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Probabilistic Forward UQ = f (x)

Represent uncertain quantities using probability theory

Random sampling, Monte Carlo

• Generate random samples {xi}iiv_1 from the PDF of x, p(x)

• Bin the corresponding { yt } to construct p(y)

e Not feasible for computationally expensive f (x)

— slow convergence of MC/QMC methods
very large _V required for reliable estimates

Build a cheap surrogate for f (x), then use Monte Carlo/others

o Collocation — interpolants

o Regression — fitting

o Galerkin methods

— Polynomial Chaos (PC) methods
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Challenges ith Surrogate Construction

o Choice of surrogate function is informed by structure of f (x)

o Structure of f (x) not known a priori
o Discontinuities, say at some x*, require particular care

— Local versus global surrogates

✓ Nonlinearities, shape ...

— e.g. polynomials have trouble with sigmoid response
— Surrogate complexity can grow

o High dimensionality in x

— Large number of uncertain parameters
— Non-smooth random fields

• Large computational cost for f (x)

— e.g. a global climate simulation
— Can only afford a few samples
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Computational forward model, parameter vector

y = f (x, À)

Forward UQ

• Given PDF p(A), estimate p(y) or Mci(y) = E[0]

• General non-intrusive methods rely on sampling

• Require many samples (Ak. f (x, Ak)), k = 1.... , N

Inverse UQ

fa Given data D := {(xi, yi), i = 1, , M}, estimate p(A

• Bayesian methods often use Markov Chain Monte Carlo (MCMC)

• Require many samples (Ak, f (xi, Ak)), k = 1, , K, Vi

Require a cheap surrogate Sc,(x, À) ̂  f (x, À), a E PL
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High dimensionalty is a major challeng in forwa d UQ

o High dimensionality is the result of
• Large number of uncertain parameters/inputs
• Large number of degrees of freedom in random field inputs

• Sparse-quadrature requires an unfeasible number of model
evaluations for very high dimensional systems

• Monte Carlo requires similarly large number of samples when the
number of important dimensions is very high

• However, typically, physical model output quantities of interest
are smooth Only a small number of inputs are important

co In this case, the way out is:

• Use global sensitivity analysis (GSA) with Monte Carlo to
identify important parameters

se Use polynomial chaos expansions (PCE) with sparse quadrature
on the reduced dimensional space for accurate forward UQ
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Global sensitivit analysis: Sobol indices

Global sensitivity analysis (GSA) (Saltelti:2004,2008)

CO For a given quantify of interest (Qol)

o Qol variance decomposed into contributions from each parameter

• Sobol indices rank parameters by their contributions (Sobol:2003)

Total effect ST —
EA [VarA, ( f (A)1Ai)]

Var( f (À))

ST, small low impact parameter fix value (eliminate dimension)

How to compute?

• Monte Carlo estimators (Saltelli:2002,2010) still prohibitive if used directly
for large scale computational models
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Hi-dimension with large--cale computational models

When the number of feasible samples for GSA is highly limited due to
computational costs:

• Reliable MC-estimation of sensitivity indices requires regularization

• Presuming smoothness, use MC samples to fit a PCE, which is
subsequently used to estimate the sensitivity indices

• Employ k i -norm constrained regression to discover a sparse PCE

— compressive sensing

• Employ Multilevel Monte Carlo (MLMC), as well as Multilevel
Multifidelity (MLMF) methods

o Optimal combination of coarse/fine mesh and low/high fidelity
models to minimize computational costs for a given accuracy

Similarly for forward PC UQ:

• Employ generalized adaptive non-isotropic sparse quadrature with
MLMF methods on reduced dimensional input space
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Estimation f GSA Sobor Indices with PC regon

o When # samples is small, GSA indices can be computed with
improved accuracy, relying on PC regression/smoothing

o Polynomial Chaos expansion (PCE): u() = cc,Ta()
aEJ

o Germ: = , C./}, Multi-index a = {al, , ad},

o Polynomials, orthogonal w.r.t. p(), =

o Use regression with MC samples to fit a PCE to the data

argmin   (f(A(e9)))) — E cawa (es))
s=, aE,

o Use PCE to evaluate Sobol indices

E
aEDIce,>0

) 2

E c
aE31cyc*0

Sudret, 2008; Crestaux, 2009; Sargsyan, 2017; Ricciuto, 2018
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Estimation of GSA Sobor Indices wit
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Estima ion of GSA Sobor Indices with PC region

