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2 OpenMP Tasks Still Seeing Limited Adoption

Task construct first added to OpenMP spec. in version 3.0 (2008)

o Continued feature development in subsequent versions of OpenMP

o Tasking model now widely used in the context of asynchronous offload to devices

Slow adoption of tasking in other scenarios — why?

o Concerns about overhead costs of task creation, scheduling, synchronization

o Users unsure about appropriate granularity of tasks to use

o Perceived variation in quality of implementations across vendors and platforms

Contributions of this paper/presentation:

, Benchmark a challenging task parallel computation

o ...on four different architectures
O ...using LLVM/Clang and commercial OpenMP implementations

' ...to address these questions

o



I3  Unbalanced Tree Search (UTS) as a Tasking Stress Test

UTS benchmark for dynamic load balancing of computations

. First proposed and demonstrated in LCPC 2006 paper 

. OpenMP tasking and Cilk applied to UTS in IWOMP 2009 paper 

. Compared to Cilk++ (Cilk Plus forerunner) and TBB in follow-up IJPP article 

Added to Barcelona OpenMP Tasks Suite (BOTS)

UTS problem: count nodes of a dynamically-generated tree

o Tree implicitly generated on-the-fly by sampling a binomial probability distribution

o Each non-root tree node has m children with probability q, none with probability 1-q

o Do g repeats of SHA-1 hash at each tree node (the work)

Resulting computation is unpredictably imbalanced
o Size of subtree rooted at each node not dictated by proximity to root

o Requires continuous dynamic load balancing throughout execution

o



4 UTS OpenMP Tasking Implementation (Adapted From BOTS)

unsigned long long search(Node *parent, int numChildren)

{
Node n[numChildren], *nodePtr;

int i, j;

unsigned long long subtreesize = 1, partialCount[numChildren];

// Visit each child

for (i = 0; i < numChildren; i++) {

nodePtr = &n[i];

// The following line is the work (one or more SHA-1 ops)

for (j = 0; j < granularity; j++)

shal _rng(parent->state.state, nodePtr->state.state, i);

// Sample a binomial distribution to determine the number of children of child i

nodePtr->numChildren = uts _numChildren(nodePtr);

if (nodePtr->numChildren > 0)

// Traverse the subtree rooted at child i to get subtree size

#pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)

partialCount[i] = search(nodePtr, nodePtr->numChildren);

else

partialCount[i] = 1; // Leaf node (no new task generated)

}

// Wait for all subtree traversals

#pragma omp taskwait

// Combine subtree counts from children to get total size of subtree rooted at Node

for (i = 0; i < numChildren; i++)

subtreesize += partialCount[i];

return subtreesize;

}

o



5 Test Problem Used for Experiments

Parameters
o 2000 children of root node

o Probability of non-root node having children q = 0.200014

o Probability of non-root node not having children (1 — q) = 0.799986

o Each non-root non-leaf node has 5 children

O Experiments vary number of SHA-1 hash repeats per node

Generated tree
O 111 345 631 total nodes

o 89 076 904 leaf nodes (-80% of the total nodes)

O 22 268 727 non-leaf nodes (-20% of the total nodes)

O Maximum depth of 17 844 nodes

o



I6 Experimental Setup (Platforms and OpenMP Implementations)

Intel Xeon Skylake (Xeon SKI)

o Dual socket with 24 cores per socket (48 cores total), 2-way SMT

o Compilers: Intel Compiler 19; Clang 9 with LLVM OpenMP runtime

O Also Threading Building Blocks (TBB) with Intel C++ Compiler 19

IBM POWER9 (IBM P9)

- Dual socket with 22 cores per socket (44 cores total), 4-way SMT

O Compilers: PGI Compiler 20.1; Clang 9 with LLVM OpenMP runtime

Arm ThunderX2 (Arm TX2)

o Dual socket with 28 cores per socket (56 cores total), 2-way SMT (enabled)

o Compilers: Arm Compiler 20.0 "armclane; Clang 9 with LLVM OpenMP runtime

Intel Xeon Phi "Knights Landing' (Xeon Phi)

O Single socket with 68 cores, 4-way SMT

o Compilers: Intel Compiler 19; Cray CCE 9.1.2; Clang 9 with LLVM OpenMP runtime

o



7 Varying Task Granularity in UTS

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and
Implementation

Time (p,$)
per op.

