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2 I Introduction •

, The ability to sense and identify individual gaseous pollutants from the complexity of the
environment requires highly selective materials

Avoidance of interference from real-world air components

o Current conductivity-based devices generally fall into two categories:

° Solid state — (oxide based) require higher temperatures (>200°C) for interaction of the gas with the
surface oxides; heating devices are needed

rp Fuel cell — room temperature liquid electrolyte, easily fouled, short lifetime

o Electrical metal organic framework (MOF) based sensors have previously been used for direct
electrical sensing of gases; however, none for NO2 have been reported in open literature

O By tuning the composition of MOFs, selective chemical adsorption and/or catalysis can be
achieved

O Typical sensors for this application are hard-wired or require frequent battery replacement—
nanoporous MOFs allows for "near-zero" long lived sensing in a wider range of environments



I Direct Electrical Readout Sensors Combined
with Nanoporous Adsorption Materials

■

Reasoning for this construction:

• Increase the chemical sensitivity of the overall sensor through the incorporation to its platform
of nanoporous materials

• Nanoporous adsorption materials chosen for ability to selectively adsorb target gas molecules

• Electrical readout sensor of this design:

• Decreased power consumption

• Ability to interrogate for specified gases selectively in real-time or as an integrating sensor for
delayed/later testing

• Design of an integrated sensor:

• Record whether any degradation product was ever present during the sensor's lifetime

• Integrated sensor is useful in cases where degradation products may:

• Subsequently react with other components,

• Gradually leak out of the system,



4 1 Nanoporous Materials Targeted for the
Selective Adsorption of NO.

• M-MOF-74 (1\4= Co, Mg, Ni) was targeted for its selectivity to NO2

• MOF-74 materials were synthesized and investigated as bulk materials
and dropcast onto an interdigitated electrode (IDE)

• Each powder pattern highlighted two primary diffraction peaks
corresponding to the MOF pore (intensities reduced for dropcast
samples, with the large peak corresponding to the platinum IDE)
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Powder XRD patterns for as-synthesized MOF-74
in the bulk phase.
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Leo J. Small et al., "Near-Power MOF-Based Sensors for NO2 Detection," Advanced Functional Materials, 2020, 2006598.



1 SEM Characterization of Dropcast M-MOF-74
Thin Films

• Co- and \
to 100 nm

1-

Plan-view SEM micrographs of (A) Co-MOF-74,

(B) Mg-MOF-74, (C) Ni-MOF-74 powders

dropcast onto IDEs. (D) Cross-sectional

micrograph of Ni-MOF-74 film from (C).

MOF-74 contained a wide range of crystallite sizes, from 100's of lam

• Mg-MOF-74 crystallites were on the order of 100 nm

• Film thickness was — 10 !am

Small et al., Adv. Funct. Mat., 2020.



I NOx Exposure and In Situ Electrical TeeinE

• Custom- built NOx exposure chamber
enabled MOF activation and subsequent in
situ electrical testing under varying NO2
concentrations without exposure to lab
atmospheres

• Variable NO2 concentrations (0.5-5 ppm)
were achieved by diluting 5 ppm NO2 gas
stream with pure UHP N2 at 500 sccm total
gas flow

• Impedance spectra recorded at 0 V DC and
100 mV (RMS) AC over 1 MHz - 10 mHz

• All electrical measurements and NO2
exposures occurred at 50°C
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7 1 Typical Impedance Responses of M-MOF-74-
Based Sensors

• Exposed M-MOF-74-based sensors to 5 ppm NO2 for 8 h at 50° C.

1012

100

p
413 80
al
o

6'z 60
-0
a)

-t'-'0 20cc

0

Co-MOF-74
Mg-MOF-74

Ni-MOF-74

Ni
33.7

Co Mg
3.40 2.93
i mim

Co
63.8

i

Mg
20.2

Ni
725

IZI at 100 mHz RA4OF (DC)

Ratio of response as-activated to NO2-exposed for (1)

impedance magnitude ( Zactivated 1 / 1 ZNo2 1) at 100 mHz

and (2) MOF DC film resistance (Ractivatei R-NO2) for
IDEs coated with M-MOF-74 (M= Co, Mg, Ni).

o

o IDE
x IDE + Ni-MOF-74

IDE + Ni-MOF-74 + NO2
fit

0

a)
Ty) -30
c
<
w -60
cn
co
0--c -90

10-2

I

i•

.

1
10° 102 104 106 i
Frequency / Hz i

Example impedance spectra for Ni-
MOF-74-based sensor

Small et al., Adv. Funct. Mat., 2020.



8 I Impedance Responses as a Function of NO2
Concentration

• Blank IDEs and IDEs coated in M-
MOF-74 (M= Co, Mg, Ni) were
activated and exposed to alternating
0.75 h flows of pure N2 or N2

containing trace NO2, while impedance
was constantly measured at 100 mHz

• The magnitude of the impedance
change observed is ordered Ni > Co >
Mg

• Explained by each variant's NO2
adsorption capacity and specific chemical
interaction

• Use of Ni-MOF-74 provided the
highest sensitivity to NO2, with a 725x
decrease in resistance at 5 ppm NO2
and a NO2 detection limit <0.5 ppm

1

0.8

Nc) 0.6

N 0.4

0.2

o
o

o

1203 -30
c
<
CD
2 -60
_c
0_

-90
0

IDE -

..,..,,,_\...,., __.Co -
,C..-•••NA g

NO2

.

(.......:..r...."........
Ni

N021

Co -
Mg

IDE......
. 1 1
1 2 3 4

Time / h
5

Small et al., Adv. Funct. Mat., 2020.



9 NO2 Selectivity •

• A Ni-MOF-74-based sensor was activated and exposed to 5 ppm S02 in N2, and ambient air
(25 °C, 50% RH, 400 pm CO2) heated to 50 °C, and its response compared to previous
exposures to 5 ppm NO2 in N2

• An extended air exposure (96 hours) followed by subsequent NO2 exposure was also
performed

• The Ni-MOF-74-based sensor demonstrated selectivity to NO2 versus N2, S02, and air.
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w I Conclusions

M-MOF-74 (M = Co, Mg, Ni)-based sensors for selective detection of trace
(0.5-5 ppm) 1 -02 were successfully demonstrated

• Ni-MOF-74-based sensor exhibited a superior electrical response in its
selectivity to NO2 over interfering gases such as N2, s02, and ambient air

• Differences in electrical response to NO2 between the M-MOF-74 analogues
were attributed to both the adsorption capacity and chemical interactions
between the NO2 and MOF

• The magt*ude of the electrical res.Donse observed is ordered Ni > Co > Mg,
with Ni1OF-74 providing 725x cecrease in resistance at 5 ppm NO2 and a
NO2 detection limit <0.5 ppm

• The high impedance of these materials enables applications requiring an
ultralow power sensor or dosimeter, with the active material dissipating
<15 pW, despite being a macroscale device



" I Future Work

• Investigations are underway for the following:

• To increase mechanical durability of these sensors via stronger
adhesion of nanoporous materials to the IDE

• To incorporate new phases onto the sensors for selective detection of
relevant competing gases

• To evaluate sensor response over a range of environmental conditions
(temp., humidity) as a function of time


