
Evaluating the Efficiency
of OpenMP Tasking
for Unbalanced Computation
on Diverse CPU Architectures

PRESENTED BY

Stephen Olivier
ALe.

Sandia National Laboratories is a rnultirnission
laboratory rnanaged and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Departrnent of

Energys National Nuclear Security
Adrninistration under contract DE-NA0003525.

SAND2020-10093C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 OpenMP Tasks Still Seeing Limited Adoption

Task construct first added to OpenMP spec. in version 3.0 (2008)

o Continued feature development in subsequent versions of OpenMP

o Tasking model now widely used in the context of asynchronous offload to devices

Slow adoption of tasking in other scenarios — why?

o Concerns about overhead costs of task creation, scheduling, synchronization

o Users unsure about appropriate granularity of tasks to use

o Perceived variation in quality of implementations across vendors and platforms

Contributions of this paper/presentation:

, Benchmark a challenging task parallel computation

o ...on four different architectures
O ...using LLVM/Clang and commercial OpenMP implementations

' ...to address these questions

o

I3 Unbalanced Tree Search (UTS) as a Tasking Stress Test

UTS benchmark for dynamic load balancing of computations

. First proposed and demonstrated in LCPC 2006 paper

. OpenMP tasking and Cilk applied to UTS in IWOMP 2009 paper

. Compared to Cilk++ (Cilk Plus forerunner) and TBB in follow-up IJPP article

Added to Barcelona OpenMP Tasks Suite (BOTS)

UTS problem: count nodes of a dynamically-generated tree

o Tree implicitly generated on-the-fly by sampling a binomial probability distribution

o Each non-root tree node has m children with probability q, none with probability 1-q

o Do g repeats of SHA-1 hash at each tree node (the work)

Resulting computation is unpredictably imbalanced
o Size of subtree rooted at each node not dictated by proximity to root

o Requires continuous dynamic load balancing throughout execution

o

4 UTS OpenMP Tasking Implementation (Adapted From BOTS)

unsigned long long search(Node *parent, int numChildren)

{
Node n[numChildren], *nodePtr;

int i, j;

unsigned long long subtreesize = 1, partialCount[numChildren];

// Visit each child

for (i = 0; i < numChildren; i++) {

nodePtr = &n[i];

// The following line is the work (one or more SHA-1 ops)

for (j = 0; j < granularity; j++)

shal _rng(parent->state.state, nodePtr->state.state, i);

// Sample a binomial distribution to determine the number of children of child i

nodePtr->numChildren = uts _numChildren(nodePtr);

if (nodePtr->numChildren > 0)

// Traverse the subtree rooted at child i to get subtree size

#pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)

partialCount[i] = search(nodePtr, nodePtr->numChildren);

else

partialCount[i] = 1; // Leaf node (no new task generated)

}

// Wait for all subtree traversals

#pragma omp taskwait

// Combine subtree counts from children to get total size of subtree rooted at Node

for (i = 0; i < numChildren; i++)

subtreesize += partialCount[i];

return subtreesize;

}

o

5 Test Problem Used for Experiments

Parameters
o 2000 children of root node

o Probability of non-root node having children q = 0.200014

o Probability of non-root node not having children (1 — q) = 0.799986

o Each non-root non-leaf node has 5 children

O Experiments vary number of SHA-1 hash repeats per node

Generated tree
O 111 345 631 total nodes

o 89 076 904 leaf nodes (-80% of the total nodes)

O 22 268 727 non-leaf nodes (-20% of the total nodes)

O Maximum depth of 17 844 nodes

o

I6 Experimental Setup (Platforms and OpenMP Implementations)

Intel Xeon Skylake (Xeon SKI)

o Dual socket with 24 cores per socket (48 cores total), 2-way SMT

o Compilers: Intel Compiler 19; Clang 9 with LLVM OpenMP runtime

O Also Threading Building Blocks (TBB) with Intel C++ Compiler 19

IBM POWER9 (IBM P9)

