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Agenda () e,

VOROCRUST (9-12) Geology (13:30-16:30)

= 9-9:15 Tech set up and welcome = 13:30-13:50 Michael Gross -Overview

= 9:15-10:00 Mohamed Ebeida = 13:50-14:10 Liz Miller

= 10:00-10:20 Tara LaForce = 14:10-14:30 Erika Swanson

= 10:20-10:50 Phil Stauffer = 14:30-14:50 Damien Milazzo

= 10:50-11:10 Terry Miller = 14:50-15:20 Frank Perry

= 11:10-12:00 Discussion and planning for = 15:20-15:50 Tessica Oldemeyer and Glenn
next FY Russell

= 15:50-16:30 Discussion and planning for
= Lunch (12-13:30) next FY
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Workflow () ==
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« Create volumes or read * Import .stl file * Import .obj file
in GFM software « Export as .obj file » Create Voronoi mesh(s)
surfaces « Export .vcg file containing all the
» Generate surface mesh <*_ Visualize output grid information needed by
- Export as .stl file e PFLOTRAN
(\// .
PFLOTRAN <=m ESTelNIGle)
* Import mesh.uge, * Read .vcg file and export PFLOTRAN:
boundary.ex, and « mesh.uge file
MatlD.h5 files « Boundary .ex files (aligned to axes only)

 Run simulation « Material ID file




Benchmark 1: Single-Phase Pressure () s,

Figure 6-7 Pressure on the plane z=0.5 for the Richards Equation test problem on a 380x380x3 cell structured domain.
Left: Initial pressure condition. Right: Pressure at t=0.1 days.
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Analytical solution is from PFLOTRAN QA test suite after Section 2.2.10 of Kolditz et al. (2015) 1.0e+05 =

Kolditz, O., Shao, H., Wang, W., and Bauer, S., 2015. Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling
and Benchmarking Closed-Form Solutions (O. Kolditz, H. Shao, W. Wang, & S. Bauer Eds.). Switzerland: Springer International Publishing.




Benchmark 1: Single-Phase Pressure @) ==

. . . . Numb Monitori int imulati

= Hexagonal mesh of similar size is used as 433,200 Eggggg b 8'23’ 0.045% | 8.49
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New Wyoming Uplift Simulation () =

=  Surfaces used are from:
https://github.com/lanl/VoroCrust/tree/master/
examples/Slope Tests/uplift slopes/7layers 6x

= 6x vertical exaggeration
= 204,965 cells
= Tracer flow from left to right
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Wyoming Uplift Simulation mE
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Sandia

Shale Geological Framework Model Simulation @&

= |n Sevougian et al. (2019)
= Shale GFM was presented

= An attempt was made to mesh it using hexagonal
meshing software

= Asimplified sector model was meshed in

VOROCRUST

= 1.75x2.0 km rectangle of southwestern corner

= 101,319 cells

=  Simulations of a tracer release from an
underground source were conducted
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Shale GFM Simulation: slice through the source after
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Shale GFM
Simulation:
Monitoring
Points

a) In repository

b) In shale downstream
c) In Niobrara
downstream

d) In Inyan Kara
downstream

Figure 6-23 Tracer concentrations as a function of time at four monitoring points in the shale GFM sector model. Top
Left: In the K-shale at the tracer source. Top Right: In the K-shale at the model boundary immediately downstream of
the tracer source. Bottom Left: In the Niobrara aquifer at the model boundary immediately downstream of the tracer
source. Bottom Left: In the Inyan Kara aquifer at the model boundary immediately downstream of the tracer source.
Notice that the x-scale is logarithmic.
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Observations and Conclusions ()

= Simulations on VOROCRUST meshes:

= High quality as PFLOTRAN simulations rigorously converge to analytical models
= Reproducible with similar errors for many realizations

= Possible to mesh and run simulations on GFM models




Future Work () ==

= Need Exodus output for visualization

= Need to be able to mesh interior volumes (e.g. a thousand waste packages) without
generating large numbers of grid cells

= [ssues with meshing poor-aspect ratio regions remain

= Paper in progress that is focused on simulations using Voronoi meshes

= Revisit two of the test cases from FY19 reports
= Revisit two-domain heating benchmark from FY20 RSA report
= One of:

= Natural gas storage in Wyoming uplift (it’s the easiest 2-phase problem | could think of)
= Reuvisit high permeability CO, storage from Stauffer et al. (2009) (more interesting but harder in PFLOTRAN)

= Shale GFM model done correctly with repository region as source for radionuclides



