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OpenMP Tasks Still Seeing Limited Adoption

Task construct first added to OpenMP spec. in version 3.0 (2008)
> Continued feature development in subsequent versions of OpenMP

> Tasking model now widely used in the context of asynchronous offload to devices

Slow adoption of tasking in other scenarios — why?
> Concerns about overhead costs of task creation, scheduling, synchronization
> Users unsure about appropriate granularity of tasks to use

° Perceived variation in quality of implementations across vendors and platforms

Contributions of this paper/presentation:
> Benchmark a challenging task parallel computation
° ...on four different architectures
° ...using LLVM/Clang and commercial OpenMP implementations

° ...to address these questions



Unbalanced Tree Search (UTS) as a Tasking Stress Test

UTS benchmark for dynamic load balancing of computations
> First proposed and demonstrated in LCPC 2006 paper
> OpenMP tasking and Cilk applied to UTS in [IWOMP 2009 paper
> Compared to Cilk++ (Cilk Plus forerunner) and TBB in follow-up LJPP article
> Added to Barcelona OpenMP Tasks Suite (BOTS)

UTS problem: count nodes of a dynamically-generated tree
° Tree implicitly generated on-the-fly by sampling a binomial probability distribution
> Bach non-root tree node has m children with probability g, none with probability 7-g
> Do grepeats of SHA-1 hash at each tree node (the work)

Resulting computation is unpredictably imbalanced
> Size of subtree rooted at each node not dictated by proximity to root

> Requires continuous dynamic load balancing throughout execution



UTS OpenMP Tasking Implementation (Adapted From BOTY)

unsigned long long search(Node *parent, int numChildren)
{
Node n[numChildren], *nodePtr;
int i, 3j;
unsigned long long subtreesize = 1, partialCount[numChildren];

// Visit each child
for (i = 0; i < numChildren; i++) {
nodePtr = &n[i];

// The following line is the work (one or more SHA-1 ops)
for (j = 0; j < granularity; j++)
shal rng(parent->state.state, nodePtr->state.state, 1i);

// Sample a binomial distribution to determine the number of children of child i
nodePtr->numChildren = uts numChildren(nodePtr);

if (nodePtr->numChildren > 0)
// Traverse the subtree rooted at child i to get subtree size
#pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)
partialCount[i] = search(nodePtr, nodePtr->numChildren);
else
partialCount[i] = 1; // Leaf node (no new task generated)

}

// Wait for all subtree traversals
#pragma omp taskwait

// Combine subtree counts from children to get total size of subtree rooted at Node
for (i = 0; i < numChildren; i++)

subtreesize += partialCount[i];

return subtreesize;
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Test Problem Used for Experiments

Parameters
° 2000 children of root node
> Probability of non-root node having children g = 0.200014
° Probability of non-root node not having children (7 — ¢g) = 0.799986
°> Each non-root non-leaf node has 5 children

> Experiments vary number of SHA-1 hash repeats per node

Generated tree
° 111 345 631 total nodes
> 89 076 904 leaf nodes (~80% of the total nodes)
° 22 268 727 non-leat nodes (~20% of the total nodes)
° Maximum depth of 17 844 nodes



Experimental Setup (Platforms and OpenMP Implementations)

Intel Xeon Skylake (Xeon SKI.)
° Dual socket with 24 cores per socket (48 cores total), 2-way SM'T
> Compilers: Intel Compiler 19; Clang 9 with LLVM OpenMP runtime
° Also Threading Building Blocks (I'BB) with Intel C++ Compiler 19

IBM POWER9 (IBM P9)

° Dual socket with 22 cores per socket (44 cores total), 4-way SM'T
> Compilers: PGI Compiler 20.1; Clang 9 with LLVM OpenMP runtime

Arm ThunderX2 (Arm TX2)

° Dual socket with 28 cores per socket (56 cores total), 2-way SMT (enabled)
> Compilers: Arm Compiler 20.0 “armclang”; Clang 9 with LLVM OpenMP runtime