- Dual socket with 22 cores per socket (44 cores total), 4-way SMT

O Compilers: PGI Compiler 20.1; Clang 9 with LLVM OpenMP runtime

Arm ThunderX2 (Arm TX2)

o Dual socket with 28 cores per socket (56 cores total), 2-way SMT (enabled)

o Compilers: Arm Compiler 20.0 "armclane; Clang 9 with LLVM OpenMP runtime

Intel Xeon Phi "Knights Landing' (Xeon Phi)

O Single socket with 68 cores, 4-way SMT

o Compilers: Intel Compiler 19; Cray CCE 9.1.2; Clang 9 with LLVM OpenMP runtime

o

7 Varying Task Granularity in UTS

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and
Implementation

Time (p,$)
per op.

Time (µs) per recursive call at granularity
5 ops. 10 ops. 20 ops.40 ops.80 ops. 160 ops.

Xeon SKL - ICC 0.22 1.12 2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 1.78 3.55 7.10 14.2 28.4

IBM P9 - PGI 0.31 1.53 3.06 6.13 12.2 24.5 49.0
IBM P9 - Clang 0.29 1.45 2.90 5.80 11.6 23.2 46.4

Arm TX2 - Armclang 0.32 1.61 3.22 6.43 12.9 25.7 51.4
Arm TX2 - Clang 0.34 1.73 3.45 6.90 13.8 27.6 55.2
Xeon Phi - ICC 0.64 3.21 6.42 12.8 25.7 51.4 103
Xeon Phi - Clang 0.74 3.68 7.36 14.7 29.4 58.9 118
Xeon Phi - CCE 0.63 3.14 6.29 12.6 25.2 50.3 101

Table 2. Translating task granularity from SHA-1 operations / task to machine in-
structions / task

Architecture and
Implementation

Kilo instr.
per op.

Kilo instr. per recursive call at granularity
5 ops. 10 ops. 20 ops. 40 ops.80 ops. 160 ops.

Xeon SKL - ICC 1.74 8.72 17.4 34.9 69.7 139 279
Xeon SKL - Clang 1.70 8.51 17.0 34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 16.7 33.4 66.8 133 267
Arm TX2 - Armclang 1.39 6.97 13.9 27.9 55.7 111 223
Arm TX2 - Clang 1.51 7.59 15.2 30.4 60.7 121 243
Xeon Phi - ICC 1.70 8.51 17.0 34.0 68.1 136 272
Xeon Phi - Clang 1.71 8.57 17.1 34.3 68.6 137 274
Xeon Phi - CCE 1.63 8.15 16.3 32.6 65.2 130 261

o

8 Varying Task Granularity in UTS

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and
Implementation

Time (p,$)
per op.

Time (µs) per recursive call at granularity
5 ops. 10 ops. 20 ops.40 ops.80 ops. 160 ops.

Xeon SKL - ICC 0.22 1.12 2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 1.78 3.55 7.10 14.2 28.4

IBM P9 - PGI 0.31 1.53 3.06 6.13 12.2 24.5 49.0
IBM P9 - Clang 0.29 1.45 2.90 5.80 11.6 23.2 46.4

Arm TX2 - Armclang 0.32 1.61 3.22 6.43 12.9 25.7 51.4
Arm TX2 - Clang 0.34 1.73 3.45 6.90 13.8 27.6 55.2
Xeon Phi - ICC 0.64 3.21 6.42 12.8 25.7 51.4 103
Xeon Phi - Clang 0.74 3.68 7.36 14.7 29.4 58.9 118
Xeon Phi - CCE 0.63 3.14 6.29 12.6 25.2 50.3 101

Wide range
Table 2. Translating task granularity from SHA-1 operations / task to machine in-
structions / task

Architecture and
Implementation

Kilo instr.
per op.

Kilo instr. per recursive call at granularity
5 ops. 10 ops. 20 ops. 40 ops.80 ops. 160 ops.

