SAND2021-11954

SAND2021-11954

Printed September 2021 National

Laboratories

SANDIA REPORT @ -

Integrated System and Application
Continuous Performance Monitoring and
Analysis Capability (Final)

Omar Aaziz, Ben Allan, Jim Brandt, Jeanine Cook, Karen Devine, James El-
liott, Ann Gentile, Si Hammond, Brian Kelley, Lena Lopatina (LANL), Stan Moore,
Stephen Olivier, Kevin Pedretti, David Poliakoff, Roger Pawlowski, Phil Regier,
Mark Schmitz, Ben Schwaller, Vanessa Surjadidjaja, Scot Swan, Nick Tucker
(OGC), Tom Tucker (OGC), Courtenay Vaughan, Sara Walton

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nyclear Security Adminisfration

ABSTRACT

Scientific applications run on high-performance computing (HPC) systems are critical for many
national security missions within Sandia and the NNSA complex. However, these applications
often face performance degradation and even failures that are challenging to diagnose. To provide
unprecedented insight into these issues, the HPC Development, HPC Systems, Computational
Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their
FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous
Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC
system and application monitoring and analysis capability by extending Sandia’s Kokkos
application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring
tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and
LDMS enable collection and storage of application data during run time, as it is generated, with
negligible overhead. This data is combined with HPC system data within the extended analysis
pipeline to present relevant visualizations of derived system and application metrics that can be
viewed at run time or post run. This new capability was evaluated using several week-long,
290-node runs of Sandia’s ElectroMagnetic Plasma In Realistic Environments (EMPIRE)
modeling and design tool and resulted in 1TB of application data and SOTB of system data.
EMPIRE developers remarked this capability was incredibly helpful for quickly assessing
application health and performance alongside system state. In short, this milestone work built the
foundation for expansive HPC system and application data collection, storage, analysis,
visualization, and feedback framework that will increase total scientific output of Sandia’s HPC
users.

ACKNOWLEDGMENT

We would like to give special thanks to Anthony Agelastos, Douglas Pase, Joel Stevenson, and
Gary Lawson for their contribution to a Dedicated Application Time (see Section[d.1.1)) on
Eclipse for the purpose of evaluating LDMS overhead impact on applications and an initial
testing of Kokkos publishing application data to LDMS Streams. Their contribution consisted of
development of an application work package, which they ran over a 24-hour time period, and
their post-run analysis validating low overhead (~< 1.0%) for the deployment configuration of
samplers and associated collection frequencies and targeted application data injection sizes and
frequencies

CONTENTS

[Executive Summary| 8
NOMENCIATULEL. . . .« .o\ e et ettt ettt e e e e e e e 10
(L Introduction].o ot 11
2. MIESIONE] oot 11
B ATChItECHUIE].ttt e 12
Bl OVeIVIBWI . . oottt e e e e e e 13
3.2, L DML 13
[3.2.1. System Data Collection|. 14

[3.2.2. Application Data Collection|............. 16

B3 ROKKOS - . v ov ettt et e e 16
.. 18
[3.5. Analysis and Visualization|. 19

M. Deployment|. e 20
[.1. Scalable high-frequency data collection|. 20
M.1.1. Datacollection overheads|. 21

M2, Administrative controls]t 22
{4.3. The Shirley Monitoring and Analysis System| 22

[5. Application and System Metrics|. 22
[6. System and Application Data Visualization|. i 23
[7/. Stakeholder Feedback and Future Capability Augmentation Priorities|. 25
[.1. Feedbackl o 25
[7.2. Capability Augmentation Priorities|. 26

B _TessonsTearnedot e 27
9. Capability Production Roadmap|........... 28
(10. Completion Criterial i e e e 30
REFEIEICES] - - -« - v v vt ettt e et e e e e e 32
[Appendix A: Initial Committee Review| 33
[Appendix B: Midyear Committee Review|......... 57
[Appendix C: Final Committee Review|....... 84

LIST OF FIGURES

[Figure 3-1.

Data Flow Diagram of Integrated System and Application Performance Data

Analysis Capability. Application progress and performance data 1s injected into

the LDMS data stream which regularly transports data collected from system

data sources. The combined information 1s treated 1n a standardized way, eas-

ing development of analyses and visualizations for application performance in

combination with system conditions. Green check marks indicate capabilities

developed as partof thiswork.|.......

14

. LDMS data collection and transport modes utilized 1n this work. Blue circles

indicate plugins into the pink LDMS daemons. Green arrows indicate commu-

nications and data flows. (left) System data 1s typically pulled at regular inter-

vals from other aggregator daemons 1n order to minimize the on-node capabili-

ties required and thus application impact. (right) Application data 1s pushed on

demand 1nto the LDMS daemon which then publishes the data to subscribers

which can be both local plugins or remote daemons (figures from [4]).[.........

15

Figure 3-3.

LDMS metric set queries. System data 1s represented in a structured data format

designed to minimize data movement. A given LDMS Sampler (e.g, meminfo

shown) collects one or more data field names, types, and values (e.g., MemTotal,

u64, 131899768). Meta-data consisting of information about the layout, names,

and types of data, 1s only pushed once or upon change, reducing data movement.

Set permissions (e.g., rwxrwx——) can be used for access control.|.

15

. This figure depicts an application utilizing the Kokkos platform. As part of this

milestone we have modified the Kokkos Profiling interface to include a Kokkos

Sampler tacility to sample information about a subset of kernel executions. The

Kokkos Sampler takes user input on which kernel executions are to be sampled.

As an example: 1f the user enters 100, every 100th kernel execution will be sam-

pled. For a sampled kernel the timestamp, duration, total number of that kernel’s

executions sampled by the reporting process, and name of kernel sampled will

be returned and published via the Kokkos-LDMS Connector to the LDMS dae-

mon running on the node on which the sampled kernel was executed. Note that

the green check marks show components developed, and completed, as part of

this MIESIONE. . . . o vt et

[Figure 3-5.

CSV formatted output of the application data injected in JSON format. Times-

tamp 1s global and can be used to associate the occurrence of a sampled kernel

and time-windowed statistics with the system data at that ttme. Kernels are re-

ported by name. The count of a particular kernel reflects that downselection of

EVENt TEPOITING OCCUTS.|. . . ot vttt ettt ettt e e e e e e

[Figure 3-6.

SOS database coordination on Shirley cluster using DSOS. A single DSOS

query 1s parallelized across all SOS databases. The data from each of those

databases 1s collected and sorted to present a single result for the user.|.........

19

[Figure 3-7. Analysis and Visualization Pipeline Block Diagram. Queries from a Grafana |
| web browser are sent through an Apache server to a Django application. The |
| queries can specify a Python analysis module to call, which queries the DSOS |
| database and manipulates the returned DataFrame. This DataFrame 1s returned |
| to the Grafana browser after being correctly formatted to create meaningful vi- |
I SUALIZALIONS.. « « v oottt e 19
[Figure 4-1. Deployment Architecture| 21
[Figure 6-1. Job-level Grafana dashboard with a kernel summary table, an application through- |
| put time-series plot, and a memory usage time-series plot. 24
[Figure 6-2. Kernel-level Grafana dashboard with a function timing information time-series |
| plot and an kernel execution heatmap| L. 25
[Figure 9-1. Roadmap - Partl: FY20-22|. 29
[Figure 9-2. Roadmap - Part2: FY23 andbeyond| 30
LIST OF TABLES

(Table 4-1. Describes plugin names, types of data gathered, and collection periods (in seconds)| 21

U.S. DEPARTMENT OF

ENERGY

@ Sandia National Laboratories

SAND2021-11939 O

FY21 ASC FOUS/CSSE/ATDM L2 Milestone 7842: Integrated System and Application Continuous
Performance Monitoring and Analysis Capability

Executive Summary

Author: James Brandt, 09/05/2021

Introduction

The overall goal of this work was to develop and deploy a unique capability for the run time and
postprocessing examination of application progress and performance data in conjunction with High
Performance Computing time-varying system data. Examination of this combined data is necessary to
give insight into the causes of performance variation, degradation, and some failure cases. The
infrastructure developed in this work leveraged Sandia’s Lightweight Distributed Metric Service (LDMS)
and Kokkos tools to provide the data and developed interoperability between them. The infrastructure
also leveraged Sandia’s Distributed Scalable Object Store (DSOS) database to support storage
performance requirements. Dashboards and analytics for the combined data were developed as part of
this work. The infrastructure was deployed on a Sandia CTS-1 system. A roadmap for enhancements and
deployments was developed to extend this capability to other Sandia and, potentially, other DOE
systems.

Milestone Description and Completion Criteria

As displayed in the ASC Implementation Plan (IP) and the Milestone Reporting Tool (MRT), the milestone
description and completion criteria state:

"This L2 milestone will demonstrate the use of SNL data collection, analysis, and visualization
framework/tools, deployed on a Sandia production SRN platform, to provide both system and
application relevant run-time and post-run information for a rolling 2-week interval. We will
demonstrate a capability for continuous collection of system data, an application progress metric(s), and
an application throughput metric for an ASC-relevant code. We will provide a capability to store this
data and a visualization interface that will enable a user to look at application progress in conjunction
with system conditions, both at run time and post-run. We are targeting LDMS for the transport and
aggregation of Trilinos-enabled application progress data and of system data. We are targeting the
ATDM Application EMPIRE for deployment and its Proxy, MiniEM, for capability development. CSSE’s
Application Performance Team will be supporting development and testing.

Completion Criteria: Successful deployment of infrastructure on CTS-1 system. Demonstration of
capability on target application run(s) on CTS-1 system. Lessons learned and feedback from stakeholders
for future capability augmentation priorities will be documented."

Impact Statement

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Page 1 of 2

.S. DEPARTMENT OF

ENERGY

@ Sandia National Laboratories

This work represents a significant milestone along SNLs march towards understanding and mitigating
causes of the significant performance variation commonly experienced by large-scale tightly coupled
simulation applications run on HPC systems.

Specifically, this work enables production high-fidelity monitoring of application performance and
throughput characteristics in conjunction with system operational state and behavioral characteristics.
Analysis of this data can provide insights into causes of performance degradation and high application
performance variability on HPC systems. Improved visibility into, and understanding of, application and
system resource interactions over lifetimes of application executions will, in turn, enable improved
science and engineering throughput and higher overall HPC system efficiency.

Note that our approach is well suited to production use as it does not require code changes or
recompilation on the part of the user to collect this valuable information and adds negligible application
performance-impacting overhead.

Summary of Work Done
All the completion criteria have been met as follows:

e Successfully deployed our monitoring infrastructure on Sandia’s CTS-1 system, Eclipse, which
has been running continuously, in production, since January 28, 2021. Data from this
deployment is being stored to Sandia’s DSOS database on our monitoring and analysis cluster,
Shirley, for at least a 2-week rolling time window.

e |dentified, and presented, total number of kokkos kernel executions per-minute as a throughput
metric and the rate of a particular kernel (ParticleMove::Move) call as a problem specific
progress metric for the ASC-relevant code, EMPIRE.

e Demonstrated gathering and presenting, both post-run and at run time, these progress and
performance metrics in conjunction with the Active_memory system metric for the application
EMPIRE running on Eclipse, at scales of 32 to 290 nodes, via our Grafana-based visualization
interface using Sandia’s DSOS as the scalable data store.

e Documented the feedback we received from users who utilized the tools during the milestone
period. We also identified and documented future work to take advantage of these new
capabilities.

Path Forward

As mentioned above, the successful completion of this effort has given Sandia an end-to-end
deployment of the capability to gather, store, analyze, and visualize application performance and
progress data in the context of time varying system state metrics. We plan to develop analytics to gain
insight into root causes of application performance variation and degradation. In addition to the
application monitoring collaborations at Sandia, we have started several collaborations with other DOE
laboratories to integrate their data collection tools into the infrastructure. We will investigate run-time
response to conditions of interest in the data. We will be expanding the features of this capability and
deploying it on additional Sandia systems as indicated by the roadmap presented in this work.

In Support of Stewardship Capability Delivery Schedule (SCDS)?
N/A

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Page 2 of 2

NOMENCLATURE

Aggregator LDMS daemon which aggregates (push or pull) data from other LDMS daemons

ATDM Advanced Technology Development and Mitigation, an element of the NNSA Advanced
Simulation and Computing program

CSSE Computational Systems and Software Environments, an element of the NNSA Advanced
Simulation and Computing program

CTS Commodity Technology System (production HPC systems)
DSOS Distributed Scalable Object Store

Eclipse Production CTS-1 system outfitted with data collection infrastructure to support this
milestone

EMPIRE The "ElectroMagnetic Plasma In Realistic Environments" is a modeling and design tool
for plasma environments

FOUS Facilities, Operations, and User Support, an element of the NNSA Advanced Simulation
and Computing program

IC Integrated Codes, an element of the NNSA Advanced Simulation and Computing program
LDMS Lightweight Distributed Metric Service
LDMS Streams LDMS’s Publish/Subscribe service

Kokkos Application portability layer leveraged in this milestone for publishing application
telemetry to LDMS Streams

Kokkos-LDMS Connector Code responsible for interfacing between Kokkos Sampler and LDMS
Streams

Kokkos Sampler Code responsible for gathering information about Kokkos kernel executions
and passing it to the Kokkos Connector

metric set LDMS construct for fixed schema sets of structured system data
Sampler LDMS plugin or daemon which collects data

SOS Scalable Object Store - Object store database used in this work

10

1. INTRODUCTION

The overall goal of this work is to develop and deploy a unique capability for the run time and
postprocessing examination of application progress and performance data in conjunction with
High Performance Computing time-varying system data. Examination of this combined data is
necessary to give insight into the causes of performance variation, degradation, and some failure
cases. The infrastructure developed in this work leveraged Sandia’s Lightweight Distributed
Metric Service (LDMS) and Kokkos tools to provide the data and developed interoperability
between them. The infrastructure also leveraged Sandia’s Distributed Scalable Object Store
(DSOS) database to support storage performance requirements. Dashboards and analyses for the
combined data were developed as part of this work. The infrastructure was deployed on a Sandia
CTS-1 system. A roadmap for enhancements and deployments was developed to extend this
capability to other Sandia and, potentially, other DOE systems.

