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Intro

Probabilistic Forward UQ

Represent uncertain quantities using probability theory

Random sampling, Monte Carlo

@ Generate random samples {z°} | from the PDF of z, p(z)

@ Bin the corresponding {1} to construct p(y)

@ Not feasible for computationally expensive f(z)

— slow convergence of MC/QMC methods
= very large N required for reliable estimates

Build a cheap surrogate for f(z), then use Monte Carlo/others

@ Collocation —interpolants
@ Regression — fitting

@ Galerkin methods
— Polynomial Chaos (PC) methods

SNL Najm Comp 3/28



Challenges with Surrogate Construction

@ Choice of surrogate function is informed by structure of f(x)

@ Structure of f(z) not known a priori
@ Discontinuities, say at some x*, require particular care

— Local versus global surrogates
@ Nonlinearities, shape ...

— e.g. polynomials have trouble with sigmoid response
— Surrogate complexity can grow

@ High dimensionality in =

— Large number of uncertain parameters
— Non-smooth random fields

@ Large computational cost for f(x)

— e.g. aglobal climate simulation
— Can only afford a few samples
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Role of Surrogates in Probabilistic UQ

Computational forward model, parameter vector A

Forward UQ

@ Given PDF p()), estimate p(y) or M, (y) = E[y?]

@ General non-intrusive methods rely on sampling A

@ Require many samples (A, f(z,\.)), k=1,...,N

Inverse UQ ‘

e Givendata D := {(z;,y;), i = 1, ..., M}, estimate p(\| D)

@ Bayesian methods often use Markov Chain Monte Carlo (MCMC)

@ Require many samples (\;, f(z;, A\p)). k=1,..., K, Vi

Require a cheap surrogate S, (z,\) =~ f(z,\), a € RY
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Intro

High dimensionality is a major challenge in forward UQ

@ High dimensionality is the result of

@ Large number of uncertain parameters/inputs
@ Large number of degrees of freedom in random field inputs

@ Sparse-quadrature requires an unfeasible number of model
evaluations for very high dimensional systems

@ Monte Carlo requires similarly large number of samples when the
number of important dimensions is very high

@ However, typically, physical model output quantities of interest
aresmooth = Only a small number of inputs are important

@ In this case, the way out is:
@ Use global sensitivity analysis (GSA) with Monte Carlo to
identify important parameters
@ Use polynomial chaos expansions (PCE) with sparse quadrature
on the reduced dimensional space for accurate forward UQ
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Intro

Global sensitivity analysis: Sobol indices

Global sensitivity analysis (GSA) (salteli:2004,2008)
@ For a given quantify of interest (Qol) ...
@ Qol variance decomposed into contributions from each parameter
@ Sobol indices rank parameters by their contributions (Sobol:2003)

Total effect Sy, = B [\\//aa?(}((f)\()/\)) |A)]

Sy, small = low impact parameter = fix value (eliminate dimension)

How to compute?

@ Monte Carlo estimators (salteli:2002,2010) still prohibitive if used directly
for large scale computational models
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Intro

Hi-dimension with large-scale computational models

When the number of feasible samples for GSA is highly limited due to
computational costs:

@ Reliable MC-estimation of sensitivity indices requires regularization

@ Presuming smoothness, use MC samples to fit a PCE, which is
subsequently used to estimate the sensitivity indices

@ Employ ¢, -norm constrained regression to discover a sparse PCE
— compressive sensing

@ Employ Multilevel Monte Carlo (MLMC), as well as Multilevel
Multifidelity (MLMF) methods
@ Optimal combination of coarse/fine mesh and low/high fidelity
models to minimize computational costs for a given accuracy

Similarly for forward PC UQ:

@ Employ generalized adaptive non-isotropic sparse quadrature with
MLMF methods on reduced dimensional input space
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Estimation of GSA Sobol’ Indices with PC regression

@ When # samples is small, GSA indices can be computed with
improved accuracy, relying on PC regression/smoothing

@ Polynomial Chaos expansion (PCE): u(§) = Z o Vo (€)
acd

o Germ: & = {&,,...,&,}, Multi-index o = {ay, ..., ay ),
@ Polynomials, orthogonal w.r.t. p(&), ¥, (&) = Hle Va, (&)

@ Use regression with MC samples to fit a PCE to the data

N 2
argminy (f(A(*S(S)))) - %%(9”))

acd
@ Use PCE to evaluate Sobol indices
2 2
o (W5
S.. — acd|a;>0
" 2 (T2)
[0 3 [e 3
acd|a0
Sudret, 2008; Crestaux, 2009; Sargsyan, 2017; Ricciuto, 2018
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Estimation of GSA Sobol’ Indices with PC regression
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Sargsyan, 2017
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Estimation of GSA Sobol’ Indices with PC regression
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Estimation of GSA Sobol’ Indices with PC regression
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Sparse
Sparse regression

Model: y=f(§) ~ Z o ¥u ()
acd
e With Nsamples (¢, 41), ..., (&N, yY), estimate K terms c,,
min ||y — Ac|[3

With N << K = under-determined, need regularization
@ Use ¢, norm regularization to discover sparsity
@ Discover a sparse fitted PCE — many zero coefficients