Xeon SKL - ICC 1.74 8.72 17.4 34.9 69.7 139 279
Xeon SKL - Clang 1.70 8.51 17.0 34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 16.7 33.4 66.8 133 267
Arm TX2 - Armclang 1.39 6.97 13.9 27.9 55.7 111 223
Arm TX2 - Clang 1.51 7.59 15.2 30.4 60.7 121 243
Xeon Phi - ICC 1.70 8.51 17.0 34.0 68.1 136 272
Xeon Phi - Clang 1.71 8.57 17.1 34.3 68.6 137 274
Xeon Phi - CCE 1.63 8.15 16.3 32.6 65.2 130 261

o

9 Varying Task Granularity in UTS

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and
Implementation

Time (p,$)
per op.

Time (µs) per recursive call at granularity
5 ops. 10 ops. 20 ops.40 ops.80 ops. 160 ops.

Xeon SKL - ICC 0.22 1.12 2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 1.78 3.55 7.10 14.2 28.4

IBM P9 - PGI 0.31 1.53 3.06 6.13 12.2 24.5 49.0
IBM P9 - Clang 0.29 1.45 2.90 5.80 11.6 23.2 46.4

Arm TX2 - Armclang 0.32 1.61 3.22 6.43 12.9 25.7 51.4
Arm TX2 - Clang 0.34 1.73 3.45 6.90 13.8 27.6 55.2
Xeon Phi - ICC 0.64 3.21 6.42 12.8 25.7 51.4 103
Xeon Phi - Clang 0.74 3.68 7.36 14.7 29.4 58.9 118
Xeon Phi - CCE 0.63 3.14 6.29 12.6 25.2 50.3 101

Wide range
Table 2. Translating task granularity from SHA-1 operations / task to machine in-
structions / task

Architecture and
Implementation

Kilo instr.
per op.

Kilo instr. per recursive call at granularity
5 ops. 10 ops. 20 ops. 40 ops.80 ops. 160 ops.

Xeon SKL - ICC 1.74 8.72 17.4 34.9 69.7 139 279
Xeon SKL - Clang 1.70 8.51 17.0 34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 16.7 33.4 66.8 133 267
Arm TX2 - Armclang 1.39 6.97 13.9 27.9 55.7 111 223
Arm TX2 - Clang 1.51 7.59 15.2 30.4 60.7 121 243
Xeon Phi - ICC 1.70 8.51 17.0 34.0 68.1 136 272
Xeon Phi - Clang 1.71 8.57 17.1 34.3 68.6 137 274
Xeon Phi - CCE 1.63 8.15 16.3 32.6 65.2 130 261

Narrower range

o

10 Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)

100

90

80

30

20

10

0

—*—Xeon SKL - TBB (48 threads)

Xeon SKL - ICC (48 threads)

—,` Xeon SKL - Clang (48 threads)

IBM P9 - PGI (44 threads)

IBM P9 - Clang (44 threads)

Coarser Tasks (Note Log Scale)

4 8 16 32 64 128

Thousands of Instructions Per Task

256 512

11 Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)

100

90

30

20

10

0

—*—Xeon SKL - TBB (48 threads)

Xeon SKL - ICC (48 threads)

—,` Xeon SKL - Clang (48 threads)

IBM P9 - PGI (44 threads)

IBM P9 - Clang (44 threads)

Coarser Tasks (Note Log Scale)

4 8 16 32 64 128

Thousands of Instructions Per Task

256 512

80%

12 Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)

100

30

20

10

0

—*—Xeon SKL - TBB (48 threads)

Xeon SKL - ICC (48 threads)

—,` Xeon SKL - Clang (48 threads)

IBM P9 - PGI (44 threads)

IBM P9 - Clang (44 threads)

Coarser Tasks (Note Log Scale)

4 8 16 32 64 128

Thousands of Instructions Per Task

256 512

90%

80%

13 Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)

