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2 1 A Need for Grid-Scale Energy Storage
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Renewable/Remote Energy Grid Reliability National Defense

Emergency id

As part of the DOE Office of Electricity efforts to create a modern, resilient, reliable, and agile
grid system, we are developing new battery technology characterized by:

* Inherent Safety
« Long, Reliable Cycle Life

« Functional Energy Density
(voltage, capacity)

* Low to Intermediate Temperature
Operation

* Low Cost and Scalability




3 1 Sodium Batteries -

Emergency Aid

Renewable/Remote Energy Grid Reliability National Defense

As part of the DOE Office of Electricity efforts to create a modern, resilient, reliable, and agile
grid system, we are developing new battery technology characterized by:

— Terminals (+)
[ I_ TT:minaIs (=}

- Inherent Safety Sodium-based batteries
* 6th most abundant element on earth.

« Long, Reliable Cycle Life

 5X the annual production of aluminum. - Sodium
* Functional Energy Density * Proven technology base with NGK Sodium/Sulfur
(voltage, capacity) (NaS) and FzSoNick ZEBRA (Na-NiCl,) systems.

i Beta
= alumina
" ceramics

Sulfur
(5)

» Utilize zero-crossover solid state separators.

* Low to Intermediate Temperature - Favorable battery voltages (>2V).

Operation

* Low Cost and Scalability Na-S (E ., ~ 2V) Na-NiCl, (E ., ~ 2.6V)
2Na + 4S € Na,S, 2Na + NiCl, € 2Na* + 2CI- + Ni(s)




4 1 Sodium Batteries

Renewable/Remote Energy

Grid Reliability National Defense
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Emergency Aid

As part of the DOE Office of Electricity efforts to create a modern, resilient, reliable, and agile

grid system, we are developing new battery technology characterized by:

* Inherent Safety
« Long, Reliable Cycle Life

« Functional Energy Density
(voltage, capacity)

* Low to Intermediate Temperature
Operation

* Low Cost and Scalability

Sodium-based batteries

r— Terminals (+)
[ l_ TTrminais (=) |

» 6th most abundant element on earth.

« 5X the annual production of aluminum.

* Proven technology base with NGK Sodium/Sulfur
(NaS) and FzSoNick ZEBRA (Na-NiCl,) systems.

» Utilize zero-crossover solid state separators.

» Favorable battery voltages (>2V).

e ~ 300°C Operation!

2N a* + 2CI + Ni(s)

— Sodium
(MNa)

N Beta
=— alumina
ceramics

Sulfur
(5)
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Lowering Battery Operating Temperature to Drive Down Cost
. . . Installed Cost Estimat
Our Objective: A safe, reliable, molten Na- $500.00 ———— >
based battery that operates at drastically $400.00 i
reduced temperatures (near 100°C). £ somi00 VAR
& mPCS Install
8 $200.00 OoPCS
» Improved Lifetime o = Battery Install
* Reduced material degradation $100.00 RS
» Decreased reagent volatility 000
* Fewer side reactions ' Original Na$ LowTemp Na$
» Lower material cost and processing Gao Liu, et al. A Storage Revolution.” 12-Feb-2015 (online):
https://ei.haas.berkeley.edu/education/c2m/docs/Sulfur%20and
« Seals %20Sodium%20Metal%20Battery.pdf
« Separators
* Cell body Low T
ow Temperature
* Polymer components? lon Conducting

Ceramic

» Reduced operating costs
Low T°C
Molten Salt

GEtholyit |l —

» Simplified heat management costs
» QOperation
* Freeze-Thaw

100°C



6 1 Low Temperature Molten Sodium (Na-Nal) Batteries | |
Realizing a new, low temperature molten Na battery requires new battery
materials and chemistries. i
Ingredients for Success 2e —> )
¢ Molten Na anode NaSCON . Cthode
« 25 mol% Nal in AlX; catholyte R
«  Highly Na*-conductive, zero-crossover Na-

separator (e.g., NaSICON) Molten
Sodium //C
Na*. 1>
Na-Nal battery: Na'— 1>

Na > Na*+e EO=0V .
l;; + 2e- > 31" E%=3.24 |

2Na + 137 > 2Na* + 3I° Eocell= 3.24V
Martha Gross
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What we want:

