the
results for 14,000 realizations and 28,000 realizations. The 14,000 data set for 12 parameters seems
more than enough.
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8. SUMMARY
8.1. The Sensitivity Analysis Exercise

This report has been produced by an informal, international working group working under the
auspices of Organization for Economic Cooperation and Development (OECD)/ NEA’s
Integration Group for the Safety Case (IGSC, https://www.oecd-nea.org/rwm/igsc/) that is
interested in uncertainty and particularly sensitivity analysis (SA) methods with a focus on
performance or safety assessments for radioactive waste management. This working group has
collaborated to identify test cases that are the basis of these studies. Participating organizations
have provided computational simulation run results (tables of inputs and outputs from the runs) as
a basis for the analyses presented in this report. The case studies to be addressed were identified
based on a questionnaire developed at the 2017 Albuquerque workshop (see Section 1.1). The
questionnaire aimed at categorizing the proposed case studies by their features and complexity in
order to derive an appropriate strategy for the exercise described in this report. In particular,
questions were asked about the following characteristics (see Chapter 3):

Phenomenological description. This includes a description of the system being modeled such
as a repository, the waste forms and engineered barriers, the geology, physical and chemical
processes being modeled, potential release pathways, etc.

Input characteristics. The input characteristics refer primarily to various aspects of the
computational simulations, including the number of parameters being varied, the sampling
methods used, and the number of runs that were generated. The input characteristics also
include details about how uncertain parameters are described in the case study: are they
continuous, categorical, or otherwise discrete inputs? Are there any inputs which vary in space
and/or time? What probability distributions were used to represent and model the uncertain
parameters? Are there correlations or other dependencies?

Output characteristics. The output characteristics focus mainly on the quantities of interest,
including a description of these quantities, whether the outputs are scalar values or values
varying in space and/or time, and if there are known features of the output to consider in the
context of sensitivity analysis. Considerations include features such as non-linearity, non-
monotonicity, discontinuities, or regime changes.

The four case studies highlighted in this report are: the GRS clay case, the SNL shale case, the
Dessel case, and the IBRAE groundwater case. Some of the essentials concerning the input
characteristics and the output features and behavior are summarized in Table 8-1. These four cases
are less complex than the remaining three. This group plans to perform a second series of SA on
the three remaining, more complex case studies in order to complete the exercise, an objective of
which is to derive guidelines for the application of SA methods. The plan is to summarize the
remaining cases in Volume 2, a companion report which will be issued later.
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GRS clay SNL shale Dessel IBRAE
groundwater
Input | Number of 6 10 ~20 12
parameters
Variable type | Scalar, Scalar, Most are Scalar,
continuous continuous scalar, some continuous
will change at
a given point in
time.
Different
material-
dependent
values in the
different
domains
Continuous
Dependencies | Inputs are Inputs are Inputs are Inputs are
independent independent independent independent
Output | Type Time series Vary in time Time series Scalar
and space
Specifics / None known None known Proven non- Response
complications monotonicity surface of the
of diffusion model many
coefficient local minima
Fracture flow
Switch from
diffusive to
advective
system
Table 8-1. Input and output characteristics of the four cases according to the questionnaire

replies

We have surveyed sensitivity analysis methods in Chapter 2 and the detailed sensitivity analysis
results on the four case studies are presented in Chapters 4-7. For each case study, multiple groups
presented their results using different sensitivity analysis methods and/or different
implementations of the same method. The breadth and scope of the case studies as well as the large
variety of sensitivity analysis methods used (e.g. scatterplots, simple correlation coefficients, rank
correlation coefficients, standardized regression coefficients, main and total effects variance-based
Sobol’ indices estimated by methods such as EASI, RBD-FAST, distribution-based methods such
as PAWN, graphical methods like CUSUNORO, and others) provided a rich environment to study
and compare results.

