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ABSTRACT

This report summarizes the findings and outcomes of the LDRD-express project with title “Fluid
models of charged species transport: numerical methods with mathematically guaranteed
properties”. The primary motivation of this project was the computational/mathematical
exploration of the ideas advanced in [61], aiming to improve the state-of-the-art on numerical
methods for the one-fluid Euler-Poisson models and gain some understanding on the
Euler-Maxwell model.

Euler-Poisson and Euler-Maxwell, by themselves are not the most technically relevant PDE
plasma-models. However, both of them are elementary building blocks of PDE-models used in
actual technical applications and include most (if not all) of their mathematical difficulties.
Outside the classical ideal MHD models, rigorous mathematical and numerical understanding of
one-fluid models is still a quite undeveloped research area, and the treatment/understanding of
boundary conditions is minimal (borderline non-existent) at this point in time. This report focuses
primarily on bulk-behaviour of Euler-Poisson’s model, touching boundary conditions only
tangentially. Primary focus is on the development of methods that:

B Are mathematically guaranteed to preserve positivity of density and internal energy.
B Are capable of preserving the electro-kinetic energy in the source-dominated regime.

B Either electrostaic plasma period does not have to be time-resolved and/or plasma
oscillation does not represent a source of numerical instabilities, in particular, in the context
of very large densities.

B Either the coupled problem or the source-system encoding the electrostatic plasma
oscillation is asymptotically well-posed. By “asymptotically well-posed” we mean that the
resulting linear algebra systems are guaranteed to be invertible regardless of of the electron
density.

The authors believe that they have succeeded in the achievement of such goals with ample margin
of confidence. In order to understand, in a much broader sense, the contents of this report we
suggest the reader that is well-seasoned in plasma physics modeling and numerical analysis of
partial differential equations to jump immediately to the conclusion section at the end of this
report. That will help the reader further motivate the reading process, better navigate this
document and understand its scientific and technical merits.
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NOMENCLATURE

In this manuscript:

Here d : 1,2,3 is the space dimension. In this manuscript we focus primarily on the case
d=2.

U= [p,p.E,¢]" € R will denote the whole state of Euler-Poisson’s model.
u=[p,p,E]" € R¥*?2 will denote the state of Euler’s subsystem.

v =p~!'p € R? will be used to denote the velocity.

|- |2 and |- | denote the Euclidean norm of a vector. For instance |p| = (¥4, plz)%
e=F— ﬁ Ip|? is the internal energy of Euler’s subsystem.

e=ple= % — 2%)2 Ip|? is the specific internal energy of Euler’s subsystem.

v =p~!is the specific volume.

s(v,e) denotes the specific entropy of Euler’s subsystem. The specific entropy describes the
entire thermodynamic behaviour of the electron gas (pressure, sound speed, etc).

N = —ps(v,e) denotes the mathematical entropy of Euler subsystem.

q = —ps is the entropy-flux associated to the mathematical entropy m.

u and € are the magnetic permeability and electric permittivity of the conducting medium:

either vacuum, a low-pressure gas, a metal, a semiconductor, etc.

m, > 0 the specific particle mass of the electron with units [m,| = mass (mass per unit
particle).

7 a characteristic collision/relaxation time with units [.7] = time. Also called “mean free
time” between collision (e.g. Drude’s model).

ge < 0 is the specific electric charge of the electron [g,] = charge (charge per unit particle).
gi > 0 is the specific electric charge of the ions.

Ne := m% > 0 is the electron number density with units [r,] = m

n; > 0 is the ion number density.

Pe := Neqe 1s the negative or electron charge density.

pi := n;q; 1s the positive or ion electric charge density.

o, = (p(i—i)zé)% = (%)% is the plasma angular frequency.

o, = %, with | B| being the magnitude of the magnetic field, is the cyclotron angular
frequency.



B both % and d; will be indistinctively used to denote partial derivative in time.

B V: scalar-valued nodal finite element space used to discretize the each component of Euler’s
subsystem.

B V = [V]?*2: vector-valued nodal finite element space used to discretize the Euler’s
subsystem.

B 7/: set of integers identifying each spatial node x; of the scalar-valued finite element space
V.

B {0;};cq: finite element basis of the nodal space V.
B H: scalar-valued nodal finite element space used to discretize electric potential.

B 7 : set of integers identifying each spatial node x; of the scalar-valued finite element space
H.

B {)i},cs finite element basis of the nodal space H.
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1. INTRODUCTION

The one-fluid Euler-Maxwell model is frequently used to describe the dynamics of electrons
inside a low-pressure gas (gaseous plasma), a semiconductor (solid state plasma), and conductors
subject to very high-voltage gradients (e.g. magnetically insulated transmission lines). The
Euler-Maxwell model consists in the following set of equations:

d,p+divp =0, (1a)
op+div(p~'pp' +1p) = LpE+LpxB—Lp, (1b)
O E+div(B(Z+p)) = “E-p-55pf, (1c)
oB+curlE=0, (1d)
gud;E — curl B = —%p, (Te)

where p €R, p € R? and E € R are the density, linear momentum, and total mechanical energy per
unit volume respectively, B € R? is the magnetic induction field, and E € R? is the electric field.

The model of primary interest in this manuscript is the electrostatic limit of system (1a)-(1e), the
Euler-Poisson system, defined by the following set of equations [64, 73]:

d;p+divp =0, (2a)
dp+div(p~'pp’ +1p) =~ PV 5P, (2b)
azf—l—diV(g(f—Fp)):_ZTZV(p.p_pLy’p‘Z, (2¢)
—€Adp =~ divp, 2d)

System, (2a)-(2d) is algebraically equivalent to setting B =0 and E := —V@ in (1a)-(le) and
taking the divergence to both sides of (1e).

Applicability of the Euler-Poisson model goes beyond the physics plasmas, semiconductors, and
vacuum electronics [107]. Flipping the sign of the forces in Euler-Poisson’s model the nature of
the forces shifts from repulsive to attractive. In fact, after such change of sign it becomes a
well-established model for non-relativistic self-gravitation [97]. More precisely, we have that the
self-gravitational Euler-Poisson model is given by:

op+divp=0, (3a)
op+div(p~'pp' +1p) =—pVo, (3b)
W E+div(F(E+p)) =—Ve-p, (3c)
—ﬁAa,(p =divp. (3d)

For d = 2 we have that o(d) = 2nG and for d = 3 we have that o(d) = 4nG, where G is the
universal gravitational constant. More generally for d > 3 we have that a(d) = d(d —2)®(d)G,
where ®(d) is the measure of the ball of radius r = 1 in d-space dimensions. We also note in
passing that Euler-Poisson model has important relations with quantum mechanical descriptions
[63] which are gradually gaining attention in the context of mathematical modeling of very
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dense/degenerate electron-plasmas and warm dense matter [79, 18]. This further emphasizes the
importance of centering a research program starting with the repulsive Euler-Poisson’s model as
primary object of concern.

The term —%p in the right-hand side of (1b) and (2b) models collisions/friction with the
background. Losely speaking, we expect % to be negligible for gaseous plasmas where electric
charges travel through a rarefied gas, and non-negligible for electrons traveling inside
semiconductors and/or metals and high-density plasmas. In this manuscript emphasis is placed in
the case % = (. Occasionally, we will present some simple results that do not make this
assumption.

The one-fluid Euler-Maxwell and Euler-Poisson models are the simplest within a large family of
multi-fluid PDE systems used to model electric charge transport in semiconductors and plasmas
(see early works [22, 101, 106] and more recent references [76, 41, 95, 77]). Some of the most
relevant members of this large family are the one-fluid relativistic Euler-Maxwell model (see
[102, 103, 80, 8]), the two-fluid Euler-Maxwell (ions and electrons) of fully ionized
(non-reactive) plasmas with and without collision-momentum transfer (see [59, 1, 81]), and
three-fluid models of reactive plasmas (ions, electrons, and neutrals undergoing ionization and/or
recombination) see for instance [77, 10, 69]. In spite of their apparent simplicity, one-fluid
models share some of the numerical difficulties that appear in much more sophisticated
multi-fluid models, in particular its multiscale nature.

Linear stability analysis (see [98]) reveals that fluid-models contain the usual elementary
non-smooth waves associated to hyperbolic systems of conservation laws (shocks, expansions and
contacts) but also a rich family of high-frequency (in general smooth) purely dispersive waves. In
this manuscript, we use the terminology dispersive as an equivalent of Hamiltonian: prototypical
behaviour is harmonic-like oscillation phenomena describing the transformation of one form of
energy into another (e.g. kinetic into potential and converse) while preserving the sum of both
invariant in time. If both regimes (low-frequency non-smooth and high-frequency smooth) were
clearly separated the choices of numerical scheme are very clear:

B Non-smooth low-frequency regime is representative of what is usually called shock
hydrodynamics: possibly discontinuous, having arbitrary levels of vacuum, with pressure
and density jumps ratios in well past 10°. At present, the most well-established and most
robust numerical methodologies for such regime are either time-explicit nodal-like schemes
(finite difference, finite volumes, continuous finite elements, discontinuous finite elements,
etc) allowing for control of pointwise properties such as pointwise positivity of density and
internal energy.

B Smooth, very high-frequency, almost linear, highly oscillatory regimes: time-implicit
p-adaptive spectral-like methods of very high polynomial order (e.g. [27, 67]) are the most
efficient choice.

However, even in the simplest numerical tests (see for instance [68, 1]), it is evident that
separation of regimes does not occur: both non-smooth low-frequency and smooth
high-frequency phenomena coexist making the one-fluid Euler-Maxwell and Euler-Poisson
systems genuine multiscale problems. The dispersive phenomena manifests graphically as
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high-frequency oscillations in space (usually misjudged as Gibbs phenomena by the
non-initiated) “superposed” on top of the shock-hydrodynamics discontinuous behaviour. This
makes models such as (1a)-(1e) drastically more difficult to solve than usual compressible MHD
model (e.g.[23]) which, at its core, is a low-frequency fluid-dynamics model with reasonable
clustering of its space and time scales.

To major extent, the main computational bottlenecks (in equal order of relevance) are:

B Robustness in the context of non-smooth highly shocked phenomena and/or near vacuum
conditions (very small densities and/or internal energies). A good reference in this regard is

[1].

B Robustness when approximating solution with high spatial-frequency (large wavenumbers
in space) using coarse meshes. Numerical methods that either do not preserve Hamiltonian
invariants or do not introduce some form of damping (to dissipate the energy from
unresolved modes) are not robust or require tens of thousands of elements on the real line.
A good reference in this regard are the IMEX schemes considered in [81] where
computational simulations (with merely a few hundreds of elements in the real line) are
able to deal with space and time scales well beyond the resolution of spatial mesh and
time-step size.

At present, there is no universally acceptable scheme that can deal efficiently and robustly with
both regimes. Such statements holds true for the for simplest one-fluid models too. Schemes such
as those in [68, 1] can require tens of thousands of cells in the real line, but schemes such as those
in [81] would require further development in order to deal with the highly-shocked regime. To
make the problem even more complicated, numerical solution of Maxwell’s equations require the
preservation of non-local constraints and/or involutions.

In this manuscript we try to describe the core PDE-structure of the one-fluid systems and find a
basic constructions (schemes) that preserve these properties. The core targets are: preservation of
robustness in the shock-hydrodynamics regime, preservation of the internal energy, preservation
of the minimum principle of the hydrodynamic entropy, preservation and/or dissipation of
Hamiltonian invariants, asymptotic well-posedness (i.e. linear algebra systems that are always
invertible), and preservation of energy-stability properties.

The outline of this brief report is the following one: in Section 2 we review the core properties of
the Euler-Maxwell and Euler-Poisson systems. In Section 3 we propose a simple approach to
develop first and second-order accurate time-integration schemes assuming a collocated (or
nodal) equal-order discretization in space for Euler-Maxwell system. Perhaps, the most important
outcome of Section 3 is Lemma 3.3 which proves that energy-stability is perfectly achievable in
the context of splitting schemes. To the best of our knowledge this Lemma is the first of its kind.
The core ideas of that Lemma have already been exploited in the context of compressible
Navier-Stokes system [54]. Section 3 is mostly an incomplete (but somewhat pedagogical)
template of ideas which require significant intellectual development in order to work properly for
the electrostatic limit (Euler-Poisson). In Section 4 we effectively bridge that gap by considering
two precise choices of source-update schemes. One of these schemes is a fully-coupled numerical
scheme for the source terms that preserves positivity of the internal energy and electro-kinetic
energy, but it might run into ill-conditioning in the context of high-densities, see Section §(4.2)
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for more details. The second source-update scheme avoids completely the method of lines leading
to a fully-decoupled scheme. In this second scheme the linear algebra systems are guaranteed to
be invertible provided the density remains strictly positive. However, preservation of the
electro-kinetic energy requires very special choices of space discretization. Both schemes
preserve positivity of the internal energy without any major difficulty. The fully-decoupled
scheme is inspired in some early ideas from [32].

