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ABSTRACT

Scientific applications run on high-performance computing (HPC) systems are critical for many
national security missions within Sandia and the NNSA complex. However, these applications
often face performance degradation and even failures that are challenging to diagnose. To provide
unprecedented insight into these issues, the HPC Development, HPC Systems, Computational
Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their
FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous
Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC
system and application monitoring and analysis capability by extending Sandia’s Kokkos
application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring
tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and
LDMS enable collection and storage of application data during run time, as it is generated, with
negligible overhead. This data is combined with HPC system data within the extended analysis
pipeline to present relevant visualizations of derived system and application metrics that can be
viewed at run time or post run. This new capability was evaluated using several week-long,
290-node runs of Sandia’s ElectroMagnetic Plasma In Realistic Environments (EMPIRE)
modeling and design tool and resulted in 1TB of application data and 50TB of system data.
EMPIRE developers remarked this capability was incredibly helpful for quickly assessing
application health and performance alongside system state. In short, this milestone work built the
foundation for expansive HPC system and application data collection, storage, analysis,
visualization, and feedback framework that will increase total scientific output of Sandia’s HPC
users.
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FY21 ASC FOUS/CSSE/ATDM L2 Milestone 7842: Integrated System and Application Continuous 
Performance Monitoring and Analysis Capability 

Executive Summary 

Author: James Brandt, 09/05/2021 

 

Introduction 

The overall goal of this work was to develop and deploy a unique capability for the run time and 
postprocessing examination of application progress and performance data in conjunction with High 
Performance Computing time-varying system data. Examination of this combined data is necessary to 
give insight into the causes of performance variation, degradation, and some failure cases. The 
infrastructure developed in this work leveraged Sandia’s Lightweight Distributed Metric Service (LDMS) 
and Kokkos tools to provide the data and developed interoperability between them. The infrastructure 
also leveraged Sandia’s Distributed Scalable Object Store (DSOS) database to support storage 
performance requirements. Dashboards and analytics for the combined data were developed as part of 
this work. The infrastructure was deployed on a Sandia CTS-1 system. A roadmap for enhancements and 
deployments was developed to extend this capability to other Sandia and, potentially, other DOE 
systems. 

Milestone Description and Completion Criteria 

As displayed in the ASC Implementation Plan (IP) and the Milestone Reporting Tool (MRT), the milestone 
description and completion criteria state:  

"This L2 milestone will demonstrate the use of SNL data collection, analysis, and visualization 
framework/tools, deployed on a Sandia production SRN platform, to provide both system and 
application relevant run-time and post-run information for a rolling 2-week interval. We will 
demonstrate a capability for continuous collection of system data, an application progress metric(s), and 
an application throughput metric for an ASC-relevant code. We will provide a capability to store this 
data and a visualization interface that will enable a user to look at application progress in conjunction 
with system conditions, both at run time and post-run. We are targeting LDMS for the transport and 
aggregation of Trilinos-enabled application progress data and of system data. We are targeting the 
ATDM Application EMPIRE for deployment and its Proxy, MiniEM, for capability development. CSSE’s 
Application Performance Team will be supporting development and testing.  

Completion Criteria: Successful deployment of infrastructure on CTS-1 system. Demonstration of 
capability on target application run(s) on CTS-1 system. Lessons learned and feedback from stakeholders 
for future capability augmentation priorities will be documented."  

Impact Statement  
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This work represents a significant milestone along SNLs march towards understanding and mitigating 
causes of the significant performance variation commonly experienced by large-scale tightly coupled 
simulation applications run on HPC systems.  

Specifically, this work enables production high-fidelity monitoring of application performance and 
throughput characteristics in conjunction with system operational state and behavioral characteristics. 
Analysis of this data can provide insights into causes of performance degradation and high application 
performance variability on HPC systems. Improved visibility into, and understanding of, application and 
system resource interactions over lifetimes of application executions will, in turn, enable improved 
science and engineering throughput and higher overall HPC system efficiency.  

Note that our approach is well suited to production use as it does not require code changes or 
recompilation on the part of the user to collect this valuable information and adds negligible application 
performance-impacting overhead. 

Summary of Work Done 

All the completion criteria have been met as follows:  

• Successfully deployed our monitoring infrastructure on Sandia’s CTS-1 system, Eclipse, which 
has been running continuously, in production, since January 28, 2021. Data from this 
deployment is being stored to Sandia’s DSOS database on our monitoring and analysis cluster, 
Shirley, for at least a 2-week rolling time window.  

• Identified, and presented, total number of kokkos kernel executions per-minute as a throughput 
metric and the rate of a particular kernel (ParticleMove::Move) call as a problem specific 
progress metric for the ASC-relevant code, EMPIRE.  

• Demonstrated gathering and presenting, both post-run and at run time, these progress and 
performance metrics in conjunction with the Active_memory system metric for the application 
EMPIRE running on Eclipse, at scales of 32 to 290 nodes, via our Grafana-based visualization 
interface using Sandia’s DSOS as the scalable data store.  

• Documented the feedback we received from users who utilized the tools during the milestone 
period. We also identified and documented future work to take advantage of these new 
capabilities.  

Path Forward 

As mentioned above, the successful completion of this effort has given Sandia an end-to-end 
deployment of the capability to gather, store, analyze, and visualize application performance and 
progress data in the context of time varying system state metrics. We plan to develop analytics to gain 
insight into root causes of application performance variation and degradation. In addition to the 
application monitoring collaborations at Sandia, we have started several collaborations with other DOE 
laboratories to integrate their data collection tools into the infrastructure. We will investigate run-time 
response to conditions of interest in the data. We will be expanding the features of this capability and 
deploying it on additional Sandia systems as indicated by the roadmap presented in this work.  

In Support of Stewardship Capability Delivery Schedule (SCDS)? 

N/A 
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NOMENCLATURE

Aggregator LDMS daemon which aggregates (push or pull) data from other LDMS daemons

ATDM Advanced Technology Development and Mitigation, an element of the NNSA Advanced
Simulation and Computing program

CSSE Computational Systems and Software Environments, an element of the NNSA Advanced
Simulation and Computing program

CTS Commodity Technology System (production HPC systems)

DSOS Distributed Scalable Object Store

Eclipse Production CTS-1 system outfitted with data collection infrastructure to support this
milestone

EMPIRE The "ElectroMagnetic Plasma In Realistic Environments" is a modeling and design tool
for plasma environments

FOUS Facilities, Operations, and User Support, an element of the NNSA Advanced Simulation
and Computing program

IC Integrated Codes, an element of the NNSA Advanced Simulation and Computing program

LDMS Lightweight Distributed Metric Service

LDMS Streams LDMS’s Publish/Subscribe service

Kokkos Application portability layer leveraged in this milestone for publishing application
telemetry to LDMS Streams

Kokkos-LDMS Connector Code responsible for interfacing between Kokkos Sampler and LDMS
Streams

Kokkos Sampler Code responsible for gathering information about Kokkos kernel executions
and passing it to the Kokkos Connector

metric set LDMS construct for fixed schema sets of structured system data

Sampler LDMS plugin or daemon which collects data

SOS Scalable Object Store - Object store database used in this work
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1. INTRODUCTION

The overall goal of this work is to develop and deploy a unique capability for the run time and
postprocessing examination of application progress and performance data in conjunction with
High Performance Computing time-varying system data. Examination of this combined data is
necessary to give insight into the causes of performance variation, degradation, and some failure
cases. The infrastructure developed in this work leveraged Sandia’s Lightweight Distributed
Metric Service (LDMS) and Kokkos tools to provide the data and developed interoperability
between them. The infrastructure also leveraged Sandia’s Distributed Scalable Object Store
(DSOS) database to support storage performance requirements. Dashboards and analyses for the
combined data were developed as part of this work. The infrastructure was deployed on a Sandia
CTS-1 system. A roadmap for enhancements and deployments was developed to extend this
capability to other Sandia and, potentially, other DOE systems.

The rest of this report is organized as follows: We first provide the raw milestone text along with
scope statements in Section 2. We provide both an overview and detailed background discussion
of the architectural components of the data collection, transport, storage, and visualization
components in Section 3. We next discuss relevant deployment details in Section 4. Details about
application and system metrics being derived and displayed are described in Section 5. A
description of the main components utilized to support analysis and visualization are presented in
Section 6. Feedback from users and stakeholders is documented in Section 7. In Section 8 we
provide a short tabulation of lessons learned in the execution of this milestone. We have
documented, in Section 9, the relevant work leading up to this milestone as well as our planned
path forward. In Section 10 we provide a checkbox version of the completion criteria along with a
short description of the evidence of completion. Finally, references can be found at the end of the
document.

2. MILESTONE

The text of the milestone is as follows:

Description: This L2 milestone will demonstrate the use of Sandia data collection, analysis,
and visualization framework/tools, deployed on a Sandia production SRN platform, to
provide both system and application relevant run-time and post-run information for a rolling
2-week interval. We will demonstrate a capability for continuous collection of system data,
an application progress metric(s), and an application throughput metric for an ASC-relevant
code. We will provide a capability to store this data and a visualization interface that will
enable a user to look at application progress in conjunction with system conditions, both at
run time and post-run.

We are targeting LDMS for the transport and aggregation of Trilinos-enabled application
progress data and of system data. We are targeting the ATDM Application EMPIRE for
deployment and its Proxy, MiniEM, for capability development. CSSE’s Application
Performance Team will be supporting development and testing.

11



Completion Criteria:

• Successful deployment of infrastructure on CTS-1 system.

• Demonstration of capability on target application run(s) on CTS-1 system.

• Lessons learned and feedback from stakeholders for future capability augmentation
priorities will be documented.

Section 10 provides a detailed compilation, in checklist form, of the completion criteria along
with short overview statements of how they were satisfied. The body of this report provides the
details to support those statements.

While the intent of the capability is vast, for the FY20 milestone, we explicitly scoped the work as
described below:

In scope

• Developing and deploying an integrated architecture for application and system information

• Collecting application and system state metrics from a CTS-1 system at run time

• Providing a visual interface for derived application performance and throughput metrics
alongside system metrics

• Demonstrating this interface on run time CTS-1 data with the ability to do historical
investigation up to two weeks

• Providing information on instrumentation overhead and application performance impact

Not in scope

• Tuning system parameters to avoid application performance variation

• Deriving causality of application performance variation

• Correlating system state with application performance

• Determining best system or application data to collect

• Production-hardened deployment of collection infrastructure / analysis

All not in scope work items are intended to be Future Capability Augmentation Priorities (see
Section 7).

3. ARCHITECTURE

In this section we first provide a motivational overview of the architecture that we developed and
deployed in this work. We then provide deeper background information on the functional
components and sub-systems deployed including motivation for the choices made.