Time (µs) per recursive call at granularity
5 ops. 10 ops. 20 ops.40 ops.80 ops. 160 ops.

Xeon SKL - ICC 0.22 1.12 2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 1.78 3.55 7.10 14.2 28.4

IBM P9 - PGI 0.31 1.53 3.06 6.13 12.2 24.5 49.0
IBM P9 - Clang 0.29 1.45 2.90 5.80 11.6 23.2 46.4

Arm TX2 - Armclang 0.32 1.61 3.22 6.43 12.9 25.7 51.4
Arm TX2 - Clang 0.34 1.73 3.45 6.90 13.8 27.6 55.2
Xeon Phi - ICC 0.64 3.21 6.42 12.8 25.7 51.4 103
Xeon Phi - Clang 0.74 3.68 7.36 14.7 29.4 58.9 118
Xeon Phi - CCE 0.63 3.14 6.29 12.6 25.2 50.3 101

Table 2. Translating task granularity from SHA-1 operations / task to machine in-
structions / task

Architecture and
Implementation

Kilo instr.
per op.

Kilo instr. per recursive call at granularity
5 ops. 10 ops. 20 ops. 40 ops.80 ops. 160 ops.

Xeon SKL - ICC 1.74 8.72 17.4 34.9 69.7 139 279
Xeon SKL - Clang 1.70 8.51 17.0 34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 16.7 33.4 66.8 133 267
Arm TX2 - Armclang 1.39 6.97 13.9 27.9 55.7 111 223
Arm TX2 - Clang 1.51 7.59 15.2 30.4 60.7 121 243
Xeon Phi - ICC 1.70 8.51 17.0 34.0 68.1 136 272
Xeon Phi - Clang 1.71 8.57 17.1 34.3 68.6 137 274
Xeon Phi - CCE 1.63 8.15 16.3 32.6 65.2 130 261

o



8 Varying Task Granularity in UTS

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and
Implementation

Time (p,$)
per op.

Time (µs) per recursive call at granularity
5 ops. 10 ops. 20 ops.40 ops.80 ops. 160 ops.

Xeon SKL - ICC 0.22 1.12 2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 1.78 3.55 7.10 14.2 28.4

IBM P9 - PGI 0.31 1.53 3.06 6.13 12.2 24.5 49.0
IBM P9 - Clang 0.29 1.45 2.90 5.80 11.6 23.2 46.4

Arm TX2 - Armclang 0.32 1.61 3.22 6.43 12.9 25.7 51.4
Arm TX2 - Clang 0.34 1.73 3.45 6.90 13.8 27.6 55.2
Xeon Phi - ICC 0.64 3.21 6.42 12.8 25.7 51.4 103
Xeon Phi - Clang 0.74 3.68 7.36 14.7 29.4 58.9 118
Xeon Phi - CCE 0.63 3.14 6.29 12.6 25.2 50.3 101

Wide range
Table 2. Translating task granularity from SHA-1 operations / task to machine in-
structions / task

Architecture and
Implementation

Kilo instr.
per op.

Kilo instr. per recursive call at granularity
5 ops. 10 ops. 20 ops. 40 ops.80 ops. 160 ops.

Xeon SKL - ICC 1.74 8.72 17.4 34.9 69.7 139 279
Xeon SKL - Clang 1.70 8.51 17.0 34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 16.7 33.4 66.8 133 267
Arm TX2 - Armclang 1.39 6.97 13.9 27.9 55.7 111 223
Arm TX2 - Clang 1.51 7.59 15.2 30.4 60.7 121 243
Xeon Phi - ICC 1.70 8.51 17.0 34.0 68.1 136 272
Xeon Phi - Clang 1.71 8.57 17.1 34.3 68.6 137 274
Xeon Phi - CCE 1.63 8.15 16.3 32.6 65.2 130 261

o



9 Varying Task Granularity in UTS

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and
Implementation

Time (p,$)
per op.

Time (µs) per recursive call at granularity
5 ops. 10 ops. 20 ops.40 ops.80 ops. 160 ops.