The rest of this report is organized as follows: We first provide the raw milestone text along with
scope statements in Section [2] We provide both an overview and detailed background discussion
of the architectural components of the data collection, transport, storage, and visualization
components in Section [3] We next discuss relevant deployment details in Section] Details about
application and system metrics being derived and displayed are described in Section[5} A
description of the main components utilized to support analysis and visualization are presented in
Section[6l Feedback from users and stakeholders is documented in Section 7l In Section [8] we
provide a short tabulation of lessons learned in the execution of this milestone. We have
documented, in Section 9] the relevant work leading up to this milestone as well as our planned
path forward. In Section |10} we provide a checkbox version of the completion criteria along with a
short description of the evidence of completion. Finally, references can be found at the end of the
document.

2. MILESTONE

The text of the milestone is as follows:

Description: This L2 milestone will demonstrate the use of Sandia data collection, analysis,
and visualization framework/tools, deployed on a Sandia production SRN platform, to
provide both system and application relevant run-time and post-run information for a rolling
2-week interval. We will demonstrate a capability for continuous collection of system data,
an application progress metric(s), and an application throughput metric for an ASC-relevant
code. We will provide a capability to store this data and a visualization interface that will
enable a user to look at application progress in conjunction with system conditions, both at
run time and post-run.

We are targeting LDMS for the transport and aggregation of Trilinos-enabled application
progress data and of system data. We are targeting the ATDM Application EMPIRE for
deployment and its Proxy, MiniEM, for capability development. CSSE’s Application
Performance Team will be supporting development and testing.

11

Completion Criteria:
e Successful deployment of infrastructure on CTS-1 system.
e Demonstration of capability on target application run(s) on CTS-1 system.

e Lessons learned and feedback from stakeholders for future capability augmentation
priorities will be documented.

Section [I0] provides a detailed compilation, in checklist form, of the completion criteria along
with short overview statements of how they were satisfied. The body of this report provides the
details to support those statements.

While the intent of the capability is vast, for the FY20 milestone, we explicitly scoped the work as
described below:

In scope
e Developing and deploying an integrated architecture for application and system information
e Collecting application and system state metrics from a CTS-1 system at run time

e Providing a visual interface for derived application performance and throughput metrics
alongside system metrics

e Demonstrating this interface on run time CTS-1 data with the ability to do historical
investigation up to two weeks

e Providing information on instrumentation overhead and application performance impact
Not in scope

e Tuning system parameters to avoid application performance variation

e Deriving causality of application performance variation

e Correlating system state with application performance

e Determining best system or application data to collect

e Production-hardened deployment of collection infrastructure / analysis

All not in scope work items are intended to be Future Capability Augmentation Priorities (see
Section 7).

3. ARCHITECTURE

In this section we first provide a motivational overview of the architecture that we developed and
deployed in this work. We then provide deeper background information on the functional
components and sub-systems deployed including motivation for the choices made.

12

3.1. Overview

We leverage the Lightweight Distributed Metric Service (LDMS [2]) that is currently being used
for the collection of system data. System data can be obtained using both generic and
system-specific data collection plugins (typically referred to as sampler plugins). LDMS daemons
running these plugins (referred to as samplers) are typically run on the components for which data
is being collected (e.g., compute nodes for node-local file I/O, networking, CPU, memory
information and Lustre file system components for global Lustre information). For the
aggregation/transport of data, LDMS is typically run in a mode that pulls system data from the
sampler daemons, particularly those running on compute nodes, at regular intervals in order to
minimize CPU overhead and hence performance impact on applications.

We have developed a new message bus capability for LDMS in order to enable injection of
information on-demand, in a push mode, into its data stream. This new publish/subscribe
capability is called LDMS Streams. The LDMS Streams capability can be used to inject
application progress and performance information, during run time, into the LDMS data stream
concurrent with system resource state data injection and enable them to be stored into the same
data store.

While data can be injected, via the LDMS Streams API, from any source, we have implemented
this capability within the Kokkos [7]] portability abstraction layer. This has the advantage of
encapsulating the injection capability and thus requiring no application changes or recompilation.
Further, we can leverage the performance and progress instrumentation already implemented
within Kokkos and not burden the user or application programmer with specifying what data to
collect.

Our architecture, depicted in Figure[3-1] is used to collect system data at regular intervals with
those intervals being defined based on the time scales of conditions of interest. For this milestone
work, the production CTS-1 system that we have deployed this capability on is Eclipse. All data
is transported from Eclipse to a monitoring cluster where it is written into our distributed
NVMe-based high performance database, DSOS. DSOS was developed, and extended as part of
this milestone work, in order to support the demands of high data ingest rates in conjunction with
data browsing and run time analyses.

Long-term data, older than two weeks, is moved to mass storage and can be loaded back into the
database if needed for performing analyses over longer time periods. Raw data and the results of
analyses are presented during run time on Grafana-based dashboards. Our goal is to enable
insight, during run time, into applications’ performance characteristics in conjunction with
system performance resource utilization and performance characteristics. In particular we are
interested in insights into strong correlations between the two and in discovery of causality where
application performance degradation is identified.

3.2 LDMS

In this subsection we provide a background on LDMS, its use for system data collection, and a
high level description of how we enhanced LDMS to support the injection of application progress

13

HPC System Analysis Cluster ,’ |
/

time

/
Dashboard N\

\
\

p

Kokkos &4 Kokkos Analysis on dynamically '\ |
P populated database

NVMe-based +/
distributed

database

Figure 3-1 Data Flow Diagram of Integrated System and Application Performance
Data Analysis Capability. Application progress and performance data is injected into
the LDMS data stream which regularly transports data collected from system data
sources. The combined information is treated in a standardized way, easing develop-
ment of analyses and visualizations for application performance in combination with
system conditions. Green check marks indicate capabilities developed as part of this
work.

and performance data. Since application and system data are inherently different, we highlight the
differences and the design decisions made as a result.

LDMS was designed for lightweight extreme-scale data collection, transport, and storage. It is
intended to be run as a continuous system service, periodically and synchronously collecting data
from instrumented components across the entire system and efficiently transporting it, as it is
collected, to one or many endpoints in order to support run time analyses and visualizations that
can be used to provide insights and feedback on actionable timescales.

3.2.1. System Data Collection

System data is typically intended to be used to provide insight into the state of the system at any
given point in time. Thus data must be obtained synchronously across all instrumented
components across the whole system. Collecting this data on regular intervals enables not only
system state snapshots but also provides trajectory information for the state data collected. In
order to minimize performance impact on applications, the on-node operations associated with
monitoring data collection and transport have been kept to a minimum.

Because the system data is of the same format each time it is collected, the data lends itself to the
use of a structured data format, which we call a metric set. An example is shown in Figure[3-3]
The structure enables more efficient gathering of the data while minimizing data movement. That
is, the well known layout is leveraged to define the layout of the memory regions. Meta-data
which describes the layout, names, and types of the data fields (e.g., MemTotal u64) is only
transported at the start or upon change, reducing data movement.

14

ldmsd
#

L1 aggregator pulls
from memory regions
of LO samplers

l[dmsd

<«— Sampler plugins

Daemon publish API called from externally or by a plugin
pushes to ldmsd which pushes to all subscribing plugins
and aggregators

Figure 3-2 LDMS data collection and transport modes utilized in this work. Blue cir-
cles indicate plugins into the pink LDMS daemons. Green arrows indicate communi-
cations and data flows. (left) System data is typically pulled at regular intervals from
other aggregator daemons in order to minimize the on-node capabilities required and
thus application impact. (right) Application data is pushed on demand into the LDMS
daemon which then publishes the data to subscribers which can be both local plugins
or remote daemons (figures from [4]).

voltrino:/opt/ovis/etc/ldms # ldms_ls —h nideeeesé -x sock -p 412 -a munge -lv nid@@@63/meminfo

Schema Instance Flags Msize Dsize UID GID Perm Update Duration Info

nideees3/meminfo CR

meminfo 0.000031 "updt_hint_us"="1000000:300000"

Total Sets: 1, Meta Data (kB): 1.98, Data (kB) .42, Memory (kB): 2.39

Wed Oct 02 07:32:34 2019 -0600 [2980us]

nideees3/meminfo: consistent, last update:

M u64
D ué4
D u64
D ué4
D ub4
D ué4
D ué4
D ué4
D ué4
D ué4
D ué4
D ué4
D ué4
D ué4

component_id
job_id
app_id
MemTotal
MemFree
MemAvailable

63

]

]
131899768
129865232
129416140

Buffers 23380
Cached 508992
SwapCached]
Active 277760
Inactive 307892
Active(anon) 193908
Inactive(anon) 184852
Active(file) 83852

Figure 3-3 LDMS metric set queries. System data is represented in a structured data
format designed to minimize data movement. A given LDMS Sampler (e.g, meminfo
shown) collects one or more data field names, types, and values (e.g., MemTotal,
u64, 131899768). Meta-data consisting of information about the layout, names, and
types of data, is only pushed once or upon change, reducing data movement. Set
permissions (e.g., rwxrwx—-) can be used for access control.

15

Data is typically collected on-node by sampler plugins of an LDMS sampler daemon at regular
intervals and inserted into the data regions of metric set data structures. An off-node LDMS
aggregator daemon then pulls the data at regular intervals from the data memory regions of the
metric set data structures. In this way, all of the logic and capability for transport is kept off-node.
Figure (left) illustrates this mode of collection and aggregation.

LDMS also provides security through authentication, association of a user and group ID with
each metric set, and associated permission bits to enable access control, as shown in Figure [3-3]
(More detail on the metric set can be found in [2].)

Both socket-based and RDMA transports are supported, with the latter minimizing CPU
interference. While in Figure we show the transport directing all data to a single off-platform
database, the data can be directed to an arbitrary number of consumers. More information can be
found at the OVIS project’s LDMS github site at https://github.com/ovis-hpc/ovis [1].

3.2.2. Application Data Collection

Application related data is inherently different than system data. Application data is event-based
data that occurs asynchronously across the system and hence requires a push-based methodology
in order to minimize on-node memory consumption, data loss, and latency between occurrence
and remote recording of events. Because events may vary in their content, the data format must be
variably structured.

In order to support on-demand publication of variably formatted information, we have enhanced
LDMS to include a publish/subscribe bus capability. This capability and the associated API for
publishing and subscribing is called LDMS Streams. LDMS daemons and plugins subscribed to a
LDMS Streams tag receive any data events that arrive with that tag. This is illustrated in

Figure (right). When being published, data is specified as either string or JSON format. The
LDMS Streams feature leverages the efficient and secure LDMS transport to additionally support
efficient application related data collection and run time transport and storage to the same
database in which system data is being stored.

3.3. Kokkos

Kokkos is a parallel programming ecosystem for performance portability across multi-core,
many-core, and GPU node architectures [7][6]. At its heart is a library-based API that uses
modern C++ metaprogramming to abstract away architecture-specific execution and data
management details so that programmers can focus on exposing parallelism in their applications.
The companion Kokkos Kernels library provides tuned implementations of common
computational kernels hereafter referred to simply as kernels for performance-critical use cases.
Finally, and of primary interest to this milestone, the Kokkos Profiling interface [8] provides
application timers and utilities to connect with third-party tools from vendors (e.g., Intel VTune)
and open source efforts (e.g., HPCToolkit). Since Kokkos is Sandia’s chosen vehicle for
performance portability of ASC IC and ATDM applications and also in widespread use among
other DOE laboratories, it is an ideal candidate for our work.

16

Application Code Kokkos Runtime Code
p—
Kokkos::parallel_for(... , call kokkosp_begin_parallel_for(..) w
KOKKOS_LAMBDA(int i) {
<loop body> <execute loop body> Kokkos
bH
call kokkosp_end_parallel_for(..) :SaTPE?r"d
-Keey atistics an
90 timi:; to determine
— LDMS_stream_publish

W/

Kokkos-LDMS Connector

-Publishes to LDMS Streams API

Figure 3-4 This figure depicts an application utilizing the Kokkos platform. As part of
this milestone we have modified the Kokkos Profiling interface to include a Kokkos
Sampler facility to sample information about a subset of kernel executions. The
Kokkos Sampler takes user input on which kernel executions are to be sampled.
As an example: if the user enters 100, every 100th kernel execution will be sampled.
For a sampled kernel the timestamp, duration, total number of that kernel’s execu-
tions sampled by the reporting process, and name of kernel sampled will be returned
and published via the Kokkos-LDMS Connector to the LDMS daemon running on the
node on which the sampled kernel was executed. Note that the green check marks
show components developed, and completed, as part of this milestone.