Pe
rc

en
t
Pa
ra
ll
el
 E
ff
ic
ie
nc
y

100

90

80

70

60

50

40

30

20

10

0

—0 Arm TX2 - Armclang (56 threads)

—A—Arm TX2 - Clang (56 threads)

—.—Xeon Phi - ICC (68 threads)

•}<--Xeon Phi - Cla ng (68 th reads)

—N—Xeon Phi - CCE (68 threads)

Coarser Tasks (Note Log Scale) Alp

4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

o

14 Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)

100

Pe
rc

en
t
Pa
ra
ll
el
 E
ff
ic
ie
nc
y

90

Iig0

70

60

50

40

30

20

10

o

—0 Arm TX2 - Armclang (56 threads)

—A—Arm TX2 - Clang (56 threads)

—.—Xeon Phi - ICC (68 threads)

•}<--Xeon Phi - Cla ng (68 th reads)

—N—Xeon Phi - CCE (68 threads)

Coarser Tasks (Note Log Scale) Alp

4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

80%

o

15 Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)

100

Pe
rc

en
t
Pa
ra
ll
el
 E
ff
ic
ie
nc
y

0

ig0

70

60

50

40

30

20

10

o

—0 Arm TX2 - Armclang (56 threads)

—A—Arm TX2 - Clang (56 threads)

—.—Xeon Phi - ICC (68 threads)

•}<--Xeon Phi - Cla ng (68 th reads)

—N—Xeon Phi - CCE (68 threads)

Coarser Tasks (Note Log Scale) Alp

4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

90%

80%

o

16 Speedup on Coarsest Problem: SMT Usefulness Varies by System

Xeon SKL - ICC

(48 Cores, 96 HT)

Xeon SKL - Clang

(48 Cores, 96 HT)

IBM P9 - PGI

(44 Cores, 176 HT)

IBM P9 - Clang

(44 Cores, 176 HT)

Xeon Phi - ICC

(68 Cores, 272 HT)

Xeon Phi - Clang

(68 Cores, 272 HT)

Xeon Phi - CCE

(68 Cores, 272 HT)

Arm TX2 - Armclang

(56 Cores, 112 HT)

Arm TX2 - Clang

(56 Cores, 112 HT)

0

Speedup over sequential

20 40 60 80 100

a

• Num OMP Threads = 40 Longer Is Better

Num OMP Threads = Num Cores

Num OMP Threads = Num Hardware Threads

17 Speedup on Coarsest Problem: SMT Usefulness Varies by System

Xeon SKL - ICC

(48 Cores, 96 HT)

Xeon SKL - Clang

(48 Cores, 96 HT)

IBM P9 - PGI

(44 Cores, 176 HT)

IBM P9 - Clang

(44 Cores, 176 HT)

Xeon Phi - ICC

(68 Cores, 272 HT)

Xeon Phi - Clang

(68 Cores, 272 HT)

Xeon Phi - CCE

(68 Cores, 272 HT)

Arm TX2 - Armclang

(56 Cores, 112 HT)

Arm TX2 - Clang

(56 Cores, 112 HT)

0

Speedup over sequential

20 40 60 80

• Num OMP Threads = 40 Longer Is Better

Num OMP Threads = Num Cores

Num OMP Threads = Num Hardware Threads

100

All improve
speedup from
40 threads to
1 thread/core

18 Speedup on Coarsest Problem: SMT Usefulness Varies by System

Xeon SKL - ICC

(48 Cores, 96 HT)

Xeon SKL - Clang

(48 Cores, 96 HT)

IBM P9 - PGI

(44 Cores, 176 HT)

IBM P9 - Clang

(44 Cores, 176 HT)

Xeon Phi - ICC

(68 Cores, 272 HT)

Xeon Phi - Clang

(68 Cores, 272 HT)

Xeon Phi - CCE

(68 Cores, 272 HT)

Arm TX2 - Armclang

(56 Cores, 112 HT)

Arm TX2 - Clang

(56 Cores, 112 HT)

