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Background

Causal impedance matching approach



Fig. 1.3. Structure of random sea (Pierson et al., 1958).




s I WEC control hierarchy

Sea state spectrum
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¢ I Impedance matching

Maximum power transfer (from waves to PTO)

*
Zsource — Zloa,d




7 | Impedance matching

Where else is this used?

I D e



s I Impedance matching

http://www.lockhaven.edu/~dsimanek



9 I Describing a WEC controller

Zi(w) = zw({w + m(wl) + By + R(wl%—

4 '
mass damping

Fu(w) = f(v(w))
= —Zy(w)v(w)



0 | Impedance matching

Maximum power transfer (from

*
Zsource — Zloa,d
7, = 7

waves to PTO)

— (Z; = Zu)

Fpto(w) = —Zj (w)v(w)

WEC

Power
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11 | Impedance matching (cont.)

Maximum power transfer (from waves to PTO)

Zsource — Zl*oad
Zi=27° = (ZF = Z,)
m [o(w) = —Z; (w)v(w)
F, + F .

¥; >
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12 | Acausality - Let’s get things straight

» Two components of noncausality
« Excitation: matter of perspective

« Complex conjugate control: A common problem seen in other fields

Causal: Ynow = f(t < now)
Acausal: ynow = f(0 <t < tomorrow)



13 | Acausality — excitation (cont.)

» Two components of noncausality

[ « Excitation: matter of perspectiveJ

« Complex conjugate control: A common problem seen in other fields

exr

Causal system

) —— o 0

Wikimedia Commons



14 | Acausality — impedance matching

« Two components of noncausality

« Excitation: matter of perspective

[ « Complex conjugate control: A common problem seen in other fields ]

The complex

conjugate of any Need an
causal system must engineering solution
be acausal

(proof left for your free time)

Acausality in
impedance matching | -
is a problem seen in | :

many other fields




15 Band'limited inPUt System Frequency range

US broadcast television 54-700 MHz
AM radio 0.6-1.6 MHz

Visible light 430-750 THz

Audible sound 20-20,000 Hz

Gravity water waves 0.05-1 Hz
Individual sea state (example) 0.1-0.2Hz
Wave period
0.1s 1s 30s 5 min 12 h 24 h
CAPILLARY ULTRA ORDINARY INFRA LONG PERIOD ORDINARY TRANS-
WAVES GRAVITY GRAVITY GRAVITY WAVES TIDE TIDAL
WAVES WAVES WAVES WAVES WAVES
— WIND —_— % WIND & STORMS & SUN STORMS
ORDINARY EARTHQUAKES & SUN & MOON
GRAVITY MOON
WAVES
O i -_ T = — \/\J\
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-2 -3 —4 -5
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Spectral distribution of ocean waves, W.H.Munk,Origin and generation of waves, in:Proceedings of First Conference on Coastal Engineering, Long Beach, CA, 1950 (by Mikhail Ryazanov, licensed by CC BY 3.0/ units abbreviated)




Causal realization

While perfectly
implementing impedance

matching in a causal derivative gain integral gain
controllers is not proportional gain
possible, we can come
quite close \ l

KD82+KPS+K[
S

Cpip(s) =

*most of us learn about “PID” in the context of error
minimization, this is not really the intent here

16



i7 1 “WEC control hierarchy"

Intrinsic impedance

Zz' (w)

Complex conjugate

Z; (W)

Real and imaginary parts

MZ; (W) U2 (W)

Causal r;alization
Kp(w) = R{Z(w)} Ki(w) = wS{Z (w)}
= —wI{Z;(w)}

= —w?(M +m(w)) + S.




18 I Two paths - a WEC reformation

Fe Velocity tracking

o controller
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| What am | missing out on?

Not that much
A
(

]

Proportional ('damping')

Proportional-integral (PI)
Feedback resonator
MPC w/ Perfect pred.

Complex Conj. (optimal)

0 10 20 30 40 50 60 70 80 90 100




| What am | missing out on (cont.)?

Normalized power & excitation | |
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| What about nonlinearities? PO, . - . ... S,
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2 | Isn’t Pl too narrow-banded? arriving

CDIP225, KANEOHE BAY, WETS, HI

Power (dB)

Freq. [Hz] - 0

0 Time [hr]
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Isn’t Pl too narrow-banded (cont.)!?
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24 | Isn’t Pl too narrow-banded (cont.)!?

Bode-Fano limit: there will always be a tradeoff between bandwidth and accuracy (reflection coefficient) ‘

/ﬂlnl ,
) |

I Reflection coefficient

I' =1 —— NO power transferred to the load

I' = () —— All power transferred to the load
(perfect match)

/ \ Hendrik Bode Robert Fano
Example A A
r T
1 1 =
Awln— < M| 1
F'm Lim g -
| L S : ‘ I
> -
. w ; v
\ - Ay f— Ay —>: /

* Narrow banded devices (High Quality factor Q) have lower M Another good reason not to
» Narrow banded WECs are not the best choice (e.g. spar buoy) —) design narrow-banded WECs



s | Impedance matching

Maximum power transfer (from waves to PTO)

*
Zsource — Zload

...actually, the real problem is closer to

I D e | TS



Co-design problem and
approach
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Description of power flow

Ocean
Waves

Wave Excitation :

Wave Radiation

Sif s r—>~F" TF: 1/5%(;'
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28 I Why use Multiport theory!?