Intel Xeon Phi “Knights Landing” (Xeon Phi)
> Single socket with 68 cores, 4-way SMT

o Compilers: Intel Compiler 19; Cray CCE 9.1.2; Clang 9 with LLVM OpenMP runtime

i



Varying Task Granularity in UTS

Task gfanlllafity diCtath Table 1. Translating task granularity from SHA-1 operations / task to time / task
by ﬂumber Of SHA"l Architecture and Time (us)|Time (us) per recursive call at granularity
haSh repeats per tree nOde Implementation per op. 5 0ps.|10 0ps.|20 ops.|40 ops.|80 ops.|160 ops.
Xeon SKL - ICC 0.22 1.12 |2.23 |4.47 [8.94 17.9 |35.7
Xeon SKL - Clang 0.18 0.89 |[1.78 |3.55 |7.10 |14.2 |284
IBM P9 - PGI 0.31 1.53 |3.06 |6.13 [12.2 [24.5 [49.0
IBM P9 - Clang 0.29 1.45 (290 [5.80 [11.6 [23.2 |46.4
" Arm TX2 - Armclang|0.32 1.61 |3.22 |6.43 (12,9 (25.7 |[51.4
11 rs of 2 g
Va ed by powe S Arm TX2 - Clang 0.34 1.73 |3.45 |6.90 [13.8 [27.6 [55.2
from 1 to 32 in our Xeon Phi - ICC 0.64 321 (642 [12.8 [25.7 |51.4 [103
. Xeon Phi - Clang 0.74 3.68 [7.36 |14.7 |29.4 |58.9 |118
experiments Xeon Phi - CCE 0.63 314 (629 [12.6 |[25.2 [50.3 [101

Table 2. Translating task granularity from SHA-1 operations / task to machine in-

5 children generated per structions / task
OPCHMP taSk, so 5 to 160 Architecture and Kilo instr.|Kilo instr. per recursive call at granularity
SHA 1 h h k Implementation per op. 5 ops.llO ops.|20 ops.|40 ops.|80 0ps.|160 ops.
- asnes pef tas Xeon SKL - ICC 1.74 8.72 (17.4 349 69.7 139 279
Xeon SKL - Clang 1.70 8.51 (17.0 |34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 |[16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 |16.7 |334 66.8 133 267
. . Arm TX2 - Armclang|1.39 6.97 (13.9 |27.9 55.7 111 223
Translations to time and Arm TX2 - Clang  |1.51 759 [15.2 [30.4 [60.7 [121  [243
< : g Xeon Phi - ICC 1.70 8.51 (17.0 |34.0 68.1 136 272
maChlne Instructions Xeon Phi - Clang 1.71 8.57 |17.1 34.3 68.6 137 274
shown in tables at right Xeon Phi - CCE 1.63 8.15 [16.3 [32.6 [65.2 [130 |261
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10 I Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)
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12 I Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)
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13 I Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)
100
90

80

70

| S
Q
> e
Q -
c Q
9 m
2 o0
i —
o _qc) ~0-Arm TX2 - Armclang (56 threads)
= 20 B
nr_Lu A= ——Arm TX2 - Clang (56 threads)
S 40 —e—Xeon Phi - ICC (68 threads)
(&)
& —-Xeon Phi - Clang (68 threads)
30
-#-Xeon Phi - CCE (68 threads)
20
10 Coarser Tasks (Note Log Scale)
0
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task



14 I Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)

100 “
90

— — — — —80%

—_
Q
> et
Q -
c Q
2 (aa]
2 o0
i -
[ = —o-Arm TX2 - Armclang (56 threads)
T 20 B
nr_Lu A= ——Arm TX2 - Clang (56 threads)
S 40 —e-Xeon Phi- ICC (68 threads)
(&)
& —#Xeon Phi - Clang (68 threads)
30
-#-Xeon Phi - CCE (68 threads)
20
10 Coarser Tasks (Note Log Scale)
0
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task
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16 I Speedup on Coarsest Problem: SMT Usefulness Varies by System
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19 1 Load Balancing Metric: Child Tasks Moved Per Thread Per Second
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Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

| SHA-1 ops. per task | 5 | 10 | 20 | 40 ] 80 | 160 |
| Pearson correlation [ 0.69 | 059 [ 042 | 042 | 038 [ 0.12 |




20 I Load Balancing Metric: Child Tasks Moved Per Thread Per Second
3 best performers exhibit most load balancing
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22 I Conclusion and Updates

Fear not the use of OpenMP tasks if tasks aren’t “too small”
> All implementations efficiently handling tasks of O(700£) instruction granularity
> Some (vendor) implementations efficiently handling tasks of O(70£) instruction granularity

° Clang/1.ILVM consistently adequate on diverse architectures

New since the paper went to print...
° Clang/LLVM 11 Release Candidate 2 available, with final release imminent
> Support for task reductions on orphaned tasks tested and confirmed

> Will allow future work testing UTS version using task reductions




