This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 10093C

Evaluating the Efficiency
of OpenMP Tasking
for Unbalanced Computation

on Dlverse CPU Archltectures

- ~ —
e = —=

el -
+."1l:u:., sy g ¥ isagnd
B |
|
\ !
PRESENTED BY
Stephen Olivier

Sandia National Laboratories is a multim

lbotrymangd dp tdbyNt l

Technology & Engil lu ndia,

LLC, a wholly own ial

Inter t nal Inc fthUSDprtmetf
ergy’s Nt lN cleal

Admm t ation under contra tDE NA0003525

2

OpenMP Tasks Still Seeing Limited Adoption

Task construct first added to OpenMP spec. in version 3.0 (2008)
> Continued feature development in subsequent versions of OpenMP

> Tasking model now widely used in the context of asynchronous offload to devices

Slow adoption of tasking in other scenarios — why?
> Concerns about overhead costs of task creation, scheduling, synchronization
> Users unsure about appropriate granularity of tasks to use

° Perceived variation in quality of implementations across vendors and platforms

Contributions of this paper/presentation:
> Benchmark a challenging task parallel computation
° ...on four different architectures
° ...using LLVM/Clang and commercial OpenMP implementations

° ...to address these questions

Unbalanced Tree Search (UTS) as a Tasking Stress Test

UTS benchmark for dynamic load balancing of computations
> First proposed and demonstrated in LCPC 2006 paper
> OpenMP tasking and Cilk applied to UTS in [IWOMP 2009 paper
> Compared to Cilk++ (Cilk Plus forerunner) and TBB in follow-up LJPP article
> Added to Barcelona OpenMP Tasks Suite (BOTS)

UTS problem: count nodes of a dynamically-generated tree
° Tree implicitly generated on-the-fly by sampling a binomial probability distribution
> Bach non-root tree node has m children with probability g, none with probability 7-g
> Do grepeats of SHA-1 hash at each tree node (the work)

Resulting computation is unpredictably imbalanced
> Size of subtree rooted at each node not dictated by proximity to root

> Requires continuous dynamic load balancing throughout execution

UTS OpenMP Tasking Implementation (Adapted From BOTY)

unsigned long long search(Node *parent, int numChildren)
{
Node n[numChildren], *nodePtr;
int i, 3j;
unsigned long long subtreesize = 1, partialCount[numChildren];

// Visit each child
for (i = 0; i < numChildren; i++) {
nodePtr = &n[i];

// The following line is the work (one or more SHA-1 ops)
for (j = 0; j < granularity; j++)
shal rng(parent->state.state, nodePtr->state.state, 1i);

// Sample a binomial distribution to determine the number of children of child i
nodePtr->numChildren = uts numChildren(nodePtr);

if (nodePtr->numChildren > 0)
// Traverse the subtree rooted at child i to get subtree size
#pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)
partialCount[i] = search(nodePtr, nodePtr->numChildren);
else
partialCount[i] = 1; // Leaf node (no new task generated)

}

// Wait for all subtree traversals
#pragma omp taskwait

// Combine subtree counts from children to get total size of subtree rooted at Node
for (i = 0; i < numChildren; i++)

subtreesize += partialCount[i];

return subtreesize;

5

Test Problem Used for Experiments

Parameters
° 2000 children of root node
> Probability of non-root node having children g = 0.200014
° Probability of non-root node not having children (7 — ¢g) = 0.799986
°> Each non-root non-leaf node has 5 children

> Experiments vary number of SHA-1 hash repeats per node

Generated tree
° 111 345 631 total nodes
> 89 076 904 leaf nodes (~80% of the total nodes)
° 22 268 727 non-leat nodes (~20% of the total nodes)
° Maximum depth of 17 844 nodes

Experimental Setup (Platforms and OpenMP Implementations)

Intel Xeon Skylake (Xeon SKI.)
° Dual socket with 24 cores per socket (48 cores total), 2-way SM'T
> Compilers: Intel Compiler 19; Clang 9 with LLVM OpenMP runtime
° Also Threading Building Blocks (I'BB) with Intel C++ Compiler 19

IBM POWER9 (IBM P9)

° Dual socket with 22 cores per socket (44 cores total), 4-way SM'T
> Compilers: PGI Compiler 20.1; Clang 9 with LLVM OpenMP runtime

Arm ThunderX2 (Arm TX2)