It gives condition for maximum power transfer:




29 | How to account for the dynamics and efficiency of the PTO!?

Thevénin
equivalent transformation

.
PTO  [F
(2-port Network)| v Zr

Impedance matching condition for Max power transfer to Z;

*
AR th




30 I How to account for the dynamics and efficiency of the PTO!?

Example:

Simplified PTO diagram

V,F, | Drivetrain Generator

Control systems
designed to account
for PTO dynamics and
efficiency




31

Electrical

vs. Mechanical power

Tp — 1.588 Tp :2.5S Tp :3.5S
P, [W] Mlm Pe [W] Tle P, [W] nm Pe [W] e P [W] nm Pe [W] Te
CC on mech 1.06E41 -2.91E+4+1 521E+41 1.00 -T7.47TE+2 -14.34 1.29E+2 1.00 -7.85E+3 -60.69
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https://github.com/SNL-WaterPower/fbWecCntrl/blob/codesign/codesign/codesign_powerTable.m




2 | Electrical vs. Mechanical power (cont.)

More
motion

CC on hydro
CC on full sys.
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https://github.com/SNL-WaterPower/fbWecCntrl/blob/codesign/codesign/codesign_efficiencyFig.m

Making other design decisions without

a good approximation of the control
and PTO is problematic
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F, + F
O

¥ o
—

PTO

Electrical power

v

7

F. +_ F 174
O o —
- o
r —
L PTO

Pe
j|><|—>

! D s



33 | PTO design is the important problem

o= 1:58s
o= 2:50s
o= 3:50s
N = .
Pma:c
0.995 r
™m
— 099 -
“~ 0.985
0.98 -
0975 | | | | | | | |
0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Frequency H z]

A perfect controller is not that much
better than a good controller,
especially when the PTO is not
optimized

https://github.com/SNL-WaterPower/fbWecCntrl/blob/codesign/codesign/codesign_powerTable.m




34 | Efficiency is highly frequency dependent

| — — — —
0 _———— = = == -
E A — —  Mechanical efficiency - CC control for max B,
§ 2 ——  Electrical efficiency - CC control for max B,
E 3 F = = Mechanical efficiency - CC control for max P,
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-5 ' ' ' ' ' ' '
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35 | Multiport framework

Example: Generic 2-port

€1 |(2-port Network)| €9

eq, e,: effort (across) variables

q1, q»:flow (through) variables

-

(S

2-port Impedance:

o

€| Z11 Zi2| @
€2 Zo1  Zoo| |q2
11 = a Zig = a

A [ g,=0 92 |4, =0
Ty = =2 Ty =

91 {g,=0 92 {4, =0



36 | Multiport framework (cont.)

QA
+ 'IU
Example: Electric generator T r

Electrical generator

€1 — T;
i (2-port network)

qmzﬂ 2112—2 212:_.17

g2 =1 =l o 2w, .
4 ’ jwl, —.\/2K,

| — ——— Lgen =
T = I JWQ + T \/%Kt

Vg = Up + Ly 1y

Te — —\/3/2Ktiq
Vp — \/3/2Ktﬂ




7 I How do we optimize PTO?

ﬁ)nsider the PTO as an impedance \ / 2 mqtghmg con;htllon: fOFl
matching network and design it to maximization of electrical power
maximize the power delivered to the load.
Zr, =754 Output matching
%k .
i =24, Input matching
i , |
; L iy PR3 y -
F (2—p0:'rN(e)t;work) v 1 PTO d + PTO +
) |::| = F, |2-port Network)| v F}, ((2-port Network)
- » . Zout Zin | .
" " (a) (b)




3 | Power and efficiency

o e
1 - 1 PTO
F, 9 F, |(2-port Network)
~ - N
Theoretical upper bound for pmaz _ | Fexel|? '
mechanical power mo 8R,
zrmo =0 7]
Power on the load as function P _ Za1 2 \FePR
of the PTO and Controller (C = Z;) 2 (21 + Z7) (Zas + Zr) — Zug Eog g L
P Z ’
Electrical conversion efficiency N = PmLM = ‘(Z 72 —2:2 = Z1a Z AR; R,
m 11 ) ok b4 L) — 412 £21




19 | Power and efficiency: WaveBot

Py,

5 KZN?|F.|> Ry,

2|(N?2Zy+ Z;) (Zw + Z1) + 3KZN?