The case studies in this report highlighted some practical challenges such as standardization of
data formats, standardization of graphical results and tables (as the inputs and outputs were
extensive for some of the cases and we need better ways to quickly assess differences in results),
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and the need for methods tailored to perform SA on time series data. With respect to the last item
should be noted: most of the results involved some quantity over time (e.g. concentration as a
function of time) and so a separate input-output sensitivity analysis was performed for each point
in the time series. Some of the SA methods presented here can calculate full time series sensitivity
indicators in a few seconds, but others require significant postprocessing. As many problems in
this community involve time scales of thousands to millions of years, generating separate SA
results per time point can add significant postprocessing computational cost to identify how the
importance ranking for input parameters within a case study may change over time. The question
then arises about the lessons and conclusions to be derived from such behavior. The SA results
showed that changes in importance rankings were observed for the case studies, demonstrating
value in this type of analysis. The issue of how to calculate sensitivity indices for time series data,
and how to derive meaningful interpretations of the results, remains an open issue, possibly to be
addressed by autocorrelation models, principal component analysis, or time-dependent surrogates.
Development of more efficient and appropriate methods for time-dependent sensitivity analyses
may be a worthwhile problem for future study.

8.2. Summary Findings for the Four Case Studies
8.2.1. GRS Case

This case study had time-varying results where the parameter importance ranking varied across
time, but some of the parameters were consistently important. The diffusion coefficient in the outer
clay formation (DiffClay3) has the highest influence on the model output. Most evaluations agree
that this is valid over the total model time period. For model times below 107 years, the second
most influential parameter is the diffusion coefficient in the inner clay formation (DiffClay?2). For
model times below 10° years there is no significant influence of any of the other parameters. At
late times, the influence of DiffClay2 decreases while those of the other parameters increase. Total
indices reach their maximum values between 10° and 107 years. Parameter interactions seem to
play a decreasing role at later times.

When comparing SA methods, the linear sensitivity measures (correlation and regression
coefficients) calculated by the different partners agree more or less exactly, as all use the same
algorithms. The calculated values of variance-based sensitivity indices, however, depend on the
estimation method applied. First-order indices were calculated for this case using EASI/RBD-
FAST, EFAST, PCE and RS-HDMR. The results are not identical but in fair agreement with each
other as well as with those of the regression/correlation analysis. One item to highlight: while the
EFAST and PCE results are in a fair agreement, those obtained with RS-HDMR differ
significantly. This may, at least in part, be due to the fact that RS-HDMR does not really calculate
the total-order indices but approximates them by summing up the first- and all second-order indices
of a parameter, neglecting all higher orders of interaction. Indeed, the total-order indices calculated
by RS-HDMR are always below those obtained with EFAST. Generally, it can be seen that the
total-order indices of all parameters reach their maximum values between 1 million and 10 million
years and decrease at later times for this case study.
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8.2.2. SNL Shale Case

For this case study, there were peak '?°I concentration results at various locations in two layers: a
sandstone aquifer layer and an aquifer limestone layer. Different parameters were important for
the two layers. Peak %I results were calculated as the maximum '*°I concentration taken over
time, so the Qols and associated sensitivity analyses for this case study were not time-dependent.
Multiple participants applied linear regression models and calculated correlation coefficients
(GRS, SNL, IBRAE) and CUSUNORO curves (GRS, TUC). Additionally, SNL applied stepwise
linear regression and VBD via PCE and GP surrogate modeling, TUC applied Copula distance and
MIM, and IBRAE applied PAWN and RBD-FAST. Scaling, rank transformations, and log
transformation were also utilized in some of the analyses.

Various SA methods agreed in ranking pShale (shale porosity) most important for response
function 1, which was the Peak '*°I concentration at the observation point in the sandstone aquifer
closest to the repository. The SA methods typically ranked kSand (sandstone permeability) and
rateWP (mean waste package degradation rate) as the second and third most important parameters,
however it was not always clear if this significance is meaningful. Sensitivity to kSand was noted
by multiple participants to increase when rank-based methods were applied.

In contrast, there was some disagreement for response function 4, the Peak '*’I concentration at
the observation point in the limestone aquifer closest to the repository. Most methods ranked
pShale highest at this observation point, however PCC (from SNL) ranked kLime (limestone
permeability) the highest. The linear methods disagreed on the second and third most important
parameters, rateSNF (spent nuclear fuel dissolution rate) and rateWP. Surrogate model results
based on a log transformation ranked rate WP as more important, whereas surrogate model results
based on scaling ranked rateSNF higher with more substantial interaction effects. The PAWN
results (IBRAE) agreed with other methods on ranking pShale the most important parameter but
ranked the buffer permeability (kBuffer) as the second most important parameter. The other
responses are discussed in more detail in Chapter 5.