2. BASIC MATHEMATICAL/PHYSICAL PROPERTIES OF THE MODELS

We briefly develop and/or present the core structural properties of the one-fluid Euler-Maxwell
and Euler-Poisson systems. Some of these properties are properly developed (and proved).
However, for some properties we will not provide a proof, instead we will provide bibliographic
references for the interested reader.

2.1. Euler system with and without forces

The following proposition requires invoking the notion of complete equation of state which we
briefly describe in Appendix §A.1 for the sake of completeness. To avoid getting distracted from
the main ideas, the reader may ignore such notion in its entirety and focus on the main statements
of this proposition.

Proposition 2.1 (Natural invariants Euler’s equations). Let u = [p,p, E]" € R¥*2 denote the
hydrodynamic state. Let s = 6(v,e) be the specific entropy describing the thermodynamic
behaviour of the gas. With slight abuse of notation we will use s = s(u) to actually mean
s=0(v(u),e(u)). We assume that hydrodynamic state is subject to the evolution law
oru+divf(u) = 0 where

pT
fluy=| p~'pp" +1p 4)
p'p (E+p)

and the pressure p follows from a complete equations of state (see (107)). Assume that the initial
data ug = ug(x) € R¥*?2 has positive density and specific internal energy for all x. Then, the
solution u(x,t) of Euler’s equations belongs to the set 4 for all x and time t > 0 where

A= {u =[p.p.E]" €R?|p >0, pe(u) >0, s(u) > mxills(uo(x))} CRIT2Z.(5)

The proof of this proposition is far from trivial and it is not (to the best of the authors’ knowledge)
a standard result that can be found in the thermodynamics or physics literature. With different
levels of completeness and generality, the proof of proposition 2.1 can be found in

[100, 60, 96, 47, 56]. We note that the statement about the minimum principle can be local (as in
[100, 56]). The choice of equation of state and viscous regularization that is compatible with
these properties can be made more general (see [56]).
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The practical importance of this proposition lies (primarily) in the minimum principle of the
specific entropy, which together with positivity of density, are the only mathematically solid
guidelines we have at our disposal to design flux/slope limiters. In particular, discrete satisfaction
of the minimum principle of the specific entropy and positivity of density are enough to guarantee
positivity of the internal energy, which in turn is enough to guarantee that a scheme does not crash
catastrophically.

The set 4, defined in (5), is a convex subset of R?T2. We will refer to it as the invariant-set of
Euler’s equations. To simplify the discussion, in this presentation we will refer (informally) to the
preservation of positivity of density and internal energy (which are our main targets) as
invariant-set properties.

Regarding the interaction of Euler’s equations (more generally: conservation of mass, momentum
and total mechanical energy) with force fields of any type we have the following result.

Lemma 2.1 (Tangent in-time invariance of the density and internal energy). Consider the Euler’s
equations of gas dynamics subject to the effects of an external force %u +divf(u) = s(f), that is

p p' 0
u=|p|,fla)=|plpp" +Ip |.s(E)=| £ |, (6)
E p'p (E+p) p~p-f

here £ :=f(x,t) : R? x R — R% is an arbitrary vector field (a force per unit volume) possibly
depending on the state , the space x and time t. Note that p~'p-f, acting on the energy equation,
is the power of the force f. Define ¥(u) := p7‘£ where A is an arbitrary real number and

2
e=F— % is the internal energy per unit volume. Then we have that

V¥ (u)-s(f)

0. (N

The proof is omitted since (7) can be easily checked by direct computation.

Remark 2.1 (Colloquial interpretation). Lemma 2.1 basically says that the time evolution of the
internal energy is independent of arbitrary exterior forces (whether they are aligned with the
velocity field or not, whether they depend on u or not). This follows by taking the dot-product of
Euler’s subsystem d,u + div f(u) = s(f) with V,¥(u) to get

29(u) = —Vy¥(u) - div(u) + Vy'¥(u)-s(f) .
=0

This is, with greatest likelyhood, a trivial statement in the context of rational continuum
mechanics. In other words, sources of the form described in (6) preserve the internal energy

2
e:=FE— % of Euler’s system.

Lemma (2.1) has the following immediate consequence.
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Corollary 2.1. Using the same notation described in Proposition 2.1, define
N(u) := —po(v(u),e(n)) as the mathematical entropy. Then we have that

Vuo(v,e)-s(f) =0 therefore Vym(u)-s(f) =0,

which follows using the chain rule and identity (7) respectively. This implies that exterior forces
acting on the momentum equation (ergo in the total energy equation too: through the power of the
forces) cannot modify the specific and/or mathematical entropy. In other words: entropy
dissipative/productive forces do not exist.

2.2 Euler-Maxwell model: formal balance and source-dominated regime.

In order to understand the nature of the coupling within system Euler-Maxwell system (1a)-(1e)
we will consider two drastically different asymptotic regimes. First, we will consider the regime
where the dynamics is dominated by hyperbolic terms while the right hand side (the source terms)
are vanishingly small, that is

0:p +divp =0, (8a)
dp+div(p~'pp +1p) =0, (8b)
az+&dgz+p»:0, (8¢)
0,B+curlE=0, (8d)

eud,E —curlB =0. (8e)

Similarly, we will consider the asymptotic regime for (1a)-(1e) where source terms dominate the
dynamics (i.e. hyperbolic wave phenomena is assumed to be negligible or vanishingly small):

dp=0, (%a)
op = ZTZPE-F %PXB; (9b)
B,Z:Z—iEp, (9c¢)
3B =0, (9d)
eud,E = —,uZl—eep. (%e)

Note that only (9b) and (9e) are actually coupled.

We could think of (8a)-(8e) as the hyperbolic-dominated regime. Similarly, we could think of
(92)-(9e) as the source-dominated regime. The invariants associated to the ODE system (9a)-(9e)
are described by the following Lemma which follows from similar arguments to those found in

[1].

Lemma 2.2 (Natural invariants of the source terms). In addition to p and B being invariants of
(9a)-(9¢) we also have that:

5 (10)
(1D



The proof is omitted since it follows from standard energy arguments. Invariance (10) follows
from lemma 2.1.

Some comments and notes:

B Invariance (11) is directly related to the so-called plasma oscillation: harmonic-like
oscillation phenomena that transforms electric energy into kinetic energy and conversely.

B Naming convention: we will call the functional ‘p| +5 ]E|2 the electro-kinetic energy.

B If we were to consider collision terms (i.e. .7 ! # 0) in the ODE system (9a)-(9e)
invariance (10) holds too, but (11) does not hold anymore. More precisely, we have that the
evolution of such ODE would dissipate the electro-kinetic energy:

9 (5 +$IEP) = 55 InP.

Using corollary 2.1, we can establish that system (1a)-(1e) satisfies two strikingly decoupled a
priori bounds: one of them for the mathematical entropy of the Euler subsystem (1a)-(1c) and
another one for the sum of the mechanical and electromagnetic energy of (1a)-(1e).

Lemma 2.3 (Formal balance). Multiplying (1a)-(1c) by Vyn(u), where u:= [p,p,E]" is the state
of Euler’s subsystem, we get

I1(u) +divg(u) =0 where q(u):=—ps(u) (12)

Similarly, taking the dot-product of [1,u~'B,u~'E]" with [0,E,0,B,0;E]" as defined in (1c)-(le)
we can obtain an energy energy-flux balance

S (E+ B>+ 5|B]*) +div (B(E+p)+ LExB) = —%[p|*. (13)

We note that the proof of (12) requires using the identity Vyn(u)' Vyf(u) = Vuq'. This is a
standard result which can be found for instance in [50, Chapter 1].

Remark 2.2 (Physically admissible). We will assume that Euler-Maxwell system is the
zero-viscosity limit (or vanishing-viscosity limit) in the sense described for instance in [56] in the
context of Euler’s equations. Therefore, we are only interested in approximating solution
satisfying

I1(u) +divg(u) <0,

. (14)
S (E+ 5B +5[El*) +div (B(E+p) + LEx B) < —-%[p*,

with equalities holding for smooth solutions and strict inequality once C! regularity is lost.
Establishing the structure of a viscous regularization that could lead to a formally meaningful
family of solutions is an question that is beyond the scope of this manuscript.

Whichever scheme we devise to update the effects of the sources: we would like it to be
compatible with the invariance (10) and (11), and either a weak or integral version of stability
properties described in (14). In Section §3 we present the simplest time-discretization technique
(ignoring entirely space-discretization and boundary conditions) that we could use in order to
preserve such stability properties.
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2.3. Euler-Poisson repulsive case: formal balance and source-dominated regime

Lemma 2.4 (Formal balance: repulsive case). The repulsive Euler-Poisson system (2a)-(2d)
satisfies the following integral energy/energy-flux balance

%/Q £+ 5|Ve|*dx = —/aQ (F(E+p) n+o(lp—€Vop) nds— /Q TEd) TS
or pointwise
S (E+E|IVQ) +div (B(E+p)+9(Lp—eVd0)) = —55pf. (16)
Proof. In order to get (15): we multiply (2d) by ¢ and integrate by parts (both sides of the
equality) and add it to the integral (in space) of line of (2c¢). ]

Remark 2.3 (Physically admissible solutions). We will assume that Euler-Poisson system is the
zero-viscosity limit (or vanishing-viscosity limit) in the sense described for instance in [56] in the
context of Euler’s equations. Therefore, we are only interested in approximating solution
satisfying

sM(u) +divg(u) <0,
S(E+5IVel*) +div (B(E+p) + Lop —epVa;9) + %[p|* <0,

with equality holding for smooth solutions and strict inequality holding once C! regularity is lost.

We define the source-dominated regime for the repulsive Euler-Poisson system (2a)-(2d) as

dp =0, (17a)
op=—XpVo—5p, (17b)
—eAd; ¢ = —=divp, (17¢)
UE=—2£Vgp-p—%|pf. (17d)

Note that only (17b) and (17c) are actually coupled.

Remark 2.4 (Repulsive source-system: formal balance). From Lemma 2.1 we know that system

(17a)-(17d) satisfies the identity d; (fE — %) = (. In addition, subsystem (17b)-(17c) satisfies the
following integral energy/energy-flux balance

9 [ Lip2L¢& 2y — — dery i a2
at/QZplpl + 5[Vl dx = /mcp(mep eV0;@) -nds /nglpl : (18)
or pointwise

& (55 IpP +5VeP) +div (¢(Lp—eVa,p)) = 55 p. (19)
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Remark 2.5 (Nonlocal nature of the electrostatic source-dominated regime). Since 9;p in the
source-dominated regime, see (17a), density can be factored-out from (17b). In the absence of
collision/friction terms (i.e. .71 =0) expression (17b) can be rewritten as

v =—1LVg (20)

Expression (20) implies that in the source-dominated regime, in the absence of background
collisions, only the curl-free component of v can evolve, while its div-free component remains
unchanged. In other words, the coupled system (17b)-(17c) has an intrinsic non-local nature.
Regardless of the choice of space discretization (e.g. discontinuous or discontinuous finite
elements), the numerical solution of source system (17b)-(17c) will necessarily involve some
form of global-matrix inversion in order to deal with the nonlocality of the problem.

Remark 2.6 (Elimination of variables and plasma frequency). Neglecting collision terms (i.e.
F-1=0)and taking the divergence to both sides of (17b) and a second time-derivative of (17c)
we get:

divo,p = —Iediv (pVe),
—SAan(p = —i—‘;diVBtp .

Combining both we can eliminate divo,p to get

—Ad 9 — L () div (pVe) =0, @1)

e

2 . .. .
Here we note that %(376) >> 1 for most technical applications in the context of
high-energy-density sciences. We also note that if p = po = const in space, with proper boundary

conditions, then (21) describes a harmonic oscillator with angular frequency ©, = (& ( ZTZ)Z) 1z,

Here m), is the so-called plasma frequency. Directly and/or indirectly expression (21) is at the core
of this manuscript: the goal is to design schemes that can use time-step sizes larger than g)—” or, at
p

the very least, stability is not severely affected by this high-frequency oscillatory phenomena.

24. Euler-Poisson attractive case: formal balance and source-dominated regime

Lemma 2.5 (Formal balance: attractive case). The Euler-Poisson system with attractive force
(3a)-(3d) satisfies the following integral balance

%/Q (£~ %W‘P\z) dx + /BQ (%(”E+p) +A@V;¢+¢p) -nds =0
or pointwise
S (E—=5IVo*) +div (E(E+p) +1oVo,9+p) =0
Note that £ — %|V|? is not an energy.
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The source-dominated system for the attractive Euler-Poisson system is:

op=0, (22a)
op=—pVe, (22b)
—AAOJ; @ = divp, (22¢)
QE=—Vo-p. (22d)

Note that only (22b) and (22c) are actually coupled.