12



3.1. Overview

We leverage the Lightweight Distributed Metric Service (LDMS [2]) that is currently being used
for the collection of system data. System data can be obtained using both generic and
system-specific data collection plugins (typically referred to as sampler plugins). LDMS daemons
running these plugins (referred to as samplers) are typically run on the components for which data
is being collected (e.g., compute nodes for node-local file I/O, networking, CPU, memory
information and Lustre file system components for global Lustre information). For the
aggregation/transport of data, LDMS is typically run in a mode that pulls system data from the
sampler daemons, particularly those running on compute nodes, at regular intervals in order to
minimize CPU overhead and hence performance impact on applications.

We have developed a new message bus capability for LDMS in order to enable injection of
information on-demand, in a push mode, into its data stream. This new publish/subscribe
capability is called LDMS Streams. The LDMS Streams capability can be used to inject
application progress and performance information, during run time, into the LDMS data stream
concurrent with system resource state data injection and enable them to be stored into the same
data store.

While data can be injected, via the LDMS Streams API, from any source, we have implemented
this capability within the Kokkos [7] portability abstraction layer. This has the advantage of
encapsulating the injection capability and thus requiring no application changes or recompilation.
Further, we can leverage the performance and progress instrumentation already implemented
within Kokkos and not burden the user or application programmer with specifying what data to
collect.

Our architecture, depicted in Figure 3-1, is used to collect system data at regular intervals with
those intervals being defined based on the time scales of conditions of interest. For this milestone
work, the production CTS-1 system that we have deployed this capability on is Eclipse. All data
is transported from Eclipse to a monitoring cluster where it is written into our distributed
NVMe-based high performance database, DSOS. DSOS was developed, and extended as part of
this milestone work, in order to support the demands of high data ingest rates in conjunction with
data browsing and run time analyses.

Long-term data, older than two weeks, is moved to mass storage and can be loaded back into the
database if needed for performing analyses over longer time periods. Raw data and the results of
analyses are presented during run time on Grafana-based dashboards. Our goal is to enable
insight, during run time, into applications’ performance characteristics in conjunction with
system performance resource utilization and performance characteristics. In particular we are
interested in insights into strong correlations between the two and in discovery of causality where
application performance degradation is identified.

3.2. LDMS

In this subsection we provide a background on LDMS, its use for system data collection, and a
high level description of how we enhanced LDMS to support the injection of application progress

13



Figure 3-1 Data Flow Diagram of Integrated System and Application Performance
Data Analysis Capability. Application progress and performance data is injected into
the LDMS data stream which regularly transports data collected from system data
sources. The combined information is treated in a standardized way, easing develop-
ment of analyses and visualizations for application performance in combination with
system conditions. Green check marks indicate capabilities developed as part of this
work.

and performance data. Since application and system data are inherently different, we highlight the
differences and the design decisions made as a result.

LDMS was designed for lightweight extreme-scale data collection, transport, and storage. It is
intended to be run as a continuous system service, periodically and synchronously collecting data
from instrumented components across the entire system and efficiently transporting it, as it is
collected, to one or many endpoints in order to support run time analyses and visualizations that
can be used to provide insights and feedback on actionable timescales.

3.2.1. System Data Collection

System data is typically intended to be used to provide insight into the state of the system at any
given point in time. Thus data must be obtained synchronously across all instrumented
components across the whole system. Collecting this data on regular intervals enables not only
system state snapshots but also provides trajectory information for the state data collected. In
order to minimize performance impact on applications, the on-node operations associated with
monitoring data collection and transport have been kept to a minimum.

Because the system data is of the same format each time it is collected, the data lends itself to the
use of a structured data format, which we call a metric set. An example is shown in Figure 3-3.
The structure enables more efficient gathering of the data while minimizing data movement. That
is, the well known layout is leveraged to define the layout of the memory regions. Meta-data
which describes the layout, names, and types of the data fields (e.g., MemTotal u64) is only
transported at the start or upon change, reducing data movement.
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Figure 3-2 LDMS data collection and transport modes utilized in this work. Blue cir-
cles indicate plugins into the pink LDMS daemons. Green arrows indicate communi-
cations and data flows. (left) System data is typically pulled at regular intervals from
other aggregator daemons in order to minimize the on-node capabilities required and
thus application impact. (right) Application data is pushed on demand into the LDMS
daemon which then publishes the data to subscribers which can be both local plugins
or remote daemons (figures from [4]).

Figure 3-3 LDMS metric set queries. System data is represented in a structured data
format designed to minimize data movement. A given LDMS Sampler (e.g, meminfo
shown) collects one or more data field names, types, and values (e.g., MemTotal,
u64, 131899768). Meta-data consisting of information about the layout, names, and
types of data, is only pushed once or upon change, reducing data movement. Set
permissions (e.g., rwxrwx--) can be used for access control.
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Data is typically collected on-node by sampler plugins of an LDMS sampler daemon at regular
intervals and inserted into the data regions of metric set data structures. An off-node LDMS
aggregator daemon then pulls the data at regular intervals from the data memory regions of the
metric set data structures. In this way, all of the logic and capability for transport is kept off-node.
Figure 3-2 (left) illustrates this mode of collection and aggregation.

LDMS also provides security through authentication, association of a user and group ID with
each metric set, and associated permission bits to enable access control, as shown in Figure 3-3.
(More detail on the metric set can be found in [2].)

Both socket-based and RDMA transports are supported, with the latter minimizing CPU
interference. While in Figure 3-1 we show the transport directing all data to a single off-platform
database, the data can be directed to an arbitrary number of consumers. More information can be
found at the OVIS project’s LDMS github site at https://github.com/ovis-hpc/ovis [1].

3.2.2. Application Data Collection

Application related data is inherently different than system data. Application data is event-based
data that occurs asynchronously across the system and hence requires a push-based methodology
in order to minimize on-node memory consumption, data loss, and latency between occurrence
and remote recording of events. Because events may vary in their content, the data format must be
variably structured.

In order to support on-demand publication of variably formatted information, we have enhanced
LDMS to include a publish/subscribe bus capability. This capability and the associated API for
publishing and subscribing is called LDMS Streams. LDMS daemons and plugins subscribed to a
LDMS Streams tag receive any data events that arrive with that tag. This is illustrated in
Figure 3-2 (right). When being published, data is specified as either string or JSON format. The
LDMS Streams feature leverages the efficient and secure LDMS transport to additionally support
efficient application related data collection and run time transport and storage to the same
database in which system data is being stored.

3.3. Kokkos

Kokkos is a parallel programming ecosystem for performance portability across multi-core,
many-core, and GPU node architectures [7][6]. At its heart is a library-based API that uses
modern C++ metaprogramming to abstract away architecture-specific execution and data
management details so that programmers can focus on exposing parallelism in their applications.
The companion Kokkos Kernels library provides tuned implementations of common
computational kernels hereafter referred to simply as kernels for performance-critical use cases.
Finally, and of primary interest to this milestone, the Kokkos Profiling interface [8] provides
application timers and utilities to connect with third-party tools from vendors (e.g., Intel VTune)
and open source efforts (e.g., HPCToolkit). Since Kokkos is Sandia’s chosen vehicle for
performance portability of ASC IC and ATDM applications and also in widespread use among
other DOE laboratories, it is an ideal candidate for our work.

16



Figure 3-4 This figure depicts an application utilizing the Kokkos platform. As part of
this milestone we have modified the Kokkos Profiling interface to include a Kokkos
Sampler facility to sample information about a subset of kernel executions. The
Kokkos Sampler takes user input on which kernel executions are to be sampled.
As an example: if the user enters 100, every 100th kernel execution will be sampled.
For a sampled kernel the timestamp, duration, total number of that kernel ’s execu-
tions sampled by the reporting process, and name of kernel sampled will be returned
and published via the Kokkos-LDMS Connector to the LDMS daemon running on the
node on which the sampled kernel was executed. Note that the green check marks
show components developed, and completed, as part of this milestone.

Figure 3-5 CSV formatted output of the application data injected in JSON format.
Timestamp is global and can be used to associate the occurrence of a sampled kernel
and time-windowed statistics with the system data at that time. Kernels are reported
by name. The count of a particular kernel reflects that downselection of event report-
ing occurs.
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In this work we leverage the Kokkos Profiling interface as a vehicle to publish timestamped kernel
events and timings to the LDMS Streams interface. This sub-component and associated data flow
are depicted in Figure 3-4. This information is then transported via the LDMS transport and
stored to the same database in which the system data is being stored. This enables simple time
alignment with system data and visualization of both together. Some example application data
output converted into CSV format for display is shown in Figure 3-5.

To support low-overhead monitoring of applications, a Kokkos Sampler (fig 3-4) was developed to
control the sampling rate of Kokkos kernel executions, along with the rate of messages being
delivered to the LDMS Streams pipeline. The Kokkos Sampler sampling rate is set at the
beginning of a run (in the batch script) as an environmental variable. For this milestone work the
Kokkos Sampler was configured to collect 1% of messages from all kernels for each rank.
Additionally, we developed the Kokkos Connector (fig 3-4) which establishes, and validates the
existence of, a connection to the local LDMS sampler daemon. Assuming a valid connection, the
Kokkos Connector takes the output of the Kokkos Sampler, demangles the kernel names, and
publishes the message in JSON format to the LDMS Streams interface.

3.4. Storage

Each of the 16 nodes of our monitoring and analysis cluster Shirley has 56TB of NVMe storage.
This NVMe storage was used exclusively for storage, and querying, of system and application
data using our Distributed Scalable Object Store (DSOS) database.

DSOS is a coordination layer sitting on top of our Scalable Object Store SOS and is depicted in
Figure 3-6. DSOS presents a scalable distributed database with a variety of features that enable
the simultaneous large-scale data ingest and queries required for this work. DSOS presents a
single, unified database to the end user. All SOS databases within a DSOS domain can be queried
in parallel as the result of single call to DSOS and a single set of aggregate data will be returned
as a result. SOS and DSOS are designed specifically to address the domain-specific needs of
large-scale HPC monitoring with respect to low latency ingest and query of large volumes of data.
They are collaboratively developed by Sandia and Open Grid Computing (OGC). While not
specifically developed for this milestone, it is a testament to the flexibility of this database that we
were able to make significant changes, including performance improvements, to how information
is being stored, indexed, and retrieved over this milestone window. This would not have been
possible using commercial databases.

Besides its scalable data ingest and query performance, DSOS’s flexible indices were especially
critical for execution of this milestone. SOS/DSOS indices can be based on any metric, or
combination of metrics, within an LDMS schema. Additionally, indices can be created and
removed as needed without reloading data. These features were critical in identifying the optimal
index patterns for the different query use cases we had within our analyses. DSOS also has
Python, C, and C++ APIs and a command line interface for interacting with the data. The Python
API is used within all the analyses and the command line interface is a fast method to test queries
and examine data. Query optimization was necessary because of the amount of data we ingest and
store. Roughly one month of Eclipse system data stored in a DSOS database is over 50TB,
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Figure 3-6 SOS database coordination on Shirley cluster using DSOS. A single
DSOS query is parallelized across all SOS databases. The data from each of those
databases is collected and sorted to present a single result for the user.