High ionic conductivity at low temperatures
Chemically compatible with anode and catholyte
Lero-crossover

Mechanically robust

Cost-effective to produce at scale

Chemical compatibility is a challenge:

X Conductive glasses - reactivity and/or low conductivity

X
X

Sulfide-based conductors - reactivity
Polymers - reactivity, low conductivity
Oxides:
B”-ALO;
« atmospheric sensitivity

« slightly lower conductivity at lower temperatures

v NaSICON

Desired Virtues of a Low Temperature Solid State Separator

A Promising Candidate: NaSICON

Na;Zr,PSi,0,,
Tunable chemistry
High Na-ion conductivity (>103 S/cm at 25°C)

Chemical Compatibility with Molten Na and
Halide salts

Zero-crossover

“ NaSICON
&= *B”Alumina

Ln Sigma-T (S/cm-K)
b 3 ° N

1000/T (K1)

Small and Spoerke, et al. J. Power Sources. 360. 569-574.



s 1 Methods for NaSICON Synthesis

» Solid State Synthesis from Oxides
* Sol-Gel Chemistry

» Spark-plasma Sintering

Challenges with NaSICON Synthesis: It’s Never a Single Phase

* Na-volatility

« Densification

» Secondary Phase Formation
» Grain Size

Small and Spoerke, et al. J.
Power Sources. 360. 569-
574.




9 I Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSi0, + Na;PO, - Na,Zr,PSi,0,,

» Mill powders
» Press powders at 10-20 kSI
« Fire at 1200°C in air

What thermal profile should
we follow?

https://modernfarmer.com/2014/12/lets-stop-mean-donkeys-parties/



10 I Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSiO, + Na;PO, - Na;Zr,PSi,0,,

* Milled powders pressed and fired at 1200°C in air

« X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases

g

g
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11 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27ZrSi0O, + Na;PO, - Na;Zr,PSi,0,,

* Milled powders pressed and fired at 1200°C in air

« X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases
« 5% Excess Na;PO, showed diminished secondary phases

600 1400 — NaSICON + 5% Excess Na;PO,
1200 NaSICON
2 400 £ 1000
- =
g 3 600
=
£ 2% £ 400
200
0 0
10 15 20 25 30 35 40 10 15 20 25 30 35 40

20 (deg) 20 (deg)

B s s B



12 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)

27rSi0, + Na,PO, > Na,Zr,PSi,0,,

Milled powders pressed and fired at 1200°C in air

X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases
« 5% Excess Na;PO, showed diminished secondary phases

Conductivities reasonable, but slightly less than “commercial” NaSICON

600
3
o

= 2
E 400 . o
° ¥
[>] > 1 °
— £
c L 0
g 200 oy
= =

9

5

(=]

10 15 20 25 30 35 40 2.2 2.4 2.6 2.8

1000/T (1/K)
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13 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSiO, + Na;PO, - Na;Zr,PSi,0,,

Milled powders pressed and fired at 1200°C in air

X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases
« 5% Excess Na;PO, showed diminished secondary phases

Conductivities reasonable, but slightly less than “commercial” NaSICON

Density ~ 92-95% theoretical (3.2 g/cc)




14 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSiO, + Na;PO, - Na,Zr,PSi,0,,

* Milled powders pressed and fired at 1200°C in air

« X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases
« 5% Excess Na;PO, showed diminished secondary phases

* Conductivities reasonable, but slightly less than “commercial” NaSICON

« Density ~ 92-95% theoretical (3.2 g/cc)

Unless it’s raining...

Densities dropped to 70-80% during monsoon season.

Hygroscopic Na;PO, likely a problem...