In general, the sensitivity analyses across participants identified the same first most important
parameter but differed on the importance of lower ranked parameters. This may be due to
differences between methods in detecting variable significance, particularly because the Qols in
this case span many orders of magnitude. Variables of secondary importance may need to be
identified by connecting less clear sensitivity analysis results with physical phenomenology,
however the variables of secondary importance for this case seemed reasonable. Results also
tended to differ depending on which transformations were applied to the '*’I concentrations.
Validation or fit metrics, in the context of surrogate modeling or regression analysis, may help
select the most appropriate transformation to use for sensitivity analysis.

There was also a lack of consensus between participants on the delineation between sensitivity
measure values that indicate secondary sensitivity versus sensitivity measure values that indicate
negligible sensitivity. This highlights a need for development of consensus methods for testing or
justifying conclusions regarding lower-ranked parameters.
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8.2.3. Dessel Case

In this case study, the parameter influences changed over time and the various sensitivity analysis
methods tended to show this. Several SA methods were applied at various time points to show the
change in sensitivity over time. Sorption in the embankment (Kd emb), the time in which the
infiltrating water flow ramps up (flux increase time) and the diffusion coefficient in the waste
matrix (D_waste_2) clearly showed this behavior, which is expected given the setup of the model.

The sensitivity indices calculated using regression and correlation methods are in very good
agreement between all participants. The ranking of parameters varied along the time range, but
sorption parameters in waste and embankment (Kd _waste 2, Kd_emb), diffusion coefficient in the
waste matrix (D_waste 2) and flux_increase time are consistently identified as most important.

As in previous cases, the calculated values of variance-based sensitivity indices, depend on the
estimation method applied. However, the results are fair agreement with each other as well as with
those of the regression/correlation analysis.

A large part of the output variance in the time span between 680 to 800 years, remains unaccounted
for by first order effects. The standard set of SA methods did not sufficiently explain this model
behavior. However, it appears that all methods using surrogate models used to calculate total order
effects did not capture this very well. The large-sample Sobol-analysis, performed as a benchmark
for the surrogate-based methods, indicated high T; values of flux increase time and Kd emb in
the period from 750 to 1000 years.

Special attention should be made to the behavior of the D waste 2 parameter, as discussed in §6.5,
this parameter shows a non-monotonic behavior, however, this is not detected by the applied SA
techniques.

8.2.4. IBRAE Case

The results from various methods (correlation coefficients, CUSUNORO, PCE-based Sobol’
indices, FAST, PAWN, etc.) were consistent, pointing to one parameter dominating the results
(flow rate through the widest part of the left boundary, BC2). The model is relatively simple with
nearly additive behavior. The results of analysis by different groups are mostly in good agreement.

While boundary condition associated with the largest zone (BC?2) is clearly the most important
parameter, drainage boundary condition BCbot, flow rate through second-largest zone of the left
boundary BC3, and hydraulic conductivities for two materials KF'/, KF'4 show small but detectable
influence according to the whole variety of methods. Results on smallest boundary part (BC/) and
infiltration (BCrop) are slightly controversial: variance-based methods rate them as insignificant
(with contribution less than 0.5%), while their contribution may falsely seem non-negligible when
applying some other approaches, especially when using the small sample set (140 model runs).

The IBRAE case study included simulation results for numerous increasing sample sizes, from
140 to 28,000. Though such a large sample size is often not possible for repository cases, the
relative simplicity of this groundwater model allowed for a very large sample size. This enabled
participants to assess the stability of sensitivity analysis results with increasing sample size. While
analyses on the smallest sample size could result in inconsistent rankings for parameters other
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than, 1400 samples were found to be sufficient especially with the BC2 use of surrogate models.
Analysis of sample size sufficiency for sensitivity analysis results may not always be possible with
existing simulation data depending on the sampling scheme that was used, but it could be
considered when planning an uncertainty analysis.

8.3. Overall Summary

In summary, we found that the first order variance-based index estimates are now easily generated
from observational data (i.e. existing data which were not generated by prescribed sampling
schemes) using a variety of approaches and are one of the main SA approaches. Linear and rank
correlation coefficients and regression approaches continue to be used and are informative. More
advanced methods show results mostly consistent with simpler methods but there are important
differences. Graphical methods such as CUSUNORO also provide additional visualization which
can show influences over the range of a variable. It might be advisable to start an analysis by
applying such methods.