‘ 2

Q Id ;|

L

V,F, | Drivetrain Generator
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/

6 K2N2R; Ry,
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w0 I Co-Optimization of PTO and control

. } PTO parameters

C = {Km K@} Control parameters (e.g. Pl)




41 | Example |: Co-optimization of PTO and control

Nominal PTO Optimized PTO

2 2T
X Theroetical Upper Bound (Mech) [ Theroetical Upper Bound (Mech)
[ Theroetical Upper Bound (Elec) [ Theroetical Upper Bound (Elec)
15 [ Actual Electrical power [ Actual Electrical power
) )
= o
o 1 )
2 2
o <)
o o
0.5
0 g4 bttt diddd T N O O 0 O O O O I O I I R O R
0.2 . X 0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

[ Theroetical Efficiency Upper Bound (CC)
0.8 [ Actual Efficiency (PI)

[ Theroetical Efficiency Upper Bound (CC)
[ Actual Efficiency (Pl)

Efficiency []
Efficiency [ ]

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency [Hz] Frequency [Hz]

Table 1: Performance improvements with a co-optimized PTO

Non co-optimized PTO  Co-optimized PTO PTO parameters to be optimized:
PIW] n PW] n ,
Mechanical (CC) 129.3 1 1293 1 O = v, I d> K, d}
Electrical (CC)  41.2 032 103.7 0.80
Electrical (PI)  38.2 030 974 0.75




» | Example 2: Co-optimization of PTO and control with non-
colocated controller

Table 1: Performance improvements with a co-optimized PTO and non-
colocated controller

Co-optimized PTO

3K P[W] 7

Zy = %, + i Mechanical (CC) 129.3 1
D Ty Electrical (CC) 103.7 0.80

Electrical (PI) 97.4 0.75




43 | Example 2: Co-optimization of PTO and control with non-

colocated controller (cont.)

* NC controller has same power performance as collocated

*NC controllers have to be implemented when cannot measure
and control directly quantities related to power

*Structure of the feedback loop depends on the availability and

quality of measurements (sensors) and actuators.

* Very different dynamic behavior

Magnitude (dB)

Magnitude (dB)

10 = B i
ol e /
/ Colocated controller
S Non-colocated controller
or /
5F
10
920
45 e —
o
45
90 & I 1 1 I 1 I
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency (Hz)
| T s
I i
s
.3 —
Colocated controller
4k Non-colocated controller |
5
B
TF -
,8 -
9 I I I I I I I
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Phase (deg)

Open Loop Responses

'Frequency (Hz)




44 | Example 3: Reducing winding resistance vs co-optimization

Nominal PTO with very small (1 mQ) R,, Optimized PTO with larger (100 mQ) R,

0= {N1 I, Kd}

2r- 2r
[ Theroetical Upper Bound (Mech) [[X Theroetical Upper Bound (Mech)
[ Theroetical Upper Bound (Elec) [ Theroetical Upper Bound (Elec)
[ Actual Electrical power [ Actual Electrical power
z 3
[5) ]
8 8
[+ [«
I O S O U O O O O O I O R R I NI EEEENAERR N
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

[ Theroetical Efficiency Upper Bound (CC)

[ Theroetical Efficiency Upper Bound (CC)
[ Actual Efficiency (PI)

[ Actual Efficiency (Pl)

Efficiency []
Efficiency []

0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Frequency [Hz] Frequency [Hz]
Table 1: Performance improvements with a co-optimized PTO and non-
colocated controller
Non optimized PTO  Optimized PTO
R, = 1mf} Ry = 100m$}
P[W] 7 P[W] 7
Mechanical (CC) 129.3 1 1203 1
Electrical (CC) 1187 093 1175 0.91
Electrical (PI)  89.0 0.69 1100 0.85




45 | Example 4: Fixed load (damping) with tunable PTO

Fixed load (Z; = 10Q), Nominal PTO Fixed load (Z; = 10Q), Tuned PTO

X7 Theroetical Upper Bound (Mech) [T Theroetical Upper Bound (Mech)
[ Actual Electrical power [ Actual Electrical power

Power [w]
Power [w]

'y

0.5 0.6 0.7 0.8 0.9

0.5 0.6 0.7 0.8 0.9 1

1 1
| 0 Actual Efficiency (P | | I Actual Efficiency (P) |
08
206 g
ool =4
ks 9
o (8}
S04t K
& i
0.2
0
0.2 0.3 0.4 0.5 0.6 0.7 08 09 1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1
Frequency [Hz] Frequency [Hz]

Table 1: Performance improvements of a tuned PTO with a fixed load

Non Tuned PTO  Tuned PTO
PW  n  PW 7 0= {i«ia Kd}
Theoretical limit (P,,) 129.3 1 1293 1
Electrical (P.) 129 0.1 88.0 0.68




s | Let’s see some examples

https://github.com/SNL-WaterPower/fbWecCntrl/tree/codesign
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foWwecCnirl is a set of MATLAB ' and scripts ing a causal i matching ap 1 10 wave
energy converter (WEC) control design. The methods applied in this code are detailed in the following paper, and is a
fork of code originally published on MHK-DR.
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