Lemma 2.6 (Attractive source-system: invariance and formal balance). The source-system

(22a)-(22d) satisfies the invariance o, (ZZ — %) =0 (see Lemma 2.1). In addition, the subsystem
(22b)-(22c) satisfies the following integral balance

5( ] B —31vePax) + | 0(va¢-+p)-nds=0, 23

or pointwise
3 (L _ 21v02) 1 div (AoVa =0 24
5 (55 — 5IVel*) +div(AeVo, 0+ gp) = 0. (24)

2
Remark 2.7. Note that M —2 ]V(p|2 is not an energy, a norm, a positive-definite quadratic-like

functional, or a generahzatlon of such concept. More precisely, p i) %\V(p|2 is a Lagrangian: the

difference between kinetic and potential energy In other words, the source system (22a)-(22d)

preserves the internal thermal energy £ — |p| while the Lagrangian 3 |p| —2 |V(p|2 satisfies a

flux-balance as described in (24). The 1ntegral of the Lagrangian may or may not be a conserved
quantity depending on the boundary conditions used.

3. BASELINE NUMERICAL ARGUMENTS USING COLLOCATED
DISCRETIZATIONS

In this section we construct a simple two-stage scheme assuming collocated/nodal discretization
for all variables. This assumption is equivalent to considering a spatial discretization of either
cell-centered finite volumes or nodal continuous finite elements (algebraically equivalent to
vertex-centered finite volumes, cf.[93, 94, 58]) for all fields. Collocated-like discretizations are a
good choice for Eulerian shock-hydrodynamics and optimal from the approximation point of
view: every field is approximated with the same polynomial degree in space, therefore the same
convergence rate should be expected for all fields. In fact, some of most mathematically mature
and computationally robust schemes for Eulerian shock-hydrodynamics require a purely nodal
space discretization (see for instance [55, 58] and references therein).

However, the choice of a purely collocated/nodal discretization does not play well with Maxwell’s
equations and it may be entirely inapplicable for the Euler-Poisson model. For the time being, we
will ignore these very important issues, develop the basic mathematics in relationship to

time-integration and reconcile these problems later in Section §4. This entire section intends to be
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primarily of pedagogical nature. However most these lemmas/propositions carry over important
consequences that we indeed apply in the context of Euler-Poisson in Section §4.

The presentation is gradual, in the sense that each concern/constraint (e.g. positivity of the
internal energy) is separated from each other in order to minimize intellectual difficulties.
Primary results of this section are: Proposition 3.1 which establishes minimal requirements for
preservation of internal energy when considering any arbitrary force, Lemma 3.2 which
establishes minimal requirements for the preservation of the electro-kinetic energy, and finally
Lemma (3.4) integrates all previous results establishing minimal requirements for the
preservation of positivity of internal energy and total energy in the context of Euler-Maxwell
when using operator Splitting.

Here we adopt the notation in [58]. We will assume the existence of nodes ¥ = {1,...,card{ V} }
(a list of integers) identifying space coordinates {x;},cq. These space coordinates could be, for
instance, interpolation points of a finite element space or barycenters of a finite volumes
representation. We will also assume that the nodes exchange mass with a small number of
neighboring nodes, more precisely we will assume that for each node i € ¥ there is a list of
integers I(i) C 7/ called the stencil at the node i such that:

iel(j) & jel(i). (25)

With this notation we will assume that all components of the system p, p, E, E and B are
approximated using a basis {0;},.q. That is, we will consider the expansions

pr=Y Pidi, Pr=Y Pidi, Ea=Y Ti0i, By=) Eit;, By=) Bity,
i€V i€V i€V i€V i€V

in order to build finite dimensional approximations of p, p, , E and B.

3.1. Euler’s equations with forces.

Assume that we want to solve Euler’s balance law %u +divf(u) = s(f) with u, f(u) and s(f) as
described in (6). The simplest first-order operator splitting scheme for such a problem would look
as

n+l n
miu + Z F,‘j =mS; Vie V, (26)
K JET()

where m; = [, 0;dx, u? = [p7,p?, E"] " represents the state at time ¢ at the node x;, T is the
time-step size, {F; j} jer(i) is the set of algebraic fluxes with F;; € R4*2 and F; j = —F; for all
J € I(i). Scheme (26) can also be rewritten as a two-stage method:

Stage #1: u' ™' :=u} — e Y Fj (27)
JEI()
Stage #2: u" ™ :=u!"! 4-18;. (28)
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usually known as Yanenko splitting. Here u} = [p?,p?, %”]T will be the so-called

“hyperbolic-update”. From now on quantities with a tilde (such as p/*', pi*!, and ') refer to

quantities obtained as a result of the hyperbolic update. So far we have not defined S;: we want to
keep our choices open as to whether S; should be fully explicit, fully implicit, or something in
between. Therefore we consider:

si=| £7° |, (29)
§n1+1 ff.l+6 : pB

; l
here f?+6 represents an approximation of the force at time "% := 0"+! 4- (1 — 6)¢" for some
0 € [0, 1], similarly ptB represents an approximation of the force for some intermediate time
"B .= Bt 4 (1 — B)r" for some B € [0,1]. As it’s shown in the following proposition, the
choice of 6 has no consequence in the preservation of internal energy: the force could be fully
explicit (i.e. ® = 0, Forward-Euler), fully implicit (i.e. © = 1, Backward-Euler), or anything in
between. However, it seems to be that we don’t have much wiggle room for the choice of .

Proposition 3.1 (Source update scheme for Euler’s system: basic scheme). Let u”+1

[p:’Jrl piH! E"H] be the output produced by the hyperbolic-update (27). If the final state

”+l [p:‘“ P} ptl ZZ"H] follow from the following sequence of computations/definitions
p:erl — p7+1 , (30)
pi’lJrl — pln+l _’_Tf;ﬁre’ (31)
VitE o (P?;;ﬁ)l,"“) , (32)
. ,Zin+1 e ,Vn+%7 (33)
then we have that
Foan | Ig;:f _ %inﬂ 1 I%;:IZ _ (34)

Proof. The proof follows by taking the dot-product of (31) with v+ and adding it to (33). U
Remark 3.1. Proposition 3.1 is nothing else than the discrete counterpart of Lemma 2.1.

Remark 3.2. Note that u? ™! = [p"+! pr+!, %{‘“]T defined in (27) is the hyperbolic update (no
contribution from the sources). We w111 assume that ﬁl’.‘H has positive density and internal energy.
At the time of this writing there are numerical techniques can achieve such targets with ample
margin of confidence (see [85, 110, 55, 58]). In particular, the techniques developed in

[57, 55, 58] preserve not only the positivity of the density and internal energy but more generally
the invariant set of Euler’s equation as described in proposition 2.1 well-beyond the context of the
simplistic ideal-gas law. We also mention that the notation used in (25)-(26) was taken from

[55, 58] since the vast majority of space discretization techniques (finite volumes, continuous
finite elements and discontinuous finite elements, etc) can be rewritten using such notation.
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3.2 Euler-Maxwell: preservation of the internal energy

For the case of Euler-Maxwell’s system we have that the source term on the right hand side of
Euler’s system is

0
Si= |ZpiEi+p1 x By |, (35)
Z<Es P2

where the optimal values of py, Eq, p1, B1, E2, p2 have to be determined. In principle S; could be
explicit, semi-implicit, fully-implicit, or something else entirely (e.g. “given data” coming from
another piece of legacy code). As usual, we want to keep our options open and postpone these
decisions for as long as it could be possible: we want understand what is the minimal amount of
time-implicitness we can afford and still preserve the properties that we want to preserve. For
instance, we have already learned from Proposition (3.1) that if our sole target is preservation of
the internal energy we don’t need to consider time-implicit forces (at all). For the time being we
want to determine which variables can be lagged and which ones have to left implicit in order to
preserve a discrete counterpart of constraint (10). The following lemma makes more specific the
minimal constraints on py, E, p1, B1, E2, p2 that we have to satisfy in order to guarantee
preservation of the internal energy.

Lemma 3.1. The choice
1

pi:=p/"", p=p2=p""2:= 3" +p"""), E2=E;:=E;andB;:=B;  (36)
with E; and B; being arbitrary for (35) is such that identity (34) is preserved.

Proof. The proof follows either by re-use of Proposition 3.1 or direct computation of the internal
energy of u/t! = [pt! prt T and ! = [pr ! prt! £71T and verification that they

take the same symbolic vale. 0

Summarizing what we have learned so far: the source update scheme for the hydrodynamics part
would look as follows

p;’H‘l — p;’H-l Terl‘FlE + Tge (p;’H—l _|_pn+1) Bi7

(37
n+l _ Fntl ‘ng ) n+1 | zn+1
BT =ET 4B (07 D),
Note that: in (37) first we have to solve for p"“L1 by inverting a R3*3 matrix, once we have the
value of p’”rl we just plug it into the second line of (37). Note that the R3*3 matrix is always
invertible for every time step size: this stems from the fact that the matrix is the identity with a
skew-symmetric perturbation (guaranteed to be positive definite).

The local update (37) does not describe a “complete scheme” that we can readily implement. It
leaves a few questions open such as the proper choices for E; and B; (fully explicit? fully
implicit?). Local update (37) solves only one problem: it preserves the positivity of the internal
energy by coupling the effects of the sources in the momentum and the mechanical energy. It does
not take care of the invariant property (11). That’s that topic of next section, which will allow us
to define a scheme involving all fields of the Euler-Maxwell system.
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3.3. Euler-Maxwell: preservation of the electro-kinetic energy and global
energy-stability

Essentially, we want to guarantee that the coupling introduced by the sources is such that the
following constraint is satisfied

PP
1l

]
207

~n+1
FEEM2 < "’lm FEEP

Vie vV, (38)
which is the discrete counterpart of (11) in the case of equality. If (38) happens to be a strict
inequality then, the coupling introduced by the sources will be energy-dissipative rather than
energy-preserving. Some amount of dissipation might be desirable. Here we will only present the
energy conservative case, the energy dissipative case is very similar.

We propose the following source-update of the momentum and the electric field :

n+1_ =n+l
p?“ p:H-l Terl+1E_|_qu(pz szp, )><B,~, 9
~n+1
e(Ef" —E; )= —pi

where the values for E;, B;, p; have to be determined. Note that in (39) we have committed to the

n+1 ~n+1
choice w in the cross product which is consistent with expression (37) if our goal is to

preserve internal energy too. The following lemma settles the choices for E; and p;.

Lemma 3.2. If we choose
+1 ~n+1 41
E:=E *=1E"1E ") and pi=p; = L(pr +prh
and B; arbitrary in (39), then we have that the electro-kinetic energy is preserved, i.e.

|pn+ 2

2pn+1

prt? ~n+1
%_%’E?+1F::|P, | %—%’E? ‘2‘

T
2pF

(40)

Proof. The proof follows by using the elementary algebraic identity (a — b)(a +b) = a*> — b,
~n+1
Multiplying the first line of (39) by 1 (p/ "' +p/*") and the second line by 1 (E/'*! + E?Jr ) we get

(P = B ) = Sep R (0 (41)
~n+l 5 ~n+1
SEFP (B ) = —Mep; 5 (BT 4+ E; ) (42)
The results follows dividing (41) by p"+1 and adding both lines. [
3.4. Euler-Maxwell: complete source-update scheme.

Combining the lessons learned in Lemmas 3.1 and 3.2 we are now in position of defining a
first-order time-update scheme in the spirit of Yanenko-splitting. Generalization to second-order
accuracy is straightforward using Strang-Marchuk splitting.

24



Remark 3.3 (A first-order scheme). Given [p",p",B",E", E"| we consider the following
two-stage scheme:

B Stage #1 (hyperbolic update). Compute the pure-hyperbolic update using a full time-step
size T

— Euler’s subsystem: [p"™!,p"*!, £71]T can be computed using Forward-Euler or a
convex combination of Forward-Euler steps preserving convex constraints (e.g. SSP2
or SSP3 schemes [53]).

— Maxwell’s subsystem: we could use, for instance, the implicit midpoint rule (i.e.

. . ~n+l ~n+l L
Crank-Nicolson) in order to compute [Bn ,En ]T which is second-order accurate

and preserves the Hamiltonian of Maxwell’s equation [ §[E[*+ 21_# IB|2.
~nt1
B Stage #2 (source update). Define p/ ™! := p?! and B! := B;-H , then

— Stage #2.1: find p’ "' and E7*! solving

p?+1 ﬁanrl _ 2121;’ p?+l(E{1+1 —l—E )_|_ Tqe (p?+1 +pn+1) % Bn+1 (43)

~n+1
E(E;’H’l _Ei ) — qu (p:l+1 +pn+1) En+l +E ) (44)

Note that this requires inverting an R®*® matrix at every cell/node.

— Stage #2.2: with the values of p”Jrl and E;’H found the Stage 2.1, compute El-"“ as

Z:;l+l fI’H-l :Zf (E:I-FI_'_E:H— ) (p;’l+l+pn+l) (45)

The scheme described by 43-(45) naturally preserves the convex invariants (see proposition 3.1
and 3.2) of the hyperbolic subsystem: catastrophic failure because of negative density or internal
energy is not possible. We also have the following energy-stability lemma which establishes
conditions for stability on the whole scheme consisting of Stages #1 and #2 described above.