Figure 3-7 Analysis and Visualization Pipeline Block Diagram. Queries from a Grafana
web browser are sent through an Apache server to a Django application. The queries
can specify a Python analysis module to call, which queries the DSOS database and
manipulates the returned DataFrame. This DataFrame is returned to the Grafana
browser after being correctly formatted to create meaningful visualizations.

including indices. Two separate week-long 290-node EMPIRE runs added 900GB to the
distributed database.

3.5. Analysis and Visualization

Prior to this milestone, we had created an analysis and visualization (A&V) pipeline to derive
metrics of interest from LDMS system data and to show the results on a Grafana dashboard [10].
A high level diagram of our analysis and visualization (A&V) pipeline is shown in Figure 3-7.

The A&V pipeline starts with a user query from a Grafana interface. The time range, type of
analysis, and any input parameters are sent through an Apache server to a custom Django Python
application. This Django application interprets the query sent from Grafana. Some queries merely
request data directly from the DSOS database, which is then queried through the DSOS Python
API, and returned as a Pandas DataFrame, JSON formatted, and returned to Grafana. However,
most of the dashboards used have an analysis call to transform raw data to something more
interesting. In this case, the Django application calls the requested Python analysis to interact
with the database. The analysis modules allow for endless possibilities limited only by Python
coding ability and time that the user must wait for the result.
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A key feature of this pipeline is that analysis is done when, and only when, a user requests a
visualization in Grafana. Although this increases query time, it saves significant computation and
storage resources as compared to traditional methods which require running all analyses across all
data and saving to a results database. Additionally, analysis modules and resultant data formatting
can be easily changed without needing to repopulate a results database. This pipeline does
support an "always analyze" usage model, which we have found applicable for select analyses,
but these were not a part of this milestone. Significant work was done, as part of this milestone, to
optimize database queries and Python analyses for fast Grafana query times.

For this milestone, we also made substantial changes to the internals of the pipeline to improve
scalability and performance. The previous pipeline had longer query times because it used a
single-node SOS database rather than DSOS. To incorporate DSOS, major changes were made in
the Django application to conform to the DSOS Python API and in the Python modules to make
better use of the DSOS SQL-like query structure.

4. DEPLOYMENT

LDMS has been deployed on the majority of our production HPC clusters since 2015, with stable
release version updates being part of our maintenance workflow. As part of this milestone work
we scale-tested and deployed our latest LDMS version, which includes the LDMS Streams
capability described in Section 3.2.2, on our CTS-1 Eclipse system (described below in
Section 4.1). As part of the upgrade we also moved from collecting system data at once per
minute to once per second.

4.1. Scalable high-frequency data collection

The overall scheme of hardware and software deployed is illustrated in Figure 4-1. In detail, an
LDMS data collection service (S0) instance (otherwise known as a LDMS sampler daemon) is
deployed on all of our Eclipse[9] cluster nodes including 1488 computes, 12 logins, 24 Lustre
gateways, and 8 administrative nodes. Application or job launch processes can publish tagged
event data to the collecting service on the compute or login node where they are running. We
divide the cluster nodes into 16 groups and deploy one LDMS first level aggregation service (S1)
instance per group. Each S1 instance collects LDMS Streams and system data from its assigned
S0 instances. The data sampling plugins deployed on Eclipse and their collection intervals (in
seconds) are listed in Table 4-1.

The sixteen S1 instances are spread across just three administrative nodes. On our analysis cluster
Shirley, (further described in Section 4.3) a second level aggregation service (S2) instance runs
one-per-node, capturing and locally storing the data flow from its paired Eclipse S1 service
instance. Within Eclipse, all LDMS data is transported over the fast Omnipath network. Shirley
S2 instances connect to Eclipse S1 instances via a 10Gb/s Ethernet network. In addition to the S2
data storage to the SOS databases, the S1 instances store system metric data to CSV files on
administrative node private 2TB scratch disks. These CSV files allow for data recovery in the

20



Figure 4-1 Deployment Architecture

event of a temporary outage of Shirley or the the network between Shirley and Eclipse. These files
are moved daily from the local scratch disk to network storage.

plug-in interval data
filesingle 60 power and temperatures
meminfo 1 /proc/meminfo for free, active, and other memory usages
vmstat 1 /proc/vmstat for numa and other metrics
procstat 1 /proc/stat for cpu tick, interrupt, and process counts
loadavg 1 /proc/loadavg for 1, 5, 15 minute loads
procnet 1 Ethernet device traffic and errors
opa2 1 Omnipath device traffic and errors
procnfs 1 NFS v3 events and traffic
lnet_stats 1 Lustre network traffic and errors
lustre_client 1 Per-mount-point Lustre events and traffic
dstat 1 LDMS daemon I/O, memory, CPU and file descriptor usages

Table 4-1 Describes plugin names, types of data gathered, and collection periods (in
seconds)

4.1.1. Data collection overheads

As part of the milestone, in Jan 2021 we held a 30-hour DAT on Eclipse for LDMS Version 4
overhead testing and to validate the interoperability of our initial application, Kokkos sampler,
and Streams functionality. This involved substantial work up front in determining applicable
workload and metrics to collect as well as all of the infrastructure and analysis/visualization
configuration. The statistical results of this DAT will be documented in detail in a separate
publication. The DAT compared runs with and without LDMS present on the compute nodes for
run sizes from 1 to 1024 nodes for a variety of applications that stressed different hardware
subsystems. In summary performance overheads were observed as follows:

• The typical total wall-clock overhead observed was less than 1% while the typical
run-to-run variation observed without LDMS was 1.3%.
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• There was no discernible run length difference between publishing 1% of all Kokkos events
and publishing no Kokkos events.

• The aggregate LDMS network traffic leaving Eclipse is approximately 3% of a 10Gb/s link
in the administrative network.

• There is ∼ 6MB of memory used for LDMS on the compute nodes where we are collecting
∼> 5000 metrics per node. This is not expressed as a percent of memory because it doesn’t
scale with node memory size.

4.2. Administrative controls

Unprivileged Eclipse users connect to LDMS daemons on a port designated for this purpose. The
munge service is used for authentication. The aggregation hierarchy inside Eclipse is
interconnected using a different port and a shared secret, restricted to administrative processes, for
authentication. In this way, application data injection to LDMS can be easily disabled if needed.
The S1 instances (up to six of which run on each administrative node) listen for connections on
other designated ports; the Shirley S2 instances authenticate to the S1s with the administrators’
shared secret. The current implementation has no software limits on the local or aggregate rate of
user application data injection; the 10Gb/s Ethernet network does pose a hardware limit.

4.3. The Shirley Monitoring and Analysis System

As part of this milestone work we designed and deployed our Shirley monitoring and analysis
cluster. Shirley consists of 16 storage and analysis nodes each comprising dual 2.40GHz Xeon
6240R processors (48 cores total) with 1.35B of RAM and 56TB of NVMe storage (spread across
8 drives). To best support the recently released CPUs, high-speed network features, NVME
storage, and analysis and visualization software, we deployed the Redhat Enterprise Linux 8.4
operating system across the whole Shirley system.

5. APPLICATION AND SYSTEM METRICS

We collect a wide range of metrics. Some are directly observable, while others are derived from
other metrics. Some reflect shared resource usage, such as file system and network utilization,
while others are specific to the user’s allocation, such as CPU and memory utilization. To
determine metrics of interest in the context of this milestone we decided to go through a
requirements gathering process involving both application and system monitoring experts.

This milestone required that we demonstrate a capability for continuous collection of system data,
application progress metric(s), and an application throughput metric. The deployed installation of
LDMS included several system samplers that enable collection of system data such as jobid, load
average, CPU and memory utilization, various Ethernet, Omnipath, NFS, Lustre file system and
Lustre networking events, motherboard temperatures and power, and aggregator daemon
performance metrics (see Table 4-1). The goal of this requirement is to display system metric data
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along side application throughput metric data, enabling a user to visually identify periods of
execution during which system behavior affects application throughput. Since memory can often
adversely affect application performance, we chose Active memory, for the nodes hosting the
job/application of interest, as the system metric for the dashboard display.

In scientific engineering applications, there is typically some sort of iterative solve process that
reflects conditions of the physical system being simulated. For the EMPIRE application, a method
called ParticleMove::Move is called on each iteration of the solve loop. Computing
ParticleMove::Move invocations per unit time (sec) would give a good indication of application
progress. The dashboard provides an application profile in which the user can select the
function/method for which to compute invocations per time. Therefore, this is robust across
applications and for EMPIRE we chose ParticleMove::Move invocations/sec in a specified time
range to reflect application progress.

Defining an application throughput metric is challenging because it’s tempting to choose to
measure behavior that is application-specific such as particle updates per second. Although users
can define custom metrics for display, we chose to determine a first-order application throughput
metric that is robust and applicable to all applications, which is total functions/methods called
per minute within a specified time range. Application throughput reduction is indicated when
this metric decreases in value.

The visualization dashboard displays these metrics through various plots which will be discussed
in the next section.

6. SYSTEM AND APPLICATION DATA VISUALIZATION

For this milestone, we created two Grafana dashboards to visualize an application’s Kokkos
instrumentation data, each with several analysis-driven panels on them. The dashboards will be
referred to as the job-level dashboard and the kernel-level dashboard. Grafana was chosen
because it is an open-source tool gaining traction across the tri-lab HPC monitoring community
for HPC visualization and is tailored towards visualizing time-series data. A Grafana interface
consists of dashboards populated by panels. Each panel visualizes data obtained from a query to
the A&V backend. The dashboard has a time-range picker for users to query data in a chosen time
frame. This time-range is part of the query used in each of the panels on the dashboard. Panels in
our infrastructure are always aligned in time.

The job-level dashboard in Figure 6-1 shows high level information about the application across
all kernels in the job alongside a system metric. There are three panels in this dashboard. The first
panel is called the Kernel Summary Table that shows all kernels, the number of times each kernel
was called, the time spent in each kernel, and the average kernel execution time in the time-range
specified. This table is useful for quickly understanding the behavior of kernels called in the
application in this time. Each kernel name in the table is also a hyperlink to the kernel-level
dashboard for that kernel.

The second panel on this dashboard presents the application throughput metric and is a
time-series plot of the total kernel calls per minute across all ranks in the application. This panel
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Figure 6-1 Job-level Grafana dashboard with a kernel summary table, an application
throughput time-series plot, and a memory usage time-series plot

provides the trend of kernel executions in the application. Dips in the time-series plot might
indicate the application stalled or is shifting to a new phase of the application.

The final panel is a time-series plot of the active memory usage of nodes within the job. For each
time point, the graph shows the average memory usage across all nodes and the maximum and
minimum memory usage on a single node. The memory usage panel displays the system metric
of choice for this milestone and helps users track memory usage and balancing across the job.

The kernel-level dashboard in Figure 6-2 displays information pertinent about a single kernel
within the application. The dashboard has a text box for users to fill in which kernel is of interest
to them. Additionally, they can navigate to this dashboard using the job-level dashboards Kernel
Summary Table that will automatically fill in this text box. There is also a text box for users to
control the bin size used in the underlying analyses. This bin size determines the level of
granularity for the returned results. For example, a bin size of 10 will return plots where each data
point is an average across 10 seconds. This allows users to see general trends or fine details as
needed.