BUY THIS WITHOUT WATERMARKS AT VECTORTOONS.COM I




15 I Thermal Analyses to Address Humidity

Mass %

Differential Thermal Analysis and
Thermogravimetric Analysis

Exo |
102 NaSICON 0.2
conversion .
100 0-15 —_
' 0.1 ™
98 £
0.05 >
=
96 ° <
-0.05 £
94 a
-0.1
92 -0.15
0 200 400 600 800 1000 1200 1400

Temp °C
—Mass % —DTA (uV/mg)

DTA/TGA show water removed from precursor
powder by ~250°C.

NaSICON conversion reaction evident between
1150-1230 °C.

Variable Temperature X-Ray
Diffraction
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Zircon (101)
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VTXRD shows conversion of Zircon and cubic Na;(PO,)
to NaSICON starting near 1100°C

Hydrate form of Na;(PO,) up to 120°C, converts to cubic



16 1 Calcining Powder Improves NaSICON Synthesis

XRD confirms that calcining
precursor powder to at least
250°C eliminates sodium
phosphate hydrates in precursor.

Density measurements, though,
show that higher calcining
temperature (600°C) leads to still
higher sintered ceramic density.

Calcining also results in improved ionic conductivity, likely

due to improved density.

94% dense

89% dense

Intensity ((:gunts}

84% dense

10 15 20 25 30 35 40




17 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSi0, + Na;PO, - Na,Zr,PSi,0,,

» Mill powders
» Press powders at 10-20 kSI
« Fire at 1200°C in air

What thermal profile should
we follow?

https://modernfarmer.com/2014/12/lets-stop-mean-



18 1 Thermal Analyses to Inform Solid State Reaction Conditions

Mass %

Differential Thermal Analysis and
Thermogravimetric Analysis

Exo |
102 NaSICON 0.2
conversion .
100 ::5 o
98 e £
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96 0 <
-0.05 £
94 a
-0.1
92 -0.15
0 200 400 600 800 1000 1200 1400

Temp °C
—Mass % —DTA (uV/mg)

DTA/TGA show water removed from precursor
powder by ~250°C.

NaSICON conversion reaction evident between
1150-1230 °C.

Variable Temperature X-Ray
Diffraction
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VTXRD shows conversion of Zircon and cubic Na;(PO,)
to NaSICON starting near 1100°C

Hydrate form of Na;(PO,) up to 120°C, converts to cubic



Sintering Temperature Affects NaSICON Conversion and
19 I Structure

— 1250°C
—1230°C
L IS0 NaPO, zsio, _ﬁﬁﬁ .
i 100°C powder

Melted NaSICON sintered
at 1250°C

10 15 20 25 30 35 40
20 (deg.)

» Reaction at 1100°C leads to incomplete conversion and poor
densification.

» Sintering above 1230°C produces poorly formed, “melted”
NaSICON.

+ NaSICON calcined at 600°C, sintered at 1230°C, yields >94% e e
bulk density, good phase purity, and >0.2 mS/cm at 25°C.




Sintering Temperature Affects NaSICON Conversion and —I
20 I Structure -

—1250°C
—1230°C
—1200°C

zsio,
Al 1100°C powder

Na,PO, ZI’S@@ N

Melted NaSICON sintered
at 1250°C

10 15 20 25 30 35 40
20 (deg.)

» Reaction at 1100°C leads to incomplete conversion and poor
densification.

» Sintering above 1230°C produces poorly formed, “melted”
NaSICON.

« NaSICON calcined at 600°C, sintered at 1230°C, yields >94%
bulk density, good phase purity, and >0.2 mS/cm at 25°C.
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NaSICON Failures Reveal Inhomogeneities in Ceramic

“Speckles” and voids in NaSICON appear to be variations in density,
texture, and composition that are susceptible to attack by molten
halide salts.
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Refining NaSICON Synthesis

Possible Problem: Poor particle packing during pressing leads to void formation
and poor diffusion needed for NaSICON conversion.

Solution 1: Eliminate coarse aggregates from precursor powder.

Very slight improvement in NaSICON synthesis.



23

Refining NaSICON Synthesis

Possible Problem: Poor particle packing during pressing leads to void formation
and poor diffusion needed for NaSICON conversion.

Solution 1: Eliminate coarse aggregates from precursor powder.
Very slight improvement in NaSICON synthesis.
Solution 2: Increasing pressing force from 10 ksi to 20 ksi

Slightly bigger improvement in NaSICON synthesis.