Lemma 3.3 (Minimal conditions for energy-stability). For the scheme described in Remark 3.3.
In the Stage #1, assume that the scheme used to solve Euler’s equation is conservative in the
sense that

Z mi%;l+l = Z mifl-", (46)
icV icV

where ‘V represents the set of all cells (or nodes) and m; is the measure of the cells (or lumped
mass entry) in the cases of cell-centered finite volumes (or continuous nodal finite elements
respectively). Similarly, assume that the hyperbolic update of Maxwell’s equation (in Stage #1) is
either energy-conservative or energy-dissipative in the sense that

~n+1 ~n+1
o (SIE P B P) < X (SIER+ ). @7
i€V

%
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If Stage #2 is such that

n+12 ~ n+1)2
Yo (Er -2 < ¥ (B - B, (48)
i€V =4
nt12 ~n+1 2
¥ (4 S P) < ¥ o (BSR4 5B, (49)
i€V i€V
then we have
Yo (SR LB R) < X i+ SIER L IBE), (50)
i€V i€V
which is a discrete counterpart of the energy estimate (13) in the case of 7' = 0.
Proof. Adding (48) and (49) we get
~ ~n+1
Y omi(E A SIETR) < L mi (B SIEP). (51)
eV i€V

. ~n+1
Now we add } ;¢ %’1 IB"*!|? to both sides of (51) and exploit the fact that B! = B

1

to get

~ ~n+1 ~n+1 -
X (£ 4SBT P BT ) < X (B SE P BT
eV eV

) ) (52)
< ¥ (5 + 1B + 4 [B1)
%
where the last inequality was obtained using (46) and (47). ]

Some comments and notes:

B In particular, the constructions/schemes proposed in Remark 3.3 comply with the
requirements and assumptions of Lemma 3.3.

B We note that artificial heating appears to be incompatible with energy stablity. In other
words, if instead of (48) we had the reverse inequality, i.e.

1 1
pf 2 2

1 1 P;
Z mi <Zln+ | n+l > > Z <£n+ ‘zer-l ) )
i€V

implying an increase of the internal energy/temperature, then it does not seem possible to
establish energy-stability property (50).

B Extension of the ideas described in 3.3 to second-order accuracy (in time) is straightforward
using operator-splitting and related ideas [99, 89]. Essentially, let Sg(t), Sp(T) and Ss(7T)
be the exact solution operators for the Euler’s subsystem, Maxwell’s subsystem, and
ODE-source problem (9a)-(9¢) respectively. If we replace these exact solution operators by
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second-order accurate counterparts Sg 4(T), Sy »(T) and Ss ,(T) we can define an
approximate solution operator Sj(T) as the composition

Sn(T) == Su.n(3) 0 Ssu(T) 0 San(3) or Sp(T) := Ssu(5) 0 SHn(T) 0 Ssu(3), (53)

where Sy ;(T) = Bﬁiz((?)} ,

leading to the time-update scheme U"*! = §,(1)U". Formula (53) is the well-known
symmetric second-order Marchuk-Strang splitting. Preservation of the convex invariants of
Euler’s subsystem is guaranteed for each stage (equivalently by each discrete solution
operator), therefore it’s guaranteed for the final solution too. Extension to third-order
accuracy using the operator splitting approach of Goldman and Kaper (see [52]) is certainly
possible provided each stage is the discretization of a time-reversible PDE-problem.

The best of the author’s knowledge Lemma 3.3 is possibly the first nonlinear stability statement
for Euler’s system with sources using operator Splitting. We are not aware of any similar or
comparable result in the context of Runge-Kutta IMEX schemes or comparable
time-integrators.

We highlight that some of the ideas presented in this section have been used in the context of
compressible Navier-Stokes equation (quite recently) leading to new schemes with
mathematically and computationally guaranteed robustness [54]. The novelty is not in the use of
operator splitting. The novelty is in the choices of space and time-integration techniques used for
each stage, the choice of semi-implicit lagging of specific variables, all of which which allow to
establish the natural nonlinear stability properties of the PDE.

4. NUMERICAL SCHEMES FOR EULER-POISSON

In this section we describe numerical schemes for Euler-Poisson model using operator splitting
approach in (53) and key ideas outlined in Section §(3). At its core, this section is primarily about
the source update-scheme (i.e. Stage #2 in the context of Strang-splitting, see for instance
Remark 3.3), the choices of space-discretization, asymptotic well-posedness of the linear algebra
problem, and the preservation of the electro-kinetic energy. In section §4.4 we describe a
complete source-update scheme involving the total mechanical energy and the preservation of
internal energy.

41. Notation: space discretization

We will assume that the hydrodynamics subsystem is discretized with nodal-finite finite element
space V = [V]*2 where V is either a P! (in the context of simplices) or Q' (in the context of
quadrilateras/hexahedrons) scalar-valued finite element space [55]. We define local-to-physical
geometrical map Tk (X) : K — K, where K is the reference element, K is an element in physical
space, the gradient of the local-to-physical geometrical map is denoted as Jx (X) := VT g (X) i.e.
Jk(x) : K — R?*4 which we will call the Jacobian. We note that the Jacobian is just a constant
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matrix in the context of affinely mapped elements, but it’s function of space for general mappings
such as the general bilinear maps used for quadrilaterals. We will use (v, w) 12(q) to denote the

traditional L?-inner product

= dx.
(v, w)12(@) /va

In the computational context (vj, wy,) 12(@) Will denote computation of the inner-product to either
machine accuracy or overkill quadrature. On the other hand, we define the discrete or lumped
inner-product by (-, )y,

viwin=3Y, Y, Va(Tk(®y)) - wi(Tk(x,))detd(Tk(x,)) @, (54)
KCTy gen(R)

where 7, represents the set of all elements, N(E ) is the set of indexes of the
interpolation/quadrature points and weights in the reference element K, X, € K represents the
coordinate of the g-th interpolation/quadrature point, and (T)q is g-th the quadrature weight.

‘We note that:

B As written, (54) is only valid if both v; and wy, are nodal vector-valued finite element
functions. Div-conforming and curl-conforming finite element spaces require much more
sophisticated Piola transformations. Such transformations are particularly well reported in
Section §3.9 of [82] and for the sake of brevity will not be part of this report. We will
however invoke the discrete inner product (vj, wy,);, far beyond the context of purely nodal
finite element spaces. We will tacitly assume that the reader is aware that definition (54) has
to be modified accordingly for each possible case.

B If v; €V, a continuous nodal space, then v,(Tx(x,;)) = vi(x,) the unique nodal value.
However, let K and K’ be two elements containing the node/vertex with physical
coordinates x; such that: Tg(x,) = T g/(X,) = x; and v;, belongs to a curl-conforming or
div-conforming finite element space then we have that: in general,
vi(Tk(x4)) # vi(T k(X)) since edge or face elements are not guaranteed to have uniquely
defined nodal values. The same situation holds true, more generally, with completely
discontinuous finite element spaces.

4.2, Method of lines and its shortcomings.

In this section we focus on the coupled subsystem (17b)-(17c) and the preservation of the
electro-kinetic energy. In order to avoid discussions on boundary conditions and remove
additional difficulties we assume that p-n = 0 and either V@ -n = 0 or ¢ = 0 on the entirety of the
boundary dQ. This makes the source system an electro-mechanically isolated system. We may

start by considering the following scheme: Find VZ+1 €V and (pZ+1 € H solution of
e(Vopt! — V6Z+l , V(‘)h)LZ(Q) =S+ 52“ , VC‘)h)LZ(Q) ) (55)
(Vi =i )y = S VO + VO 2)12(q) (56)

for all ® € Hand z;, €V, where v := ;ITZ‘



Lemma 4.1. Scheme (55)-(56) is such that

2||V(Ph+1||L2 + Z n+l |pl+1|g2 = QHV(P;,HHU + Z n+1 ’le’/Z
lE‘V LG’V

Proof The proof follows by taking Ve, = (V(p"+1 + V(p”“) in (55) and taking

Z, = (pZ+l +pZ+1) in (56), and adding both lines. O

However, this good news bought by Lemma (4.1) have to be confronted with the algebraic
difficulties that might be encountered in order to actually solve the linear system associated to
(55)-(56).

Remark 4.1 (Algebraic/matrix representation). The coupled linear system (55)-(56) leads to the
following block-matrix system:

e%qb(q)wrl _&)nJrl) — _%%v@n+l(vn+l _|_‘~7n+1)7

L 1 ontl 1 =ntl (57)
%V(Vn—i- _Vn+ ) — %%@(qyﬂ- _|_q)n+ )7

where @ is vector containing the degrees of freedom of the potential, V**! is vector containing
the degrees of freedom of the velocity, and the matrices fMVLV, Moy, Myp, Koo, and D' are
defined as

lj_slj/q)l g(;bfb lj_/VXlVX]
Mvcb]ij:/g(l)iVdex, [Mapy) ij:/QVXi(I)jdxa (D" = &pf !

Note that Mgy = M, o and that M5 L and D"+ are diagonal matrices. In particular, note that the
momentum vector can be computed as the diagonal scaling P"*! = ©"+1y"+1 Blockwise
solution of the linear algebra system (57) leads to

(£%¢+(%)2%V@n+1%1;—1% )q)n—i-l (87@)({) (2)2%v@n+1Ml,Ii,_l%q>)&)n+l

(58)
— VMg P

Regarding the structure of the matrices in (58) we note the following:

B The Schur complement € Xgpq + (T—ZV)Z%V D H ML~ Mg is symmetric and invertible.
For the case of Dirichlet and mixed (Dirichlet-Neumann) data, upon algebraic elimination
of the non-DOFs, invertibility holds trivially true since the matrix is positive definite. For
the case of pure Neumann data, the matrix will have a one-dimensional kernel (the
subspace of constants) which presents no difficulty for Krylov space methods provided the
right-hand side of the linear algebra system is on the column space of the matrix.

B However, the fact that “invertibility” holds true, as mentioned in the previous bullet, may or
may not have much computational implications. If the finite element space V used to
discretize each component of the momentum/velocity is, for instance, a continuous [Q!]¢
(or [P!]9) finite element space and a continuous Q' (or P! respectively) is used for the
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scalar finite element space H (used to discretize the electric potential) then the block
My (D" H ML)~ My is necessarily rank-deficient (non-invertible). This is a
well-documented fact that can be found in standard literature for Darcy and Stokes mixed
formulations [49, 45]. This rank-deficiency is usually manifested graphically as
checker-board modes. Similar spurious defects also appear in ad-hoc finite-difference,
finite-volume, or discontinuous discontinuous finite element constructions.

. . . o 2 .
B In the context of high-energy-density physics applications, the number V? max;cq p?“ is

disproportionately larger than one. This means that the Schur complement matrix in (58) is
entirely dominated by the second block (with the exception of the low-density regimes). We
can speculate that the modes contained in the kernel of the block My (D" ML)~ Mye
will manifest visually far beyond what could have any physical meaning in practice and
cause severe deterioration of iterative solvers.

In other words, the source-update scheme (56)-(55) is stable (it preserves the electro-kinetic
energy) but leads to an ill-conditioned system, where spurious modes can grow unboundedly in
the context of high-density regimes. This is an interesting example of a scheme that is stable, but
not “asymptotically stable” or “asymptotically well-posed".

Remark 4.2 (An unsatisfactory solution). The asymptotic ill-conditioning of the Schur
complement in (58) is a problem that we can solve quite straightforwardly if we are open to using
alternative choices of finite elements spaces. For instance, using curl-conforming finite element
space for the velocity or momentum this rank-deficiency can be solved almost immediately. To be
more precise, consider the following thought experiment: let’s make a series of simplifying
assumptions. If we replace the lumped matrix W[p]i) in (56) by a consistent mass matrix, and
assume a constant density p = 1 for the entirety of the domain, then we would end-up with the
following Schur complement matrix:

& Kapap + (2L)2 M My My,

Let’s further assume that the space of gradients of potentials VH is a subspace of the finite
element space use to represent the momentum/velocity, i.e. VH C V. Then we would have that

%vg\’[v;l-‘qu) = Koo

which is a perfectly well-conditioned full-rank matrix. Similar statement will hold true with an
non-homogeneous density using a perturbation argument. In short: representing the
momentum/velocity with a curl-conforming finite element space V satisfying the assumption
VH C V (where H is the finite element space of the scalar potential) will lead to a
well-conditioned system.

However, the fact that well-conditioning of the linear algebra system can be easily achieved using
curl-conforming elements for the velocity is somewhat at odds with the current state of affairs for
numerical shock-hydrodynamics. At the time of this writing, we are not aware of any
mathematically solid theory of numerical methods for shock-hydrodynamics using
curl-conforming and/or div-conforming finite elements. Pretty much all the mathematically
mature choices available in the literature for the hydrodynamics subsystem are either nodal in
nature or require some notion of pointwise state/value [85, 110, 54] which cannot be easily
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accommodated by either curl-conforming or div-conforming elements. In particular, our intention
is using the methods advanced in [58] which offer significant mathematical assurances. For the
time being, using curl-conforming elements to represent the velocity does not seem to be a
technically meaningful solution.

