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Introduction

The ability to sense and identify individual gaseous pollutants from the complexity of the
environment requires highly selective materials

Avoldance of interference from real-world air components

° Current conductivity-based devices generally fall into two categories:

° Solid state — (oxide based) require higher temperatures (>200°C) for interaction of the gas with the
surface oxides; heating devices are needed

° Fuel cell — room temperature liquid electrolyte, easily fouled, short lifetime

° Electrical metal organic framework (MOF) based sensors have previously been used for direct
electrical sensing of gases; however, none for NO, have been reported in open literature

° By tuning the composition of MOFs, selective chemical adsorption and/or catalysis can be
achieved

° Typical sensors for this application are hard-wired or require frequent battery replacement—
nanoporous MOFs allows for “near-zero” long lived sensing in a wider range of environments



* I Direct Electrical Readout Sensors Combined
with Nanoporous Adsorption Materials

Reasoning for this construction:

o Increase the chemical sensitivity of the overall sensor through the incorporation to its platform
of nanoporous materials

> Nanoporous adsorption materials chosen for ability to selectively adsorb target gas molecules
o FElectrical readout sensor of this design:
o Decreased power consumption

o Ability to interrogate for specified gases selectively in real-time or as an integrating sensor for
delayed/later testing

> Design of an integrated sensor:

o Record whether any degradation product was ever present during the sensor’s lifetime
o Integrated sensor is useful in cases where degradation products may:

> Subsequently react with other components,

o Gradually leak out of the system,




*! Nanoporous Materials Targeted for the

Selective Adsorption of NO,
* M-MOF-74 (M= Co, Mg, Ni) was targeted for its selectivity to NO,

*  MOF-74 materials were synthesized and investigated as bulk materials
and dropcast onto an interdigitated electrode (IDE)

* Each powder pattern highlighted two primary diffraction peaks
corresponding to the MOF pore (intensities reduced for dropcast
samples, with the large peak corresponding to the platinum IDE)
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Powder XRD patterns for as-synthesized MOF-74
in the bulk phase.

Leo J. Small et al., “Near-Power MOF-Based Sensors for NO2 Detection,” Advanced Functional Materials, 2020, 2006598.
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Powder XRD patterns for Mg-MOF-74 dropcast onto IDE
pre-NO, (blue) and post-NO, (orange). Inset: zoomed in
region compared to bulk powder Mg-MOF-74.




* ! SEM Characterization of Dropcast M-MOF-74
Thin FiIm

Plan-view SEM micrographs of (A) Co-MOF-74,
(B) Mg-MOF-74, (C) Ni-MOF-74 powders
dropcast onto IDEs. (D) Cross-sectional
micrograph of Ni-MOF-74 film from (C).

* Co- and Ni-MOF-74 contained a wide range of crystallite sizes, from 100’s of um
to 100 nm

* Mg-MOF-74 crystallites were on the order of 100 nm
* Fim thickness was ~ 10 um

Small et al., Adv. Funct. Mat., 2020.



« " NO,, Exposure and In Situ Electrical 'I.'sgting

* Custom- built NO_ exposure chamber
enabled MOF activation and subsequent in
situ electrical testing under varying NO,
concentrations without exposure to lab
atmospheres

* Variable NO, concentrations (0.5-5 ppm)
were achieved by diluting 5 ppm NO, gas
stream with pure UHP N, at 500 sccm total
gas tlow

* Impedance spectra recorded at 0 V DC and A. blank IDE

100 mV (RMS) AC over 1 MHz - 10 mHz

* All electrical measurements and NO, B

IDE + Ni-MOF-74
exposures occurred at 50°C

IDE + Ni-MOF-74
. Exposed to 5ppm NO,
- 8h50°C

Small et al., Adv. Funct. Mat., 2020.



1 Typical Impedance Responses of M-MOF-74-
Based Sensors

*  Exposed M-MOF-74-based sensors to 5 ppm NO, for 8 h at 50° C.
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Impedance Responses as a Function of NO,

Concentration
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NO, Selectivity

* A Ni-MOF-74-based sensor was activated and exposed to 5 ppm SO, in N,, and ambient air
(25 °C, 50% RH, 400 pm CO,) heated to 50 °C, and its response compared to previous
exposures to 5 ppm NO, in N,

* An extended air exposure (96 hours) followed by subsequent NO, exposure was also
performed

* The Ni-MOF-74-based sensor demonstrated selectivity to NO, versus N,, SO,, and air.
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Conclusions

M-MOF-74 %/I = Co, Mg, Ni)-based sensors for selective detection of trace
(0.5-5 ppm) NO, were successfully demonstrated

Ni-MOF-74-based sensor exhibited a superior electrical response in its
selectivity to NO, over interfering gases such as N,, SO,, and ambient air

Differences in electrical response to NO, between the M-MOF-74 analogues
were attributed to both the adsorption capacity and chemical interactions

between the NO, and MOF

The maglil/[itude of the electrical response observed is ordered N1 > Co > Mg,

with Ni-MOF-74 providing 725X decrease in resistance at 5 ppm NO, and a
NO, detection limit <0.5 ppm

The high impedance of these materials enables applications requiring an
ultralow power sensor or dosimeter, with the active material dissipating
<15 pW, despite being a macroscale device



"I Future Work

* Investigations are underway for the following:

* 'To increase mechanical durability of these sensors via stronger
adhesion of nanoporous materials to the IDE

* To incorporate new phases onto the sensors for selective detection of
relevant competing gases

* To evaluate sensor response over a range of environmental conditions
(temp., humidity) as a function of time