#timestamp, job_id, rank,name, type, current_kernel_count,total_kernel_count,level, current_kernel_time,total_kernel_time
1627835612.086679,10195735, 1,Kokkos: :View: :initialization [diagnostic:Solver Field:B_Field:temp],®,1218,57972687,0,0.000005,182.693422
1627835613.709526,10195735,1, TimeAverage: :Continuous,®,24758,57972788,0,0.000006,182.693428
1627835616.787472,10195735,1,MigrateParticles::count,1,3540,57972889,0,0.000001,182.693430
1627835620.448333,10195735,1,SolverInterface::Apply Trivial BC,@,7512,57972990,0,0.000002,182.693432

Figure 3-5 CSV formatted output of the application data injected in JSON format.
Timestamp is global and can be used to associate the occurrence of a sampled kernel
and time-windowed statistics with the system data at that time. Kernels are reported

by name. The count of a particular kernel reflects that downselection of event report-
ing occurs.

17

In this work we leverage the Kokkos Profiling interface as a vehicle to publish timestamped kernel
events and timings to the LDMS Streams interface. This sub-component and associated data flow
are depicted in Figure [3-4] This information is then transported via the LDMS transport and
stored to the same database in which the system data is being stored. This enables simple time
alignment with system data and visualization of both together. Some example application data
output converted into CSV format for display is shown in Figure

To support low-overhead monitoring of applications, a Kokkos Sampler (fig was developed to
control the sampling rate of Kokkos kernel executions, along with the rate of messages being
delivered to the LDMS Streams pipeline. The Kokkos Sampler sampling rate is set at the
beginning of a run (in the batch script) as an environmental variable. For this milestone work the
Kokkos Sampler was configured to collect 1% of messages from all kernels for each rank.
Additionally, we developed the Kokkos Connector (fig which establishes, and validates the
existence of, a connection to the local LDMS sampler daemon. Assuming a valid connection, the
Kokkos Connector takes the output of the Kokkos Sampler, demangles the kernel names, and
publishes the message in JSON format to the LDMS Streams interface.

3.4. Storage

Each of the 16 nodes of our monitoring and analysis cluster Shirley has S6TB of NVMe storage.
This NVMe storage was used exclusively for storage, and querying, of system and application
data using our Distributed Scalable Object Store (DSOS) database.

DSOS is a coordination layer sitting on top of our Scalable Object Store SOS and is depicted in
Figure[3-6 DSOS presents a scalable distributed database with a variety of features that enable
the simultaneous large-scale data ingest and queries required for this work. DSOS presents a
single, unified database to the end user. All SOS databases within a DSOS domain can be queried
in parallel as the result of single call to DSOS and a single set of aggregate data will be returned
as a result. SOS and DSOS are designed specifically to address the domain-specific needs of
large-scale HPC monitoring with respect to low latency ingest and query of large volumes of data.
They are collaboratively developed by Sandia and Open Grid Computing (OGC). While not
specifically developed for this milestone, it is a testament to the flexibility of this database that we
were able to make significant changes, including performance improvements, to how information
is being stored, indexed, and retrieved over this milestone window. This would not have been
possible using commercial databases.

Besides its scalable data ingest and query performance, DSOS’s flexible indices were especially
critical for execution of this milestone. SOS/DSOS indices can be based on any metric, or
combination of metrics, within an LDMS schema. Additionally, indices can be created and
removed as needed without reloading data. These features were critical in identifying the optimal
index patterns for the different query use cases we had within our analyses. DSOS also has
Python, C, and C++ APIs and a command line interface for interacting with the data. The Python
API is used within all the analyses and the command line interface is a fast method to test queries
and examine data. Query optimization was necessary because of the amount of data we ingest and
store. Roughly one month of Eclipse system data stored in a DSOS database is over S0TB,

18

query result

Figure 3-6 SOS database coordination on Shirley cluster using DSOS. A single
DSOS query is parallelized across all SOS databases. The data from each of those
databases is collected and sorted to present a single result for the user.

Grafana
Web

Module Call P

Django Python FythonQuery
xop PR . PEEERM 0505

DataFrame DataFrame

Browser

Figure 3-7 Analysis and Visualization Pipeline Block Diagram. Queries from a Grafana
web browser are sent through an Apache server to a Django application. The queries
can specify a Python analysis module to call, which queries the DSOS database and
manipulates the returned DataFrame. This DataFrame is returned to the Grafana
browser after being correctly formatted to create meaningful visualizations.

including indices. Two separate week-long 290-node EMPIRE runs added 900GB to the
distributed database.

3.5. Analysis and Visualization

Prior to this milestone, we had created an analysis and visualization (A&V) pipeline to derive
metrics of interest from LDMS system data and to show the results on a Grafana dashboard [[10].
A high level diagram of our analysis and visualization (A&V) pipeline is shown in Figure

The A&V pipeline starts with a user query from a Grafana interface. The time range, type of
analysis, and any input parameters are sent through an Apache server to a custom Django Python
application. This Django application interprets the query sent from Grafana. Some queries merely
request data directly from the DSOS database, which is then queried through the DSOS Python
API, and returned as a Pandas DataFrame, JSON formatted, and returned to Grafana. However,
most of the dashboards used have an analysis call to transform raw data to something more
interesting. In this case, the Django application calls the requested Python analysis to interact
with the database. The analysis modules allow for endless possibilities limited only by Python
coding ability and time that the user must wait for the result.

19

A key feature of this pipeline is that analysis is done when, and only when, a user requests a
visualization in Grafana. Although this increases query time, it saves significant computation and
storage resources as compared to traditional methods which require running all analyses across all
data and saving to a results database. Additionally, analysis modules and resultant data formatting
can be easily changed without needing to repopulate a results database. This pipeline does
support an "always analyze" usage model, which we have found applicable for select analyses,
but these were not a part of this milestone. Significant work was done, as part of this milestone, to
optimize database queries and Python analyses for fast Grafana query times.

For this milestone, we also made substantial changes to the internals of the pipeline to improve
scalability and performance. The previous pipeline had longer query times because it used a
single-node SOS database rather than DSOS. To incorporate DSOS, major changes were made in
the Django application to conform to the DSOS Python API and in the Python modules to make
better use of the DSOS SQL-like query structure.

4. DEPLOYMENT

LDMS has been deployed on the majority of our production HPC clusters since 2015, with stable
release version updates being part of our maintenance workflow. As part of this milestone work
we scale-tested and deployed our latest LDMS version, which includes the LDMS Streams
capability described in Section on our CTS-1 Eclipse system (described below in
Section[4.1). As part of the upgrade we also moved from collecting system data at once per
minute to once per second.

41. Scalable high-frequency data collection

The overall scheme of hardware and software deployed is illustrated in Figure -1} In detail, an
LDMS data collection service (SO) instance (otherwise known as a LDMS sampler daemon) is
deployed on all of our Eclipse[9] cluster nodes including 1488 computes, 12 logins, 24 Lustre
gateways, and 8 administrative nodes. Application or job launch processes can publish tagged
event data to the collecting service on the compute or login node where they are running. We
divide the cluster nodes into 16 groups and deploy one LDMS first level aggregation service (S1)
instance per group. Each S1 instance collects LDMS Streams and system data from its assigned
SO instances. The data sampling plugins deployed on Eclipse and their collection intervals (in
seconds) are listed in Table [d-1]

The sixteen S1 instances are spread across just three administrative nodes. On our analysis cluster
Shirley, (further described in Section4.3)) a second level aggregation service (S2) instance runs
one-per-node, capturing and locally storing the data flow from its paired Eclipse S1 service
instance. Within Eclipse, all LDMS data is transported over the fast Omnipath network. Shirley
S2 instances connect to Eclipse S1 instances via a 10Gb/s Ethernet network. In addition to the S2
data storage to the SOS databases, the S1 instances store system metric data to CSV files on
administrative node private 2TB scratch disks. These CSV files allow for data recovery in the

20

Eclipse Eclipse Shirley
Compute Nodes Administrative Analysis Cluster
Nodes

EMPIRE

Figure 4-1 Deployment Architecture

event of a temporary outage of Shirley or the the network between Shirley and Eclipse. These files
are moved daily from the local scratch disk to network storage.

plug-in interval | data

filesingle 60 power and temperatures

meminfo 1 /proc/meminfo for free, active, and other memory usages
vmstat 1 /proc/vmstat for numa and other metrics

procstat 1 /proc/stat for cpu tick, interrupt, and process counts
loadavg 1 /proc/loadavg for 1, 5, 15 minute loads

procnet 1 Ethernet device traffic and errors

opa2 1 Omnipath device traffic and errors

procnfs 1 NFS v3 events and traffic

Inet_stats 1 Lustre network traffic and errors

lustre_client | 1 Per-mount-point Lustre events and traffic

dstat 1 LDMS daemon I/O, memory, CPU and file descriptor usages

Table 4-1 Describes plugin names, types of data gathered, and collection periods (in
seconds)

4.1.1. Data collection overheads

As part of the milestone, in Jan 2021 we held a 30-hour DAT on Eclipse for LDMS Version 4
overhead testing and to validate the interoperability of our initial application, Kokkos sampler,
and Streams functionality. This involved substantial work up front in determining applicable
workload and metrics to collect as well as all of the infrastructure and analysis/visualization
configuration. The statistical results of this DAT will be documented in detail in a separate
publication. The DAT compared runs with and without LDMS present on the compute nodes for
run sizes from 1 to 1024 nodes for a variety of applications that stressed different hardware
subsystems. In summary performance overheads were observed as follows:

e The typical total wall-clock overhead observed was less than 1% while the typical
run-to-run variation observed without LDMS was 1.3%.

21

e There was no discernible run length difference between publishing 1% of all Kokkos events
and publishing no Kokkos events.

e The aggregate LDMS network traffic leaving Eclipse is approximately 3% of a 10Gb/s link
in the administrative network.

e There is ~ 6MB of memory used for LDMS on the compute nodes where we are collecting
~> 5000 metrics per node. This is not expressed as a percent of memory because it doesn’t
scale with node memory size.

4.2. Administrative controls

Unprivileged Eclipse users connect to LDMS daemons on a port designated for this purpose. The
munge service is used for authentication. The aggregation hierarchy inside Eclipse is
interconnected using a different port and a shared secret, restricted to administrative processes, for
authentication. In this way, application data injection to LDMS can be easily disabled if needed.
The S1 instances (up to six of which run on each administrative node) listen for connections on
other designated ports; the Shirley S2 instances authenticate to the S1s with the administrators’
shared secret. The current implementation has no software limits on the local or aggregate rate of
user application data injection; the 10Gb/s Ethernet network does pose a hardware limit.

4.3. The Shirley Monitoring and Analysis System

As part of this milestone work we designed and deployed our Shirley monitoring and analysis
cluster. Shirley consists of 16 storage and analysis nodes each comprising dual 2.40GHz Xeon
6240R processors (48 cores total) with 1.35B of RAM and 56TB of NVMe storage (spread across
8 drives). To best support the recently released CPUs, high-speed network features, NVME
storage, and analysis and visualization software, we deployed the Redhat Enterprise Linux 8.4
operating system across the whole Shirley system.

5. APPLICATION AND SYSTEM METRICS

We collect a wide range of metrics. Some are directly observable, while others are derived from
other metrics. Some reflect shared resource usage, such as file system and network utilization,
while others are specific to the user’s allocation, such as CPU and memory utilization. To
determine metrics of interest in the context of this milestone we decided to go through a
requirements gathering process involving both application and system monitoring experts.

This milestone required that we demonstrate a capability for continuous collection of system data,
application progress metric(s), and an application throughput metric. The deployed installation of
LDMS included several system samplers that enable collection of system data such as jobid, load
average, CPU and memory utilization, various Ethernet, Omnipath, NFS, Lustre file system and
Lustre networking events, motherboard temperatures and power, and aggregator daemon
performance metrics (see Table d-1)). The goal of this requirement is to display system metric data

22

along side application throughput metric data, enabling a user to visually identify periods of
execution during which system behavior affects application throughput. Since memory can often
adversely affect application performance, we chose Active memory, for the nodes hosting the
job/application of interest, as the system metric for the dashboard display.

In scientific engineering applications, there is typically some sort of iterative solve process that
reflects conditions of the physical system being simulated. For the EMPIRE application, a method
called ParticleMove::Move is called on each iteration of the solve loop. Computing
ParticleMove::Move invocations per unit time (sec) would give a good indication of application
progress. The dashboard provides an application profile in which the user can select the
function/method for which to compute invocations per time. Therefore, this is robust across
applications and for EMPIRE we chose ParticleMove::Move invocations/sec in a specified time
range to reflect application progress.

