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The Continual Need for Anti-Corrosion Coatings

Attributes of an Ideal Anti-Corrosion Coating

National Association for Corrosion
Engineers (NACE) IMPACT study estimated
2013 global cost of corrosion to be USS 2.5
trillion annually (3.4% of GDP)
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Polymeric-based Coating Improvements via Nanoparticle Additions
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LBL nanocomposites as robust and agile anti-corrosion coatings
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High loading and highly aligned particles Improves Coating Permeability

Bulk Nanocomposite

Relative Permeability of a Composite Coating:

particle loading (vol. fraction)

E 1_¢s

P

» s (3)(5+2)
/ \ Loading < 10 vol. %

particle order ranging from
1/2 (long direction is
perpendicular to substrate
surface) to 1 (long direction is LBL Nanocomposite
parallel to substrate surface). :

particle aspect ratio

1 (o)
Bharadwhaj, Macromolec., 2001 Loadmg >>10vol. %



Coating Design for Protection from Corrosive Gases
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Copper sulfidation in
microelectronics

Acetic acid corrosion of PV cell
metallization/ribbon
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Limitations: high material and
production costs (up to
$5,000/kg, vacuum dep.), low
wear resistance



LBL Polymer-Clay Nanocomposites Possess Desirable Qualities for Anti-Corrosion

Desirable Coating Qualities
Low permeability

htps://w.burafiI.com/caﬁses—corrosion—corrosion—monitorinp./ (Water’ Oxygen, HZS’ acetlc aC|d)
Copper sulfidation in Inhibiting
microelectronics Low profile
Conformal

Tough and wear resistant
Optically transparent
Inexpensive (materials, processing)

Acetic acid corrosion of PV cell
metallization/ribbon

Quad layer LBL Gas Barrier

4 QL (50 nm)': OTR £ 10 cc/m?-day
Parylene (3 pm)?: OTR ~ 1073 cc/m?-day

0, ~ H,S
d,=3.5A d,=3.6A

Commercial Montmorillonite: ~$0.50/kg
Commercial PEIl: ~S1-10/kg
Commercial Parylene-C: $100-5000/kg

IPriolo et al, Adv. Mat., 2012; 2McKeen, 2016



Successful Growth of Contiguous QL PCN Coatings on Copper Substrate
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Experimental Details

f « (Cao et al., Langmuir, 2007)

Polished Cu (99.95% pure)

Branched PEI: 0.1 wt% (M,,~ 25,000 g/mol)
PAA: 0.2 wt% (M,, ~ 100,000 g/mol)

MMT: 1 wt%

Dip time: 1 min Schindelholz et al., App. Mat. Int., 2018



PCNs can be effectively and conformally grown on complex electronics geometries

Conformal 6QL film on
metalic interrconnect



How Effective are PCN Gas Barriers as Anti-Corrosion Barriers?

Substrate | Periodically
[> weigh and
measure

reflectance

2,4,6,10 QL; 10 BL; bare
5 replicates each

Exposure to mixed flowing
gas chamber at 10 ppb H,S,
70% RH, 30°C



PCN Films as thin as 100 nm Inhibit Corrosion in 10 ppm H,S by > 1000x

T T x T z T 7 T z T z T 103 lcj [ ]

10°] ', Bare . 10 QL ] [_Jglass substrate |

.| = 2aQL -+ 10BL ; I copper substrate

— 107y . 6aL . Parylene ' ‘% 102 .

1 2 ‘//0/‘/" ] <
g). ] 2 1

U‘1D1- Y I Y - e —h 510 E 3

2 . e —— | 3 |

=10%] :+ & * . * @ : -

=] ] = 104 v

107" ¢ ] < ]

1 |
o0 ] 10"

0 100 200 300 400 500 600 700 800 Bare 2QL 6QL 10QL 10 BL Parylene

Exposure Time (h)

Unexposed Expnsed 800 h

Schindelholz et al., App. Mat. Int., 2018



10 QL PCN Films Outperform “Gold Standard” Industrial Coating
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PCNs as Advantageous Alternative to Other Emergent Ultrathin Coatings
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Article | Open Access | Published: 16 November 2017
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What Critical Characteristics of LBL PCNs Inhibit Aqueous Corrosion
of Structural Alloys?
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Desirable Coating Qualities for Structural Alloys

Light weight (e.g., transportation applications)
Low permeability (water, oxygen, ions)
Conformal

Tough and wear resistant

Inexpensive (materials, processing)

Health and Environmentally Friendly

https://www.durr.com/en/products/paint-shop-application-

technology/pretreatment-and-electrocoating/

https://www.steelconstruction.info/Standard corrosion _pro
tection _systems for buildings



Initial Studies Show Promise for Protection of Steel and Aluminum Alloys
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Clay and DOPA Containing Polyelectrolyte Multilayer Film for
Imparting Anticorrosion Properties to Galvanized Steel
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Figure 6. Estimated corrosion current values for bare and treated
HDG samples in aerated 0.1 M NaCL
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Ultrathin Transparent Nanobrick Wall Anticorrosion Coatings
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What are critical component and architectural factors governing barrier
performance?

Water Permeability Model for PCN:
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Can we grow a “defect-free” coating on plain steel? What coating characteristics are
critical for performance ?

1 min. 12 hrs.

<=

Steel

substrate m a Clay layer

2.5cm
Experimental Details Clay Diameter (nm) Loading (wt%)"
1018 steel, 180 grit finish, alkaline passivation LAP 30 83
Branched PEI: 0.1 wt% (~ 25,000 g/mol) MMT 400 83
Clay: 1 wt% VMT 2000 92
GA: 25 wt% 17

*determined from previous studies : Li et al., 2009; Priolo et al., 2012



LBL Coatings on Steel Exhibit Highly Aligned Exfoliated Clay Layers with no
observable through-defects
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GA Cross-Linking Was Necessary for Creating Protective Coatings

e Bare and coated steel was immersed  40BL GA Crosslinked
in 0.6 M NaCl (seawater analog) for After 24tirs After 24Hrs Aftar 24
up to 7 days.

* Electrochemical impedance of coated
steel used to track coating integrity
and steel corrosion rate
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Coating Protection Could be Further Improved by Increasing Number of Layers

7 day immersion in 0.6 M NaCl
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Protection and Permeability Improved With Increasing Particle Aspect Ratio
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Film Debonding Was a Primary Coating Failure Mode for All Films

Film Damage After 7 day Immersion in 0.6 M NaCl

x-linked 20BL PEI/LAP x-linked 20BL PEI/VMT

Debonding Likely Played a Minor Role in the Performance Differences Observed Between LAP, MMT and VMT films
22
Melia et al., Prog. Org. Coat., 2020



PEI/VMT Films Had Highest Reported R.; Values Per Coating Thickness

Melia et al., Prog. Org. Coat., 2020

Performance of coated steel in 0.6 M NacCl
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Conclusions

Layer-by-layer PCN films are a promising, low-cost solution for protection of metals
against corrosive gases and saline agueous environments.

Films as thin as 90 nm, can reduce copper corrosion rates by >1000x in highly corrosive
H,S atmosphere.

Contiguous PEI/Clay LBL films were successfully grown on carbon steel, providing
exceptional protection (20x in aggressive chloride salt environments).

Increasing clay aspect ratio and cross-linking can critically improve the corrosion
barrier performance of LbL PCN films.

Film debonding with the steel was common coating failure mode in immersed
environments = Pathway to further improving LBL PCN coatings.

Ideal Characteristics
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