There are two panels on the kernel-level dashboard. The first panel is a time-series plot called
Function Timing Information that has two lines on it. The blue one displays the average time per
kernel execution over time. The average here is taken across all ranks in the application. This can
indicate if there are times when a kernel takes very long to execute, which might be indicative of a
problem. When this dashboard is populated using a kernel indicative of scientific performance,
such as ParticleMove::Move as in the case of EMPIRE, this line is an application progress metric.
The orange line in this panel shows the number of times that kernel is being called per second.
This line indicates if a kernel is being called more or less than usual which could indicate stalls or
phase changes.

The second panel on this dashboard shows a heatmap of the execution time across ranks in the
application. Blue colored bins mean a few ranks are in this execution time range, red colored bins
mean many ranks are in that range. This panel helps users understand the distribution of execution
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Figure 6-2 Kernel-level Grafana dashboard with a function timing information time-
series plot and an kernel execution heatmap

times and identify ranks acting as outliers. In the EMPIRE milestone runs, we identified ranks
consistently acting as outliers that were previously unknown to the EMPIRE developers. A
limitation of this panel is that Grafana heatmap visualizations are computationally expensive and
hence the latency from query to results can be significant for a large number of ranks (note this
has no impact on the application as these queries and computations are performed on Shirley). To
get around this, we randomly sample ranks when the application uses more than 100 ranks. Rank
zero is always kept in the sampled ranks as it is often important for developers to understand.

Both dashboards were shown to display information about a 290-node EMPIRE milestone run.
Users were able to use the time-range picker to view the different derived metrics across any part
of the job. We also showed, using a two-node run of the application SPARTA for simplicity, that
the dashboard could present a live view of a currently running application.

7. STAKEHOLDER FEEDBACK AND FUTURE CAPABILITY
AUGMENTATION PRIORITIES

In this section we present Stakeholder Feedback and Capability Augmentation Priorities. Our
timeline for addressing these and for rolling out the capability on our other HPC systems is
presented in our Roadmap (Section 9).

7.1. Feedback

Stakeholders in this work are primarily users of our HPC systems who would be interested in the
performance and progress understanding that live data and analyses can provide. For the user
feedback, we targeted the EMPIRE developers and analysts who could then see the capability as it
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pertains to their code. There were additional requests from system administrators who were part
of the team and can also benefit from the capability as it would show conditions on the system
and insights into underperforming applications.

The feedback was overwhelmingly positive about the work’s utility and potential. Stakeholders
also made feature requests as described below.

EMPIRE developer and analyst comments:

• "There was no noticeable impact on performance on small or large simulations when
LDMS was enabled"

• "I fully expect enabling LDMS to become the default EMPIRE behavior on supported
platforms"

• "Being able to see the dashboard’s real-time updating of simulation performance is so much
better than manually finding that information in simulation log files"

• "Quickly plotting simulation metrics helps us quickly assess job health and progress, saving
time and decreasing cognitive load"

• "Clear, clean layout without presenting too much information"

Requested enhancements:

• The number one request was that they would like to be able to have a subset of kernels
always collected (e.g., the ParticleMove::Move kernel)

• More information about filesystem I/O alongside application event data

• Rename data labels to improve understanding

Will be adding in-depth descriptions about the data and underlying analyses

• Add bit-rate to application throughput panel to show how much data is being ingested by
the backend

Will be useful for adjusting sampling rate in the future

7.2. Capability Augmentation Priorities

The work was deliberately scoped (Section 1) to address the development of this capability and its
deployment on one system and targeting a single ASC relevant application. All of the not in scope
work items are intended to be Future Capability Augmentation Priorities. Those items are
repeated below:

Not in Milestone Scope: Future Capability Augmentation Priorities

• Tuning system parameters to avoid application performance variation

• Deriving causality of application performance variation

• Correlating system state with application performance
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• Determining best system or application data to collect

• Production-hardened deployment of collection infrastructure / analysis

Particular priorities to improve the architecture and to enable better metric selection and
associated analyses identified by the team are listed below. These are broken down by the various
conceptual elements of the work.

Architecture:

• Explore additional lightweight methods for sampling of Kokkos kernel execution
information

– Self adjusting data volume production

– User-controlled variable sampling rate and always sampling specified kernels

Metric Selection:

• Add PAPI events/metrics to analyses and dashboards

• Define metrics for, and implement, performance bottleneck detection

Visualization and Analysis:

• Analyses with both application and system data to automatically identify correlations

• Advanced analyses, such as rank clustering or historical variance investigation, of
application data

8. LESSONS LEARNED

Throughout the course of this L2 milestone, we encountered some unexpected primary challenges
and several lessons learned. The unexpected challenges we faced were not technical in nature but
pertained primarily to team dynamics, specifically communication and engagement.

Communication in the all-virtual environment is difficult by default, but we faced team
communication challenges that were also related to the size and organizational diversity of the
team and the complexity and interdependences of the project. Specifically,

• Because of the breadth of the technologies involved, not all team members were intimately
familiar with the technical issues of various sub-components of the project.

Mitigation: Initiating monthly technical deep-dive presentations on various aspects of
application and system monitoring.

• More communication among the sub-groups is needed to increase engagement and overall
project knowledge.

Mitigation: Regular synchronous and asynchronous status updates. We need large project
distributed tools for organization, communication, and asynchronous status. Potential tools
are currently being investigated.
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Several lessons were learned during project execution that we aim to improve upon in future
development and deployment of the monitoring system. Specifically:

• Large projects should have a single point of contact for final design decisions and these
decisions should be presented and explained to the team in a timely manner.

• It is vitally important to document, with detailed diagrams, sub-component descriptions,
functionality descriptions even seemingly simple project details (e.g., network diagrams,
expected functionalities of sub-components and their interfaces and interactions with
others).

• Staff training on data analysis would speed problem diagnosis and mitigation and
tool/infrastructure validation. Note that we will address this in a system monitoring
deep-dive presentation.

These issues have been discussed among the milestone management team and will be part of a
whole-team discussion in the future to ensure that we define adequate solutions to mitigate
problems within the project as we move into the future.

9. CAPABILITY PRODUCTION ROADMAP

In this section, we present our multi-year roadmap for development of new features and
production deployment on systems at Sandia. Features include the priority items from Section 7
and from the not in scope items in Section 1. These roadmap diagrams highlight key events in the
timelines of:

• System Data Collection - includes production installations

• Application Data Collection - includes application information via system sources (e.g.,
PAPI) and application information via Kokkos and non-Kokkos enabled applications

• Monitoring Features - includes features of all aspects of the architecture (e.g., data
injection, dashboards etc.)

Figure 9-1 covers years FY20-22. FY20 is included to enable identification of the new
capabilities developed as part of this milestone. FY22 shows the intended enhancements of the
demonstrated capabilities, given the success of this milestone. Details are presented in the figures,
but highlights of these years are as follows:

• FY20 - LDMS version without LDMS Streams in production on SRN production systems.
Application data restricted to that available from the system. System data pipeline to
non-distributed SOS database with production dashboards for system data.

• FY21 (milestone capabilities indicated by check marks) - LDMS version with LDMS
Streams in production on CTS-1 system with higher frequency data collection than in
previous year. Application data injection from Kokkos via Kokkos-LDMS Connector.
Distributed DSOS database increases scalability and performance. Dashboards include
application and system data displayed concurrently and time-aligned.
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Figure 9-1 Roadmap - Part1: FY20-22

Initiated in this year, but not part of the milestone, is a collaboration with Argonne National
Laboratory (ANL) to inject I/O data from their Darshan [5] tool into the data stream via the
LDMS Streams capability. This will provide Sandia with additional IO data and will
provide Darshan the ability to provide run time output while bounding its memory footprint
to do so.

• FY22 - Expansion of deployment to other CTS-1 systems and Sandia’s Restricted Network
(SRN) ARM system. The application base will be expanded beyond EMPIRE. Collecting
application data via non-Kokkos applications will be investigated, most notably by a
collaboration with Lawrence Livermore National Laboratory (LLNL) to inject data from
their Caliper [3] tool directly into the LDMS Streams. Additional features for the
architecture and dashboards are shown in the figure.

Expansions of the capabilities are also listed as Planned Activities for FY22 in the ASC
Implementation Plan. Of particular note are training and documentation resources about the
use of these capabilities.

Figure 9-2 covers years FY23 and beyond. Details are presented in the figures, but highlights of
these years are as follows:

• FY23 - Deployment on CTS-2 and roadmap for Sandia’s Secure Network (SCN) machines.
Particular high-profile applications are targeted in this year. Increased analytic capabilities
including Machine Learning (ML) and statistical models, based on our active research, are
also planned.
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Figure 9-2 Roadmap - Part2: FY23 and beyond

• Beyond - While we have enabled unprecedented insight into application progress in
conjunction with system conditions, the ultimate goal of this work is Automated
Optimization of HPC Systems for Maximum Science Output driven by run time
monitoring and analysis. We will be continuing work toward automated analysis and
dynamic feedback in future years.

It should be noted that while the capabilities documented here were performed in execution of an
ASC level 2 milestone, as part of this work we have also production hardened these capabilities
and they will continue to be operated and offered to users and system administrators as a
production capability. Note also that FOUS is committed to the deployment and support of the
infrastructure on Sandia’s systems. This includes both HPC platform support and supporting
subsystems, such as the analysis and visualization clusters, which are maintained by FOUS. An
eventual goal is the interactivity of code teams’ dashboards, often currently maintained by CSSE,
with the dashboards in this work. Long-term architectural and platform support will be explored
as the functionality is expanded to multiple clusters.

10. COMPLETION CRITERIA

The Milestone text and Completion Criteria are listed in Section 1. In this section, we provide a
checklist breaking out the key features of the milestone capabilities, as provided in the description
in Section 2, and a summary of the evidence of its deployment and demonstration. Associated
Figures and Sections are also referenced in the checklist.
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2� Successful deployment of infrastructure on CTS-1 system

Target version of LDMS (i.e., Streams enabled) has been in continuous deployment on the
1500 node CTS-1 System, Eclipse since Jan 28, 2021

2� Demonstration of capability for continuous collection and storage of system data over a
2-week rolling window

We have demonstrated continuous collection and storage over a 30-day (2 x 2 weeks)
window of system data on Eclipse

– A 30-day window produced ∼60TB (including indexing overhead) of data stored in
NVMe-based Scalable Object Store (SOS) databases distributed across 14 nodes of
the Shirley Monitoring and Analysis cluster. This is < 10% of the NVMe storage
capability of Shirley.