100
co

o-4 MC

d = 3

1 2 3
Surrogate order

4

Sargsyan, 2017

SNL Najrn Comp 10/28



Estimation of GSA Sobor Indices with
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Sparse regressio

Model: = f() caTa()
ozED

O With N samples (e T Ny ) estimate K terms cc,

min AcH

With N « K under-determined, need regularization

• Use fl norm regularization to discover sparsity

o Discover a sparse fitted PCE — many zero coefficients

Compressive Sensing; LASSO; basis pursuit; etc ...

min {1
min {MY — AcMD

y— Ac +

min &Mil

min {Hi}

subject to IIcIIi < E

subject to y = Ac

subject to II y— Ac

LASSO

uLASSO

BP

Iz < E BPDN
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Sparse

Unconstrai ed LASSO (uLASSO) — Practicalities

A broad range of methods exists for solving the optimization problem:

c* = argrnin { + 01

11_ls (Kim 2007), SpaRSA (Wright 2009), CGIST (Goldstein 2010), FPC_AS (Wen 2010), ADMM (Boyd 2010)

• Choice of A > 0 controls the degree of overfitting vs underfitting

• This choice can be viewed as a model selection problem

• Can base the choice on Bayesian model evidence maximization

• A cross-validation (CV) A-choice strategy: minimize K-fold CV error

A* = argmin Ecv(A)
A>o

co For expensive models, also target optimal data sample size

co Increase sample size m adaptively
co Stop sampling when the rate of decrease of A-optimal CV error

with increasing Tri drops below a given threshold 
Huan, SIAM JUQ 2018

— Ac
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ayesia
1.

• Bayes formula

p(c cx p(D1c)7(c)

• Bayesian regression: prior as a regularizer, e.g.

• Log Likelihood <=>
o Log Prior <=>

• Laplace sparsity priors 7T(Ck

y — 2

=
o uLASSO (Tibshirani 1996, Van den Berg 2008) ... formally:

min { y — Ac + A McMi}

Solution — the posterior mode of c in the Bayesian model

y .3\1 (Ac, IN),

o Bayesian LASSO (Park & Casella 2008)

1
C — CHekV
k 2a
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Bayesian Compressive Sensi g (BCS)

o BCS 2008; Babacan 2010)— hierarchical priors:

o Gaussian priors .7V(0, oi) on the ck
• Gamma priors on the a?,

Laplace sparsity priors on the ck

• Evidence maximization establishes maximum likelihood estimates
of the crk

o many of which are found 0 ck 0
• iteratively include terms that lead to the largest increase in the

evidence

• Iterative BCS (iBCS) (Sargsyan 2012):

o adaptive iterative order growth
• BCS on order-p Legendre-Uniform PC
• repeat with order-p + 1 terms added to surviving p-th order

terms
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Demonstration putations

• Material damage processes associated
with plasma surface interactions in the
ITER fusion reactor — He in W/Be

o Xe gas bubble transport in nuclear fuel
rods in fission reactors

• "Xolotr C++ cluster dynamics code for
prediction of gas bubble evolution in
solids

o Solves PDE (x, t) for concentration of
clusters of different sizes

• 2D/3D - relies on PETSc solvers

o https://github.com/ORNL-Fusion/xolotl
Brian Wirth, Sophie Blondel — Oak Ridge National Lab
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S. Blondel et al., COSIRES, 2018
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GSA in Xolotl
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Multilevel Multifidelity (MLMF) Method

When the computational model is quite expensive, we still seek more
reduction in the required number of expensive samples

o Multilevel Multifidelity (MLMF) methods allow further savings by
combining information judiciously from low/high-resolution and
how/high-fidelity models

o Use many low resolution/fidelity model computations and a
minimal necessary number of high resolution/fidelity model
computations to achieve target accuracy with MC

o Choice of how many simulations to run at low and high
fidelity/resolution is done adaptively
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Forward UQ GSA Workflow

High-D Model

Multilevel

Multifidelity
Monte Carlo

Global

Sensitivity
Analysis

Polynomial

Surrogate Sparse
Regression

Low-D Model
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Supersonic Co busting Ramjet (scramjet)
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Scram HD

LES Pe
Joe Oefelein

formed using RAPTOR Code Fr
Sandia National Labs. - now at Georgia Tech

Theoretical framework ... Massively-parallel ... (Highly-scalable)
(Comprehensive physics) - Demonstrated performance on full hierarchy of
- Fully-coupled, compressible HPC platforms (e.g., scaling on ORNL CRAY XK7

conservation equations TITAN architecture shown below)