° Dual socket with 28 cores per socket (56 cores total), 2-way SMT (enabled)
> Compilers: Arm Compiler 20.0 “armclang”; Clang 9 with LLVM OpenMP runtime

Intel Xeon Phi “Knights Landing” (Xeon Phi)
> Single socket with 68 cores, 4-way SMT

o Compilers: Intel Compiler 19; Cray CCE 9.1.2; Clang 9 with LLVM OpenMP runtime

i

Varying Task Granularity in UTS

Task gfanlllafity diCtath Table 1. Translating task granularity from SHA-1 operations / task to time / task
by ﬂumber Of SHA"l Architecture and Time (us)|Time (us) per recursive call at granularity
haSh repeats per tree nOde Implementation per op. 5 0ps.|10 0ps.|20 ops.|40 ops.|80 ops.|160 ops.
Xeon SKL - ICC 0.22 1.12 |2.23 |4.47 [8.94 17.9 |35.7
Xeon SKL - Clang 0.18 0.89 |[1.78 |3.55 |7.10 |14.2 |284
IBM P9 - PGI 0.31 1.53 |3.06 |6.13 [12.2 [24.5 [49.0
IBM P9 - Clang 0.29 1.45 (290 [5.80 [11.6 [23.2 |46.4
" Arm TX2 - Armclang|0.32 1.61 |3.22 |6.43 (12,9 (25.7 |[51.4
11 rs of 2 g
Va ed by powe S Arm TX2 - Clang 0.34 1.73 |3.45 |6.90 [13.8 [27.6 [55.2
from 1 to 32 in our Xeon Phi - ICC 0.64 321 (642 [12.8 [25.7 |51.4 [103
. Xeon Phi - Clang 0.74 3.68 [7.36 |14.7 |29.4 |58.9 |118
experiments Xeon Phi - CCE 0.63 314 (629 [12.6 |[25.2 [50.3 [101

Table 2. Translating task granularity from SHA-1 operations / task to machine in-

5 children generated per structions / task
OPCHMP taSk, so 5 to 160 Architecture and Kilo instr.|Kilo instr. per recursive call at granularity
SHA 1 h h k Implementation per op. 5 ops.llO ops.|20 ops.|40 ops.|80 0ps.|160 ops.
- asnes pef tas Xeon SKL - ICC 1.74 8.72 (17.4 349 69.7 139 279
Xeon SKL - Clang 1.70 8.51 (17.0 |34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 |[16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 |16.7 |334 66.8 133 267
. . Arm TX2 - Armclang|1.39 6.97 (13.9 |27.9 55.7 111 223
Translations to time and Arm TX2 - Clang |1.51 759 [15.2 [30.4 [60.7 [121 [243
< : g Xeon Phi - ICC 1.70 8.51 (17.0 |34.0 68.1 136 272
maChlne Instructions Xeon Phi - Clang 1.71 8.57 |17.1 34.3 68.6 137 274
shown in tables at right Xeon Phi - CCE 1.63 8.15 [16.3 [32.6 [65.2 [130 |261

Varying Task Granularity in UTS

Task graﬂlllafity diCtath Table 1. Translating task granularity from SHA-1 operations / task to time / task
—
by ﬂumber Of SHA"l Architecture and Time (us)JTime (us) per recursive call at granularity
haSh repeats per tree nOde Implementation per op. 5 0ps.|10 0ps.|20 ops.|40 ops.|80 ops.|160 ops.
Xeon SKL - ICC 0.22 1.12 |2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 |1.78 [3.55 |7.10 14.2 |284
IBM P9 - PGI 0.31 1.53 (3.06 |6.13 122 |24.5]49.0
IBM P9 - Clang 0.29 1.45 (290 |5.80 11.6 |23.2 |46.4
1 Arm TX2 - Armclang]0.32 1.61 (3.22 16.43 129 25,7 |514
r1 rs of 2 8
Va ed by powe 90 Arm TX2 - Clang 0.34 1.73 |3.45 16.90 13.8 |27.6 [b5.2
from 1 to 32 in our Xeon Phi - ICC 0.64 321 [642 [12.8 |57 |51.4 |103
. Xeon Phi - Clang 0.74 3.68 |7.36 14.7 (29.4 [58.9 118
experiments Xeon Phi - CCE 0.63 314 (629 [12.6 [25.2 [50.3 |101

Wide range

Table 2. Translating task granularity from SHA-1 operations / task to machine in-