– Rolling window previously demonstrated on a single SOS database on our Bitzer
system

2� Identification of an application throughput metric(s) for an ASC-relevant code

Throughput indicated by the total number of Kokkos kernel executions per-second over a
defined time window while running the EMPIRE application. Shown in Figure 6-2

2� Identification of an application progress metric for an ASC-relevant code

Number of kernel calls per unit time over a defined time window (15 sec. default) for a
kernel indicative of science work accomplished (ParticleMove::Move)

2� Demonstration of capability on target application (EMPIRE) run(s) on CTS-1 system
(Eclipse)

Demonstrated 32- to 290-node EMPIRE application runs on Eclipse

2� Demonstrate a visualization interface that will enable a user to look at post-run application
progress in conjunction with system conditions

Shown statically in Figure 6-1

2� Demonstrate a visualization interface that will enable a user to look at run time application
progress in conjunction with system conditions

Shown statically in Figure 6-1

Run time dashboard capabilities were demonstrated in a video in the final review of
milestone

2� Document feedback and future work

Documented in Section 7 and Section 9
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L2 Milestone (Enabling Capability)

Milestone Description

◦ Demonstrate the use of  SNL data collection, analysis, and visualization framework/tools, to provide both 
system and application relevant run-time and post-run information for a rolling two-week interval

◦ Deploy on a Sandia production SRN platform

◦ Demonstrate a capability for continuous collection of  system data, an application progress metric(s), and an 
application throughput metric for an ASC-relevant code

◦ Provide a capability to store this data and a visualization interface that will enable a user to look at 
application progress in conjunction with system conditions, both at run time and post-run

Milestone Targets

◦ SNL’s Lightweight Distributed Metric Service (LDMS) for the transport and aggregation of  Trilinos-enabled 
application progress data and of  system data

◦ ATDM Application EMPIRE for deployment and its Proxy, MiniEM, for capability development

◦ CSSE’s Application Performance Team will be supporting development and testing

2
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Motivation / Impact

Answering key performance questions

◦ Is my performance variation due to system conditions or code changes (users)?

◦ How can I know if  the system is having problems (system managers and users)?

◦ What are the architectural requirements given the site’s workloads (acquisitions teams)?

◦ How can the system provide more effective and efficient services (architects, system managers, and support 
staff)?

Current issues affecting the ASC program

◦ Unknown sources of  code performance variation, degradation, and runtime failure lead to longer 
development cycles and high machine and human resource costs.

◦ More insight into workload needs and causes of  performance variation and degradation is required to 
optimize new machine design

Impact of  this work on application teams and system administration at Sandia

◦ Application teams can better diagnose causes of  performance variation or failure and determine whether 
they are application or system related.

◦ System administrators can better understand application behaviors and system resource needs as well as 
system issues and how they are affecting application performance.

3
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Completion Criteria

Stated L2 Completion Criteria
◦ Successful deployment of  infrastructure on CTS-1 (Eclipse) system

◦ Demonstration of  capability on target application run(s) on CTS-1 system

◦ Lessons learned and feedback from stakeholders for future capability augmentation and priorities will be 
documented

Scope Definition
◦ In scope

◦ Developing and deploying an integrated architecture for application and system information

◦ Collecting application and system state metrics from a CTS-1 system at runtime 

◦ Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics

◦ Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

◦ Providing information on instrumentation overhead and application performance impact

◦ Not in scope (future capability augmentation)
◦ Tuning system parameters to avoid application performance variation

◦ Deriving causality of  application performance variation

◦ Correlating system state with application performance

◦ Determining best system or application data to collect

◦ Production-hardened deployment of  collection infrastructure / analysis

5
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Interacting Milestone Sub-Groups

Application and System Metrics:
◦ Determine meaningful information regarding performance, progress, and throughput information of  interest to the 

stakeholders. 

◦ Determine application and architecture specific hardware counters and software data sources to transform into 
information.

Application-Streams Architecture:
◦ Utilize and enhance LDMS to support efficient and scalable runtime transport of  both application and system data.

◦ Efficient application timing and performance data will be injected into the LDMS transport by Kokkos/Trilinos.

Analysis and Visualization:
◦ Convert raw application timing and performance data plus system data into meaningful visualizations through the 

development of  Python analyses and Grafana dashboards using existing system-data visualization pipelines.

Deployment:
◦ Partnership with Eclipse admins and Advanced Architecture Testbeds team to identify and address all requirements 

for deployment of  the full L2 architecture. 

◦ Partner with LDMS developers to ensure necessary features. Deploy architecture on all platforms and 
infrastructure.

20 people across: LDMS, Application Performance, Kokkos, Trilinos, CapViz, and EMPIRE Teams

6
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Application and System Metrics: EMPIRE Background8

PIC (particle-in-cell) is EMPIRE’s most 

mature capability

Particle-In-Cell Field Solve

Code developed from 

ground-up under ATDM

Built on Trilinos

components for rapid 

development progress

Diagnostics are cross cutting 

Kokkos is foundational to all parts of the code

Field 

Solve

Weight 

Particles
Update 

Forces

Move 

Particles

The PIC 

Algorithm
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Application and System Metrics: First Order Questions

The fusion of  system and application metrics on 
the same display can provide deeper 
understanding of  application behavioral 
characteristics

Example questions that would benefit from 
application-system data fusion

◦ Is a change in application progress observed with a 
simultaneous change in I/O, memory, or network 
utilization?   

◦ Can load imbalance among ranks in the application be 
seen by inconsistent CPU and/or memory utilization 
across nodes? 

◦ Can application heartbeat help narrow location of  
unexpected exit or behavior of  interest?

◦ Application heartbeat is a regular application feature that marks an 
interval of  note 

9

Application Behavioral 

Characteristics

Progress / Throughput

Load Imbalance

Unexpected Exit

Example Application Measurements

Time-per-timestep (Kokkos timers)

PAPI

Heartbeat (Kokkos function stats; Cook 

et al)

Example System Measurements

I/O Utilization

CPU Utilization

Memory Utilization

Network Utilization

Informs

Informs
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Application and System Metrics: Plan of Action

Identify which system and application metrics should be analyzed and integrated on the display to aid in 
understanding problems such as unexpected application termination and application performance 
variation

◦ Determine architecture-specific hardware performance counters and appropriate metrics that should be extracted

◦ Determine how to aggregate per rank data 

Determine application “heartbeat” and progress indicators

◦ Utilize Teuchos and Kokkos timing and other application information

Collaborate with Deployment and Application-Streams Architecture subgroups to determine fidelity of  
collection, both necessary and possible, to produce meaningful results

Collaborate with Analysis and Visualization subgroup to determine ideal ways to present collected data 

10
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Application-Streams Architecture: LDMS Background

LDMS - low-overhead data collection, transport, and storage 
capability designed for continuous monitoring supporting 
runtime analytics and feedback.

◦ Typically pull based to minimize CPU interference

LDMS Streams – push-based publication of  loosely formatted 
information to subscribers

◦ LDMS Streams push is asynchronous 

12

ldmsd L1 aggregator pulls

from memory regions 

of L0 samplers

Sampler plugins

Daemon publish API called from externally or by a plugin 

pushes to ldmsd which pushes to all subscribing plugins 

and aggregators

ldmsd
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Application-Streams Architecture: Kokkos Background

Kokkos Tool External Connectivity - kernels and Teuchos timers within Trilinos are configured to 
dynamically load a Kokkos supplied “connector”. This requires no recompilation for profile enabled 
code and can be used for any Kokkos application (not just Trilinos, EMPIRE etc)

Kokkos Tool Internal Connectivity – hook points already exist for kernels (parallel-for, reduce, scan), 
“regions” (arbitrary points in code which can stack) and “sections” (arbitrary points in code which 
may overlap)

13

Call functions within a dynamically loaded Kokkos Tool

…

Kokkos::parallel_for( … , KOKKOS_LAMBDA(int i) {

<loop body>

});

…

…

call kokkosp_start_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)

..

Application Code
Kokkos Runtime Code 
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Application-Streams Architecture: Plan of Action

Create a Kokkos Connector to LDMS Streams

◦ Initial prototype is working on Sandia Voltrino Cray XC50 open ART system

Enable transport of  the Kokkos data targeted from the Application and System Metrics Subgroup

◦ Not targeting full application timer traces

Enable dynamic discovery and adjustment of  target information and fidelity of  collection

◦ Significant diagnostic data and call stack may not be known a-priori

Scale LDMS Streams to meet application output requirements

◦ Enable N ranks to be writing individually

◦ Investigate rate-limiting feedback in the Streams architecture

Measure overhead of  instrumentation and assess performance impact on application

◦ Report out worst-case scenarios and associated configurations

14
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Analysis and Visualization: Background

9328 FY20 work created a Grafana interface for analyzing 
and visualizing SRN CTS system data collected by LDMS

Data can be directly queried from a database or have a 
python module perform analysis alongside the query

◦ Allows for flexible development of  visualizations as analysis 
only happens during a query rather than over all data

◦ Any user with appropriate permissions can add and change 
analytics and create their own queries with analysis

◦ The Scalable Algorithms (1465) group has also performance 
analysis scripts which could be translated to python analysis 
modules

16
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Analysis and Visualization: Background

Current interface gives us a variety of  insights into system status, from center-wide filesystem 
performance to high memory usage jobs on a system 

17
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Analysis and Visualization: Plan of Action

Plot derived application performance metrics alongside relevant system performance metrics to produce 
dashboards that can provide a fused view of  system performance and application performance

◦ Create Python analyses to parse application performance data and derive throughput and performance metrics

◦ Analysis modules will be hosted and executed on an analysis cluster

◦ Initial data retention policy is two weeks  

◦ Create queries and dashboards that make intuitive sense to visualize the derived application metrics

◦ Iterate with system administrators, analysts, and other subgroups to polish visualizations and  dashboard navigations

18

Timeseries plot of active 

memory of an application 

Timeseries plot of function/second for 

specific miniEM function by rank

System Visualization Application Visualization
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Deployment
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Deployment: Background

CAPVIZ has previously deployed LDMS in production (2015-2020)
◦ Production deployment of  the latest LDMS software to collect system metrics is part of  our regular work for 

FY21 (orthogonal to the L2 milestone, but includes new Streams functionality).