4.3. Avoiding the method of lines and Rothe’s method.

The scheme proposed in (55)-(56)-(58) is a consequence of the standard workflow that we know
as “method of lines™:

PDE — Discretize in space — Discretize in time — Algebraic block-system —

Eliminate variables — Algebraic Schur complement ,

which transforms a PDE into a coupled algebraic block-system, leading to an upper or lower
triangular Matrix system during the process of variable elimination (also known as factorization).
This approach works for the vast majority of problems while also achieving separation of
concerns in the context of software development.

An alternative to the method of lines, is Rothe’s method, which is just a permutation of the
discretization order, more precisely it consists of

PDE — Discretize in time — Discretize in space — Algebraic block-system —

Eliminate variables — Algebraic Schur-complement .

In this section we propose using neither the method of lines nor Rothe’s method. More precisely
we will use the following workflow

PDE — Discretize in time — Eliminate variables — Lower-triangular PDE system

59
— Discretize in space — PDE Schur-complement (59)
in order to derive a scheme for the coupled system (17b)-(17¢). We start by considering the
following Crank-Nicolson semi-discretization of the coupled system (17b)-(17c¢):
p}’H-l _’I‘)“n-i-l — _%pI’H—](V(PYH-] +V@I’l+])7 (60)
_8(A(pn+1 _A6n+1) — —%(dinn+1+diVﬁn+l). (61)

We eliminate p"*! from (60) and take the divergence to both sides of the equality
divp™! = divp"! — %div(p”“(V(p”“ LV,
Finally, we substitute this identity into the right hand side of (61) to finally get
—eAQ" ! — (F)div (p" V")) = —eAG"T! + (5)’div (p" V") —tvdivp"T! (62)

pI’H-] o i)“n—i-] — _%pFH-] (V(pn+1 + V@YH—]) (63)
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Remark 4.3. We highlight that (62)-(63) is a lower-triangular PDE-system which can be solved
by forward-substitution. In other words, the solution workflow is: we solve (62) in order to find
¢"!, then we insert this result into the right hand side of (63) and compute p"*!. There is no
matrix Schur-complement: the differential operator on the left-hand side of (62) is a PDE
Schur-complement which admits the following symmetric bilinear form

a((p,m):/QV(p”“-Vw+(%)2p”“V(p"“-dex+B.C. (64)

which is always positive provided the density p"*! is strictly positive. In addition, its always

invertible (when using Dirichlet or Mixed data) or invertible in some quotient-space when using
pure-Neumann data. We mention in the passing that the robust iterative solution and

preconditioning of matrices arising from the discretization of discontinuous heterogenous
maxy, p” ( X)
miny p" ! (x)
problem. That’s a topic is well-beyond the scope of the current manuscript.

diffussion problems, such as (64) with large contrast ratios (e.g. > 109) is an open

So far, (62)-(63) is a semi-discrete system, we want to consider a discretization in space too. In
order to simplify matters we assume boundary conditions p-n=0and ¢ =0 (or V¢ -n =0) on
the entirety of the boundary 0Q and consider the following variational formulation:

(V(pn—H (pn+1 VO)h)LZ(Q) (2 )2 (pZH( (pn+1+V$Z+1) th) 12Q) = ’CV(ph"’lVZ,V(Dh)Lz(Q)» (65)
(P OB =V D) g = — T 00 (VO V@) ) ) (66)

for all ®, € H and z;, € V. At this point in time H and V represent open-ended choices of finite
element spaces. Scheme (65)-(66) is just a decoupled version Crank-Nicolson scheme. It would
be somewhat comforting to know that it enjoys the same stability properties as the usual coupled
Crank-Nicolson scheme (e.g. scheme (55)-(56)) at least for some choice of spaces H and V. The
following proposition provides part of the answer to such question.

Proposition 4.1. Scheme (65)-(66) satisfies the following identity

112 ~n+1(2 1 1 1 1,2
€[ VoI el Vay 2+ [ o vi - oy e P e =

(67)
:7V<pz+l< n+1 VZJrl (V(Pn+1+v(pn+l)) (pn+1+V(Pn+1) (Q)>

for any choice of finite element spaces H and V. This proposition follows simply by taking
W, = (pZJrl "H in (65) and zj, = VZ+1 —l—VZH in (66) and adding both lines.

In the following lemma we establish more precisely the core requirement for energy-stability.

Lemma 4.2 (Conditions for energy-stability). Let the inclusion of spaces VH CV hold true, then
the right hand side of (67) is zero.
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Proof. Rewriting (66) in residual form

(pz+l< n+1 VZ+1 (V(er-l +V(pn+l)> )LZ( ) =0 vzh c Vv (68)
we note that if VH C V then z; := V'™ + V™! is a valid test function for (68). O

Proposition 4.1 and Lemma (4.2) still do not provide a specific choice of space discretization. The
following remark provides one example of a specific construction that can be materialized as
computer code.

Remark 4.4 (An energy-compatible example). Consider a mesh of affinely mapped simplices and

B Continuous nodal P! elements for the potential @,

H = {0, € C°(Q)| on(Tk(X)) € P'(K) VK € T}

B Fully discontinuous nodal [P']¢ elements for the velocity v;, (equivalently for the
momentum pPy,).

V=[V]? where V= {z, € L*(Q)|z2(Tk (X)) € P'(K) VK € T;} .

Assuming that the simplices are affinely-mapped guarantees the preservation of the polynomial
space: the space VH will be piecewise polynomial in physical space (the jacobian of the
transformation is a constant matrix in each element) more precisely it will be a subspace of the
vector-valued space V. Note that the choice of nodal velocity for the momentum implies a
commitment to using nodal P! elements for each component of the hydrodynamics subsystem if
our goal is using the hyperbolic framework of [58].

We also note that in this context V@, is piecewise constant. Therefore most of the bilinear forms
in (65)-(66) can be computed exactly using nodal-quadrature. We therefore propose the scheme:

e(Vel ™ =V, Van) g+ (5)7 (00 (VoL + VAT, Va) = —tv(pf 1V, Va) , (69)

L2(Q)
PV =) ) = =5 e (Ve V@) ) (70)
satisfying the a piori bound
SIVe I + X o o 05 = 5IVE T )+ ) 5 sl % (71)
lE'V ze‘V

The proof of this last fact is omitted since the ideas required for such a proof have already been
repeated a few times in this manuscript.

The indirect implication behind this remark is that: nodal-like space discretizations which are
compatible with energy-principles can only use affinely mapped elements. In practice, this means
that if we want to have assurances of energy stability we have to use affinely mapped simplices in
the context of technical application. For instance, the use of quadrilaterals is not optimal, since
general bilinear maps are rarely ever affine in the context of unstructured meshes.
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44, A complete source-update scheme.

Subsections §4.2 and §4.3 explain us what to do with the coupling between the momentum p and
the potential @, but they don’t tell us what are our choices regarding the update of the total
mechanical energy E. We consider the following complete source-update scheme (i.e. Stage #2
in the context of a Strang-Splitting scheme):

B Stage #2.1 (update of momentum-potential coupling): given ﬁZ“ and 62“ the outputs

of the Stage #1 (the hyperbolic-update) we compute pZH and (pZH using your scheme of

choice, that is either scheme (55)-(56) or (69)-(70).

1

B Stage #2.2 (update of total mechanical energy): define ‘cf? ™2 and v+ 7 as

+1 ~

o =t -t (72)
1 n+l | sn+l

vid = B, (73)

and compute the total mechanical energy as

1

~ 1
E = ErHpaf T2y (74)

This two-stage source-update scheme preserves the internal energy (pointwise) and the
Electro-Kinetic. The proof of these facts follows from Proposition 3.1, Lemma 4.1, Proposition
4.1 and Lemma 4.2.

Remark 4.5 (Keeping our choices open). Note that we do not strictly advocate for the use of
asymptotic preserving scheme (69)-(70) and want to discard (55)-(56) in its entirety. Scheme
(69)-(70) is particularly advantageous since it’s asymptotically well-posed, it’s fully decoupled,
and does not require the assembly of an matrix Schur-complement. The use of algebraic Schur
complements quite frequently require the explicit computation of a matrix-matrix products. This
operation is not just expensive in itself but also leads wider sparsity patterns and a major increase
of the cost of each matrix-vector product in the context of Krylov methods. Last but not least we
mention that traditional enforcement of Dirichlet boundary conditions requires direct access to
the resulting sparsity pattern (replacement of diagonal with ones, elimination or row/columns,
etc) all of which becomes expensive due larger sparsity pattern. None of these operations is either
trivial nor cheap to implement. With all that being said about the potential disadvantages of
scheme (55)-(56) it is worth mentioning that:

B It’s hard to predict what is the easiest thing to implement: that is heavily dictated by the
choice of finite element software framework/library. In some software frameworks
(55)-(56) might turn-up to be the easiest to implement, in particular those with heavy
support of linear algebra.

B Scheme (55)-(56) is not asymptotically well-posed for the most naive choice of finite
element spaces (equal-order). That is not equivalent to saying that scheme (55)-(56)
represents a dead-end. With greatest likelyhoood there is a purely nodal choice of finite
element spaces that is inf-sup compatible (i.e. leading to a full-rank matrix Mgpy). Finding
the proper choice of finite element spaces will be investigated elsewhere or a future report.
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B Scheme (55)-(56) preserves the total mechanical energy when compounded with the Stage
#22 defined by (72)-(74).

4.5. Inclusion of static background of ions.

Let’s also assume that there is a time-dependent electron-gas charge density p, < 0. Let’s also
assume that there is a background of positively charged ions with charge density p; > 0. The
electrostatic problem can be understood as a time-independent elliptic PDE-problem

—€AQ = p; +pe (75)

usually known as the electric Gauss-law. Alternatively, the electrostatic problem can also be
understood as an evolutionary problem by taking time-derivatives to both sides of (75):

—€Ad, 0 = 0;p; + J;Pe - (76)

If the ions are static, and the dynamics of the electrons is described by Euler-Poisson system
(2a)-(2d), then in such particular case we have that: %pi =0,p.= ;]Tip’ 0iPe = —r‘fl—idivp and (76)
becomes ' '

—&A0; 0 = —}%divp. (77)
which exactly the same as (2d).

The approach used in the entirety of this manuscript is strongly aligned with the second view
presented by (76): the electrostatic problem understood as an evolutionary problem. This greatly
simplifies the derivation of fundamental stability properties of Euler-Poisson’s system (see for
instance Lemmas 2.4, 2.4, 2.5, 2.6, 4.1 and identity (71) for a special case) that translates into
concrete stability properties, such as energy-stability.

The question remains: How to incorporate the effect of the static-background of ions into the
time-dependent formulation (76)? Let’s consider the hypothetical situation where a portion of the
boundary has prescribed voltage (Dirichlet data) and the complementary portion of the boundary
has prescribed normal component of the gradient, that is

@ =@pondQp and V@-n= gondQy (78)

where @p is the Dirichlet data, g is the Neumann data, 0Qp is the portion of the boundary with
prescribed Dirichlet data, and dQy is the portion of the boundary with prescribed Neumann data.
The strategy used to incorporate a static background of ions consists in decomposing the elliptic
problem (75) into two fictitious problems. More precisely consider:

—&eAQ, =P, 1n —eAQ; =p; InQ
Qe = 0 in E)QD and ©; =0p in BQD
Vo, n=0 onodQy Vo;-n=g ondQy

Note that we have decided to assign homogeneous Dirichlet and Neumann boundary conditions to
the “electron-potential” ¢, while the actual non-homogeneous Dirichlet and Neumann data has
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been assigned to the “ion-potential” @;. This choice is completely arbitrary: it is perfectly
possible reverse roles assign non-homogeneous boundary conditions to the potential ¢, and
homogeneous boundary conditions to @; if that turns out to be advantageous in some
mathematical or computational sense. We note that neither @, nor ¢; have any physical meaning
by themselves. However, the total electric potential ¢ := @, 4 @; is physically meaningful, it is the
physical electric potential and has the right boundary conditions. Note that if p; represents a
time-independent charge, then @; has to be computed only once.

The bottom line is that we can exploit linearity in order to decompose the electrostatic problem
into two fictitious problems regardless of the choice of boundary conditions. Considering each
possible case (Dirichlet, Neumann, Mixed, Robin, etc) of boundary conditions will add more
obscurity than clarity to the presentation. Therefore, in order to clean-up the presentation, without
loss of generality, let’s assume that the total electrical potential ¢ satisfies homogeneous Dirichlet
boundary conditions on the entirety of the boundary. Assuming that we have already computed
the fictitious ion-potential (PZ’ then scheme (55)-(56) becomes

(V(penJrl V(pen+l VO)) L@ _ _%(pz+l_’_pz+l VO)) @) (79)
Vi =iz = v (3 (Ve T Ve T 4 Vel z)g)  (80)

Note that (79) is perfectly consistent with (77) (the ion-potential plays no role), while (80) should
include the forces due to the ion-potential. Similarly, following the derivation of scheme (62)-(63)
we can deduce that scheme (69)-(70) becomes

(V(PenJrl V(pen+1 V(Dh)L (Q) ( ) <pZ+1<V(Pen+1+V(Pen+1) V(Dh> —

<pz“vz,woh> O otV e, Vo,
<p2+1( n+1 VZ_H) zh> <pz+l(%( (Pen+]+V(Pen+l)+V(P;l),Zh>,

when a static background of ions is present.