Defining an application throughput metric is challenging because it’s tempting to choose to
measure behavior that is application-specific such as particle updates per second. Although users
can define custom metrics for display, we chose to determine a first-order application throughput
metric that is robust and applicable to all applications, which is total functions/methods called
per minute within a specified time range. Application throughput reduction is indicated when
this metric decreases in value.

The visualization dashboard displays these metrics through various plots which will be discussed
in the next section.

6. SYSTEM AND APPLICATION DATA VISUALIZATION

For this milestone, we created two Grafana dashboards to visualize an application’s Kokkos
instrumentation data, each with several analysis-driven panels on them. The dashboards will be
referred to as the job-level dashboard and the kernel-level dashboard. Grafana was chosen
because it is an open-source tool gaining traction across the tri-lab HPC monitoring community
for HPC visualization and is tailored towards visualizing time-series data. A Grafana interface
consists of dashboards populated by panels. Each panel visualizes data obtained from a query to
the A&V backend. The dashboard has a time-range picker for users to query data in a chosen time
frame. This time-range is part of the query used in each of the panels on the dashboard. Panels in
our infrastructure are always aligned in time.

The job-level dashboard in Figure [6-I| shows high level information about the application across
all kernels in the job alongside a system metric. There are three panels in this dashboard. The first
panel is called the Kernel Summary Table that shows all kernels, the number of times each kernel
was called, the time spent in each kernel, and the average kernel execution time in the time-range
specified. This table is useful for quickly understanding the behavior of kernels called in the
application in this time. Each kernel name in the table is also a hyperlink to the kernel-level
dashboard for that kernel.

The second panel on this dashboard presents the application throughput metric and is a
time-series plot of the total kernel calls per minute across all ranks in the application. This panel

23

88 Kokkos wr =8

10195735

Kernel Summary Table Application Kerel Throughput (Functions called per minute)

614686

Figure 6-1 Job-level Grafana dashboard with a kernel summary table, an application
throughput time-series plot, and a memory usage time-series plot

provides the trend of kernel executions in the application. Dips in the time-series plot might
indicate the application stalled or is shifting to a new phase of the application.

The final panel is a time-series plot of the active memory usage of nodes within the job. For each
time point, the graph shows the average memory usage across all nodes and the maximum and
minimum memory usage on a single node. The memory usage panel displays the system metric
of choice for this milestone and helps users track memory usage and balancing across the job.

The kernel-level dashboard in Figure [6-2] displays information pertinent about a single kernel
within the application. The dashboard has a text box for users to fill in which kernel is of interest
to them. Additionally, they can navigate to this dashboard using the job-level dashboards Kernel
Summary Table that will automatically fill in this text box. There is also a text box for users to
control the bin size used in the underlying analyses. This bin size determines the level of
granularity for the returned results. For example, a bin size of 10 will return plots where each data
point is an average across 10 seconds. This allows users to see general trends or fine details as
needed.

There are two panels on the kernel-level dashboard. The first panel is a time-series plot called
Function Timing Information that has two lines on it. The blue one displays the average time per
kernel execution over time. The average here is taken across all ranks in the application. This can
indicate if there are times when a kernel takes very long to execute, which might be indicative of a
problem. When this dashboard is populated using a kernel indicative of scientific performance,
such as ParticleMove::Move as in the case of EMPIRE, this line is an application progress metric.
The orange line in this panel shows the number of times that kernel is being called per second.
This line indicates if a kernel is being called more or less than usual which could indicate stalls or
phase changes.

The second panel on this dashboard shows a heatmap of the execution time across ranks in the
application. Blue colored bins mean a few ranks are in this execution time range, red colored bins
mean many ranks are in that range. This panel helps users understand the distribution of execution

24

ion Call Per Rank Heatmap (Randomly samples ranks if > 100 ranks)

Figure 6-2 Kernel-level Grafana dashboard with a function timing information time-
series plot and an kernel execution heatmap

times and identify ranks acting as outliers. In the EMPIRE milestone runs, we identified ranks
consistently acting as outliers that were previously unknown to the EMPIRE developers. A
limitation of this panel is that Grafana heatmap visualizations are computationally expensive and
hence the latency from query to results can be significant for a large number of ranks (note this
has no impact on the application as these queries and computations are performed on Shirley). To
get around this, we randomly sample ranks when the application uses more than 100 ranks. Rank
zero is always kept in the sampled ranks as it is often important for developers to understand.

Both dashboards were shown to display information about a 290-node EMPIRE milestone run.
Users were able to use the time-range picker to view the different derived metrics across any part
of the job. We also showed, using a two-node run of the application SPARTA for simplicity, that
the dashboard could present a live view of a currently running application.

7. STAKEHOLDER FEEDBACK AND FUTURE CAPABILITY
AUGMENTATION PRIORITIES

In this section we present Stakeholder Feedback and Capability Augmentation Priorities. Our
timeline for addressing these and for rolling out the capability on our other HPC systems is
presented in our Roadmap (Section [9).

7.1. Feedback

Stakeholders in this work are primarily users of our HPC systems who would be interested in the
performance and progress understanding that live data and analyses can provide. For the user
feedback, we targeted the EMPIRE developers and analysts who could then see the capability as it

25

pertains to their code. There were additional requests from system administrators who were part
of the team and can also benefit from the capability as it would show conditions on the system
and insights into underperforming applications.

The feedback was overwhelmingly positive about the work’s utility and potential. Stakeholders
also made feature requests as described below.

EMPIRE developer and analyst comments:

e "There was no noticeable impact on performance on small or large simulations when
LDMS was enabled"

e "[fully expect enabling LDMS to become the default EMPIRE behavior on supported
platforms"

e "Being able to see the dashboard’s real-time updating of simulation performance is so much
better than manually finding that information in simulation log files"

e "Quickly plotting simulation metrics helps us quickly assess job health and progress, saving
time and decreasing cognitive load"

e "Clear, clean layout without presenting too much information"
Requested enhancements:

e The number one request was that they would like to be able to have a subset of kernels
always collected (e.g., the ParticleMove::Move kernel)

e More information about filesystem I/O alongside application event data
e Rename data labels to improve understanding
Will be adding in-depth descriptions about the data and underlying analyses

e Add bit-rate to application throughput panel to show how much data is being ingested by
the backend

Will be useful for adjusting sampling rate in the future

7.2. Capability Augmentation Priorities

The work was deliberately scoped (Section|[I)) to address the development of this capability and its
deployment on one system and targeting a single ASC relevant application. All of the not in scope
work items are intended to be Future Capability Augmentation Priorities. Those items are
repeated below:

Not in Milestone Scope: Future Capability Augmentation Priorities
e Tuning system parameters to avoid application performance variation
e Deriving causality of application performance variation

e Correlating system state with application performance

26

e Determining best system or application data to collect
e Production-hardened deployment of collection infrastructure / analysis

Particular priorities to improve the architecture and to enable better metric selection and
associated analyses identified by the team are listed below. These are broken down by the various
conceptual elements of the work.

Architecture:

e Explore additional lightweight methods for sampling of Kokkos kernel execution
information

— Self adjusting data volume production
— User-controlled variable sampling rate and always sampling specified kernels
Metric Selection:
e Add PAPI events/metrics to analyses and dashboards
e Define metrics for, and implement, performance bottleneck detection
Visualization and Analysis:
e Analyses with both application and system data to automatically identify correlations

e Advanced analyses, such as rank clustering or historical variance investigation, of
application data

8. LESSONS LEARNED

Throughout the course of this L2 milestone, we encountered some unexpected primary challenges
and several lessons learned. The unexpected challenges we faced were not technical in nature but
pertained primarily to team dynamics, specifically communication and engagement.

Communication in the all-virtual environment is difficult by default, but we faced team
communication challenges that were also related to the size and organizational diversity of the
team and the complexity and interdependences of the project. Specifically,

e Because of the breadth of the technologies involved, not all team members were intimately
familiar with the technical issues of various sub-components of the project.

Mitigation: Initiating monthly technical deep-dive presentations on various aspects of
application and system monitoring.

e More communication among the sub-groups is needed to increase engagement and overall
project knowledge.

Mitigation: Regular synchronous and asynchronous status updates. We need large project
distributed tools for organization, communication, and asynchronous status. Potential tools
are currently being investigated.

27

Several lessons were learned during project execution that we aim to improve upon in future
development and deployment of the monitoring system. Specifically:

e Large projects should have a single point of contact for final design decisions and these
decisions should be presented and explained to the team in a timely manner.

e [t is vitally important to document, with detailed diagrams, sub-component descriptions,
functionality descriptions even seemingly simple project details (e.g., network diagrams,
expected functionalities of sub-components and their interfaces and interactions with
others).

e Staff training on data analysis would speed problem diagnosis and mitigation and
tool/infrastructure validation. Note that we will address this in a system monitoring
deep-dive presentation.

These issues have been discussed among the milestone management team and will be part of a
whole-team discussion in the future to ensure that we define adequate solutions to mitigate
problems within the project as we move into the future.

9. CAPABILITY PRODUCTION ROADMAP

In this section, we present our multi-year roadmap for development of new features and
production deployment on systems at Sandia. Features include the priority items from Section 7]
and from the not in scope items in Section|l| These roadmap diagrams highlight key events in the
timelines of:

e System Data Collection - includes production installations

e Application Data Collection - includes application information via system sources (e.g.,
PAPI) and application information via Kokkos and non-Kokkos enabled applications

e Monitoring Features - includes features of all aspects of the architecture (e.g., data
injection, dashboards etc.)

Figure 9- 1| covers years FY20-22. FY20 is included to enable identification of the new
capabilities developed as part of this milestone. FY22 shows the intended enhancements of the
demonstrated capabilities, given the success of this milestone. Details are presented in the figures,
but highlights of these years are as follows:

e FY20 - LDMS version without LDMS Streams in production on SRN production systems.
Application data restricted to that available from the system. System data pipeline to
non-distributed SOS database with production dashboards for system data.

o FY2I (milestone capabilities indicated by check marks) - LDMS version with LDMS
Streams in production on CTS-1 system with higher frequency data collection than in
previous year. Application data injection from Kokkos via Kokkos-LDMS Connector.
Distributed DSOS database increases scalability and performance. Dashboards include
application and system data displayed concurrently and time-aligned.

28

FY20 ! FY21 ! FY22

System

Collection

W
LDMS v3 on all 1 LDMS v4 (Streams || LDMS v4 on SRN
SRN CapViz I Enabled) on CTS-1 I | ARM system LDMS v4 on remaining
systems collecting 1 system collecting I | collecting at1 sec production CTS-1 systems
at 60 sec intervals 1 at 1secintervals | | intervals collecting at 1 secintervals
1 I

Application

Collection

v
A

Created Kokkos Sampler
and connector to inject
application data into LDMS
Streams pipeline

Utilize Kokkos Sampler
feature on other ASC
applications of interest

Application related
data restricted to PAPI
and node level

resource utilization

W

Target ASC application (Empire)
successfully utilized Kokkos
Sampler to capture run time data

Investigate run time
telemetry collection on
non-Kokkos applications

Monitoring

Features

505 — Scalable Object Store
DSOS - Distributed 505
A8V — Analysis and Visualization

W - Accomplished as part of ASC L2 milestone

Figure 9-1 Roadmap - Part1: FY20-22

Initiated in this year, but not part of the milestone, is a collaboration with Argonne National
Laboratory (ANL) to inject I/O data from their Darshan [5] tool into the data stream via the
LDMS Streams capability. This will provide Sandia with additional IO data and will
provide Darshan the ability to provide run time output while bounding its memory footprint
to do so.

e FY22 - Expansion of deployment to other CTS-1 systems and Sandia’s Restricted Network
(SRN) ARM system. The application base will be expanded beyond EMPIRE. Collecting
application data via non-Kokkos applications will be investigated, most notably by a
collaboration with Lawrence Livermore National Laboratory (LLNL) to inject data from
their Caliper [3] tool directly into the LDMS Streams. Additional features for the
architecture and dashboards are shown in the figure.

Expansions of the capabilities are also listed as Planned Activities for FY22 in the ASC
Implementation Plan. Of particular note are training and documentation resources about the
use of these capabilities.

Figure covers years FY23 and beyond. Details are presented in the figures, but highlights of
these years are as follows:

e FY23 - Deployment on CTS-2 and roadmap for Sandia’s Secure Network (SCN) machines.
Particular high-profile applications are targeted in this year. Increased analytic capabilities
including Machine Learning (ML) and statistical models, based on our active research, are
also planned.

29

FY23 | And Beyond!

System
Collection

foadman LDMS Depl
CTS-2 LDMS determined for V5L ployment
Deployment SCN machines on initial SCN Future system LDMS

hi deployment

Application
Collection

Production Collection from some
apps in SIERRA, RAMSES, and
other

m Automated correlation of application
|
|

e, | [|

Future
application
collection

Monitoring
Features

Figure 9-2 Roadmap - Part2: FY23 and beyond

e Beyond - While we have enabled unprecedented insight into application progress in
conjunction with system conditions, the ultimate goal of this work is Automated
Optimization of HPC Systems for Maximum Science Output driven by run time
monitoring and analysis. We will be continuing work toward automated analysis and
dynamic feedback in future years.