0

Speedup over sequential

20 40 60 80 100

• Num OMP Threads = 40 Longer Is Better

Num OMP Threads = Num Cores

Num OMP Threads = Num Hardware Threads

Greatest SMT
benefit on P9

19 Load Balancing Metric: Child Tasks Moved Per Thread Per Second

Ch
il
d
Ta
sk
s
M
o
v
e
d
 P
er
 T
hr
ea
d
Pe
r
Se
co
nd

32768

16384

8192

4096

2048

1024

512

256

128

4

Coarser Tasks (Note Log Scale)

8

+IBM P9 - PGI (44 threads)

—•--Xeon SKL - ICC (48 threads)

—.—Xeon SKL - Clang (48 threads)

—.- IBM P9 - Clang (44 threads)

Arm TX2 - Armclang (56 threads)

—•—Arm TX2 - Clang (56 threads)

—.—Xeon Phi - CCE (68 threads)

Xeon Phi - ICC (68 threads)

—0—Xeon Phi - Clang (68 threads)

16 32 64 128

Thousands of Instructions Per Task

256 512

Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

SHA-1 ops. per task 5 10 20 40 80 160

Pearson correlation 0.69 0.59 0.42 0.42 0.38 0.12

20 1 Load Balancing Metric: Child Tasks Moved Per Thread Per Second

3 best performers exhibit most load balancing

Ch
il
d
Ta
sk
s
M
o
v
e
d
 P
er
 T
hr
ea
d
Pe
r
Se
co
nd

32768

16384

8192

4096

2048

1024

512

256

128

4

Coarser Tasks (Note Log Scale)

8

—•—IBM P9 - PGI (44 threads)

—.--Xeon SKL - ICC (48 threads)

—.—Xeon SKL - Clang (48 threads)

—• IBM P9 - Clang (44 threads)

Arm TX2 - Armclang (56 threads)

—•—Arm TX2 - Clang (56 threads)

—.—Xeon Phi - CCE (68 threads)

Xeon Phi - ICC (68 threads)

—0—Xeon Phi - Clang (68 threads)

16 32 64 128

Thousands of Instructions Per Task

s

s
S

256 512

Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

SHA-1 ops. per task 5 10 20 40 80 160

Pearson correlation 0.69 0.59 0.42 0.42 0.38 0.12

21 Load Balancing Metric: Child Tasks Moved Per Thread Per Second

3 best performers exhibit most load balancing

Ch
il
d
Ta
sk
s
M
o
v
e
d
 P
er
 T
hr
ea
d
Pe
r
Se
co
nd

32768

16384

8192

4096

2048

1024

512

256

128

4

•

loarser Tasks (Note Log Scale)

8

—.— 1 BM P9 - PGI (44 threads)

—8—Xeon SKL - ICC (48 threads)

—.—Xeon SKL - Clang (48 threads)

—.— IBM P9 - Clang (44 threads)

—a—Arm TX2 - Armclang (56 threads)

—a—Arm TX2 - Clang (56 threads)

—8—Xeon Phi - CCE (68 threads)

—.—Xeon Phi - ICC (68 threads)

—0—Xeon Phi - Clang (68 threads)

16 32 64 128

Thousands of Instructions Per Task

s

s
S

256 512

Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

1 SHA-1 ops. per task 5 10 20 40 80 160

Pearson correlation 0.69 0.59 0.42 0.42 0.38 0.12

Load balancing important for fine-grained tasks

22 Conclusion and Updates

Fear not the use of OpenMP tasks if tasks aren't "too small"
o All implementations efficiently handling tasks of 0(100k) instruction granularity

• Some (vendor) implementations efficiently handling tasks of 0(10k) instruction granularity

o Clang/LLVM consistently adequate on diverse architectures

New since the paper went to print...

• Clang/LLVM 11 Release Candidate 2 available, with final release imminent

o Support for task reductions on orphaned tasks tested and confirmed

o Will allow future work testing UTS version using task reductions

