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> | Introduction

Advanced systems today contain many different components and technologies
o CPUs, GPUs, FPGAs, memories, etc.

Simulations help us analyze performance and power tradeoffs at a system level

But simulations do not necessarily help us analyze SEE tradeoffs
> How do SEEs in one system module affect another?
> How do SEEs propagate throughout the system?

> Do all my modules need the same level of protection/mitigation?




3 I SEE Testing on Processors and Heterogeneous Systems

Two options:

° Fault inject accessible registers over debug port
° Radiation testing (run benchmark, compare to golden) -
SEE testing on complex systems has a limited scope
> Sometimes only done at block level
o CPU, GPU and FPGA have x,y,z cross-sections

° Failure analysis limited

o B.g, CPU failed, system took wrong action, system hang

Limited access to internal state of the system

o Which pipeline stage failed in the CPU?
> Who wrote the bad data to memory?




Proposed Solution

ALGORITHM SIMULATION

Algorithm Event Sequence

I

Leverage simulator models of components/modules for
reliability testing

o Match registers/logic in hardware to architectural models
> Use new tools to convert synthesized netlists into C simulator code PROCESSOR PIPELINE
(future WOI‘k) Discrete event sim of functional blocks
Fault injection rates determined by: 1L LA I
o Target technology (e.g. 14nm Fin-Fet) gl il i il GATE MODELS
o Voltage and circuit tlmmg P w7 Gate-gate interactions, transients
° Logic masking (from the gates) | I

E‘ 54 - %+ CIRCUIT MODELS

v ] Current-voltage, timing of circuits

Improvement over previous work
> No hand-waving of SEU rates | I

o Full pipeline model of the processor (all registers are injectable)

DEVICE MODELS

Finite element models of electrical, thermal,
and radiation effects

o Fault tracking built into register data structrures




s | Fault Injection Algorithm and Technology Investigations
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6 | Structural Simulation Toolkit

High performance simulator used to model highly concurrent systems

Model entire heterogenous system at varying levels of fidelity

> Models hardware and algorithms running on that hardware

Model computational result, timing and energy
> Extended to inject and track faults

http://sst-simulatot.org/

https://github.com/afrodri/sst-elements/tree/afrodri/mips/src/sst/elements/mips_4kc




7 | Fault Tracking within SST

Modity register data structure to track two values:
° Current value (possibly faulty value flowing through simulator due to fault injection)

o Correct value (fault-free value)

Used to determine how a fault spreads through the system
o Can determine when it is quashed (and how)
o Can determine how far it spreads through the system

o Can determine failure trace

| Datava: | oxo1004321 |
[ Correct Data Val: I 0x00004321 ] )
Reg. A | Datava: 0x01004322 |
) + [ Correct Data Val: 0x00004322 ]
| Dpatavat: |  o0x00000001 | Reg. C
[ Correct Data Val: I 0x00000001 ]
Reg. B



s | Fault Injection Capabilities

Can inject faults at the beginning of every clock cycle
> Randomly, or

> Precomputed table (for repeatability)

Error probability table can be adjusted for environment/technology

° Probabilities calculated from logical masking, register size, etc.

Allows for targeted or system wide fault injection

Error Probability Table

Machine State & IO
Radar Fix Processor Performance

MIPS 4Kc / Hermes # Faults

Application (MIPS

Assembly) Model i

Network #Fault Corrections




o I Error Types

Silent Data Corruption (SDC)

> Program completed, but results were corrupted

Terminated
> Program failed to complete, usually due to an illegal memory operation

Timeout
° Program still running after 4x times number of (normal) cycles have completed, probably stuck in an infinite
loop

Correct
> Program completed and results are correct




Case Study : HERMES Processor
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11 | Register Modeling

Clspim MIPS pipeline model was integrated into SST.

Registers found in synthesized netlist were found & mapped into the pipeline model

o RF : Corrupt random register

o

ALU/MDU : Corrupt registers used for calculations or output
MEM_PRE : Corrupt address or store value
MEM_POST : Corrupt value read from memory

o

o

o

WB : Corrupt value written back to register file

ALU
MEM_PRE
$RF AL -
Addr_¢]
Instruction Register ™ g Write
Fetch File MDU — Back
e
A




2 | Software Benchmarks
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13 | Fault Injection Results
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14 | Future Work

Current focus is on creating our error probability tables
o Using MRED to determine rad characteristics of our targeted technology

° Analyzing netlist to determine natural logical masking effects

Create simulation model directly from synthesized netlist
o Simulation models already exist for post-synthesis debug — extend to allow fault tracking capabilities

Extend fault injection studies
o Perform in-depth studies of timing effects of faults

Add more software to benchmark suite
> AES, gsort, etc.

Perform radiation test on HERMES processor and compare results




5 I Conclusion

Current SEE studies on complex systems lack insight into system state that causes failure

o Limited resources to gather real-time, system state information

High performance simulators can be used to perform SEE studies on complex systems
o Ability to track faults within the system

o Hasier failure-cause analysis

HERMES processor can be used to validate simulated, fault-injection approach
o HERMES can dump internal state upon detected SEU

Initial fault studies produce expected results
o Will be used to perform more complex fault tracking studies