It should be noted that while the capabilities documented here were performed in execution of an
ASC level 2 milestone, as part of this work we have also production hardened these capabilities
and they will continue to be operated and offered to users and system administrators as a
production capability. Note also that FOUS is committed to the deployment and support of the
infrastructure on Sandia’s systems. This includes both HPC platform support and supporting
subsystems, such as the analysis and visualization clusters, which are maintained by FOUS. An
eventual goal is the interactivity of code teams’ dashboards, often currently maintained by CSSE,
with the dashboards in this work. Long-term architectural and platform support will be explored
as the functionality is expanded to multiple clusters.

10. COMPLETION CRITERIA

The Milestone text and Completion Criteria are listed in Section[l] In this section, we provide a
checklist breaking out the key features of the milestone capabilities, as provided in the description
in Section 2] and a summary of the evidence of its deployment and demonstration. Associated
Figures and Sections are also referenced in the checklist.

30

2 Successful deployment of infrastructure on CTS-1 system

Target version of LDMS (i.e., Streams enabled) has been in continuous deployment on the
1500 node CTS-1 System, Eclipse since Jan 28, 2021

i Demonstration of capability for continuous collection and storage of system data over a
2-week rolling window

We have demonstrated continuous collection and storage over a 30-day (2 x 2 weeks)
window of system data on Eclipse

— A 30-day window produced ~60TB (including indexing overhead) of data stored in
NVMe-based Scalable Object Store (SOS) databases distributed across 14 nodes of
the Shirley Monitoring and Analysis cluster. This is < 10% of the NVMe storage
capability of Shirley.

— Rolling window previously demonstrated on a single SOS database on our Bitzer
system

7 Identification of an application throughput metric(s) for an ASC-relevant code

Throughput indicated by the total number of Kokkos kernel executions per-second over a
defined time window while running the EMPIRE application. Shown in Figure [6-2]

i Identification of an application progress metric for an ASC-relevant code

Number of kernel calls per unit time over a defined time window (15 sec. default) for a
kernel indicative of science work accomplished (ParticleMove::Move)

7 Demonstration of capability on target application (EMPIRE) run(s) on CTS-1 system
(Eclipse)

Demonstrated 32- to 290-node EMPIRE application runs on Eclipse

@ Demonstrate a visualization interface that will enable a user to look at post-run application
progress in conjunction with system conditions

Shown statically in Figure

7l Demonstrate a visualization interface that will enable a user to look at run time application
progress in conjunction with system conditions

Shown statically in Figure [6-1]

Run time dashboard capabilities were demonstrated in a video in the final review of
milestone

7 Document feedback and future work

Documented in Section[7] and Section

31

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

Ovis/LDMS. http://github.com/ovis—-hpc/ovis.

A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S. Monk,

N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and

T. Tucker. Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous
Monitoring of Large Scale Computing Systems and Applications. In SC14: International
Conference for High Performance Computing, Networking, Storage and Analysis, pages
154-165, 2014.

David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo Gimenez,
Matthew LeGendre, Olga Pearce, and Martin Schulz. Caliper: Performance introspection
for hpc software stacks. In SC ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 550-560, 2016.

J. Brandt, J. Cook, A. Gentile, et al. Enabling application and system data fusion. Sandia
National Laboratories Report SAND2021-4475 C, 2021.

P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 24/7 characterization of
petascale I/0O workloads. In Proc. 2009 Workshop on Interfaces and Architectures for
Scientific Data Storage, 2009.

C.R. Trott, et al. Kokkos 3: Programming model extensions for the exascale era. I[EEE
Transactions on Parallel and Distributed Systems, to be published.
https://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3097283.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Journal of Parallel
and Distributed Computing, 74(12):3202 — 3216, 2014. Domain-Specific Languages and
High-Level Frameworks for High-Performance Computing.

Simon D. Hammond, Christian R. Trott, Daniel Ibanez, and Daniel Sunderland. Profiling
and debugging support for the kokkos programming model. In Rio Yokota, Michele
Weiland, John Shalf, and Sadaf Alam, editors, High Performance Computing, pages
743-754, Cham, 2018. Springer International Publishing.

Martin Meuer. SNL/NNSA CTS-1 Eclipse. https://www.top500.0rg/system/179422/.

Benjamin Schwaller, Nick Tucker, Tom Tucker, Benjamin Allan, and Jim Brandt. HPC
System Data Pipeline to Enable Meaningful Insights through Analytic-Driven
Visualizations. In Proc. 2020 IEEE International Conference on Cluster Computing
(CLUSTER), pages 433-441. IEEE, 2020.

32

http://github.com/ovis-hpc/ovis
https://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3097283
https://www.top500.org/system/179422/

INITIAL COMMITTEE REVIEW

33

Sandia
National
Laboratories

Integrated System and Application
Continuous Performance

Monitoring and Analysis Capability

-

- ‘ 1 "N : = g’
® T ==
= B e

12/9/12020

Initial L2 Milestone Review

@kiERsy NISA

34

2 1 L2 Milestone (Enabling Capability)

Milestone Description

o

Demonstrate the use of SNL data collection, analysis, and visualization framework/tools, to provide both
system and application relevant run-time and post-run information for a rolling two-week interval

o

Deploy on a Sandia production SRN platform

o

Demonstrate a capability for continuous collection of system data, an application progress metric(s), and an
application throughput metric for an ASC-relevant code

o

Provide a capability to store this data and a visualization interface that will enable a user to look at
application progress in conjunction with system conditions, both at run time and post-run

Milestone Targets

> SNLs Lightweight Distributed Metric Service (LDMS) for the transport and aggregation of Trilinos-enabled
application progtress data and of system data

o ATDM Application EMPIRE for deployment and its Proxy, MiniEM, for capability development

o CSSE’s Application Performance Team will be supporting development and testing

35

Motivation / Impact

Answering key performance questions
o Is my performance variation due to system conditions or code changes (users)?
° How can I know if the system is having problems (system managers and users)?
° What are the architectural requirements given the site’s workloads (acquisitions teams)?

> How can the system provide more effective and efficient services (architects, system managers, and support
staff)?

Current issues affecting the ASC program

° Unknown sources of code performance variation, degradation, and runtime failure lead to longer
development cycles and high machine and human resource costs.

° More insight into workload needs and causes of performance variation and degradation is required to
optimize new machine design

Impact of this work on application teams and system administration at Sandia

° Application teams can better diagnose causes of performance variation or failure and determine whether
they are application or system related.

o System administrators can better understand application behaviors and system resource needs as well as
system issues and how they are affecting application performance.

36

4 | Integrated System and Application Continuous Performance
Monitoring and Analysis Capability

Data Flow Diagram

HPC System Analysis Cluster
/
time /
Dashboard
Applications D \
dynamicallyana (WABPANY [RTABD2 : son
dynamically an; Continuous Analysis on '\
irregularly inject Kokkos Kokkos dynamically populated
data into the LDMS database App Performance —@==System Performance
transport Streams Streams
LDMS continuously LDMS transport NVMe-based
and regularly database
collects and L &
transports full ong-term
system data LDMS samplers data store

37

5 | Completion Criteria

Stated .2 Completion Criteria

o

o

o

Successful deployment of infrastructure on CTS-1 (Eclipse) system
Demonstration of capability on target application run(s) on CTS-1 system

Lessons learned and feedback from stakeholders for future capability augmentation and priorities will be
documented

Scope Definition

o

o

In scope

° Developing and deploying an integrated architecture for application and system information

° Collecting application and system state metrics from a CTS-1 system at runtime

° Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics
° Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

° Providing information on instrumentation overhead and application performance impact

Not in scope (future capability augmentation)

° Tuning system parameters to avoid application performance variation

Deriving causality of application performance variation

°

Correlating system state with application performance

Determining best system or application data to collect

°

Production-hardened deployment of collection infrastructure / analysis

38

Interacting Milestone Sub-Groups

Application and System Metrics:

° Determine meaningful information regarding performance, progress, and throughput information of interest to the
stakeholders.

o Determine application and architecture specific hardware counters and software data sources to transform into
information.

Application-Streams Architecture:
o Utilize and enhance LDMS to support efficient and scalable runtime transport of both application and system data.
o Efficient application timing and performance data will be injected into the LDMS transport by Kokkos/Trilinos.

Analysis and Visualization:

> Convert raw application timing and performance data plus system data into meaningful visualizations through the
development of Python analyses and Grafana dashboards using existing system-data visualization pipelines.

Deployment:
> Partnership with Eclipse admins and Advanced Architecture Testbeds team to identify and address all requirements
for deployment of the full 1.2 architecture.

o Partner with LDMS developers to ensure necessary features. Deploy architecture on all platforms and
infrastructure.

[20 people across: LDMS, Application Performance, Kokkos, Trilinos, CapViz, and EMPIRE Teams]

39

o

Application and System Metrics

Lead: Jeanine Cook

40

s | Application and System Metrics: EMPIRE Background
Field -
P/ Solve j
PIC (particle-in-cell) is EMPIRE’s most Weight The PIC
mature capability EIAEE Algorithm

L Move J
(h - Particles |

EMPIRE
Particle-In-Cell 1 Field Solve

Built on Trilinos
components for rapid
development progress

Code developed from

Electromagnetics ground-up under ATDM

| Trilinos . Diagnostics are cross cutting
Kokkos Kokkos is foundational to all parts of the code
. N /

41

9 | Application and System Metrics: First Order Questions [ﬁj

Example System Measurements

The fusion of system and application metrics on 170 Utilization
the same display can provide deeper CPU Utilization

. .. . Memory Utilization
understar.ldl.ng of application behavioral Network Utilization
characteristics

) Informs
Example questions that would benefit from

application-system data fusion Application Behavioral

° Is a change in application progress observed with a Characteristics
simultancous change in I/O, memory, or network
utilization? Progress / Throughput

Load Imbalance

° Can load imbalance among ranks in the application be Unexpected Exit

seen by inconsistent CPU and/or memory utilization

across nodes? Informs

° Can application heartbeat help narrow location of
unexpected exit or behavior of interest?

Example Application Measurements
o Application heartbeat is a regular application feature that marks an Time-per-timestep (Kokkos timers)
interval of note PAPI

Heartbeat (Kokkos function stats; Cook
et al)

42

10 | Application and System Metrics: Plan of Action

Identify which system and application metrics should be analyzed and integrated on the display to aid in
understanding problems such as unexpected application termination and application performance
variation

° Determine architecture-specific hardware performance counters and appropriate metrics that should be extracted

° Determine how to aggregate per rank data

Determine application “heartbeat” and progress indicators
o Utilize Teuchos and Kokkos timing and other application information

Collaborate with Deployment and Application-Streams Architecture subgroups to determine fidelity of
collection, both necessary and possible, to produce meaningful results

Collaborate with Analysis and Visualization subgroup to determine ideal ways to present collected data

43

= . ,_‘.:—:*

. Application-Streams

Architecture

Lead: Jim Brandt

Ann

Gentile -
SNL

44

12 I Application-Streams Architecture: LDMS Background

ldmsd L1 aggregator pulls
from memory regions

of L0 samplers
LLDMS - low-overhead data collection, transport, and storage
capability designed for continuous monitoring supporting
runtime analytics and feedback. <— Sampler plugins
° Typically pull based to minimize CPU interference

Bl ldmsd
[LDMS Streams — push-based publication of loosely formatted N

information to subscribers
o LDMS Streams push is asynchronous

Daemon publish API called from externally or by a plugin
pushes to l[dmsd which pushes to all subscribing plugins
and aggregators

45

13 I Application-Streams Architecture: Kokkos Background

Application Code Kokkos Runtime Code

Kokkos::parallel_for(... , KOKKOS_LAMBDA(int i) {
<loop body>
hE

call kokkosp_start_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)

Call functions within a dynamically loaded Kokkos Tool

Kokkos Tool External Connectivity - kernels and Teuchos timers within Trilinos are configured to
dynamically load a Kokkos supplied “connector”. This requires no recompilation for profile enabled
code and can be used for any Kokkos application (not just Trilinos, EMPIRE etc)

Kokkos Tool Internal Connectivity — hook points already exist for kernels (parallel-for, reduce, scan),
« : 2 : : : N : < : ” : : : ;

regions” (arbitrary points in code which can stack) and “sections” (arbitrary points in code which
may overlap)

46

14 | Application-Streams Architecture: Plan of Action

Create a Kokkos Connector to LDMS Streams
> Initial prototype is working on Sandia Voltrino Cray XC50 open ART system

Enable transport of the Kokkos data targeted from the Application and System Metrics Subgroup
° Not targeting full application timer traces

Enable dynamic discovery and adjustment of target information and fidelity of collection
o Significant diagnostic data and call stack may not be known a-priori

Scale LDMS Streams to meet application output requirements
> Enable N ranks to be writing individually

o Investigate rate-limiting feedback in the Streams architecture

Measure overhead of instrumentation and assess performance impact on application
> Report out worst-case scenarios and associated configurations