Analyzing and visualizing system data
◦ Analysis cluster currently collects system data via LDMS once per minute from SRN clusters for 

interactive analysis & visualization development

20
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Deployment: Plan of Action

Test deployment of  latest version of  LDMS on CTS-1 testbed

◦ Implement application and system data pipeline from CTS-1 testbed to analysis cluster

Deploy latest version of  LDMS, with a functional Streams interface, on Eclipse

◦ Integrate LDMS in the production image for Eclipse 

◦ Allow Streams interface to be written to by an application with data transported to storage 

◦ Allow administrators to control what users / applications can write to the Streams interface

Ingest Eclipse data on analysis cluster and have the capacity to store and analyze data over a two-
week window 

◦ Deploy latest visualization framework on analysis cluster 

21
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Completion Criteria

Stated L2 Completion Criteria
◦ Successful deployment of  infrastructure on CTS-1 (Eclipse) system

◦ Demonstration of  capability on target application run(s) on CTS-1 system

◦ Lessons learned and feedback from stakeholders for future capability augmentation and priorities will be 
documented

Scope Definition
◦ In scope

◦ Developing and deploying an integrated architecture for application and system information

◦ Collecting application and system state metrics from a CTS-1 system at runtime 

◦ Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics

◦ Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

◦ Providing information on instrumentation overhead and application performance impact

◦ Not in scope (future capability augmentation)
◦ Tuning system parameters to avoid application performance variation

◦ Deriving causality of  application performance variation

◦ Correlating system state with application performance

◦ Determining best system or application data to collect

◦ Production-hardened deployment of  collection infrastructure / analysis

23
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L2 Milestone Overview

Milestone Description
◦ Demonstrate the use of SNL data collection, analysis, and visualization framework/tools, to provide both 

system and application relevant run-time and post-run information for a rolling two-week interval
◦ Note: This does not imply a 2-week continuous application run

◦ Deploy on a Sandia production SRN platform

◦ Demonstrate a capability for continuous collection of system data, an application progress metric(s), and an 
application throughput metric for an ASC-relevant code

◦ Provide a capability to store this data and a visualization interface that will enable a user to look at 
application progress in conjunction with system conditions, both at run time and post-run

Milestone Targets
◦ SNL’s Lightweight Distributed Metric Service (LDMS) for the transport and aggregation of Trilinos-enabled 

application progress data and of system data

◦ ATDM Application EMPIRE for deployment and its Proxy, MiniEM, for capability development
◦ CSSE’s Application Performance Team will be supporting development and testing

3
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Eclipse DAT (part 1) – LDMS (Streams version) Overhead 
Testing 

GOAL: validate low-overhead at 1Hz sampling intervals with real-world application mixes to enable 
running LDMS (Streams version) continuously on Eclipse in production

Took a DAT on CTS-1 system Eclipse on 1/29-1/30/2021 and conducted a series of tests over the 
course of 28 hours

Installed the LDMS version which enables the Streams application data collection across Eclipse 
◦ Collected CPU, network, filesystem, hardware performance counters, and memory metrics at 1 Hz ( ~1700 

metrics)

◦ Using analysis and visualization pipeline, displayed administrative network traffic to understand infrastructure 
impact of LDMS collection and storage

In close collaboration with 9326 HPCPRO team, ran a suite of applications across Eclipse to simulate 
typical HPC application workloads

◦ Observed acceptable overhead of < ~1% across the application suite with a full set of configured samplers 
running at a sampling interval of 1Hz

LDMS (Streams version) has remained running on Eclipse in production since the DAT
◦ Storage is performed on our production analytics cluster Bitzer

6
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Eclipse DAT (part 2) – Streams Testing 

GOAL: Functionality Testing of Kokkos-to-LDMS Streams 
capability to inject application data into the LDMS Data Stream

Conducted test using ~1000 nodes and two applications: EMPIRE 
and SPARTA

◦ Goal was to test functionality first rather than performance tuning 

◦ Demonstrated successful end-to-end pipeline of injecting application 
performance data via the Kokkos connector into the LDMS Stream 
on Eclipse and storing results to our analytics cluster

7

#rank,timestamp,job-id,kokkos-perf-data:time,kokkos-perf-data:type,kokkos-perf-data:name,kokkos-
perf-data:count​
0,100907.012310,8290750,0.000003,0,"Kokkos::View::initialization 

[Kokkos::Random_XorShift64::state]",2

0,100907.012360,8290750,0.000008,0,"Kokkos::View::initialization 

[DualView::modified_flags]",5

0,100907.012400,8290750,0.000014,0,"Kokkos::View::initialization [SurfCollide:nsingle]",4

CSV format:

SocketSocket

Node

SocketSocket

Node

…

Scalable Unit

SocketSocket

Node

SocketSocket

Node

…

Scalable Unit

…

LDMS 

Agg

LDMS 

Agg

… CSV
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Kokkos to LDMS publish8

Kokkos-LDMS Connector
-Publishes to LDMS Streams API

…

Kokkos::parallel_for( … , 

KOKKOS_LAMBDA(int i) {

<loop body>

});

…

…

call kokkosp_begin_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)

..

Application Code Kokkos Runtime Code 

Kokkos 

“Sampler”
-Keeps statistics and 

timing to determine 

LDMS_stream_publish

DAT Setup

Current 

Setup

• Kokkos Sampler controls the sampling rate. 

When triggered, it signals for the Kokkos 

Connector to publish data to LDMS.

• The new sampler introduces the option to 

sample data using a time-based, count-

based, or constant push.

• The Kokkos Connector and Sampler are 

currently ready for the EMPIRE priority run in 

April.

LDMS Transport
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Dashboards Already Having an Impact!

Initial EMPIRE runs before milestone were trying to understand memory usage
◦ Lower node count runs were not working for a given problem size

Memory usage dashboard revealed that a minimum of 24 nodes were needed for the desired 
problem to fit into compute node memory

9
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Remaining Work

On track to complete the end-to-end pipeline of application and system data collection, storage, 
analysis, and visualization

Remaining items:
◦ Improve storage side performance (e.g., format processing, ingest, write to store (media dependent))

◦ Extend back-end storage to include high-speed distributed database

◦ Currently configured for CSV-based storage format

◦ Finalize Kokkos connector functionality via iterative test and refactor process

◦ Craft analyses and dashboards to present application and system data together during run time

◦ Demonstration of 2 week continuous ingest and display of system data along with EMPIRE 
progress/performance data during EMPIRE runs over the same period

Stretch Goal: Support application-data collection for milestone EMPIRE run evaluation
◦ Priority approved for 6 EMPIRE runs with 290 nodes (20% of Eclipse) of 7 days (in excess of the 96 hours of 

the long QoS). This also supports the gathering of high-resolution base lines including late-onset physics for 
EMPIRE milestone.

◦ The first of the 6 runs will be performed the week of April 12, 2021

10
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Midyear Achievements

Initial specification of application data to be displayed in conjunction with performance counter and 
system data
• Application-sourced data supplied via Kokkos and injected into LDMS Stream: Time per timestep (EMPIRE)

• Determined relevant metrics to application progress and performance supplied via LDMS samplers:
• Core-level hardware performance counter data: Instructions per cycle (IPC), L2/L3 cache misses per 1000 instructions (MPKI), % cycles 

throttled

• Node-level data: Memory and CPU counters

• Determination of data and rates tested at scale during EMPIRE DAT

Working with Analysis and Viz team to determine meaningful presentation of HW performance 
counter data and node-level data

Working with Architecture team to test and understand options for application-sourced data including 
timing, frequency, and events of interest

12
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Remaining Work Items

Finalize system data to be initially displayed with application and hardware performance   
counter data

REAL WORK IS COMING:
• Once Kokkos/Streams testing is done, we will define precisely which timers/metrics we will track/extract 

from application timing data
• Work with analysis and visualization subgroup to finish initial analysis and visualization backend based on 

application and system data definition (above)

• Once the initial analysis and visualization backend is complete, this subgroup will be instrumental in 
using the backend on Eclipse with EMPIRE and giving feedback with respect to:
• Actual data/metrics being collected and visualized

• Implementation of the visualization backend

Post L2 follow-on work:
• Start the process of implementing performance bottleneck detection into run time 

analyses
• Expand application progress/performance metric collection and analysis to additional 

applications (e.g., Sierra)

13
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Midyear Achievements

Kokkos Streams interface has been refactored and is functional 
◦ Incorporated a new Kokkos sampler that controls the flow of data between Kokkos and LDMS

◦ Timer-based: will publish data for last kernel executing in defined time window (e.g. every 30 seconds or 1 min)

◦ Count-based: will publish data for every Nth occurrence of a kernel execution

◦ Constant: will publish data on all kernel executions

◦ Testing if Kokkos infrastructure can handle the maximum amount of data generated by a production 
application (SPARTA)

LDMS streams enhancements for JSON
◦ Only parse JSON when access to data is needed

LDMS streams scale testing (see next slide)

Developed and deployed a LDMS store plugin that writes Kokkos kernel data to CSV store

15
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L1 Agg CSV

Store

~2.2GB/s

~2.2GB/s

Compute node 2

Compute node 1

Kokkos data emulation publishers

10001

10187

ldmsd

rank1

rank372

rank373

rank0

~12MB/s

…

Tested Streams on a testbed system to 
simulate Eclipse scale system without 
failure. 1000 kernel executions per 10ms per 
rank.

Fan-in of 2 emulated SU to an aggregator 
dictated by Bitzer being a 4 node cluster.

Streams Scale Testing
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Remaining Work Items

The Kokkos-connector continues to evolve as we converge on the optimal set of information and volume of 
data

Development on efficient parsing of Kokkos kernel data for storage to both CSV and Database

Test performance and bottlenecks of LDMS / Kokkos pipeline at extreme application scale
• Tuning last level aggregator scale-out to ensure data storage can keep up with data being published at scale

• We will provide considerations for application injection performance in the final report

•Post L2 follow-on work:
• Other formats of stream data to improve extreme-scale performance?

• Explore additional lightweight methods for sampling of Kokkos kernel execution information
• Self adjusting data volume production
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Analysis and Visualization

Lead :  Ben  Schwa l l e r
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Midyear Achievements

System Diagnostic Information:

Created dashboards and analyses to visualize ethernet load on administrative nodes 
on Eclipse during DAT

◦ Verified that the aggregate network load from LDMS was small when running continuously 

◦ Could have high instantaneous load if all daemons restart simultaneously

Application-System Information:

Created dashboards and supporting analyses to visualize time-series of different 
derived metrics from PAPI counter data such as L2 misses per instruction

◦ PAPI data is one of the system metrics identified as useful to visualize alongside application 
data

In progress of creating a “scorecard” report for every job run on Eclipse
◦ The scorecard will calculate a variety of summarization statistics about the job including avg 

CPU usage, memory usage, and filesystem bytes read and written

◦ Desired by code teams to better track their jobs at a glance

◦ This workflow, the first done in this infrastructure, can also be used for any analysis that is 
desired to be run across all new information

Wrote skeleton code for analyzing application data output and creating time / 
timestep time-series plots

◦ Waiting on Kokkos Streams code to be finalized
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Remaining Work Items

Create analyses and dashboards to plot application and system data together
◦ Application visualization is awaiting finalized data from the Kokkos Streams infrastructure

◦ Skeleton code and prototypes using old data have already been created

◦ Desired derived metrics have already been discussed with the application team but further iteration will be 
necessary

◦ System data analysis and visualization is complete 

◦ Need to combine system and application analyses to create single panes with both app and sys data

◦ Iterate with code analysts / developers on the optimal layout of dashboards and their drill-down 
information to support workflows

Finish user scorecard infrastructure
◦ Iterate with users on desired dashboard layouts 

Post-L2 work: 
◦ Initial analysis with both application and system data to search for correlations

◦ Advanced analysis, such as rank clustering or historical variance investigation, of application data

20
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Deployment

Lead :  Ben  A l l an
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Midyear Achievements

Production deployment of LDMS v4 using Omnipath RDMA transport
◦ In continuous use on Eclipse (L2 target platform) since Jan 28, 2021

◦ Established network path >= 10Gb/s from CAPVIZ systems to monitoring systems.