24 1 Refining NaSICON Synthesis

Possible Problem: Poor particle packing during pressing leads to void formation
and poor diffusion needed for NaSICON conversion.

Solution 1: Eliminate coarse aggregates from precursor powder.
Very slight improvement in NaSICON synthesis.

Solution 2: Increasing pressing force from 10 ksi to 20 ksi
Slightly bigger improvement in NaSICON synthesis.

Solution 3: Add polymeric binder to “lubricate” compacting particles
during pressing

Significant improvement in NaSICON synthesis!
Density 94-96%
Acceptable phase purity
Conductivity increased to > 0.4 mS/cm



25 | Refining NaSICON Synthesis

Possible Problem: Poor particle packing during pressing leads to void formation
and poor diffusion needed for NaSICON conversion.

Solution 1: Eliminate coarse aggregates from precursor powder.

Very slight improvement in NaSICON synthesis.

Solution 2: Increasing pressing force from 10 ksi to 20 ksi

Slightly bigger improvement in NaSICON synthesis.

Solution 3: Add polymeric binder to “lubricate” compacting particles
during pressing

Significant improvement in NaSICON synthesis!
Density 94-96%
Acceptable phase purity
Conductivity increased to > 0.4 mS/cm




26 1 Refining NaSICON Synthesis -

and poor diffusion needed for NaSICON conversion.

Possible Problem: Poor particle packing during pressing leads to void formation |
Solution 1: Eliminate coarse aggregates from precursor powder. |

Very slight improvement in NaSICON synthesis.
Solution 2: Increasing pressing force from 10 ksi to 20 ksi

Slightly bigger improvement in NaSICON synthesis.

Solution 3: Add polymeric binder to “lubricate” compacting particles

durs .
uring pressing during processing allows for still

Significant improvement in NaSICON synthesis! further improvement...

Density 94-96%
Acceptable phase purity
Conductivity increased to > 0.4 mS/cm

Density >96%

Controlling moisture content |
Conductivity increase >.5 mS/cm !



27 I Low Temperature Molten Sodium (Na-Nal) Batteries

Realizing a new, low temperature molten Na battery requires new battery
materials and chemistries.

Ingredients for Success

. Molten Na anode

. Highly Na*-conductive, zero-crossover
separator (e.g., NaSICON)

. 25 mol% Nal in AlX; catholyte

. No complications from solid state
electrodes!

Na-Nal battery:

Na = Na*+e E9=0QV
I, +2e > 31" E0=3.24

2Na +1; > 2Na*+ 3 EO_, = 3.24V

Martha Gross



28 1 Effective Battery Cycling with NaSICON

Integrated Nal-MH2 catholyte into molten Na batteries with NaSICON separator

> Successfully ran >300 cycles (>6 months) at 5 mA cm2 (25% DoD) for 85.3% voltage
efficiency. Still running!

> Successfully accessed all I-/1;- capacity (100% DoD) at 3.5 mA cm~
> Cycled currents as high as 15 mA cm2.

S 45 1207

= 100

3 £

% 3.5 g 60 -

z & 40 ~CE 25-50% SOC

S 25 - . . [ 201 T gt
0 1000 2000 3000 4000 5000 0 S : :

Time (h) ’ N totamiee
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Mechanical integrity is important!

2e —> ¥ 2e —>
Cathode
Current Collector
N ef— <
lolten O

odium Na*




30 1 Mechanical and Microstructural Characterization of NaSICON

180

Surface Height Elastic Modulus

Mechanically different regions can be visualized and reconciled

with topographical features and phase differences




31 Basic Mechanical Metrics

Eﬂ"lax ‘
E{ 300 |f--------mmmmmmmmmos -
_E_ - Loading Stiffness
E = dP/dh
S 100 Unloading m !
- Dimax i
0 max !