Remark 4.6 (Generalization to time-dependent positive charges). If the background ions are not
static, i.e. %pi # 0 then we have that scheme (55)-(56) becomes

1 ~en+t1 1 3
e(Veg,"" — vt ’V(’))LZ(Q) =-S5+ P Vo), L2(Q) e(Ve, " - Vo), Vo)r2(q);
N ~en +1
vt = ), = (Ve Ve 4 Ve ) )
where (p’ 1S the approximate numerical solution of —eA@’ = pf“ with p?“ being (known)

ek
given data, and (p;l’n+2 = (@ + o).
Similarly, the scheme (69)-(70) becomes

e(Ve," ! = Vg Vay) g + (B30 (Ve V"), V) =
o (py i, Vo) — S (0 Ve, Vo) — (Ve = Ve Von) g
<pz“< iV D) =~ e GOV VG + V) ).
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when time-dependent positive charges are present. Note that these implementations require one
additional Poisson solve per-time step in order to find the ion-potential corresponding to a given
positive charge density p;. More computational efficient implementations that do not require this
additional Poisson solve are possible can be easily conceived too.

4.6. Source-scheme for the attractive case (self-gravitation).

The semi-discretization of the attractive source system (22a)-(22d) using Crank-Nicolson is
prtl ol = _%p(v(pnﬂ +V§Y) (81)
—k(A(p”H _A$n+l) _ %(divp"“ —I—divﬁ”“) (82)
This semi-discretization satisfies the following discrete balance.

Proposition 4.2. The semi-discrete scheme (81)-(82) satisfies the balance identity

S st = BV e = | e = Ve s
+/BQ%((Pn+1+6n+l)<V(Pn+l_V6n+1)'nds
£3 @+ e 45 nds

Note that if the last two boundary integrals vanish (e.g. (p"*! +p"*!)-n = 0 and/or
@'t + @ = 0 and/or (V@' — V") -n = 0 in the entirety of the boundary), then the
semi-discrete Crank-Nicolson scheme preserves the integral of the Hamiltonian

Ja35Pl% —5IVolhdx

Just like we did in Section §4.3, we use the workflow described in (59) in order to derive a
decoupled scheme. From (81) we get:

divp™*! =divp"*! — Idiv(p"" (Ve + V"))

Inserting this identity into the right hand side of (82) and reorganizing the terms the decoupled
semi-discrete scheme for the attractive Euler-Poisson’s source system is:

_A‘A(pn-i-] + (%)2dlv (pn—HV(pn—H) — _}\‘A$H+1 . (%)zdiV(pn_‘—lV@n_‘—l) +Tdivﬁn+1 ’ (83)
pn+1 _i)'n—i-l — _%Tpn—i-l(v(pn—i-l _{_V$n+l)' (84)

Inclusion of static background of dark-matter can be accommodated following a similar approach
to that one described for the repulsive case in Section §4.5.

Remark 4.7 (CFL constraints). We note that differential operator on the left-hand side (83) is not
unconditionally positive. More precisely, the finite dimensional bilinear form associated to
problem (83) is of the form

a(,1) = /Q AV Vi — (320 1Vy; - Vyidx + B.C. (85)
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In practical terms, this means that the time-step size should satisfy a CFL-like constraint
A 1/2
— ) (86)

n+1

T<2cfl (
max;cq P;

in order to guarantee the coercivity of the resulting bilinear form. Here cfl € (0, 1) is a user
defined constant. We note however that in practice, A is usually a monstrously large constant
while densities are only large in the interior of solar objects. It’s very unlikely the constraint (86)
would become active in practice. However, its still good practice to curb the time-step size in
order to guarantee that the bilinear form (85) is dominated by the positive-part in order to mitigate
degradation of iterative solvers and the efficacy of preconditioners.

Finally, the choice of space discretization for (83)-(84) that is compatible with preservation of an
integral balance of the Hamiltonian has to follow similar constraints to those outlined in Lemma
4.2, which boils down to the inclusion VH C V.

5. ALGORITHMIC/COMPUTATIONAL DETAILS

5.1. Unified notation for both attractive and repulsive cases

The source-update scheme for the repulsive (electrostatic) or attractive (self-gravitation) are very
much the same up-to a minor change of constants. More precisely, actual computer code uses the
following notation:

1 at L
—AAQ 2 — E div (pVigh T?) = —AAQ! + S div (pVe?) — B divp” (87)

p ! —p'=—Ep(Ve" + V")
where
,(1)2 e ge

{}”7&7\/7”} = {}81 e me

eI 1,—1,1} for the gravitational case.

}  for the electrostatic case

We note that the choice of an update scheme (87) in terms of the pseudo-time step 1+2 followed
by the extrapolation step (88) is strictly necessary. Second-order accuracy in the context of
Strang-Splitting requires enforcement of boundary conditions at the pseudo-time step %7 in
order to achieve its full second-order accuracy. This is in principle not much of an issue for
time-independent boundary conditions but it will definitely be important in the context of
code-validation with time-dependent boundary conditions, see for instance [54].
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5.2. Initialization of the scheme and mean-value charge-neutrality

Our intention is using the splitting approach (53) with the source-update scheme described in
Section §4.4. As such, the scheme will not be self-starting. More precisely, we need to supply a
value for the initial electric potential @g. As described in §4.5, the computation of the electric
potential can be divided in two fictitious potentials @, and @;, and only one of them needs to
satisfy the boundary conditions of the actual total potential ¢ = @, + @;.

In principle, the initialization of the data is as simple as solving one Poisson problem with
homogeneous boundary conditions for @, and another Poisson problem with non-homogeneous
boundary conditions for ¢,. However, there is more than meets the eye here. We cannot discuss
all possible boundary conditions, but we can focus on two important cases: the mixed problem
(Dirichlet-Neumann) and the pure-Neumann problem:

B Mixed boundary conditions: if we assume boundary condition as described in (78), then the
bilinear forms associated to the elliptic problem —eA® = p; + p. are guaranteed be
uniformly coercive and the linear system is invertible, for any right-hand side [89]. This is
true even if the right hand side does not satisfy [ p;+ p.dx # 0. In other words, the mixed
problem is automatically data-compatible with the electrically non-neutral case.

B Pure-Neumann case: in such case we have that the total initial potential has to satisfy the
variational formulation

/V(p-V(odxz/(Pi+pe)codx+/a wgds Yo € H'(Q)\R (89)
Q Q Q

where g is the Neumann data. In particular, (89) should hold true when ® = 1, leading to
the well-known data-compatibility constraint

/(Pi+pe)dx+/ gds =0.
Q Q.

This implies, in particular, that homogeneous pure-Neumann boundary conditions (i.e.

g = 0 on the entirety of the boundary) can only combined with initial data satisfying
mean-value charge-neutrality [ (p;+ pe)dx = 0. In practice we can deal with this
constraints at the purely algebraic level without ever introducing a positive background
charge into the variational formulation, see numerical experiments in subsection §7.1 for
more details.

6. EULER-POISSON REPULSIVE CASE: DISCUSSION ON BOUNDARY
CONDITIONS
6.1. Background and pre-existing literature

Boundary conditions (BCs) are a very delicate issue both in terms of the PDE-stability and
physical correctness. With rare few exceptions most of the leading plasma physics books
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[13, 46, 28] (among others) neither cover, develop or even mention boundary conditions.
Boundary conditions are an essential part of a computationally/technically useful PDE model. On
the other hand, a large body of the numerical/computational literature of fluid models for plasma
physics and semiconductors uses periodic BCs. The PDE literature focusing on plasma-sheath
and boundary layer phenomena appears to fill part of the gap, see for instance [48] and the list of
references in [83]. It fair to say that very little, if not nothing, is rigorously understood in
relationship to boundary conditions for Euler-Maxwell and Euler-Poisson models.

To illustrate how easy it is to formulate an unstable boundary condition consider the following
situation: taking a look at (15) it is very tempting to choose the boundary condition

(%p —&V(9,9)) -n = 0 either in whole or in part of the boundary. After all such BCs are nothing
else than Ampere’s law €9d;E = —j (in the absense of magnetic fields) dotted with the normal and
its reasonable to think that it should hold true as a trace or restriction to the boundary (it expresses
a fundamental conservation). In addition, such choice of BC is perfectly compatible with the
energy stability estimate (15)-(16). However, the above rationalization is very much flawed: for
instance, if the solution is a strong solution (at least for a short time), and the current is constant
in-time prescribed inflow data then such BC implies

9 (V@ -n) = ep.n = const

leading to unbounded growth of the normal component of the electric field at the boundary (i.e.
unbounded steepness of the electric field near the boundary). We could conjecture/speculate that
such unbounded growth will lead to an spectacular blow-up of the boundary layers near the
electrodes. Boundary layers by themselves are not nonphysical, but their unbounded growth in
time most likely is. This pathological boundary condition was brought to the attention of the
authors by the reference [83] which provides both additional mathematical and physical insight.

A practical approach is to take a quick look at (15) and make a few simple questions: What
boundary conditions make the repulsive Euler-Poisson system stable/dissipative? What boundary
conditions make the Euler-Poisson system an electro-mechanically isolated system? What
boundary conditions for the potential are mathematically compatible with what boundary
conditions for Euler’s system? A overly optimistic expectation is that boundary conditions should
satisfy the constraint:

_(g(£+p)).n+(p(%p—gva,(p)-n§0 on 02 (90)

in some distributional/trace sense, or at the very least a mean value version of it

_/aQ (g(f+p)).n+(p(%p—gvat(p)-ndsgo. 91)

For the time being, neither (90) nor (91) seem to be reasonable expectations in the context of any
realistic technical application: we should not expect the repulsive Euler-Poisson to be a
dissipative system. If Euler-Poisson’s system cannot be a dissipative system the second best
expectation is that it is an electrically and thermo-mechanically isolated system (i.e. mechanical
energy -+ potential energy = constant in time). Among the boundary conditions that would make
the repulsive Euler-Poisson system an isolated system the most natural candidate seems to be p-n
for Euler’s system and @ = 0O (or alternatively V@ -n = 0) for the potential on the entirety of the

40



boundary. But then again, such boundary conditions would be of minimal technical interest since
it would describe an electron-gas trapped in a cavity. Most technical application involve portions
of the boundary with an inflow and outflows and are driven by an external source of energy.

In the next subsection we consider some simple cases that shed some light into boundary
conditions that are compatible with the nature of the PDE. Quoting manuscript [38], the idea is
to

“propose some boundary conditions which are operational and, in particular, which
avoid the appearance of boundary layers”

In this context “operational” may not necessarily imply physically or technically valid, but rather
that such boundary conditions lead to a predictable or stable behavior of the PDE and its
numerical scheme.

6.2. Sketch of a technical problem: compatibility of boundary conditions.

In order to fix ideas we will consider a simple bounded domain and physical device (a gas-filled
tube), see Figure 6-1. We will call the boundaries boundaries 0Q™" and 0Q ™~ the electrodes, and
0QY the insulating wall.

0o
ont Gas-filled tube 90~
N0
—o\: +I I-

Figure 6-1 Gas-filled tube

In this context we will assume piecewise-constant Dirichlet data for the electrodes (prescribed
voltage): thatis @ = @1 on dQ™ and @ = @~ on Q™. The assumption of the Dirichlet data being
piecewise constant implies V@ x n = 0 on Q" and dQ~. We assume homogeneous
Neumann-data V@ -n = 0 on dQy = 0Q° which consists on the bottom and top walls of the
gas-filled tube.

Establishing data-compatibility of boundary conditions for the whole Euler-Poisson system is not
a trivial task and we do not have a complete understanding at this point in time. However, direct
inspection into the source-dominated regime reveals basic insight that we can use for numerical
purposes. Assuming that we can interpret (17b) in some trace sense (or formal restriction to the
boundary), and considering no resistive effects (% = () we take dot and cross product of (17b)
with the normal n to get

op-n= —;Il—eepV(p-n on dQy (92)
O;p Xn= —Zl—eepV(p xn on 0Qp (93)
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We can deduce the following:

B Prescription of homogeneous Neumann-data is formally compatible with reflecting
boundary conditions. From (92) we deduce that if we enforce normal condition p-n =0
on dQy on the initial hydrodynamics state and the hyperbolic solver (Stages #1 and #3 of
Strang-Splitting), then the source-update scheme with V@ -n = g = 0 on dQy should
respect such constraint.

B Prescription of time-independent piecewise constant Dirichlet data is compatible with
the preservation of the tangent component. From (93) we note that if the initial data is
such that there is no electric current tangent to the surface of the electrodes (i.e. p X n on
0Qp) the source-update scheme should preserve such zero tangent-current. However, the
source update-scheme will not preserve the normal component of the current and either an
inflow (}%p -n < 0) or outflow (i—ip -n > 0) condition will might develop in the
hydrodynamic subsystem.