◦ Quantified the impact of 1Hz system metrics traffic on the administrative top-of-cluster fabric: ~3MB/sec/SU

◦ Enables use of LDMS Streams interface and hardware performance counters (syspapi)

◦ Provides a broad set of data of interest to system admins: Jobid, load average, CPU, memory, Ethernet, 
Omnipath, NFS, Lustre FS and Lustre networking, motherboard temperatures & power, aggregator 
daemon performance metrics

Demonstrated user selection of named LDMS compute node configurations via Slurm
◦ Provides users with the ability to select desired admin-defined LDMS configuration alongside their 

application run

Brought online the analysis cluster Bitzer which hosts the analysis and visualization engines and 
provides two-weeks of data storage
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Remaining Work Items

Move user selection of compute node LDMS configuration into production

Work with OGC to deploy distributed database across the analytics cluster, Bitzer, to 
enable two-weeks worth of data to be stored in a single distributed database

Update the default group of per-core hardware counters to be collected when the 
syspapi sampler is active, based on needs determined by applications team

Switch to new Lustre FS data collection plugin from LLNL

(Post – L2): Demonstrate an administrative method for managing the LDMS Streams 
data flow from user applications to ensure minimum quality of service for other clients
◦ Critical administrative network clients: NFS, slurm, GPFS

◦ Investigate kernel-based controls and other approaches
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Completion Criteria
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Completion Criteria

L2 Completion Criteria
◦ Successful deployment of infrastructure on CTS-1 (Eclipse) system

◦ Demonstration of capability on target application run(s) on CTS-1 system

◦ Lessons learned and feedback from stakeholders for future capability augmentation and priorities will 
be documented

Scope Definition
◦ In scope

◦ Developing and deploying an integrated architecture for application and system information

◦ Collecting application and system state metrics from a CTS-1 system at runtime 

◦ Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics

◦ Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

◦ Providing information on instrumentation overhead and application performance impact

◦ Not in scope (future capability augmentation)
◦ Tuning system parameters to avoid application performance variation

◦ Deriving causality of application performance variation

◦ Correlating system state with application performance

◦ Determining best system or application data to collect

◦ Production-hardened deployment of collection infrastructure / analysis
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Q&A / Discussion / Feedback
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FINAL COMMITTEE REVIEW
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laboratory managed and operated by National 
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Multi-Center, Multi-Department, and Multi-Lab Effort with 24 
Participants

• Omar Aaziz

• Ben Allan

• Jim Brandt
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Ben Schwaller
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Scot Swan

Nick Tucker (OGC)
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Outline

L2 Text and Completion Criteria 

Overview: Motivation and Architecture

Detail
◦ Architecture

◦ Deployment

◦ Application and System Metrics

◦ Analysis and Visualization

Feedback & Future Work

Completion Criteria Checklist

Acknowledgements
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L2 Overview & Completion Criteria

88



ASC FY21 IP Text

Description: This L2 milestone will demonstrate the use of SNL data collection, analysis, and 
visualization framework/tools, deployed on a Sandia production SRN platform, to provide both 
system and application relevant run-time and post-run information for a rolling 2-week interval. We 
will demonstrate a capability for continuous collection of system data, an application progress 
metric(s), and an application throughput metric for an ASC-relevant code. We will provide a 
capability to store this data and a visualization interface that will enable a user to look at 
application progress in conjunction with system conditions, both at run time and post-run.

We are targeting LDMS for the transport and aggregation of Trilinos-enabled application progress 
data and of system data. We are targeting the ATDM Application EMPIRE for deployment and its 
Proxy, MiniEM, for capability development. CSSE’s Application Performance Team will be supporting 
development and testing.

Completion Criteria:
◦ Successful deployment of infrastructure on CTS-1 system.

◦ Demonstration of capability on target application run(s) on CTS-1 system.

◦ Lessons learned and feedback from stakeholders for future capability augmentation priorities will be 
documented.
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L2 Milestone Overview

Milestone Description
◦ Demonstrate the use of SNL data collection, analysis, and visualization framework/tools, to provide both 

system and application relevant run-time and post-run information for a rolling two-week interval
◦ Note: This does not imply a 2-week continuous application run

◦ Deploy on a Sandia production SRN CTS-1 platform

◦ Demonstrate a capability for continuous collection of system data, an application progress metric(s), and an 
application throughput metric for an ASC-relevant code

◦ Provide a capability to store this data and a visualization interface that will enable a user to look at 
application progress in conjunction with system conditions, both at run time and post-run

6
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Completion Criteria Checklist

1. Successful deployment of infrastructure on CTS-1 system 
2. Demonstration of capability for continuous collection and storage of system data over a 2-week 

rolling window
3. Identification of an application performance metric(s) for an ASC-relevant code 
4. Identification of an application throughput metric for an ASC-relevant code 
5. Demonstration of capability on target application run(s) on CTS-1 system 
6. Demonstrate a visualization interface that will enable a user to look at post-run application progress 

in conjunction with system conditions 
7. Demonstrate a visualization interface that will enable a user to look at run time application progress 

in conjunction with system conditions 
8. Document feedback and future work
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Completion Criteria Scope Information

Scope Definition
◦ In scope

◦ Developing and deploying an integrated architecture for application and system information

◦ Collecting application and system state metrics from a CTS-1 system at runtime 

◦ Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics

◦ Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

◦ Providing information on instrumentation overhead and application performance impact

◦ Not in scope (future capability augmentation)
◦ Tuning system parameters to avoid application performance variation

◦ Deriving causality of application performance variation

◦ Correlating system state with application performance

◦ Determining best system or application data to collect

◦ Production-hardened deployment of collection infrastructure / analysis

8
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Overview: Motivation & 
Architecture
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Motivation for this Work

Urgent problem: Critical science results are being delayed due to inability to diagnose critical issues
◦ Currently, large-scale application runs (SNL production, Trinity) can have high performance variability or 

suffer failure for reasons often unknown

◦ Costly HPC resources are being wasted by applications that do not complete or exceed their estimated 
runtime

Solution provided by this milestone:
◦ Gain continuous insight into application performance in system context:

◦ During run time via several pre-defined, intuitive, and user customizable visualizations

◦ Post-run via visualization interface and access to complete application and system data storage 

◦ Does not require code change or recompilation on the part of the user to collect this information
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The Devil is in the Implementation Details

Tracking application progress/performance at scale is difficult at best but 
impossible in most cases using existing performance/profiling tools – significant 
disruption of application performance profile and/or application/tool crashes

Utilize low overhead accounting currently being performed in applications and 
periodically write timestamped results to system monitoring data store using the 
already installed LDMS monitoring framework for transport!

◦ Need to inject per-rank information into local LDMS daemon for scalability

◦ What information will convey performance/progress and variation?

◦ Need to collect a subset of total information to minimize application overhead

◦ Need simple well defined information format for packing on application side and 
parsing on far end

◦ Need to defer parsing information to storage cluster
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Kokkos Provides Required 
Instrumentation

Developers have already 
included instrumentation

Two different types of 
instrumentation are exposed:
◦ Kokkos native instrumentation 

(e.g., track kernel executions and 
timings)

◦ Teuchos timers

This telemetry can already be 
provided to the user in files as 
periodic dumps or Post-Run

Inject data as it is produced into the already deployed LDMS 

framework for continuous access by users and operations staff

LDMS Streams is a 
publish/subscribe push-based 
service provided as part of LDMS
◦ Support for both “string” and 

“JSON” data streams

◦ Originally developed to enable 
transport of SLURM job/step 
information to be bundled with 
traditional LDMS metric sets

LDMS Streams Provides 
Needed Transport Capability
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Coupling Kokkos Instrumentation Capabilities With LDMS 
Scalable Transport and Storage

We chose to leverage existing Kokkos instrumentation capabilities and existing scalable LDMS 
publish/subscribe capability to enable:

◦ Collecting performance event stream at system scale with low overhead

◦ Performing event data collection for long runs

◦ Publishing information to a scalable database to support analytics (run time and post processing)

◦ User interface for visualizing application data in a system context over long runs

Just need to publish application data to the LDMS Streams API, add store functionality in order to 
store application performance metrics to the same database as the system data, convert raw 
data to a progress/performance metric, and present to users…

13
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Integrated System and Application Continuous Performance 
Monitoring and Analysis Capability

14

Data Flow Diagram
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Logical Subgroup Descriptions

Application-Streams Architecture
◦ Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON 

format, to the LDMS Streams API

◦ Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds 
minimal and acceptable overhead to the running application

16
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Enabling Application Data Injection via LDMS17

LDMS - low-overhead (<1%  application) data collection, 
transport, and storage capability designed for continuous 
monitoring supporting run time analytics and feedback.

◦ System data collection is typically synchronous at regular (e.g., 
second or less) intervals

◦ Structured data format (i.e., metric set) designed to minimize data 
movement

◦ Transport is typically pull based to minimize CPU interference

◦ Transport to multiple arbitrary consumers over both RDMA and 
socket

LDMS Streams – on demand publication of loosely formatted 
information to subscribers

◦ Transport is push based and supports asynchronous event data 
(e.g. scheduler and log data)

◦ Unstructured data 

ldmsd L1 aggregator pulls

from memory regions 

of L0 samplers

Sampler plugins

Daemon publish API called from externally or by a plugin 

pushes to ldmsd which pushes to all subscribing plugins 

and aggregators

ldmsd
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Kokkos to LDMS publish18

Kokkos-LDMS Connector
-Publishes to LDMS Streams API

…

Kokkos::parallel_for( … , 

KOKKOS_LAMBDA(int i) {

<loop body>

});

…

…

call kokkosp_begin_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)

..

Application Code Kokkos Runtime Code 

Kokkos 

“Sampler”
-Keeps statistics and 

timing to determine 

LDMS_stream_publish

Kokkos Sampler controls the sampling rate. When 

triggered, it signals for the Kokkos Connector to 

publish data to LDMS.

The new sampler introduces the option to sample 

data using a time-based, count-based, or 

constant push.