Xeon SKL - ICC 0.22 1.12 2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 1.78 3.55 7.10 14.2 28.4

IBM P9 - PGI 0.31 1.53 3.06 6.13 12.2 24.5 49.0
IBM P9 - Clang 0.29 1.45 2.90 5.80 11.6 23.2 46.4

Arm TX2 - Armclang 0.32 1.61 3.22 6.43 12.9 25.7 51.4
Arm TX2 - Clang 0.34 1.73 3.45 6.90 13.8 27.6 55.2
Xeon Phi - ICC 0.64 3.21 6.42 12.8 25.7 51.4 103
Xeon Phi - Clang 0.74 3.68 7.36 14.7 29.4 58.9 118
Xeon Phi - CCE 0.63 3.14 6.29 12.6 25.2 50.3 101

Wide range
Table 2. Translating task granularity from SHA-1 operations / task to machine in-
structions / task

Architecture and
Implementation

Kilo instr.
per op.

Kilo instr. per recursive call at granularity
5 ops. 10 ops. 20 ops. 40 ops.80 ops. 160 ops.

Xeon SKL - ICC 1.74 8.72 17.4 34.9 69.7 139 279
Xeon SKL - Clang 1.70 8.51 17.0 34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 16.7 33.4 66.8 133 267
Arm TX2 - Armclang 1.39 6.97 13.9 27.9 55.7 111 223
Arm TX2 - Clang 1.51 7.59 15.2 30.4 60.7 121 243
Xeon Phi - ICC 1.70 8.51 17.0 34.0 68.1 136 272
Xeon Phi - Clang 1.71 8.57 17.1 34.3 68.6 137 274
Xeon Phi - CCE 1.63 8.15 16.3 32.6 65.2 130 261

Narrower range

o



10  Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)
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13 Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)
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14 Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)
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15 Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)
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16 Speedup on Coarsest Problem: SMT Usefulness Varies by System

Xeon SKL - ICC

(48 Cores, 96 HT)

Xeon SKL - Clang

(48 Cores, 96 HT)

IBM P9 - PGI

(44 Cores, 176 HT)

IBM P9 - Clang

(44 Cores, 176 HT)

Xeon Phi - ICC

(68 Cores, 272 HT)

Xeon Phi - Clang

(68 Cores, 272 HT)

Xeon Phi - CCE

(68 Cores, 272 HT)

Arm TX2 - Armclang

(56 Cores, 112 HT)

Arm TX2 - Clang

(56 Cores, 112 HT)

0

Speedup over sequential

20 40 60 80 100

a

• Num OMP Threads = 40 Longer Is Better

Num OMP Threads = Num Cores

Num OMP Threads = Num Hardware Threads



17 Speedup on Coarsest Problem: SMT Usefulness Varies by System

Xeon SKL - ICC

(48 Cores, 96 HT)

Xeon SKL - Clang

(48 Cores, 96 HT)

IBM P9 - PGI

(44 Cores, 176 HT)

IBM P9 - Clang

(44 Cores, 176 HT)

Xeon Phi - ICC

(68 Cores, 272 HT)

Xeon Phi - Clang

(68 Cores, 272 HT)

Xeon Phi - CCE

(68 Cores, 272 HT)

Arm TX2 - Armclang

(56 Cores, 112 HT)

Arm TX2 - Clang

(56 Cores, 112 HT)

0

Speedup over sequential

20 40 60 80

• Num OMP Threads = 40 Longer Is Better

Num OMP Threads = Num Cores

Num OMP Threads = Num Hardware Threads

100

All improve
speedup from
40 threads to
1 thread/core



18 Speedup on Coarsest Problem: SMT Usefulness Varies by System
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19 Load Balancing Metric: Child Tasks Moved Per Thread Per Second
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20 1 Load Balancing Metric: Child Tasks Moved Per Thread Per Second

3 best performers exhibit most load balancing
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3 best performers exhibit most load balancing
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22 Conclusion and Updates

Fear not the use of OpenMP tasks if tasks aren't "too small"
o All implementations efficiently handling tasks of 0(100k) instruction granularity

• Some (vendor) implementations efficiently handling tasks of 0(10k) instruction granularity

o Clang/LLVM consistently adequate on diverse architectures

New since the paper went to print...

• Clang/LLVM 11 Release Candidate 2 available, with final release imminent

o Support for task reductions on orphaned tasks tested and confirmed

o Will allow future work testing UTS version using task reductions