Compressive Sensing; LASSO; basis pursuit; etc ...

min {|ly — Ac||3} subjectto|c|; <e LASSO
min {[ly — Acl3 + Alef,} uLASSO
min {|c[;} subjecttoy = Ac BP

min {|¢|,} subjectto |y — Ac|2<e BPDN
(&5
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Sparse

Unconstrained LASSO (uLASSO) — Practicalities

A broad range of methods exists for solving the optimization problem:
c* =argmin { |y — Ac|3 + Alef, }
l1_ls (Kim 2007), SpaRSA (Wright 2009),C CGIST (Goldstein 2010), FPC_AS (Wen 2010), ADMM (Boyd 2010)
@ Choice of A > 0 controls the degree of overfitting vs underfitting
@ This choice can be viewed as a model selection problem
@ Can base the choice on Bayesian model evidence maximization
@ A cross-validation (CV) A-choice strategy: minimize K-fold CV error

A* = argmin Eqy())
A>0
@ For expensive models, also target optimal data sample size
@ Increase sample size m adaptively
@ Stop sampling when the rate of decrease of A\-optimal CV error

with increasing m drops below a given thresholdHuan‘ SIAMIUBIEOM
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Sparse
Bayesian Regression

@ Bayes formula
p(c|D) x p(Dle)n(c)

@ Bayesian regression: prior as a regularizer, e.g.

e Log Likelihood < |y — Ac|3
@ Log Prior < |c|?

@ Laplace sparsity priors m(c;|a) = 5elexl/e
@ uLASSO (Tibshirani 1996, Van den Berg 2008) ... formally:

min {[ly — Ac[3 + Ale], }

Solution ~ the posterior mode of c in the Bayesian model
Y~ N(Ac Iy), o~ ——elerl/a
b b 2a

@ Bayesian LASSO (Park & Casella 2008)
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Sparse

Bayesian Compressive Sensing (BCS)

@ BCS (ji 2008; Babacan 2010)— hierarchical priors:
@ Gaussian priors N (0, 0%) on the ¢,
@ Gamma priors on the o7
= Laplace sparsity priors on the ¢,

@ Evidence maximization establishes maximum likelihood estimates
of the o,
@ many of whicharefound~ 0 = ¢, =0

e iteratively include terms that lead to the largest increase in the
evidence

@ lterative BCS (iBCS) (sargsyan 2012):
@ adaptive iterative order growth
@ BCS on order-p Legendre-Uniform PC

@ repeat with order-p + 1 terms added to surviving p-th order
terms
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Sparse

Demonstration in Cluster Dynamics Computations

ITER Plasma Material Interface

ITER Plasma Core

@ Material damage processes associated )
with plasma surface interactions in the T
ITER fusion reactor — He in W/Be =

@ Xe gas bubble transport in nuclear fuel
rods in fission reactors

Plasma Boundary

Plasma Heat &
a

@ “Xolotl” C++ cluster dynamics code for
prediction of gas bubble evolution in
solids

Divertor Target
'Upstream
Hot Plasma Channel

Downstream

@ Solves PDE (x, t) for concentration of LN W s R
clusters of different sizes 7

o 2D/3D = relIeS on PETSC SOlVerS cluster/bubble  erosion 1
https://github.com/ORNL-Fusion/xolotl AN

ogeoe
Brian Wirth, Sophie Blondel — Oak Ridge National Lab b4 o222
035,92 °
..':xf'...;/... )
IO
vacancy  trapped HiHe interstitials.

sputterin, co-deposition

9
* saturated
HHe o \. o

S. Blondel et al,, COSIRES, 2018
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Sparse

GSA in Xolotl
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First order sobol indices

-0.05

-0.1
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400 samples GSA MC study
8 parameters
Noise/negativity in indices
eliminated with sparse PC
regression @ 200 samples
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MLMF

Multilevel Multifidelity (MLMF) Methods for UQ

When the computational model is quite expensive, we still seek more
reduction in the required number of expensive samples

@ Multilevel Multifidelity (MLMF) methods allow further savings by
combining information judiciously from low/high-resolution and
how/high-fidelity models

@ Use many low resolution/fidelity model computations and a
minimal necessary number of high resolution/fidelity model

computations to achieve target accuracy with MC

@ Choice of how many simulations to run at low and high
fidelity/resolution is done adaptively
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Forward UQ GSA Workflow

Multilevel Global

Multifidelity Sensitivity
High-D Model Monte Carlo Ana|y5i5 Low-D Model

> —>

Polynomial

Surrogate Sparse
Regression
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Scram HIiD
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Scram HIiD

LES Performed using RAPTOR Code Framework

Joe Oefelein — Sandia National Labs. — now at Georgia Tech

* Theoretical framework ... « Massively-parallel ... (Highly-scalable)
(Comprehensive physics) — Demonstrated performance on full hierarchy of
— Fully-coupled, compressible HPC platforms (e.g., scaling on ORNL CRAY XK7
conservation equations TITAN architecture shown below)
— Real-fluid equation of state — Selected for early science campaign on next
(high-pressure phenomena) generation SUMMIT platform (ORNL Center for