We found consistency between the linear sensitivity measures (correlation and regression
coefficients) calculated by the different partners but sometimes the variance-based sensitivity
indices did not exactly agree with the linear sensitivity measures. Also, there were more differences
in rankings seen across the several variance-based sensitivity indices, such as EASI/RBD-FAST,
EFAST, PCE and RS-HDMR. Note that some of the variance-based methods rely on Monte Carlo
sampling of the function (e.g. the simulation) using different sampling schemes while other
methods rely on surrogate or metamodel approximations of the simulation. All the methods used
in this study relied on fixed data sets generated by the case study owners: specialized sampling of
the simulations was not possible. The various approximations and algorithm implementations used
in the variance-based approaches may account for some of these differences. For surrogate
methods, the surrogate type may play a role in the accuracy of the estimation of variance-based
indices.

Differences in rankings were also seen depending on the use of data transformations. The
appropriateness of specific transformations is not always obvious, and justification of such
transformations may be an opportunity for future study. One key feature of parameters and
responses in repository studies is that they vary by many orders of magnitude. In such cases, it
may be appropriate to apply a log transformation. However, this may unduly weight smaller
values. Validation or goodness-of-fit metrics, in the context of surrogate modeling or regression
analysis, may help select the most appropriate transformation to use for sensitivity analysis or
identify the best surrogate model. The appropriate use of the log (or any other) transform depends
on the particular case study and usage; it remains an open issue and interpretation of SA results
when transformations are used must be done carefully.

We often found that the sensitivity analyses across participants identified the same first most
important parameter but differed on the importance of lower ranked parameters. Variables of
secondary importance may need to be identified by connecting sensitivity analysis results with
physical phenomenology. Also, most of the SA methods used in this report are factor prioritization
methods: the linear sensitivity and variance-based indices perform well in identifying the most
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important variables and their rankings. Some factor fixing approaches such as DGSM (derivative-
based global sensitivity measure) are better suited to screening and identifying low rank variables
which can be removed from the SA. We did not use the DGSM factor-fixing approach in these
studies because derivatives were not available.

Parameter rankings obtained by Sobol’ method are mostly consistent among different sample sizes
and different surrogate models, however, there are often visible numerical issues for small sample
sizes such as: negative main indices or conversely main indices slightly higher than total indices
for parameters with minor or no significance, or sum of main indices more than one. This can be
due to insufficient samples to accurately calculate the integrals defining the terms in the Sobol’
index calculations and/or surrogate inaccuracies. When using surrogates, the methodology of
Sobol’ indices is applied to a model of reduced complexity: correct surrogate models are always
approximations of the original models, they have higher smoothness than the original models, and
typically higher order and unimportant interactions are eliminated in the surrogate models. For the
PCE surrogate models, the Sobol’ indices are always contained in the range [0,1] by the way the
indices are constructed from the PCE coefficients. This is an attractive feature and may make PCE
surrogates preferable in Sobol’ index calculation. However, one always needs to be aware of
surrogate inaccuracies.

With Sobol’ index calculations based on surrogates, the surrogate model may induce
approximation errors which may be significant. To check the reliability of the sensitivity indices
based on surrogates, one can:

e Vary the number of samples and the tuning parameters of the surrogate model

e Perform the calculations with two or more methods of building surrogates and calculation
methods to see if there is evidence of significant differences in parameter rankings.

We also note that the choice of sampling method is of paramount importance to the resulting
accuracy of both surrogate models and values of Sobol” indices. However, the studies performed
on these cases used the samples provided by the case owners and sampling method was not a focus
of investigation in this report.

There is also a lack of consensus between participants on the delineation between sensitivity
measure values that indicate secondary sensitivity versus sensitivity measure values that indicate
negligible sensitivity. For example, some participants regarded a Sobol” main effect of 0.1 to be
small whereas others might call a main effect of 0.2 as small with a threshold below 0.1 to be
negligible. There also is not consensus on thresholds that should be used for secondary significance
vs. negligible significant for correlation coefficients or other methods, and the thresholds for the
various SA measures may differ. This highlights a need for development of consensus methods
for testing or justifying conclusions regarding lower-ranked parameters.

Note that one goal of these case studies is to help the community identify best practices and lessons
learned. We anticipate this report to be the first of two volumes, where the second volume will
describe SA results on more complicated cases, together with a synthesis and recommendations
on the application of SA in safety cases.
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