47

Analysis and Visualization

Lead: Ben Schwaller

48

Analysis and Visualization: Background

9328 FY20 work created a Grafana interface for analyzing
and visualizing SRN CTS system data collected by LDMS

Data can be directly queried from a database or have a
python module perform analysis alongside the query
° Allows for flexible development of visualizations as analysis
only happens during a query rather than over all data

° Any user with appropriate permissions can add and change
analytics and create their own queries with analysis

° The Scalable Algorithms (1465) group has also performance
analysis scripts which could be translated to python analysis
modules

49

Client Machine

Web Browser

- LDMS Data
HTTP
1
Monitoring Server
Grafana SOS
Server Database

SosDS
SosDB Python API

HTTP

Apache

Query
HTTP DataFrame
Name /

JSON Args

Formatter Sosdb-ui /
Modules JHWWeY grafana DataSet

Analysis
Modules

17

Analysis and Visualization: Background

Current interface gives us a variety of insights into system status, from center-wide filesystem

performance to h1<rh memory usage jobs on a system

e Across SRN -

11.0M ops

10.5M ops

10.0M ops

90Mops fl o

M op

= chama_compute = chama login

uno compute = uno login

) |||
o

60Mop

File Operations / Second

Kybridge compute = skybridge login ~— ghost compute == ghost login == eclipse

Top 10 High Memory Jobs
bl

6996725 048 3% 2020-10-08 07:09:00
699669 ec10 € 08 07:09:00
6996 e 09:00
0-10-08 07:09:00

6996755 2020-10-08 07:09:00
6996718 & 202010 09:00
699 ec63 45% 2020-10-08 07:09:00
ec509 72.9 2020-10-08 07:09:00

Top 10 High Memory Idle Nodes

)
20-10-08 07:09:00
0-10-08 07:09;
2020-10-08 07:09:00
2020-10-08 07:09:00
0-10-08 07:09:00
20-10-08 07:09:00

0-08 07:09:00

50

2020-10-08 07:56:00

0-08 07:56:00

0-08 07:56:00

2020-10-08 07:56:00

2020-10-08 07:56:00

2020-10-08 07:56:00

2020-10-08 07:56:00

020-10-08 07:56:00

0-10-08 07:56:00

0-10-08 07:56:00

0-10-08 07:56:00

2020-10-08 07:56:00

0-08 07:56:00

2020-10-08 07:56:00

2020-10-08 07:56:00

18 I Analysis and Visualization: Plan of Action

Plot derived application performance metrics alongside relevant system performance metrics to produce
dashboards that can provide a fused view of system performance and application performance
o Create Python analyses to parse application performance data and derive throughput and performance metrics

Analysis modules will be hosted and executed on an analysis cluster

Initial data retention policy is two weeks
o Create queries and dashboards that make intuitive sense to visualize the derived application metrics

Iterate with system administrators, analysts, and other subgroups to polish visualizations and dashboard navigations

System Visualization Application Visualization

Individual Function Performance

Active

ﬂm— -+

Timeseries plot of active Timeseries plot of function/second for
memory of an application specific miniEM function by rank

51

>

A\/‘. Deployment

Lead: Ben Allan

52

20 | Deployment: Background lﬁi

CAPVIZ has previously deployed LDMS in production (2015-2020)

° Production deployment of the latest LDMS software to collect system metrics is part of our regular work for
FY21 (orthogonal to the .2 milestone, but includes new Streams functionality).

Analyzing and visualizing system data

° Analysis cluster currently collects system data via LDMS once per minute from SRN clusters for
interactive analysis & visualization development

53

21 | Deployment: Plan of Action

Test deployment of latest version of LDMS on CTS-1 testbed
° Implement application and system data pipeline from CTS-1 testbed to analysis cluster

Deploy latest version of LDMS, with a functional Streams interface, on Eclipse
o Integrate LDMS in the production image for Eclipse
° Allow Streams interface to be written to by an application with data transported to storage

o Allow administrators to control what users / applications can write to the Streams interface

Ingest Eclipse data on analysis cluster and have the capacity to store and analyze data over a two-
week window
° Deploy latest visualization framework on analysis cluster

54

Completion Criteria Discussion

55

2 | Completion Criteria

Stated .2 Completion Criteria

o

o

o

Successful deployment of infrastructure on CTS-1 (Eclipse) system
Demonstration of capability on target application run(s) on CTS-1 system

Lessons learned and feedback from stakeholders for future capability augmentation and priorities will be
documented

Scope Definition

o

o

In scope

° Developing and deploying an integrated architecture for application and system information

° Collecting application and system state metrics from a CTS-1 system at runtime

° Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics
° Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

° Providing information on instrumentation overhead and application performance impact

Not in scope (future capability augmentation)

° Tuning system parameters to avoid application performance variation

Deriving causality of application performance variation

°

Correlating system state with application performance

Determining best system or application data to collect

°

Production-hardened deployment of collection infrastructure / analysis

56

MIDYEAR COMMITTEE REVIEW

57

Sandia
National
Laboratories

Integrated System and Application
Continuous Performance

Monitoring and Analysis Capability

-

- ‘ 1 "N : = g’
® T ==
= B e

41612021

Midyear L2 Milestone Review

@kiERsy NISA

58

L2 Overview

59

3 1 L2 Milestone Overview

Milestone Description

> Demonstrate the use of SNL data collection, analysis, and visualization framework/tools, to provide both
system and application relevant run-time and post-run information for a rolling two-week interval

> Note: This does not imply a 2-week continuous application run
o Deploy on a Sandia production SRN platform

o Demonstrate a capability for continuous collection of system data, an application progress metric(s), and an
application throughput metric for an ASC-relevant code

> Provide a capability to store this data and a visualization interface that will enable a user to look at
application progress in conjunction with system conditions, both at run time and post-run

Milestone Targets

> SNUs Lightweight Distributed Metric Service (LDMS) for the transport and aggregation of Trilinos-enabled
application progress data and of system data

o ATDM Application EMPIRE for deployment and its Proxy, MiniEM, for capability development

> CSSE’s Application Performance Team will be supporting development and testing

60

L

i

4 | Integrated System and Application Continuous Performance

Monitoring and Analysis Capability I
Data Flow Diagram
/
HPC System Analysis Cluster ,’
/
time /
Dashboard [/
Applications \
dynamically and _ \\
irregularly inject 7 Analysis on dynamically '\
data into the LDMS Kokkos Kokkos populated database \ App Performance =@==System Performance
transport
LDMS continuously i NYM?'based
and regularly distributed
collects and database |
transports full |
system data

61

High-level Midyear Achievements
and Remaining Work

62

¢ | Eclipse DAT (part |) — LDMS (Streams version) Overhead
Testing

GOAL: validate low-overhead at 1Hz sampling intervals with real-world application mixes to enable
running LDMS (Streams version) continuously on Eclipse in production

Took a DAT on CTS-1 system Eclipse on 1/29-1/30/2021 and conducted a series of tests over the
course of 28 hours

Installed the LDMS version which enables the Streams application data collection across Eclipse

> Collected CPU, network, filesystem, hardware performance counters, and memory metrics at 1 Hz (~1700
metrics)

o Using analysis and visualization pipeline, displayed administrative network traffic to understand infrastructure
impact of LDMS collection and storage

In close collaboration with 9326 HPCPRO team, ran a suite of applications across Eclipse to simulate
typical HPC application workloads

> Observed acceptable overhead of < ~1% across the application suite with a full set of configured samplers
running at a sampling interval of 1Hz

LDMS (Streams version) has remained running on Eclipse in production since the DAT
o Storage is performed on our production analytics cluster Bitzer

63

7 | Eclipse DAT (part 2) — Streams Testing

Scalable Unit

GOAL: Functionality Testing of Kokkos-to-LDMS Streams
capability to inject application data into the LDMS Data Stream

Conducted test using ~1000 nodes and two applications: EMPIRE
and SPARTA

° Goal was to test functionality first rather than performance tuning

o Demonstrated successful end-to-end pipeline of injecting application
performance data via the Kokkos connector into the LDMS Stream
on Eclipse and storing results to our analytics cluster

Socket

CSV format:

#rank,timestamp,job-id,kokkos-perf-data:time, kokkos-perf-data:type, kokkos-perf-data:name, kokkos-
perf-data:count

0,100907.012310,8290750,0.000003,0,"Kokkos: : View::initialization

[Kokkos: :Random_XorShift64: :state]",2 Socket
0,100907.012360,8290750,0.000008,0, "Kokkos: : View::initialization

[DualView::modified_flags]",5

0,100907.012400,8290750,0.000014,0,"Kokkos: : View::initialization [SurfCollide:nsingle]",4

Scalable Unit

64

Kokkos to LDMS publish

Application Code ‘ Kokkos Runtime Code Current
= Setup

Kokkos::parallel_for(... , call kokkosp_begin_parallel_for(..)
KOKKOS_LAMBDA(int i) {
<loop body> <execute loop body>
s

call kokkosp_end_parallel_for(..)

. Kokkos

“Sampler”

-Kegps statistics §nd
« Kokkos Sampler controls the sampling rate. f{,ﬂ;"if,i:,f‘te;ﬁ?fh
When triggered, it signals for the Kokkos DAT Setup -

Connector to publish data to LDMS.

* The new sampler introduces the option to
sample data using a time-based, count- Kokkos-LDMS Connector
based, or constant push. -Publishes to LDMS Streams API

T i

* The Kokkos Connector and Sampler are
currently ready for the EMPIRE priority run in
April.

65

9 | Dashboards Already Having an Impact!

Initial EMPIRE runs before milestone were trying to understand memory usage
o Lower node count runs were not working for a given problem size

Memory usage dashboard revealed that a minimum of 24 nodes were needed for the desired
problem to fit into compute node memory

66

10 I Remaining Work

On track to complete the end-to-end pipeline of application and system data collection, storage,
analysis, and visualization

Remaining items:
> Improve storage side performance (e.g., format processing, ingest, write to store (media dependent))
> Extend back-end storage to include high-speed distributed database
o Currently configured for CSV-based storage format
° Finalize Kokkos connector functionality via iterative test and refactor process
o Craft analyses and dashboards to present application and system data together during run time

> Demonstration of 2 week continuous ingest and display of system data along with EMPIRE
progress/performance data during EMPIRE runs over the same period

Stretch Goal: Support application-data collection for milestone EMPIRE run evaluation

o Priority approved for 6 EMPIRE runs with 290 nodes (20% of Eclipse) of 7 days (in excess of the 96 hours of
the long QoS). This also supports the gathering of high-resolution base lines including late-onset physics for
EMPIRE milestone.

o The first of the 6 runs will be performed the week of April 12, 2021

67

Application and System Metrics

Lead: Jeanine Cook

68

12 I Midyear Achievements

Initial specification of application data to be displayed in conjunction with performance counter and
system data
* Application-sourced data supplied via Kokkos and injected into LDMS Stream: Time per timestep (EMPIRE)
* Determined relevant metrics to application progress and performance supplied via LDMS samplers:

* Core-level hardware performance counter data: Instructions per cycle (IPC), L2/L3 cache misses per 1000 instructions (MPKI), % cycles
throttled

* Node-level data: Memory and CPU counters
» Determination of data and rates tested at scale during EMPIRE DAT

Working with Analysis and Viz team to determine meaningful presentation of HW performance
counter data and node-level data

Working with Architecture team to test and understand options for application-sourced data including
timing, frequency, and events of interest

69

13 I Remaining Work Items

Finalize system data to be initially displayed with application and hardware performance
counter data

REAL WORK IS COMING:

* Once Kokkos/Streams testing is done, we will define precisely which timers/metrics we will track/extract
from application timing data

* Work with analysis and visualization subgroup to finish initial analysis and visualization backend based on
application and system data definition (above)

* Once the initial analysis and visualization backend is complete, this subgroup will be instrumental in
using the backend on Eclipse with EMPIRE and giving feedback with respect to:

* Actual data/metrics being collected and visualized
* Implementation of the visualization backend

Post L2 follow-on work:

* Start the process of implementing performance bottleneck detection into run time
analyses

* Expand application progress/performance metric collection and analysis to additional
applications (e.g., Sierra)

70

Application-Streams

vanessa ~ Architecture
Surjadidjaja
- SNL

Lead: Jim Brandt

Ann
Gentile - |

SNL |

71

15 I Midyear Achievements

Kokkos Streams interface has been refactored and is functional
o Incorporated a new Kokkos sampler that controls the flow of data between Kokkos and LDMS
o Timer-based: will publish data for last kernel executing in defined time window (e.g. every 30 seconds or 1 min)
o Count-based: will publish data for every Nth occurrence of a kernel execution
o Constant: will publish data on all kernel executions

o Testing if Kokkos infrastructure can handle the maximum amount of data generated by a production
application (SPARTA)

LDMS streams enhancements for JSON
o Only parse JSON when access to data is needed

LDMS streams scale testing (see next slide)

Developed and deployed a LDMS store plugin that writes Kokkos kernel data to CSV store

72

| Streams Scale Testing Tested Streams on a testbed system to
simulate Eclipse scale system without
failukre. 1000 kernel executions per 10ms per
rank.
Compute node 1

. - Fan-in of 2 emulated SU to an aggregator
ﬂ)kkos data emulation publishers \ dictated by Bitzer being a 4 node cluster.
S
rank0

ranki 53KB JSON Messages Stream . -2.2GB/s
ag: foo

ent at 100Hz per stream

———

12MB/s
rank372

Compute node 2

73

17 I Remaining Work Items

The Kokkos-connector continues to evolve as we converge on the optimal set of information and volume of
data

Development on efficient parsing of Kokkos kernel data for storage to both CSV and Database

Test performance and bottlenecks of LDMS / Kokkos pipeline at extreme application scale
* Tuning last level aggregator scale-out to ensure data storage can keep up with data being published at scale
* We will provide considerations for application injection performance in the final report

*Post L2 follow-on work:
* Other formats of stream data to improve extreme-scale performance?