0 500 1000 1500 2000
Displacement (nm)

Elastic Modulus (GPa) Hardness (GPa)
76.32 + 5.80 4.57 + 0.55

Baseline mechanical properties of NaSICON are consistent with

published values.
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Basic Mechanical Metrics

E 300 f-----=-=-=--—----- —‘
-.g.- 200 Stiffness
i = dP/dh
9 100 Unl

D —//

0 500 1000 1500 2000
Displacement (nm)

Elastic Modulus Hardness (GPa)
(GPa)
NaSICON 76.32 + 5.80 4.57 + 0.55
B”-AL,0; (with ZrO,)’ 0.185-0.199 ~11-14

1. Sheng, J. Mater. Sci. (1988) 23, 958-967.



33 1 Fracture Toughness of NaSICON -

3000 Fracture toughness then calculated by:
=z Jump implies E % p
£ cracking event e =4 (E) 3

1500
E A: Material independent constant = 0.040 £ 0.004
3 E: Young's Modulus

0 H: Hardness
0 10000 20000 P: Maximum load during indentation

c: Length of crack measured by SEM

Displacement (nm)

SiC 3.00-6.00
MgO 2.50

Fused Silica 0.80

WwC 6.00-20.00
B”-AL,O; (W/ ZrO,)"  2.3-4.5
NaSICON (measured) 1.90 + 0.60

Material K, (MPavm) |

Cracks can be measured by SEM 1. Sheng, J. Mater. Sci. (1988) 23, 958-967.



34 1 A More Compliant NaSICON

Initial Approach

Powdered NaSICON and powdered polymer (polyvinylidene
difluoride: PVDF) were warm-pressed together

Tough composite with reasonable distribution of NaSICON
Good interfaces between NaSICON and polymer

Impractically low ionic conductivity. Poor connectivity of
Na-conductive NaSICON is evident in cross-sectional
elemental mapping.

I WO

[

nnlunluuluulum




33 1 A More Compliant NaSICON

An alternative approach

Initial Approach
o . NaSICON chips (1mm thick) enveloped
» Powdered NaSICON and powdered polymer (polyvinylidene in PVDF powder and warm-pressed
difluoride: PVDF) were warm-pressed together . NaSICON chips provide continuous
» Tough composite with reasonable distribution of NaSICON conductive path through separator

* Good interfaces between NaSICON and polymer

Conductivity is
determined by
NaSICON ceramic.

ogr ~0.25 mS/cm for
composite!

» Impractically low ionic conductivity. Poor connectivity of I _ I
Na-conductive NaSICON is evident in cross-sectional

elemental mapping. plunger

o =
. 4 g Kapton Barrier
__: PYDF sheet
= —| | wesconeenmic * This is a “low tech,” but
n—= Koo Boare promising approach.
» Interfaces must be
Die body engineered for thin separator
applications.

» Polymer selection is critical!



36 1 Hazards of Poor Material Selection

Polymer incorporation highlights the importance of
careful material section.

Compatibility must be considered for:
Molten sodium

Molten halide catholyte salts

Non-ambient temperatures

Electrochemical reactions

Temperature

Mechanical Properties (toughness, compliance,
hermeticity, etc.)

Magnesium metal and Teflon (PTFE) are elements
of decoy flares...Sodium has a similar reactivity.

Molten sodium and fluoropolymers should not be
considered stable, especially for long-term use.

Thermal and mechanical stability
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33 1 Summary

Project Objective: Synthesis of a NaSICON-based solid state ion conducting separator for use in a
novel ”"low temperature” molten sodium battery.

. Solid State NaSICON can be successfully synthesized with high density and reasonable conductivity

. Humidity and secondary phase formation can affect NaSICON ceramic properties (can be managed
through synthetic modifications?)

. Incomplete pressing can lead to inhomogeneous NaSICON synthesis
. Improved ”green” densification can improve NaSICON uniformity and performance.

. Mechanical properties of NaSICON are important
. Measured mechanical properties are comparable to literature values
. Fracture toughness needs to be higher for reliable performance

. Composite structures may offer new avenues to reliable performance, if chemical compatibility
and structural integration can be optimized.

NaSICON-based solid electrolytes have the potential to impact a wide range of battery technologies
as highly conductive, zero-crossover separators!
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