LDMS Transport

#timestamp,job_id,rank,name,type,current_kernel_count,total_kernel_count,level,
current_kernel_time,total_kernel_time
1627835612.086679,10195735,1,Kokkos::View::initialization [diagnostic:Solver 
Field:B_Field:temp],0,1218,57972687,0,0.000005,182.693422
1627835613.709526,10195735,1,TimeAverage::Continuous,0,24758,57972788,0,0.000
006,182.693428
1627835616.787472,10195735,1,MigrateParticles::count,1,3540,57972889,0,0.000001,
182.693430
1627835620.448333,10195735,1,SolverInterface::Apply Trivial 
BC,0,7512,57972990,0,0.000002,182.693432
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Logical Subgroup Descriptions

Application-Streams Architecture
◦ Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON 

format, to the LDMS Streams API

◦ Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds 
minimal and acceptable overhead to the running application

Deployment
◦ Continuous deployment of LDMS on Eclipse (CTS-1)

◦ Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS 
aggregators, storage of system and application data, and analysis and visualization of stored data

19
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LDMS Eclipse Deployment Architecture20

ldmsd

SOS

ldmsd

SOS

ldmsd

SOS

ldmsd

SOS

Eclipse 

Compute Nodes

Eclipse 

Admin Nodes

ldmsdldmsd
ldmsdldmsd

ldmsdldmsd

EMPIRE

ldmsd

EMPIRE

ldmsd

EMPIRE

ldmsd

EMPIRE

ldmsd

EMPIRE

ldmsd
…

…

DSOS

…

Analysis Cluster

LDMS collects application and system data from Eclipse nodes and 
aggregates to our analysis cluster distributed database 

Kokkos / LDMS Streams message sending was tested by sending a 
message every 10ms per rank across 2000 ranks without data loss
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LDMS Eclipse Deployment Data

System data collected at 1 second intervals (~5,000 metrics per node or 650 billion data points 
per day)

◦ SLURM job, load average

◦ CPU & memory usage

◦ NFS & Lustre operations

◦ Ethernet & Omnipath traffic 

◦ Lustre networking

◦ Motherboard temperatures & power 

◦ Aggregator daemon performance

◦ Collector daemon memory use

Kokkos event stream data from each application MPI process
◦ Sampling ~1% of kernel executions (~20 events per rank per second or ~1 billion records per day)

21
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Logical Subgroup Descriptions

Application-Streams Architecture
◦ Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON 

format, to the LDMS Streams API

◦ Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds 
minimal and acceptable overhead to the running application

Deployment
◦ Continuous deployment of LDMS on Eclipse (CTS-1)

◦ Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS 
aggregators, storage of system and application data, and analysis and visualization of stored data

Application and System Metrics
◦ Determine metrics of interest for run-time and post run understanding of application progress and 

performance. These metrics need to be viewable in a system monitoring data context

22
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Application and System Metrics of Interest

Progress metric: ParticleMove::Move - a kernel that represents science progress
◦ Number of kernel calls per second over a defined time window (15 sec. default) 

◦ This kernel gets called approximately once per second on each rank (statistical approximation)

◦ Time spent in the kernel from sample to sample provides insight into performance variation

◦ Note that since we are sampling, the data provides statistical estimates for both of  these

◦ Note that this choice of kernel metric is the users choice and is not hard coded either for Kokkos or 
EMPIRE

Throughput metric: Number of kernel executions, across all application ranks, per minute over 
defined window (i.e., 60 seconds)

◦ This is approximately 5 million executions per minute for our 290 node runs 

System metric: Active Memory is used as the system metric in these visualizations
◦ Note that our visualization engine provides the capability to choose any system metric over the full 

range of the ~5000 currently being collected

23

107



24

Application-Streams Architecture
• Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON format, to 

the LDMS Streams API

• Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds minimal 

and acceptable overhead to the running application

Deployment
• Continuous deployment of LDMS on Eclipse (CTS-1)

• Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS 

aggregators, storage of system and application data, and analysis and visualization of stored data

Application and System Metrics
• Determine metrics of interest for run-time and post run understanding of application progress and 

performance. These metrics need to be viewable in a system monitoring data context

Analysis and Visualization
• Identify and implement analyses required to produce appropriate application and system metrics across 

the parallel store of system and application information

• Implement a Grafana-based dashboard to enable user access to application progress and performance 

metrics along with system monitoring metrics for both run time and post-run visualization

Logical Subgroup Descriptions

108



DSOS: Enabling Scalable Ingest and Queries for Analysis and Viz

Distributed Scalable Object Store (DSOS) is a scalable database 
with a variety of features which enable simultaneous large-scale 
data ingest and queries

◦ Designed specifically for large-scale HPC monitoring data ingest and 
query with flexibility to change and adapt as needs arise

◦ Coordinates databases across multiple devices and nodes to present a 
“single, unified” database to the end user 

◦ High insert rate for continuous data collection 

◦ Indices can be created or removed as needed for optimizing queries 
without reloading data

◦ Python, C, and C++ API and command line interface

25
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…

Analysis Cluster

Populated a DSOS database with ~1 month of system data and two week-long 290-node runs of EMPIRE for 
analysis and visualization

◦ Resulted in 50TB of system data and 900GB of application data

◦ EMPIRE got approval for 6 week-long 290-node runs (~20% of Eclipse)

◦ This provided ample application data while also supporting physics for EMPIRE milestones
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Analysis and Visualization Pipeline

User queries from Grafana dashboards are sent through a backend python application which can 
call python analyses to derive metrics from raw data

◦ In-query analyses save significant computation time/resources for creating analysis results 

◦ Only data of interest is analyzed and new analyses can be created without recreation of analysis results across the 
database

Python modules can query the database and return pandas DataFrames for analysis
◦ Significant work was done to optimize database queries and python analyses for fast Grafana query times

The backend application then takes DataFrames and formats them as JSON objects which Grafana 
can interpret 
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Analysis and Visualization Presentation Overview27

Created two Grafana 
dashboards to visualize an 
application’s Kokkos data

◦ Job-level dashboard

◦ Kernel-level dashboard

Demonstrated analysis and 
visualization of both live 
and post-run data sets

◦ Video is of a simple 2-node 
SPARTA job at runtime
◦ Application kernel throughput

◦ Active Memory

Video of live feed of job’s data 
(5 second update intervals)
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Analysis and Visualization

Job-level dashboard shows data from across 
the application and has 3 panels

◦ Kernel Summary Table which shows all kernels, 
their times called, time spent in kernel, and 
average kernel execution time, in the time range 
specified

◦ Each kernel has a link to drilldown to the next 
dashboard

◦ Application Kernel Throughput which is a time 
series graph of how many kernels have executed 
per minute in the time range specified

◦ Active Memory across Job which shows the 
minimum, mean, and maximum memory usage 
of the nodes in the job over time

28
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Analysis and Visualization

Kernel-level dashboard shows data specific to a chosen 
kernel across 2 panels (progress metric)

◦ Function Timing Information plot shows
◦ Average time per specific kernel execution across all ranks over time 

(Blue)

◦ Number of specific kernel executions per second across all ranks over 
time (orange)

◦ The bin size fillable box at the top of the dashboard 
enables users to bin the data to better understand the 
trends 
◦ I.e. for a 1 minute window, 1 second bins might reveal more relevant 

information and for a 2 hour window, 1 minute bins might be easier to 
understand 

◦ The Time/Function Call Per Rank Heatmap shows how the 
execution time of functions across the ranks of the 
application
◦ Red shows more ranks are in that execution range, blue shows less ranks

◦ Showed that several EMPIRE kernels routinely had outlier ranks

29
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Analysis and Visualization30
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Feedback from Stakeholders
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Stakeholder Feedback

EMPIRE developer and analyst comments:
◦ “I fully expect enabling LDMS to become the default EMPIRE behavior on supported platforms”

◦ “There was no noticeable impact on performance on small or large simulations when LDMS was 
enabled”

◦ “Being able to see the dashboard’s real-time updating of simulation performance is so much better than 
manually finding that information in simulation logfiles”

◦ “Quickly plotting simulation metrics helps us quickly assess job health and progress, saving time and 
decreasing cognitive load”

◦ “Clear, clean layout without presenting too much information”

Requested improvements:
◦ #1 request was that they would like to be able to have a subset of kernels always collected 

◦ I.e. Main time loop

◦ More info about filesystems and I/O alongside application data

◦ Rename labels of data to improve understanding

◦ Will also be adding a panel with in-depth descriptions about the data and underlying analyses

◦ Add bit-rate to application throughput panel to show how much data is being ingested by the backend

◦ Will be useful for adjusting sampling rate in the future
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Future Capability Augmentation Priorities

Architecture: 
◦ Explore additional lightweight methods for sampling of Kokkos kernel execution information

◦ Self adjusting data volume production

◦ User-controlled variable sampling rate and always sampling specified kernels 

Metric Selection:
◦ Add PAPI events/metrics to analyses and dashboards

◦ Define metrics for, and implement, performance bottleneck detection

Visualization and Analysis:
◦ Analyses with both application and system data to automatically identify correlations

◦ Advanced analyses, such as rank clustering or historical variance investigation, of application data

General:
◦ Publication at a major conference

33
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Completion Criteria Checklist
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Completion Criteria Checklist

1. Successful deployment of infrastructure on CTS-1 system (Eclipse)
✓ Target version of LDMS (i.e., Streams enabled) has been in continuous deployment on Eclipse since Jan 28, 2021

2. Demonstration of capability for continuous collection and storage of system data over a 2-week rolling 
window
✓ We have demonstrated continuous collection and storage over a 30-day  (2 x 2 weeks) window of system data 

on the 1500 node Eclipse cluster
◦ A 30-day window produced ~60TB (including indexing overhead) of data stored in NVMe-based Scalable Object Store (SOS) 

databases distributed across 14 nodes of the Shirley Monitoring and Analysis cluster. This is < 10% of the NVMe storage 
capability of Shirley

◦ Rolling window previously demonstrated on a single SOS database on our Bitzer system

3. Identification of an application throughput metric(s) for an ASC-relevant code (EMPIRE)
✓ Throughput indicated by the total number of kokkos kernel executions per-minute over a defined time window 

while running the Empire application (see video)

4. Identification of an application progress metric for an ASC-relevant code (EMPIRE)
✓ Number of kernel calls per second over a defined time window (15 sec. default) for a kernel indicative of science 

work accomplished (ParticleMove::Move)
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Completion Criteria Checklist

5. Demonstration of capability on target application (EMPIRE) run(s) on CTS-1 system (Eclipse)
✓ Demonstrated 32- to 290-node Empire application runs on Eclipse (1500 node CTS-1 production 

system)

6. Demonstrate a visualization interface that will enable a user to look at post-run application 
progress in conjunction with system conditions 
✓ Shown in slides 27-30

7. Demonstrate a visualization interface that will enable a user to look at run time application 
progress in conjunction with system conditions 
✓ Shown in slides 27-30

8. Document feedback and future work
✓ Shown in slides 32-33
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DAT Acknowledgements

As part of the L2 milestone, in Jan 2021 we held a 30-hour DAT on Eclipse for LDMS 
(v4) overhead testing and to validate the interoperability of our initial application + 
Kokkos Sampler + Streams functionality. This involved substantial work up front in 
determining applicable workload and metrics to collect as well as all of the 
infrastructure and analysis/visualization configuration.

Special thanks to:
◦ L2 members Mark Schmitz and Phil Regier for multiple days efforts in configuration and 

deployment of LDMS v4 on Eclipse ahead of the LDMS v4 TOSS Release as well as 
continuous support throughout the DAT

◦ 9327 for enabling the long-running DAT

◦ Anthony Agelastos, Douglas Pase, Joel Stevenson, and Gary Lawson of 9326 for their 
development of an application work package, which they ran over a 24-hour time period, 
and their post-run analysis validating low overhead (~<1.0%).
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