* Explore additional lightweight methods for sampling of Kokkos kernel execution information
« Self adjusting data volume production

74

Analysis and Visualization

Lead: Ben Schwaller

75

19 | Midyear Achievements

System Diagnostic Information:

on Eclipse during DAT
Verified that the aggregate network load from LDMS was small when running continuously
Could have high instantaneous load if all daemons restart simultaneously

Created dashboards and analyses to visualize ethernet load on administrative nodes \ “
|

I
“‘i“i“‘“”""!*‘ L]

Application-System Information: ‘ —

Created dashboards and supporting analyses to visualize time-series of different
derived metrics from PAPI counter data such as L2 misses per instruction

PAPI data is one of the system metrics identified as useful to visualize alongside application
data

In progress of creating a “scorecard” report for every job run on Eclipse

The scorecard will calculate a variety of summarization statistics about the job including avg
CPU usage, memory usage, and filesystem bytes read and written

Desired by code teams to better track their jobs at a glance

This workflow, the first done in this infrastructure, can also be used for any analysis that is
desired to be run across all new information

Wrote skeleton code for analyzing application data output and creating time /
timestep time-series plots
Waiting on Kokkos Streams code to be finalized

76

20 I Remaining Work Items

Create analyses and dashboards to plot application and system data together
o Application visualization is awaiting finalized data from the Kokkos Streams infrastructure
o Skeleton code and prototypes using old data have already been created

o Desired derived metrics have already been discussed with the application team but further iteration will be
necessary

o System data analysis and visualization is complete
> Need to combine system and application analyses to create single panes with both app and sys data

o Iterate with code analysts / developers on the optimal layout of dashboards and their drill-down
information to support workflows

Finish user scorecard infrastructure
o Iterate with users on desired dashboard layouts

Post-L2 work:
o Initial analysis with both application and system data to search for correlations
o Advanced analysis, such as rank clustering or historical variance investigation, of application data

77

>

A\/‘. Deployment

Lead: Ben Allan

78

2 | Midyear Achievements

Production deployment of LDMS v4 using Omnipath RDMA transport
° In continuous use on Eclipse (L2 target platform) since Jan 28, 2021
o Established network path >= 10Gb/s from CAPVIZ systems to monitoring systems.
o Quantified the impact of 1Hz system metrics traffic on the administrative top-of-cluster fabric: ~3MB/sec/SU
> Enables use of LDMS Streams interface and hardware performance counters (syspapi)

> Provides a broad set of data of interest to system admins: Jobid, load average, CPU, memory, Ethernet,
Omnipath, NFS, Lustre FS and Lustre networking, motherboard temperatures & power, aggregator
daemon performance metrics

Demonstrated user selection of named LDMS compute node configurations via Slurm

> Provides users with the ability to select desired admin-defined LDMS configuration alongside their
application run

Brought online the analysis cluster Bitzer which hosts the analysis and visualization engines and
provides two-weeks of data storage

79

=

23 | Remaining Work Items

Move user selection of compute node LDMS configuration into production

Work with OGC to deploy distributed database across the analytics cluster, Bitzer, to
enable two-weeks worth of data to be stored in a single distributed database

Update the default group of per-core hardware counters to be collected when the
syspapi sampler is active, based on needs determined by applications team

Switch to new Lustre FS data collection plugin from LLNL

(Post — L2): Demonstrate an administrative method for managing the LDMS Streams
data flow from user applications to ensure minimum quality of service for other clients
o Critical administrative network clients: NFS, slurm, GPFS
o Investigate kernel-based controls and other approaches

80

Completion Ciriteria

81

25 | Completion Criteria

L2 Completion Criteria
> Successful deployment of infrastructure on CTS-1 (Eclipse) system
> Demonstration of capability on target application run(s) on CTS-1 system

o Lessons learned and feedback from stakeholders for future capability augmentation and priorities will
be documented

Scope Definition
° In scope
> Developing and deploying an integrated architecture for application and system information
o Collecting application and system state metrics from a CTS-1 system at runtime

Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics

Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

Providing information on instrumentation overhead and application performance impact
Not in scope (future capability augmentation)

Tuning system parameters to avoid application performance variation

o

Deriving causality of application performance variation

Correlating system state with application performance

°

Determining best system or application data to collect

Production-hardened deployment of collection infrastructure / analysis

82

Q&A / Discussion / Feedback

83

FINAL COMMITTEE REVIEW

84

Sandia
National
Laboratories

Integrated System and Application
Continuous Performance

Monitoring and Analysis Capability

-

- ‘ 1 "N : = g’
® T ==
= B e

08/24/2021

Final L2 Milestone Review

@kiERsy NISA

85

Multi-Center, Multi-Department, and Multi-Lab Effort with 24 lii
Participants

86

3 | Outline

L2 Text and Completion Criteria
Overview: Motivation and Architecture

Detail
> Architecture
> Deployment
> Application and System Metrics
> Analysis and Visualization

Feedback & Future Work
Completion Criteria Checklist

Acknowledgements

87

L2 Overview & Completion Criteria

88

s I ASC FY21| IP Text

Description: This L2 milestone will demonstrate the use of SNL data collection, analysis, and
visualization framework/tools, deployed on a Sandia production SRN platform, to provide both
system and application relevant run-time and post-run information for a rolling 2-week interval. We
will demonstrate a capability for continuous collection of system data, an application progress
metric(s), and an application throughput metric for an ASC-relevant code. We will provide a
capability to store this data and a visualization interface that will enable a user to look at
application progress in conjunction with system conditions, both at run time and post-run.

We are targeting LDMS for the transport and aggregation of Trilinos-enabled application progress
data and of system data. We are targeting the ATDM Application EMPIRE for deployment and its
Proxy, MiniEM, for capability development. CSSE’s Application Performance Team will be supporting
development and testing.

Completion Criteria:
> Successful deployment of infrastructure on CTS-1 system.
> Demonstration of capability on target application run(s) on CTS-1 system.

o Lessons learned and feedback from stakeholders for future capability augmentation priorities will be
documented.

89

6 I L2 Milestone Overview

1

Milestone Description
> Demonstrate the use of SNL data collection, analysis, and visualization framework/tools, to provide both
system and application relevant run-time and post-run information for a rolling two-week interval
> Note: This does not imply a 2-week continuous application run
> Deploy on a Sandia production SRN CTS-1 platform
o Demonstrate a capability for continuous collection of system data, an application progress metric(s), and an
application throughput metric for an ASC-relevant code

> Provide a capability to store this data and a visualization interface that will enable a user to look at
application progress in conjunction with system conditions, both at run time and post-run

90

Completion Criteria Checklist

N

owvesw

Successful deployment of infrastructure on CTS-1 system

Demonstration of capability for continuous collection and storage of system data over a 2-week
rolling window

Identification of an application performance metric(s) for an ASC-relevant code

Identification of an application throughput metric for an ASC-relevant code

Demonstration of capability on target application run(s) on CTS-1 system

Demonstrate a visualization interface that will enable a user to look at post-run application progress
in conjunction with system conditions

Demonstrate a visualization interface that will enable a user to look at run time application progress
in conjunction with system conditions

Document feedback and future work

91

8 | Completion Criteria Scope Information

Scope Definition
° In scope
Developing and deploying an integrated architecture for application and system information

Collecting application and system state metrics from a CTS-1 system at runtime

Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics

°

Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

°

Providing information on instrumentation overhead and application performance impact
> Not in scope (future capability augmentation)

> Tuning system parameters to avoid application performance variation

> Deriving causality of application performance variation

o Correlating system state with application performance

> Determining best system or application data to collect

° Production-hardened deployment of collection infrastructure / analysis

92

Overview: Motivation &
Architecture

93

Motivation for this Work

Urgent problem: Critical science results are being delayed due to inability to diagnose critical issues

o Currently, large-scale application runs (SNL production, Trinity) can have high performance variability or
suffer failure for reasons often unknown

o Costly HPC resources are being wasted by applications that do not complete or exceed their estimated
runtime

Solution provided by this milestone:
> Gain continuous insight into application performance in system context:
> During run time via several pre-defined, intuitive, and user customizable visualizations
o Post-run via visualization interface and access to complete application and system data storage
> Does not require code change or recompilation on the part of the user to collect this information

94

i

The Devil is in the Implementation Details

Tracking application progress/performance at scale is difficult at best but
impossible in most cases using existing performance/profiling tools — significant
disruption of application performance profile and/or application/tool crashes

Utilize low overhead accounting currently being performed in applications and
periodically write timestamped results to system monitoring data store using the
already installed LDMS monitoring framework for transport!

o Need to inject per-rank information into local LDMS daemon for scalability
o What information will convey performance/progress and variation?
o Need to collect a subset of total information to minimize application overhead

o Need simple well defined information format for packing on application side and
parsing on far end

o Need to defer parsing information to storage cluster

95

|

Kokkos Provides Required LDMS Streams Provides ;l
Instrumentation Needed Transport Capability
Developers have already LDMS Streams is a

included instrumentation publish/subscribe push-based

) service provided as part of LDMS
Two different types of P
. . q4: o Support for both “string” and
instrumentation are exposed: “/SON” data streams
o Kokkos native instrumentation
(e.g., track kernel executions and
timings)
° Teuchos timers

o

This telemetry can already be
provided to the user in files as l
periodic dumps or Post-Run |

Inject data as it is produced into the already deployed LDMS
framework for continuous access by users and operations staff

96

Coupling Kokkos Instrumentation Capabilities With LDMS

"7 Scalable Transport and Storage

We chose to leverage existing Kokkos instrumentation capabilities and existing scalable LDMS
publish/subscribe capability to enable:

o Collecting performance event stream at system scale with low overhead

o Performing event data collection for long runs

> Publishing information to a scalable database to support analytics (run time and post processing)
o User interface for visualizing application data in a system context over long runs

Just need to publish application data to the LDMS Streams API, add store functionality in order to
store application performance metrics to the same database as the system data, convert raw
data to a progress/performance metric, and present to users...

97

14 | Integrated System and Application Continuous Performance
Monitoring and Analysis Capability

Data Flow Diagram

HPC System Analysis Cluster ,’

time (
Dashboard
Applications \
dynamicatly and App2 \
irregularly inject Kokkos §/ Kokkos Analysis on dynamically '\
data into the LDMS populated database
transport
. v

LDMS continuously i NYM? based
and regularly distributed
collects and database

transports full
system data

98

Details

99

16 | Logical Subgroup Descriptions

Application-Streams Architecture
o Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON
format, to the LDMS Streams API

o Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds
minimal and acceptable overhead to the running application

100

17 | Enabling Application Data Injection via LDMS |

N . . L1 aggregator pulls
LDMS - low-overhead (<1% appllcatlon) data CO”eCthn, ldmsd from memory regions
transport, and storage capability designed for continuous of LO samplers
monitoring supporting run time analytics and feedback. “
> System data collection is typically synchronous at regular (e.g.,]
second or less) intervals <— Sampler plugins
o Structured data format (i.e., metric set) designed to minimize data
movement
o Transport is typically pull based to minimize CPU interference
> Transport to multiple arbitrary consumers over both RDMA and
socket ldmsd
LDMS Streams — on demand publication of loosely formatted —>
information to subscribers
o Transport is push based and supports asynchronous event data
(e.g. scheduler and log data) |

o Unstructured data

Daemon publish API called from externally or by a plugin
pushes to l[dmsd which pushes to all subscribing plugins
and aggregators I

101

Kokkos to LDMS publish

Application Code ‘

Kokkos Runtime Code

Kokkos::parallel_for(... ,
KOKKOS_LAMBDA(int i) {
<loop body>

s

call kokkosp_begin_parallel_for(..)
<execute loop body>

call kokkosp_end_parallel_for(..)

Kokkos Sampler controls the sampling rate. When
triggered, it signals for the Kokkos Connector to
publish data to LDMS.