We also note that:

B In the absence of resistive effects (7 1 = 0): time-independent nonzero Neumann data
implies unbounded growth ofinflow/outflow currents. For instance, if we consider
op-n= —%pV(p -n = g with g < 0 and constant in time, this implies that p-n can grow
unboundedly (unbounded growth of an inflow current). In other words, without resistive
source terms the only mathematically and physically meaningul Neumann boundary
conditions are necessarily homogeneous.

B If we need to consider non-zero Neumann data g # 0 into the model we will necessarily
have to incorporate % strictly positive on dQy in order to preserve boundedness of the
inflow/outflow currents. More precisely, assuming that we can interpret (17b) in some trace
sense taking the dot product with the normal and assuming that V¢ -n = g on dQy we get

PCIe

op-n=—rg— p n on dQy

which is formally an ODE that can be solved using integrating factors. The solution of such
ODE will decay exponentially to the stationary condition

dep.n=—Tp(L)’g

This last expression is just Ohm’s law with normal current j, = 4= P, conductivity

c=9p (;’Tee)2 (also known as Drude’s model), and normal electnc field
E-n=-V¢-n=—g.
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7. NUMERICAL EXPERIMENTS

71. Perturbed electron-gas column: pure plasma-oscillation

We consider a the simplest example possible in order to capture plasma oscillation in its purest
form. We consider the setup of physical parameters and physical domain

e=10""%, & — —1,Q=10,1] x[0,/] with h=400"". (94)

The initial conditions given in primitive state (density/velocity/pressure) are

with = 10.0 and 8 = 0.001 , vo=0, po=0.01 95
P48 ifxe[0.5,0] P 0 bo (%)

p—9 ifx€][0,0.5)
Po =

In other words, the initial setup consists of a quasi-1d column of plasma with discontinuous
density, no velocity and low pressure (equivalently: low temperature). The goal of such low
pressure is to make pressure forces —V p negligible in comparison the electric-force Z—ZpV(p. The
pressure follows the ideal gas law (i.e. p = (Yy—1)(E — %p’l |p]§2)) with y=5/3 as it is expected
from statistical mechanics considerations for a single-species with three degrees of freedom per
particle. With this setup the approximate value of the plasma frequency ®, = V' 103, therefore the
plasma period is 7), = 0.01986. We consider a final simulation time of 7 = 57,.

We use Neumann boundary conditions V@ -n = 0 on the entirety of the boundary 0Q for the
potential. This is a quite technical issue that requires a few explanations. For starters, note that the
scheme actually never computes ¢ but rather @,, see Section 4.5. The initial potential (pfl’o

satisfying the mean-value constraint [ (pZ’O dx = 0 is computed by solving the problem

(V(PZ’()aVXi)B(Q) = Zfl’ij(po,xi)p(g) Vie H.
j

where H is the set of indices identifying the nodes/DOFs from the spatial discretization of the
potential, the linear operator P € RY>*M applied to some vector ® € RM, with M = card{#} is
defined as

(EPCIJ)iZCIDi—L% where u(®) = Z mi®;, u(Q):= Z m; and m; ::/x,-dx.
jeEH jeH Q

The purpose of the algebraic operator P is to recover the data-compatibility [15]: without this
modification the right hand-side (po,X;);2 () might not belong to the column-space of the matrix.
This is particularly true in the context of distorted meshes. This allows direct use of conjugate
gradient method even though the matrix is actually singular. From a physical standpoint, the
operator P is equivalent to setting a constant background of positively charged ions that create
mean-value charge neutrality.

We used the algebraic scheme described in [58] with nodal discontinuous affinely-mapped Q'
elements with SSP3 time-integration for the Stage #1 and Stage #3 of Strang-Splitting. Positivity
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of the density and internal energy are safeguarded by convex-limiting: catastrophic failure is not
possible. The Stage #2 of Strang-splitting (i.e. source-update) uses the scheme (69)-(70).

We note that the source-update scheme does not have any intrinsic time-stability constraint. More
precisely we have that: the scheme is such that the only time-step size constraints are those
determined by the purely hyperbolic Stage #1 which have to be carried over Stages #2 and Stage
#3. With the current setup of physical parameters and initial data (94)-(95), material velocities
and sound speed lead to very mild cfl constraints. In fact, the scheme can cover the entire
simulation time [0,7¢] in just 4 time steps or less if we use a large cfl such as cfl = 0.75. By this
we mean, that the only time-step size bottleneck is that one dictated by the hyperbolic system.
This is an ideal situation, in the sense that the plasma period is not the primary time-scale of
concern. In order to fully resolve the plasma oscillation, and produce a time-resolved simulation
we had to use cfl = 0.005, see Figure 7-1. Figure 7-1 shows a half plasma-period of simulation
extracted from the total of five periods of simulation time. One of the noticeable features of these
snapshots is the preservation of a stationary contact in the middle of the domain.

7.2. Electrostatic Implosion

In this section we describe a numerical setup that puts some stress into the scheme. More
precisely, the goal of this setup is to test the performance of the scheme in the context of strong
expansions/rarefactions, vacuum-like conditions, strong shocks, and strong electrostatic forces.
We consider the following setup of physical parameters and physical domain

e=10"7, =1, Q={xeR*||x—x9[2 <16} (96)

me

The initial conditions given in primitive state are
po=1,v9=0, pp=10"" O7)

for the electrons. The ions number density n; satisfies the following distribution for all time:

where Q4 = {xcR?|4<|x—x <6
0  ifxeQ\Q, =1 [4<lx—x0le <6}

{104 if x € Qy
n; =

with xo = (0,0). The specific ion charge is set to g; = 1. In other words: there is positive
charge-density of magnitude p; = g;n; = 10* on the annulus Q4 that will pull the electrons into
the center of the circular domain Q. The electrons will try to stick to the annulus but because of
their inertia they will miss the target and implode. The pulling process will necessary create
vacuum-like conditions in the outskirts of the circle, close to the boundary. Long term behaviour
is that one of electrons oscillating around the annulus €24. We notice that the initial conditions are
such that mean-value charge-neutrality |, p; + p.dx = 0 is not satisfied. We therefore use
homogeneous Dirichlet boundary conditions ¢ = 0 on the entirety of the boundary 0Q.

With this setup, the initial plasma frequency is @, = /po = V' 103. The total simulation time is
set to be one plasma period tp = T), = g)—’; Note that the plasma period is a function of the density,
therefore as the simulation evolves, and the electron-plasma gets compressed, the actual value of
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Figure 7-1 Pure plasma oscillation: evolution screenshots.

This figure illustrates evolution of the density (red) and momentum (blue) for half plasma period
T,. The sample times are, approximately = 0, 1—16Tp , %Tp, %Tp, %Tp, 15—6Tp, %Tp, %Tp, % -
The dynamics is almost purely Hamiltonian given that the plasma pressure/temperature is quite
low. It is worth noting the stationary contact in the density profile, and the sticky nature of the
electrons near the walls at x = 0 and x = 1. This last feature is most possibly a defect of the current
implementation of reflecting boundary conditions.
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the smallest plasma-period in the domain will shrink by a few orders of magnitude. See Figure
7-2 for preliminary 2d-results displaying the evolution of the electron density. See also Figure 7-3
with a plot-overline of the density across the horizontal lines passing through the origin. This plot
overline illustrates part the dynamic range in density of this simulation (at least six-orders of
magnitude on the whole simulation).

We have experimented with this problem with a large range of parameters, some of which lead to
much more severe conditions/shocks/expansions etc. Overall we have a very high degree of
confidence in the capabilities of this scheme for this kind of problems. We have not yet found the
limits of breakdown of these schemes in the context of implosion-like tests. It is worth
mentioning that actual mesh used for this problem is not affinely mapped. The mesh actually uses
quadrilaterals with general bilinear maps. In this context there is no mathematical guarantee that
we can preserve the electro-kinetic energy during Stage #2. Still, the scheme provides significant
robustness, even though we are operating past the point of validity of any mathematical certificate
of quality.

8. OUTLOOK: PROBLEMS BEYOND THE SCOPE OF CURRENT
WORK

The goal of this section is discussing open problems and related lines of research that were not
part of the originally proposed plan of work. Among them, a very important topic is asymptotic
preservation in relationship to magnetic drift-limits. This is both an area where where important
developments in the literature already exist but further investment is needed in order to achieve a
higher degree of generality and applicability.

8.1. Magnetic drift-limits

Consider the two-dimensional Euler-Poisson model with a given magnetic field B

dp +divp =0,
dp+div(p~'pp' +1p) = —pVe+ Lp xB, (98)
_SAa[(p: —i—idlvp,

Here B = Bk is given, perpendicular to the xy-plane (i.e. p- B = 0), constant in space and constant
in time. The pressure is given by p = 6pp with 6y being a given constant temperature (this is
called an isothermal closure). Model (98) can still be understood as a purely electrostatic
problem. In the naked eye (98) appears to be simpler than the full Euler-Poisson equation system
that includes a total mechanical energy equation. However, the additional term Z= P X B is far
from being an ancillary appendage. It changes the dynamics of the problem qu1te significantly as
it brings in a new time-scale into play (the cyclotron frequency) and new asymptotic limits that
are not as simple to digest as the source dominated-regime of the purely electrostatic problem.
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Figure 7-2 Implosion electron mass density: evolution screenshots.
This figure illustrates evolution of the density for time frames 0/1600 to 250/1600 at regular
intervals of 10 (read from left to right and top to bottom). Contrast has been automatically adjusted
for each frame in order maximize the resolution of details. Frames 150 — 180 show some tearing
or fingering-like instability in the outer skirts of the circle where a strong vacuum is formed.
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Figure 7-3 Implosion electron mass density: plot-overline.
This figure illustrates evolution of the density for time frames 0/1600 to 80/1600 at regular inter-
vals of 10 (read from left to right and top to bottom). The y-axis represents density in logarithmic
scale in order to fully appreciate the dynamic range of this test. The electron density on the walls
drops by almost 5 orders of magnitude. Overall, the dynamic range of the entire simulation peaks
at six-orders of magnitude in some of the missing frames.
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Let o, = Blge Iqe denote the cyclotron angular frequency. In the context of low temperature regimes,
and ®, << (Dc (which usually entails regimes with very low electron densities combined with
very large magnetic fields) model (98) formally reaches the asymptotic limit

atpe +div (peve) =0,
A S _r%di" (geve)
Vo xB
B>~

99)

Ve ==

see for instance [86, 87, 36] for more details. In a more direct fashion, model (99) can be formally
derived from (98) passing to the limits m,,09 — 0" which simply wipes out all inertial and
pressure terms. Model (99) is known as the guiding-center drift-limit [87] and it is somewhat
related to the gyro-fluid approximation [39, 38].

It is worth mentioning that (99) contains neither hydrodynamic time-scales, nor sound speed, nor
electrostatic plasma oscillation, nor kinetic energy, nor electron inertial effects. Discretizing and
solving model (99) is reasonably trivial. However, developing an asymptotic preserving scheme
for (98) that smoothly degenerates into the model (99) does not appear to be an easy task. In fact,
the schemes advanced in this manuscript were not conceived to have such properties or be
efficient in such regimes.

In this regard, publication [39] is one of the few landmark papers, where the authors develop a
scheme for Euler’s equation with “given” electric field E and magnetic fields B that is asymptotic
preserving in the magnetic-drift limit. There is still a big gap in the numerical analysis literature
between single-minded methods for a single uncoupled PDE satisfying just one constraint (e.g.
either minimum principle of the entropy, or asymptotic consistency, etc) and methods that
preserve two or more of these constraints and compute their own electromagnetic fields in a
self-consistent manner. For instance, we are not aware of the existence of any scheme for
Euler-Maxwell or Euler-Poisson model that satisfies two or more of the following list of
properties: (i) it is consistent in the magnetic-drift limit, (ii) computes its own electromagnetic
fields (i.e. beyond “given” E and B fields), (iii) preserves the electro-kinetic energy in the
source-dominated regime, (iv) it is asymptotically well-posed in the high-density regime, (v)
preserves the invariant set of Euler’s equation (e.g. positivity of density and minimum principle of
the specific entropy), and (vi) is fully-discrete (i.e. actually implementable scheme).

The list (1)-(vi) may sound as an exaggerated collection of requirements, but many naive tests and
technical applications are multiscale in nature and make even two dimensional computations
challenging regardless of the computational resources available. In this regard, the diocotron
instability is an interesting example that taps exactly into the regime where the guiding-center
drift-limit model (low density and high B-field) is a lot more appropriate than a full Euler-Poisson
or Euler-Maxwell model. The setup of this instability is explained in the following subsection
together with some preliminary numerical results.
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8.2. Diocotron instability

The diocotron instability consists in an initial configuration of electrons moving with velocity v
given by

v:=0(r) xx where @ = (r)k, x=[x;,x,0]", r=|x| (100)

where ®(r) is an angular velocity carefully chosen in order to produce centrifugal forces that
balance the pressure forces, electric force, and magnetic forces exactly, see Remark 8.1 for more
details. The initial electron density profile is discontinuous, which leads to a discontinuous
angular velocity ®(r). This creates shear between the layers that rotate at different speeds while
also triggering specific resonant modes, see for instance [36] and Chapter 6 of [35].