5 children generated per structions / task
OPCHMP taSk, so 5 to 160 Architecture and Kilo instr.|Kilo instr. per recursive call at granularity
SHA 1 h h k Implementation per op. 5 ops.llO ops.|20 ops.|40 ops.|80 0ps.|160 ops.
- asnes pef tas Xeon SKL - ICC 1.74 8.72 (17.4 349 69.7 139 279
Xeon SKL - Clang 1.70 8.51 (17.0 |34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 |[16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 |16.7 |334 66.8 133 267
. . Arm TX2 - Armclang|1.39 6.97 (13.9 |27.9 55.7 111 223
Translations to time and Arm TX2 - Clang |1.51 759 [15.2 [30.4 [60.7 [121 [243
< : 4 Xeon Phi - ICC 1.70 8.51 (17.0 |34.0 68.1 136 272
maChlne Imstructions Xeon Phi - Clang 1.71 8.57 |17.1 34.3 68.6 137 274
shown in tables at right Xeon Phi - CCE 1.63 8.15 [16.3 [32.6 [65.2 [130 |261

Varying Task Granularity in UTS

Task graﬂlllafity diCtath Table 1. Translating task granularity from SHA-1 operations / task to time / task
—
by ﬂumber Of SHA"l Architecture and Time (us)JTime (us) per recursive call at granularity
haSh repeats per tree nOde Implementation per op. 5 0ps.|10 0ps.|20 ops.|40 ops.|80 ops.|160 ops.
Xeon SKL - ICC 0.22 1.12 |2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 |1.78 [3.55 |7.10 14.2 |284
IBM P9 - PGI 0.31 1.53 (3.06 |6.13 122 |24.5]49.0
IBM P9 - Clang 0.29 1.45 (290 |5.80 11.6 |23.2 |46.4
1 Arm TX2 - Armclang]0.32 1.61 (3.22 16.43 129 25,7 |514
r1 rs of 2 8
Va ed by powe 90 Arm TX2 - Clang 0.34 1.73 |3.45 16.90 13.8 |27.6 [b5.2
from 1 to 32 in our Xeon Phi - ICC 0.64 321 [642 [12.8 |57 |51.4 |103
. Xeon Phi - Clang 0.74 3.68 |7.36 14.7 (29.4 [58.9 118
experiments Xeon Phi - CCE 0.63 314 (629 [12.6 [25.2 [50.3 |101

Wide range

Table 2. Translating task granularity from SHA-1 operations / task to machine in-

5 children generated per structions / task
OPCHMP taSk, so 5 to 160 Architecture and Kilo instr§Kilo instr. per recursive call at granularity
SHA 1 h h k Implementation per op. 5 ops.llO ops.|20 ops.|40 ops.|80 0ps.|160 ops.
- asnes pef tas Xeon SKL - ICC 1.74 8.72 (174 349 69.7 139 279
Xeon SKL - Clang 1.70 8.51 (17.0 |34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 |[16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 |16.7 |334 66.8 133 267
. . Arm TX2 - Armclangf1.39 6.97 (13.9 |27.9 55.7 111 223
Translations to time and Arm TX2 - Clang |1.51 759 [15.2 [30.4 [60.7 [121 [243
< : 4 Xeon Phi - ICC 1.70 8.51 |(17.0 |34.0 68.1 136 272
maChlne Imstructions Xeon Phi - Clang 1.71 8.57 |[17.1 34.3 68.6 137 274
shown in tables at right Xeon Phi - CCE 1.63 8.15 [16.3 [32.6 [65.2 [130 |261

Narrower range

10 I Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)

100
90
80
—_
- 70 g
1= +
= o
2 o
g 60—
bw .
T o = —e-Xeon SKL - TBB (48 threads)
© 2
IS = —B-Xeon SKL - ICC (48 threads)
§ 40 —A—Xeon SKL - Clang (48 threads)
o
a 30 ~4-1BM P9 - PGI (44 threads)
IBM P9 - Clang (44 threads)
20
10 Coarser Tasks (Note Log Scale)
0

4 8 16 32 64 128 256 512
Thousands of Instructions Per Task

11 I Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)
10 ‘ II
90

—s

~
o

—_
9 =
= o
2 o
S 60 -
b .
T o = —e-Xeon SKL - TBB (48 threads)
© on
IS = —B-Xeon SKL - ICC (48 threads)
§ 40 —A—Xeon SKL - Clang (48 threads)
& 30 ~4—-IBM P9 - PGI (44 threads)
IBM P9 - Clang (44 threads)
20
10 Coarser Tasks (Note Log Scale)
0
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