Real-fluid equation of state - Selected for early science campaign on next
(high-pressure phenomena) generation SUMMIT platform (ORNL Center for

Detailed thermodynamics,
transport and chemistry

Accelerated Application Readiness, 2015 - 2018)

Multiphase flow, spray 150000 100
- Dynamic SGS modeling
(No Tuned Constants) o_

Numerical framework ...
(High-quality numerics)

Staggered finite-volume
differencing (non-dissipative,
discretely conservative)

Dual-time stepping with
generalized preconditioning
(all-Mach-number formulation)
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• Near linear scalability
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Detailed treatment of geometry,
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Instantaneous Flow Structure — z-inj-cut — 3D d16
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Multilevel and multifdelity forms
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Telescopic sum:

lrrcreaviag grid resolution level

model A
grid 1

model B
grid 1

model Z
grid 1

model A
grid 2

model A
grid 3

model A
grid G

model Z
grid G

fLPO = foN + h,(A)
P=1

o k indicates different grid levels or fidelity of models

o Ae indicates difference between models and 1' —1

L
Function approximation: fL(A) fL(A) = f0(x) + E fA,(A)

t=i
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High-D — ML/MF UQ Results

2D LES
Coarse Grid

2D LES
Fine Grid

Multifldelity 3D LES
Coarse Grid

3D LES
Fine Grid

Two model forms and two mesh
discretization levels

• Model form: 2D (LF) and 3D (HF) LES

• Meshes: d/8 and d/16

The jet-in-crossflow problem (24 inputs):
Five Qols extracted over a plane at x/d = 100.

• Ey,t stagnation pressure (Po,mean)

• Ey RMSt stagnation pressure (P0,,rno)

o Ey,t Mach number (‘Mmean)

o Ey,t turbulent kinetic energy (TKEmcan)

• [Ey,t scalar dissipation rate (Xmean)

2D 3D Relative computational cost for the model
d/8 1 204 forms and discretization levels.
d/16 25.5 1844

Optimize statistical accuracy given a limited number of high fidelity model evaluations by
leveraging cheaper lower fidelity simulations.
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Jet in cross ow problem: 24 parameter , 3rd-order PCE

Parameter Range Description
inlet boundary conditions

PO [1.406,1.554] MPa Stagnation pressure
To [1472.5,1627.5] K Stagnation temperature

MO [2.259, 2.761] Mach nurnber
do, [2, 6] rnm Boundary layer thickness
Ii [0, 0.05] Turbulence intensity magnitude
L i [0, 8] mm Turbulence length scale

Fuel inflow boundary conditions

Tf

Mf

I f

L f

[6.633, 8.107] x10-3 kg/s

[285, 315] K

[0.95,1.05]

[0, 0.05]

[0,1] mm

Mass flux

Static temperature

Mach number

Turbulence intensity rnagnitude

Turbulence length scale

Turbulence model parameters
CR [0.01, 0.06] Modified Smagorinsky constant

P't [0.5,1.7] Turbulent Prandd number

SOt [0.5,1.7] Turbulent Schmidt number
Wall boundary conditions

Tu, Expansion in 10 params Wall temperature represented via
of .7V(0 , 1) Karhunen-Loève expansion

o Qols computed at x/d = 100, averaged over (y, t)

9 2D runs: 1939 (coarse grid), 79 (fine grid)

o 3D runs: 46 (coarse grid), 11 (fine grid)
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Unit prob em: total sensitivity

0.2 0.4 0.6 0.8

I I

0.2 0.4 0.6 0.8

Multilevel expansion of:

f2D,d/16 = f2D,d/8 f02D4/16-2D,d/8

Multifidelity expansion of:

f3D,d18 = f2D,d/8 L3D,d/8-2D,d/8
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MC-Predicted Uncertainty in Mean Flow Quantities — 3D
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Discussion and Cl

• Necessary workflow for UQ in large-scale computational models

• Global sensitivity analysis to cut dimensionality, assisted by

— Polynomial Chaos regression
— fl-norm regularization / compressive sensing
— Multilevel Monte Carlo & Multifidelity

o Adaptive sparse quadrature forward UQ on reduced
dimensional space

o Resulting PC surrogate can be used in Bayesian inference on
model parameters and optimization under uncertainty

o Other avenues to re-cast the problem in low-D:

• Basis adaptation & active subspace methods
o Manifold discovery, e.g. via lsomap or diffusion maps
o Low rank tensor methods, etc

o Caution: Noisy computational Qols due to finite averaging windows
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