The new sampler introduces the option to sample
data using a time-based, count-based, or
constant push.

v/

Kokkos-LDMS Connector
~Publishes to LDMS Streams API

102

Kokkos
“Sampler”

-Keeps statistics and
timing to determine
LDMS_stream_publish

#timestamp,job_id,rank,name, type, current_kernel_count,total_kernel_count,level,

current_kernel_time,total_kernel_time

1627835612.086679,10195735,1 ::View:initi; i

Field:B_Field:temp],0,1218,57972687,0,0.000005,182.693422
ntinuous,0,24758,57972788,0,0.000

1627835613.709526,10195735,1,Ti
006,182.693428
1627835616.787472,10195735,1,MigrateParticles::count, 1,3540,57972889,0,0.000001,
182.693430

1627835620.448333,10195735,1,SolverInterface::Apply Trivial
BC,0,7512,57972990,0,0.000002,182.693432

19 | Logical Subgroup Descriptions

Application-Streams Architecture

o |dentify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON
format, to the LDMS Streams API

o Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds
minimal and acceptable overhead to the running application
Deployment
> Continuous deployment of LDMS on Eclipse (CTS-1)

> Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS
aggregators, storage of system and application data, and analysis and visualization of stored data

103

20 | LDMS Eclipse Deployment Architecture

Eclipse Eclipse

Compute Nodes Admin Nodes Analysis Cluster

EMPIRE

LDMS collects application and system data from Eclipse nodes and
aggregates to our analysis cluster distributed database

Kokkos / LDMS Streams message sending was tested by sending a
message every 10ms per rank across 2000 ranks without data loss

104

21 | LDMS Eclipse Deployment Data

System data collected at 1 second intervals (~5,000 metrics per node or 650 billion data points
per day)

> SLURM job, load average

° CPU & memory usage

o NFS & Lustre operations

o Ethernet & Omnipath traffic

o Lustre networking

o Motherboard temperatures & power

o Aggregator daemon performance

> Collector daemon memory use

Kokkos event stream data from each application MPI process
o Sampling ~1% of kernel executions (~20 events per rank per second or ~1 billion records per day)

105

o

2 | Logical Subgroup Descriptions

Application-Streams Architecture
o ldentify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON
format, to the LDMS Streams API

o Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds
minimal and acceptable overhead to the running application

Deployment
o Continuous deployment of LDMS on Eclipse (CTS-1)

o Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS
aggregators, storage of system and application data, and analysis and visualization of stored data

Application and System Metrics

> Determine metrics of interest for run-time and post run understanding of application progress and
performance. These metrics need to be viewable in a system monitoring data context

106

23 | Application and System Metrics of Interest

Progress metric: ParticleMove::Move - a kernel that represents science progress
o Number of kernel calls per second over a defined time window (15 sec. default)
o This kernel gets called approximately once per second on each rank (statistical approximation)
o Time spent in the kernel from sample to sample provides insight into performance variation
> Note that since we are sampling, the data provides statistical estimates for both of these

o Note that this choice of kernel metric is the users choice and is not hard coded either for Kokkos or
EMPIRE

Throughput metric: Number of kernel executions, across all application ranks, per minute over
defined window (i.e., 60 seconds)

° This is approximately 5 million executions per minute for our 290 node runs

System metric: Active Memory is used as the system metric in these visualizations

> Note that our visualization engine provides the capability to choose any system metric over the full
range of the ~5000 currently being collected

107

| L ogical Subgroup Descriptions

Analysis and Visualization

« ldentify and implement analyses required to produce appropriate application and system metrics across
the parallel store of system and application information

« Implement a Grafana-based dashboard to enable user access to application progress and performance
metrics along with system monitoring metrics for both run time and post-run visualization

108

1
25 | DSOS: Enabling Scalable Ingest and Queries for Analysis and Viz —
Distributed Scalable Object Store (DSOS) is a scalable database
with a variety of features which enable simultaneous large-scale Analysis Cluster
data ingest and queries
o Designed specifically for large-scale HPC monitoring data ingest and
query with flexibility to change and adapt as needs arise

o Coordinates databases across multiple devices and nodes to present a
“single, unified” database to the end user

° oh incert rate for contintotic data collect

Populated a DSOS database with ~1 month of system data and two week-long 290-node runs of EMPIRE for
analysis and visualization

> Resulted in 50TB of system data and 900GB of application data

° EMPIRE got approval for 6 week-long 290-node runs (~20% of Eclipse

109

26 | Analysis and Visualization Pipeline

User queries from Grafana dashboards are sent through a backend python application which can
call python analyses to derive metrics from raw data

° In-query analyses save significant computation time/resources for creating analysis results

o Only data of interest is analyzed and new analyses can be created without recreation of analysis results across the
database

Python modules can query the database and return pandas DataFrames for analysis
o Significant work was done to optimize database queries and python analyses for fast Grafana query times

The backend application then takes DataFrames and formats them as JSON objects which Grafana
can interpret

Grafana .
DJango Module Call Python Python Query,
Web ‘ ‘ DSOS
Browser App DataFrame Module DataFrame

110

27 | Analysis and Visualization Presentation Overview

Video of live feed of job’s data
(5 second update intervals) |

Created two Grafana
dashboards to visualize an
application’s Kokkos data

> Job-level dashboard

> Kernel-level dashboard

Demonstrated analysis and
visualization of both live
and post-run data sets
> Video is of a simple 2-node
SPARTA job at runtime
Application kernel throughput
Active Memory

111

88 Kokkos

28 | Analysis and Visualization

Job-level dashboard shows data from across
the application and has 3 panels
> Kernel Summary Table which shows all kernels,
their times called, time spent in kernel, and
average kernel execution time, in the time range
specified
Each kernel has a link to drilldown to the next
dashboard
> Application Kernel Throughput which is a time
series graph of how many kernels have executed
per minute in the time range specified

> Active Memory across Job which shows the
minimum, mean, and maximum memory usage
of the nodes in the job over time

112

Kernel Summary Table

50.6min

=

Application Kernel Throughput (Functions called per minute)

Active Memory across Job

29 | Analysis and Visualization

Kernel-level dashboard shows data specific to a chosen
kernel across 2 panels (progress metric)
o Function Timing Information plot shows

Average time per specific kernel execution across all ranks over time
(Blue)

Number of specific kernel executions per second across all ranks over
time (orange)

> The Time/Function Call Per Rank Heatmap shows how the
execution time of functions across the ranks of the
application
Red shows more ranks are in that execution range, blue shows less ranks
Showed that several EMPIRE kernels routinely had outlier ranks

113

3 | Analysis and Visualization

KokkosBreakdown

Per Rank Heat) > 100 rank:

114

Feedback from Stakeholders

115

Y Stakeholder Feedback

EMPIRE developer and analyst comments:

o

o

o

o

o

“I fully expect enabling LDMS to become the default EMPIRE behavior on supported platforms”

“There was no noticeable impact on performance on small or large simulations when LDMS was
enabled”

“Being able to see the dashboard’s real-time updating of simulation performance is so much better than
manually finding that information in simulation logfiles”

“Quickly plotting simulation metrics helps us quickly assess job health and progress, saving time and
decreasing cognitive load”

“Clear, clean layout without presenting too much information”

Requested improvements:

o

o

o

o

#1 request was that they would like to be able to have a subset of kernels always collected

° l.e. Main time loop

More info about filesystems and 1/0 alongside application data

Rename labels of data to improve understanding

o Will also be adding a panel with in-depth descriptions about the data and underlying analyses

Add bit-rate to application throughput panel to show how much data is being ingested by the backend
o Will be useful for adjusting sampling rate in the future

116

13 | Future Capability Augmentation Priorities

Architecture:
o Explore additional lightweight methods for sampling of Kokkos kernel execution information
o Self adjusting data volume production
° User-controlled variable sampling rate and always sampling specified kernels

Metric Selection:
> Add PAPI| events/metrics to analyses and dashboards
o Define metrics for, and implement, performance bottleneck detection

Visualization and Analysis:
> Analyses with both application and system data to automatically identify correlations
> Advanced analyses, such as rank clustering or historical variance investigation, of application data

General:
° Publication at a major conference

117

Completion Criteria Checklist

118

Completion Criteria Checklist

1. Successful deployment of infrastructure on CTS-1 system (Eclipse)
V' Target version of LDMS (i.e., Streams enabled) has been in continuous deployment on Eclipse since Jan 28, 2021

2. Demonstration of capability for continuous collection and storage of system data over a 2-week rolling
window i
v We have demonstrated continuous collection and storage over a 30-day (2 x 2 weeks) window of system data
on the 1500 node Eclipse cluster
° A 30-day window produced ~60TB (including indexing overhead) of data stored in NVMe-based Scalable Object Store (SOS)
databases distributed across 14 nodes of the Shirley Monitoring and Analysis cluster. This is < 10% of the NVMe storage
capability of Shirley
Rolling window previously demonstrated on a single SOS database on our Bitzer system
3. Identification of an application throughput metric(s) for an ASC-relevant code (EMPIRE)
v" Throughput indicated by the total number of kokkos kernel executions per-minute over a defined time window
while running the Empire application (see video)
4. ldentification of an application progress metric for an ASC-relevant code (EMPIRE) 1
v Number of kernel calls per second over a defined time window (15 sec. default) for a kernel indicative of science |
work accomplished (ParticleMove::Move)

119

Completion Criteria Checklist

]

5. Demonstration of capability on target application (EMPIRE) run(s) on CTS-1 system (Eclipse)
v Demonstrated 32- to 290-node Empire application runs on Eclipse (1500 node CTS-1 production
system)

6. Demonstrate a visualization interface that will enable a user to look at post-run application
progress in conjunction with system conditions
v" Shown in slides 27-30

7. Demonstrate a visualization interface that will enable a user to look at run time application
progress in conjunction with system conditions
v" Shown in slides 27-30

8. Document feedback and future work
v Shown in slides 32-33 i

120

Acknowledgements

121

DAT Acknowledgements

As part of the L2 milestone, in Jan 2021 we held a 30-hour DAT on Eclipse for LDMS
(v4) overhead testing and to validate the interoperability of our initial application +
Kokkos Sampler + Streams functionality. This involved substantial work up front in
determining applicable workload and metrics to collect as well as all of the
infrastructure and analysis/visualization configuration.

Special thanks to:

o L2 members Mark Schmitz and Phil Regier for multiple days efforts in configuration and
deployment of LDMS v4 on Eclipse ahead of the LDMS v4 TOSS Release as well as
continuous support throughout the DAT

© 9327 for enabling the long-running DAT

o Anthony Agelastos, Douglas Pase, Joel Stevenson, and Gary Lawson of 9326 for their
development of an application work package, which they ran over a 24-hour time period,
and their post-run analysis validating low overhead (~<1.0%).

122

39

Fin

123

DISTRIBUTION

Email—External ||| NG

Name Con;za;r:isEsmail Company Name
Richard Gerber ragerber@Ibl.gov Lawrenciaiir;iﬁy;National
Lena Lopatina lena@lanl.gov Los Alamos National Laboratory

Cindy Martin c_martin@lanl.gov Los Alamos National Laboratory
Ben Santos bsantos@lanl.gov Los Alamos National Laboratory
Tom Tucker tom@ogc.us Open Grid Computing
Email—Internal || NN
Name Org. Sandia Email Address
Omar Aaziz 9328 oaaziz@sandia.gov
Benjamin Allan 9328 baallan@sandia.gov
Jim Brandt 9328 brandt@sandia.gov
Jeanine Cook 1422 jeacook@sandia.gov
Karen Devine 1465 kddevin@sandia.gov
James Elliott 1422 jjellio@sandia.gov
Ann Gentile 9328 gentile@sandia.gov
Mike Glass 1545 mwglass@sandia.gov
Simon Hammond 1422 sdhammo@sandia.gov
Rob Hoekstra 1420 rihoeks@sandia.gov
Brian Kelley 1465 bmkelle@sandia.gov
Tom Klitsner 9320 tklitsn@sandia.gov
Steve Monk 9327 smonk@sandia.gov
Stan Moore 1444 stamoor@sandia.gov
Curt Ober 1446 ccober@sandia.gov
Stephen Olivier 1423 slolivi@sandia.gov

124

Name Org. Sandia Email Address
Roger Pawlowski 1446 rppawlo@sandia.gov
Kevin Pedretti 1423 ktpedre@sandia.gov
David Poliakoff 1422 dzpolia@sandia.gov
Phil Regier 9327 paregie@sandia.gov
Mark Schmitz 9327 mschmit@sandia.gov
Ben Schwaller 9328 bschwal@sandia.gov
James Stewart 1440 jrstewa@sandia.gov
Kevin Stroup 9328 kdstrou@sandia.gov
Matthew Scot Swan 1446 mswan@sandia.gov
Vanessa Surjadidjaja 9328 vjsurjad@sandia.gov
Courtenay Vaughan 1422 ctvaugh@sandia.gov
Sara Walton 9328 spwalto@sandia.gov

Technical Library

1911

sanddocs@sandia.gov

125

Sandia
National
Laboratories

Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration
under contract DE-NA0003525.

	Executive Summary
	Nomenclature
	Introduction
	Milestone
	Architecture
	Overview
	LDMS
	System Data Collection
	Application Data Collection

	Kokkos
	Storage
	Analysis and Visualization

	Deployment
	Scalable high-frequency data collection
	Data collection overheads

	Administrative controls
	The Shirley Monitoring and Analysis System

	Application and System Metrics
	System and Application Data Visualization
	Stakeholder Feedback and Future Capability Augmentation Priorities
	Feedback
	Capability Augmentation Priorities

	Lessons Learned
	Capability Production Roadmap
	Completion Criteria
	References
	Appendix A: Initial Committee Review
	Appendix B: Midyear Committee Review
	Appendix C: Final Committee Review