12 I Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)

100 U:

70

—_
9 =
= o
2 o
S 60 -
b .
T o = —e-Xeon SKL - TBB (48 threads)
© on
IS = —B-Xeon SKL - ICC (48 threads)
§ 40 —A—Xeon SKL - Clang (48 threads)
& 30 ~4—-IBM P9 - PGI (44 threads)
IBM P9 - Clang (44 threads)
20
10 Coarser Tasks (Note Log Scale)
0
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

13 I Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)
100
90

80

70

| S
Q
> e
Q -
c Q
9 m
2 o0
i —
o _qc) ~0-Arm TX2 - Armclang (56 threads)
= 20 B
nr_Lu A= ——Arm TX2 - Clang (56 threads)
S 40 —e—Xeon Phi - ICC (68 threads)
(&)
& —-Xeon Phi - Clang (68 threads)
30
-#-Xeon Phi - CCE (68 threads)
20
10 Coarser Tasks (Note Log Scale)
0
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

14 I Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)

100 “
90

— — — — —80%

—_
Q
> et
Q -
c Q
2 (aa]
2 o0
i -
[= —o-Arm TX2 - Armclang (56 threads)
T 20 B
nr_Lu A= ——Arm TX2 - Clang (56 threads)
S 40 —e-Xeon Phi- ICC (68 threads)
(&)
& —#Xeon Phi - Clang (68 threads)
30
-#-Xeon Phi - CCE (68 threads)
20
10 Coarser Tasks (Note Log Scale)
0
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

15 I Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)

100 H:

—30

— = 90%

— — — —80%

—_
Q
> et
Q -
c Q
2 (aa]
2 o0
i -
[= —o-Arm TX2 - Armclang (56 threads)
T 20 B
nc_Lu A= ——Arm TX2 - Clang (56 threads)
S 40 —e—Xeon Phi- ICC (68 threads)
(&)
& —#Xeon Phi - Clang (68 threads)
30
—#-Xeon Phi - CCE (68 threads)
20
10 Coarser Tasks (Note Log Scale)
0
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

16 I Speedup on Coarsest Problem: SMT Usefulness Varies by System

Speedup over sequential
40 60 80 100

o
N
o

Xeon SKL - ICC
(48 Cores, 96 HT)

Xeon SKL - Clang

(48 Cores, 96 HT) i

IBM P9 - PGI
(44 Cores, 176 HT)

IBM P9 - Clang
(44 Cores, 176 HT)

Xeon Phi - ICC
(68 Cores, 272 HT)

Xeon Phi - Clang
(68 Cores, 272 HT)

Xeon Phi - CCE
(68 Cores, 272 HT)

Arm TX2 - Armclang
(56 Cores, 112 HT)

Arm TX2 - Clang
(56 Cores, 112 HT)

TR o ewnl Longer Is Better

B Num OMP Threads = Num Cores
Num OMP Threads = Num Hardware Threads

17 1 Speedup on Coarsest Problem: SMT Usefulness Varies by System

Xeon SKL - ICC
(48 Cores, 96 HT)

Xeon SKL - Clang
(48 Cores, 96 HT)

IBM P9 - PGI
(44 Cores, 176 HT)

IBM P9 - Clang
(44 Cores, 176 HT)

Xeon Phi - ICC
(68 Cores, 272 HT)

Xeon Phi - Clang
(68 Cores, 272 HT)

Xeon Phi - CCE
(68 Cores, 272 HT)

Arm TX2 - Armclang
(56 Cores, 112 HT)

Arm TX2 - Clang
(56 Cores, 112 HT)

Speedup over sequential

0 20 40 60 80

TR ol Longer Is Better

B Num OMP Threads = Num Cores
Num OMP Threads = Num Hardware Threads

100

All improve

speedup from
40 threads to
1 thread/core

18 | Speedup on Coarsest Problem: SMT Usefulness Varies by System

Xeon SKL - ICC
(48 Cores, 96 HT)

Xeon SKL - Clang
(48 Cores, 96 HT)

IBM P9 - PGI
(44 Cores, 176 HT)

IBM P9 - Clang
(44 Cores, 176 HT)

Xeon Phi - ICC
(68 Cores, 272 HT)