We considered the following set of parameters and physical domain
e=10", = =10">, B=50, 80 =0.001, Q = {x € R*||x[,. < 16} (101)
and the following choice of initial electron and ion density profiles

dtny if x| <4
ne=1<mny  if4<|x|p<8 where np=1,8" =0.175, 8 =10, while n; =& np.
8 ny if |x|,2>8
(102)

The boundary conditions are p-n = 0 and ¢ = 0 on the entirety of the boundary. This setup of
parameters was chosen to guarantee that the inequality ®, << ® holds. The choice of electron
and ion and density distributions was picked from [36] in order to trigger the 3-mode of the
Diocotron instability. A computational procedure used to compute an (approximate) equilibrium
initial velocity profile is detailed in Remark 8.1.

The simplest approach to incorporate the magnetic forces into either schemes (55)-(56) or
(69)-(70) is by compounding operator-Splitting. Time integration of the magnetic forces using
operator splitting while still preserving internal energy is relatively trivial to achieve using
Crank-Nicolson scheme which preserves the kinetic energy exactly. A fully-coupled
Schur-complement approach leading to non-symmetric linear algebra was also tested. Both
approaches (compounded operator splitting and/or Schur complement approach) delivered nearly
identical results. In both cases establishing positivity of density and internal energy is
straightforward. Figure 8-1 shows some numerical results of the 3-mode of the Diocotron
instability triggered by the initial choice of electron density profile detailed in (102).

While in principle it is possible to solve quite a lot important problems with such a simple minded
numerical approach, and we can reproduce well-established analytical results such as the
Diocotron instability, there is plenty to improve here. The results of Figure 8-1, while
aesthetically beautiful and even compelling from the mathematical point of view, they exhibit a
strong dependence on the parameters (101). In particular, reducing the electron specific mass m,
while increasing the value of B (simultaneously) take us to the magnetic-Drift regime. This can
very quickly put some serious stress into the scheme. While catastrophic failure is unlikely to
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happen, very large material velocities will lead to negligible time-step sizes due to hyperbolic
cfl-constrants. In practice, this means that even simple two-dimensional non-technical cases can
become extremely difficult to solve, possibly taking many days to complete, making
three-dimensional technically relevant computations completely out of reach. This kind of
pathological situations appears to be the signature of numerical schemes that are not
asymptotically consistent with magnetic drift-limits.

These are not problems that might get solved anytime soon by a bigger more powerful computer.
Similarly, blind usage of implicitness will not buy us much either (see for instance [38]). It would
be quite important to revisit the literature [39, 24, 38], improve the state of affairs by formulating
new methods that satisfy/preserve multiple constraints and are actually implementable in the
context of modern finite element libraries/frameworks.

Remark 8.1 (Computation of the angular velocity profile). The initial velocity profile v of the
Diocotron problem satisfies the following equilibrium relationship:

p(v-V)v—i—Vp:—gTipV(p—l—g—vaxB. (103)
Using (100) we can rewrite (103) as follows
—po(r)’x+Vp = —LpVo+ Lpw(r)(x, x B) where x; :=[—x,x1,0]"
Taking the dot product with x we get
—po(r)*[x[} +Vp-x = —2pVe-x+ Lp(r)(x, xB) - x

which can be finally reorganized as

(plx|%) o(r)* + (Zp(x, xB)-x) o(r) = (Vp-x+ £pVe-x) =0 (104)
H/—/ ~- J [\ ~ 4
=a =b =C

which is clearly a quadratic equation for (r). Therefore, the algorithm/script required to compute
equilibrium profiles consists in the following steps: (i) Choose a 8-symmetric electron density
and ion density profiles n, and n; respectively, (i1) Compute the pressure p = 0pp = Opm,n, using
the electron density profile n, chosen in step (i), (iii) find the corresponding electrical potential by
solving —eA® = g.n, + g;n; with proper boundary conditions, (iv) Solve the quadratic equation:

(pi\xiﬁz)w(n)z + (%pi(xu X B) -xi) (,O(r,') — ((Vp),' - Xi + r‘fl—Zpi(V(p),- -xi) =0 (105)
for each node i € V. This algorithm can be encoded into any reasonable finite element

library/framework and will deliver accurate equilibrium profiles without resorting to iterative
solution methods.
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Figure 8-1 Diocotron instability: electron density.
This figure illustrates evolution of the Diocotron instability, for the 3-mode.
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9. CONCLUSION

An overview of the main stability properties satisfied by Euler-Maxwell and Euler-Poisson model
was presented in Section §2. These results establish the natural definitions of stability and
energ-flux balance that these models are meant to preserve. All of the results in Section §2 are
elementary in nature but: (i) They cannot be easily found in the scientific literature, (ii) They are
the backbone of the main stability arguments used in the remainder of the manuscript. In
particular, we note that the energy-flux balance arguments for Euler-Poisson’s model where
greatly simplified by interpreting the electrostatic problem as an evolutionary problem rather than
as an elliptic constraint (electric Gauss law). We think this approach is original and much more
fruitful than sticking the traditional elliptic-constraint paradigm. This fundamental change on
view carried over the entire manuscript and laid the path to rigorous discrete energy-arguments in
the numerical analysis context.

Serving as guideline or template of ideas, in Section §3 we presented a collection of baseline
constructions for Euler-Maxwell system that preserve positivity of density, internal energy,
electro-kinetic energy, and total energy of the system using purely collocated discretizations.
While these mathematical results are theoretical in nature and collocated discretization are
unlikely to be applicable in the context of Euler-Maxwell and Euler-Poisson’s system we note
that: (i) A primary layer of time-integration mathematical theory was established §3. One of the
main results is a formal proof of energy-stability for Euler-Maxwell system when using
operator-splitting (see Lemma 3.3) which is, to the best of our knowledge, the first of its kind. (ii)
A large portion of the results of Section §3 were carried over into the context of Euler-Poisson
model, in particular those results that are related to the preservation of internal energy.

In Section §4 we presented two main source-update schemes for the Euler-Poisson model: both of
them preserve positivity of density, internal energy and the electro-kinetic energy. The first
scheme is a somewhat traditional fully-coupled scheme leading to a Schur complement algebraic
problem. The second scheme avoids the method of lines and leads directly to a fully decoupled
scheme: there is no Schur complement in this second-scheme since the resulting discrete system
is lower-triangular (the solution can be found by blockwise forward substitution). Only the
second scheme is guaranteed to be “asymptotic preserving” or “asymptotically well-posed” in the
context of large densities: in other words its linear algebra system is guaranteed to be
unconditionally invertible. Full detail about the mathematical properties satisfied by each scheme
is provided. The emphasis of Section §4 is not forcing the will of the reader onto taking a specific
choice, but rather on providing choices while also informing about the consequences/properties
associated to each one. Both schemes are highly specialized constructions that require very
precise choices of finite element spaces, mesh type, and time-discretizations. However, it is worth
highlighting that these schemes are not finite volume/element/difference hybrids that have to be
patched together from different pieces of code as it is usually advocated/advanced in the
computational-physics literature. Even though the computational implementation of these
schemes require a significant amount of coding craft, they can fit under the roof of most leading
finite element software frameworks (e.g. [2, 9, 3]).

In Section §4.5 we provided the basic algorithmic workflow and modifications of the scheme in
order to accommodate either static or time-dependent “given” background of ions. This requires
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only minor modifications to the scheme. We note that none of the schemes advanced in this
manuscript is self-starting. This is related to the initial value of the electric potential which has to
be pre-computed before we even start the time-integration process. In Section §5.2 we provide
some of the details related to the initialization of the Scheme.

Section §2.3 is an informal discussion on the boundary conditions for Euler-Poisson. We note that
the mathematical background and overall numerical analysis state-of-the-art about boundary
conditions for Euler-Maxwell and Euler-Poisson is borderline non-existent. Any discussion on
this topic is usually of questionable scientific value since very little can be established rigorously.
At the very least some heuristic guidelines are required in order to understand what boundary
conditions might either make the PDE-model unstable and/or lead to data-incompatibility.
Informal analysis of the source dominated regime sheds some light into this issue. In particular,
some preliminary conclusions are: (i) Homogeneous Neumann boundary conditions for the
potential are data-compatible with reflecting boundary conditions for Euler’s subsystem, (i)
Piecewise constant Dirichlet data for the potential should preserve the tangent component of the
current, but might either draw or inject current into the walls of the domain, (iii)
Non-homogeneous Neumann boundary conditions for the Euler-Poisson model without
resistive/damping source terms do not seem to be mathematically and/or physically meaningful.

Section §7 presents some modest numerical results. We present two primary examples:
“pure-plasma oscillation” and “‘electrostatic implosion”. The pure-plasma oscillation is meant to
illustrate the ability of the scheme preserve purely oscillatory phenomena due to the electrostatic
plasma frequency and overstep the plasma period. The pure plasma-oscillation test does not
intend to be brutalization test where the breakdown limits of the scheme are explored. On the
other hand, the electrostatic implosion is meant to push the capabilities of the scheme much
harder in order to create conditions of strong expansions, strong vacuum, strong shocks,
high-densities, high-pressures, etc. We can confidently say that we are nowhere near the
breakdown limit of the proposed schemes. There is plenty of purely computational work pending
to be done in relationship to both: (i) Validation of the code (with convergence rates). Exact
solutions for Euler-Poisson model in the repulsive case do not seem to be widely available and the
method of manufactured solutions, for reasons that go beyond the scope of this manuscript, is not
a technically viable solution. In this regard, the literature of attractive Euler-Poisson system
appears to offer a reasonable collection of exact analytical solutions that can be used for
validation purposes [108, 109]. (i1) Stronger more aggressive test have to be designed for display
purposes.

Section §8 offers an outlook into problems and regimes where the schemes proposed in this
manuscript indeed work but much more serious mathematical development is required. In
particular, section §8 describes what is known as the “magnetic-drift limit” or “guiding center
drift-limit”. This is related to what is known as asymptotic preservation in the context of strong
magnetic fields. The scientific state-of-the-art is, for the time being, incomplete and more
investment would be needed. We also propose a numerical test that taps exactly in the
magnetically-driven drift regime and show that while our methods work, there is still plenty of
room for improvements. Overall, Section §8 defines a quite exiting path future research.

Finally, we mention that sections §2.4, §4.6, §5.1 are ancillary and they do not correspond with
any part of the funded/proposed work. Those sections are related to the attractive
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(self-gravitational) Euler-Poisson system used is cosmological simulations and galactic dynamics.
Those sections were included in the report for the sake of completeness and because their
inclusion required negligible time and effort. Last but not least they were included because they
are of general scientific interest.
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APPENDIX A. APPENDIX

A.1. Complete equation of state, ideal gas law, and simplifications

Definition A.1 (Complete equation of state). Let the thermodynamic behaviour of the
fluid/substance of interest be entirely described by a specific entropy s = 6(v,e) where v is the
specific volume and e is the specific internal energy. We assume that ¢ is concave with respect to
v and e and that g—j > (0. We assume that Gibb’s identity (a thermodynamics axiom of equilibrium
thermodynamics) holds true

0ds :=de+ pdv, (106)

which encodes the first and second principles of thermodynamics. We further assume that
s = o(v,e), the complies with the exact-differential structure of identity (106):

ds= gde+fdv = ds=Fde+ Fdv (withdv=—dp),
which implies the following standard relationships (cf.[78, 56])
dc .__ -1 . d . 270 dc1—1
% =0 and §:=9 = p:=-p [F][F] (107)

Formulas (106)-(107) are a minimal description of the framework of complete equations of state:
all observables (e.g. temperature, pressure, soundspeed, etc) are computed from the specific
entropy describing thermodynamic behaviour of a substance of interest in a way that is consistent
with the first and second principles of thermodynamics.

Remark A.1 (Ideal gas law closure and simplifications). For the case of ideal gas law,
extensively used for the thermodynamic description of electrons and ions, we have that the
specific entropy is given by

ole,p) = log(e™Tp ), (108)

using the general formulas (107) we obtain the following expressions for the temperature and
pressure

0:=(y—1)e, p:=(y—1)pe, (109)

Note that the pressure formula is quite often written as p = 0p in the plasma literature, which is
consistent with (109). We can consider the specific isoentropic and isothermal closures which
further simplify the ideal-gas law (108)-(109):

B Isothermal closure: p := 0gp where 0y = const is the plasma temperature.

B Isoentropic closure: p := kp? where k := (y— 1)e(Y*~1)%, sy = const is the constant entropy

1
of the fluid, and y = 5/3. This closure is derived from the assumption log(e*Tp~!) = 5.

In both of these simplified cases, isoentropic and isothermal, the evolution for the total
mechanical energy £ becomes redundant since the specific internal energy e can be easily
recovered with no computational cost. For the isothermal case e := %, while e := (pe®)¥~! for
the isoentropic case. Both isothermal and isoentropic closures are quite popular in the

semiconductor modeling literature.
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