— Detailed thermodynamics, Accelerated Application Readiness, 2015 — 2018)

transport and chemistry

— Multiphase flow, spray 150000 100
— Dynamic SGS modeling \
(No Tuned Constants) a m 0
=] NN ] o
* Numerical framework ... B Ny 9% >
(High-quality numerics) :’.)_ 100000~ = S
— Staggered finite-volume 5, ] (3]
differencing (non-dissipative, L2 = e L "m‘
discretely conservative) g —
— Dual-time stepping with = 50000 o 2
generalized preconditioning 8, 185 g
(all-Mach-number formulation) < - Near linear scalability o
— Detailed treatment of geometry, beyond 100,000 cores
wall phenomena, transient BC’s g . ; L 180
1 50000 100000 150000

Number of Cores
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Scram HIiD

Instantaneous Flow Structure — z-inj-cut — 3D d16

Y COo2 [-]
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Scram HiD

Multilevel and multifdelity forms

Increasing grid resolution level

model A |
grid 3

model A
grid G

model A
grid 1

model B .
grid 1
model Z model Z
grid 1 grid G

. L
Telescopic sum: frQ) = fo(A) + Z fa,(N)
=1

model A
grid 2

Increasing model fidelity

@ (indicates different grid levels or fidelity of models
e A, indicates difference between models /and ¢ — 1

Function approximation: ¢ (\) ~ f, (\) = f,(\) + Z Fa,(N)
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Scram

High-D — ML/MF UQ Results

2D LESl Multifidelity 3D LESl
S teid [ Soarse Geid. ] The jet-in-crossflow problem (24 inputs):
Five Qols extracted over a plane at z/d = 100.

[9AJ[IMIAL

@ [, , stagnation pressure (P ,,cq1)
@— SDu @ [, RMS, stagnation pressure (P ,.,,,5)
oL, Mach number (M,,, )
Two model forms and two mesh ® [, , turbulent kinetic energy (TKE, )
discretization levels ® [, , scalar dissipation rate (X, )
@ Model form: 2D (LF) and 3D (HF) LES
@ Meshes: d/8and d/16
2D 3D Relative computational cost for the model
d/8 1 204 forms and discretization levels.

d/16 | 255 1844

Optimize statistical accuracy given a limited number of high fidelity model evaluations by
leveraging cheaper lower fidelity simulations.
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Scram HiD

Jet in crossflow problem: 24 pa "-order PCE

Parameter Range Description
Inlet boundary conditions

PO [1.406, 1.554] MPa Stagnation pressure

Ty [1472.5,1627.5] K Stagnation temperature

Mgy [2.259,2.761] Mach number

Sq [2, 6] mm Boundary layer thickness

I; [0,0.05] Turbulence intensity magnitude
L, [0, 8]mm Turbulence length scale

Fuelinflow boundary conditions

g [6.633,8107] x 10 3 kg/s  Mass flux

T;c [285, 315] K Static temperature
My [0.95,1.05] Mach number

If [0, 0.05] Turbulence intensity magnitude
Ly [0, 11 mm Turbulence length scale
Turbulence model parameters
Cr [0.01,0.06] Modified Smagorinsky constant
Pry [0.5,1.7] Turbulent Prandtl number
Scy [05,1.7] Turbulent Schmidt number
Wall boundary conditions
Thy Expansion in 10 params Wall temperature represented via
of N(0, 1) Karhunen-Loéve expansion

@ Qols computed at z/d = 100, averaged over (y, t)
@ 2D runs: 1939 (coarse grid), 79 (fine grid)
@ 3Druns: 46 (coarse grid), 11 (fine grid)
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Scram

HiD

Unit problem: total sensitivity

Multilevel expansion of:

Japane = Jomam +Fasp snesp.an

Multifidelity expansion of:

fap.aje = Fap,as + Fasp ajs-ap.ase
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Scram HiD

MC-Predicted Uncertainty in Mean Flow Quantities — 3D

Temperature [K]

mean(7) . 5‘ E
S ——————— — e —————— ]

Pressure [bar]

-
mean(P) 2

| stdev(P)

Mach Number

mean(Al)

stdev(M)
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Scram HiD

MC-Predicted Uncertainty in Mean Flow Quantities — 3D

Ethane

stdev(0,)

Carbon Dioxide

mean(CO,)

stdev(CO,)
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Clos
Discussion and Closure

@ Necessary workflow for UQ in large-scale computational models
@ Global sensitivity analysis to cut dimensionality, assisted by

— Polynomial Chaos regression
— ¢,-norm regularization / compressive sensing
— Multilevel Monte Carlo & Multifidelity

@ Adaptive sparse quadrature forward UQ on reduced
dimensional space

@ Resulting PC surrogate can be used in Bayesian inference on
model parameters and optimization under uncertainty

@ Other avenues to re-cast the problem in low-D:

@ Basis adaptation & active subspace methods
@ Manifold discovery, e.g. via Isomap or diffusion maps
@ Low rank tensor methods, etc

@ Caution: Noisy computational Qols due to finite averaging windows
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