Xeon Phi - Clang
(68 Cores, 272 HT)

Xeon Phi - CCE
(68 Cores, 272 HT)

Arm TX2 - Armclang
(56 Cores, 112 HT)

Arm TX2 - Clang
(56 Cores, 112 HT)

Speedup over sequential
20 40 60 80

o

L

TR ol Longer Is Better

B Num OMP Threads = Num Cores
Num OMP Threads = Num Hardware Threads

100

Greatest SMT
benefit on P9

|

19 1 Load Balancing Metric: Child Tasks Moved Per Thread Per Second

——1BM P9 - PGI (44 threads)
—e—Xeon SKL - ICC (48 threads)
—a—Xeon SKL - Clang (48 threads)
=+—|BM P9 - Clang (44 threads)
—a—Arm TX2 - Armclang (56 threads)
—e—Arm TX2 - Clang (56 threads)
—e—Xeon Phi - CCE (68 threads)
Xeon Phi - ICC (68 threads)
—e—Xeon Phi - Clang (68 threads)

32768

16384

8192

)
(o]
T A
8 on
0 o
Q¢ —
& w
;5 4096 |ro
£ <
& on
9 2048 =
k5 8]
3 =
S 1024 | &
2 §°]
@ [oa)
'_
©
% 512 8
© —
256 ()
S @ Coarser Tasks (Note Log Scale)
128 =
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

| SHA-1 ops. per task | 5 | 10 | 20 | 40] 80 | 160 |
| Pearson correlation [0.69 | 059 [042 | 042 | 038 [0.12 |

20 I Load Balancing Metric: Child Tasks Moved Per Thread Per Second
3 best performers exhibit most load balancing

—o—|BM P9 - PGl (44 threads)
—e—Xeon SKL - ICC (48 threads)
—a—Xeon SKL - Clang (48 threads)

32768

—_—
16384 % =+—|BM P9 - Clang (44 threads)
@) —a—Arm TX2 - Armclang (56 threads)

'8 (%] —e—Arm TX2 - Clang (56 threads)
§ 8192 g’ ——Xeon Phi - CCE (68 threads)
ﬁ | Xeon Phi - ICC (68 threads)
0) & —e—Xeon Phi - Clang (68 threads)
a (V)
3 0% (53 N
£ =
|: on
9 2048 c
° @] N
5 = \
S 1024 | & ‘ \
wv
2 R
'_
- 512 3=
: " E
© —

256 ()

S @ Coarser Tasks (Note Log Scale)
128 =
4 8 16 32 64 128 256 512

Thousands of Instructions Per Task

Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

[SHA-1 ops. per task | 5 | 10 | 20 | 40] 80 | 160 |
| Pearson correlation [0.69 | 059 [042 | 042 | 038 [0.12 |

21 I Load Balancing Metric: Child Tasks Moved Per Thread Per Second
3 best performers exhibit most load balancing

—o—|BM P9 - PGl (44 threads)
—e—Xeon SKL - ICC (48 threads)
—a—Xeon SKL - Clang (48 threads)
=+—|BM P9 - Clang (44 threads)
—a—Arm TX2 - Armclang (56 threads)
—e—Arm TX2 - Clang (56 threads)
—e—Xeon Phi - CCE (68 threads)
Xeon Phi - ICC (68 threads)
—e—Xeon Phi - Clang (68 threads)

32768

16384

8192

4096

2048

1024

512

Child Tasks Moved Per Thread Per Second

e Coarser Tasks (Note Log Scale)

More Load Balancing (Note Log Scale)

128
4 8 16 32 64 128 256 512
Thousands of Instructions Per Task

Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

| SHA-1 ops. per task 5 10 | 20 | 40] 80 | 160 |
| Pearson correlation 069 | 059 | 042 [042 | 038 | 0.12 |

Load balancing important for fine-grained tasks

22 I Conclusion and Updates

Fear not the use of OpenMP tasks if tasks aren’t “too small”
> All implementations efficiently handling tasks of O(700£) instruction granularity
> Some (vendor) implementations efficiently handling tasks of O(70£) instruction granularity

° Clang/1.ILVM consistently adequate on diverse architectures

New since the paper went to print...
° Clang/LLVM 11 Release Candidate 2 available, with final release imminent
> Support for task reductions on orphaned tasks tested and confirmed

> Will allow future work testing UTS version using task reductions

