
Fault Tracking and Modeling in
Advanced Node Processors of
Single Event Effects

Presented By

Matthew Cannon

Collaborators
Arun Rodrigues, Dolores Black, Jeff Black, Luis Bustamante, Ben Feinberg, Heather Quinn
Lawrence Clark, John Brunhaver, Hugh Barnaby, Michael McLain, Sapan Agarwal
and Matthew Marinella

1

$fa
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-10029C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Introduction

Advanced systems today contain many different components and technologies
o CPUs, GPUs, FPGAs, memories, etc.

Simulations help us analyze performance and power tradeoffs at a system level

But simulations do not necessarily help us analyze SEE tradeoffs
o How do SEEs in one system module affect another?

o How do SEEs propagate throughout the system?

o Do all my modules need the same level of protection/mitigation?

3 SEE Testing on Processors and Heterogeneous Systems

Two options:
o Fault inject accessible registers over debug port

• Radiation testing (run benchmark, compare to golden)

SEFI, testing on complex systems has a limited scope
o Sometimes only done at block level

0 CPU, GPU and FPGA have x,y,z cross-sections

o Failure analysis limited

0 E.g., CPU failed, system took wrong action, system hang CPU Cache

Limited access to internal state of the system

o Which pipeline stage failed in the CPU?

o Who wrote the bad data to memory?

CPU Core

4 I Proposed Solution

Leverage simulator models of components/modules for
reliability testing

o Match registers/logic in hardware to architectural models

o Use new tools to convert synthesized netlists into C simulator code
(future work)

Fault injection rates determined by:

o Target technology (e.g. 14nm Fin-Fet)

o Voltage and circuit timing

O Logic masking (from the gates)

Improvement over previous work

o No hand-waving of SEU rates

O Full pipeline model of the processor (all registers are injectable)

o Fault tracking built into register data structrures

ALGORITHM SIMULATION
Algorithm Event Sequence

-CA
El ;1.11'4 A A-1

• E
O

PROCESSOR PIPELINE
Discrete event sim of functional blocks

I
GATE MODELS ■

Gate-gate interactions, transients

11-

CIRCUIT MODELS
Current-voltage, timing of circuits

DEVICE MODELS
Finite element models of electrical, thermal,

and radiation effects

5 Fault Injection Algorithm and Technology Investigations

o.

-

Discrete Eve
Proces5

Structural Simi,

CPU Instructions,
Assembly A

LUC++ code

11W
Algorithm

nt Simulation of
.or Pipeline
ilation Toolkit - SST

Pipeline
error n

1
2

3
4

5
6

// Discrete Sine Transform (DST):
*define M PI 3.14159265358979323846

long bin,k;
double arg;

efoz (bin = 0; bin < transformLength; bin++)

transformData[bin] = 0.)
(.-cl

7

9

e for (k = 0; k< transformLength; k++) (

arg = (float)bin * M_PI *(float)k /
10

11
I (float)transformLengtb;

transformData[bin] += inputData[k] *
Ay

12 I sin(arg);
13
14

M A W R

N N N.,..... N ..,...,c 11,11,real
ig.,3 Oil ii°' 9

II-gl I I- -II M igi, ,, . ,
I I,I I

I M lil Ell1

- 1 liFAN 1'm liti ,IiiHilmi.,
C:=3 1.1* ern. n

Afiother,sp.ularnimunamern ec1.1.11.6.1mcluncleo, wTordelectamiresUft

stage
lodel

Fr,

Gate leve
bit flip

1 faults,
Iping

Transistor level
radiation models

6 Structural Simulation Toolkit

High performance simulator used to model highly concurrent systems

Model entire heterogenous system at varying levels of fidelity
0 Models hardware and algorithms running on that hardware

Model computational result, timing and energy

0 Extended to inject and track faults

http://sst-simulator.org/

haps://github.com/afrodri/sst-elements
SST

Componen
Type: CPU

Core

SST
Component

Type:
DRAM

tree afrodri/mi s/src sst/elements/mips

Componen
ISS SST SST Link

SS

Late Component Latency:
Type: CPU 20n Type: AIB l us
Cache II

4kc
SST

Component
Type: NVM

Bus

7 Fault Tracking within SST

Modify register data structure to track two values:
O Current value (possibly faulty value flowing through simulator due to fault injection)

O Correct value (fault-free value)

Used to determine how a fault spreads through the system
o Can determine when it is quashed (and how)

o Can determine how far it spreads through the system

o Can determine failure trace

Data Val:

Correct Data Val:

Ox01004321

Ox00004321

Reg. A

Data Val:

Correct Data Val:

Ox00000001

Ox00000001

Reg. 6

+
Data Val:

I, C.

Correct Data Val:

Ox01004322

Ox00004322

Reg. C

8 I Fault Injection Capabilities

Can inject faults at the beginning of every clock cycle
o Randomly, or

o Precomputed table (for repeatability)

Error probability table can be adjusted for environment/technology
o Probabilities calculated from logical masking, register size, etc.

Allows for targeted or system wide fault injection

Application (MIPS
Assembly)

Error Probability Table

Radar Fix Processor
MIPS 4Kc / Hermes

Model

Network

•
•
•

Machine State & 10
Performance
Faults
Errors

#Fault Corrections

9 Error Types

Silent Data Corruption (SDC)
O Program completed, but results were corrupted

Terminated

o Program failed to complete, usually due to an illegal memory operation

Timeout

o Program still running after 4x times number of (normal) cycles have completed, probably stuck in an infinite
loop

Correct
O Program completed and results are correct

■

10 I Case Study : HERMES Processor

Radiation hardened by design

Faster and lower energy then triple redundancy.
reports errors to algorithm

Caches are dual redundant and invalidated on
an error

Logic that can be re-run if incorrect is
protected by dual redundancy (DMR)

Correction is software controlled

Critical logic is protected by triple redundancy
TMR

Hi/Lo Reg

Control Logic

Speculative
Pipeline

Multiply
Divide Unit
(MOU)

Instruction
Execution
Unit (IEU)

•

JTLB

Front End PC

p-ITLB

Register
File (RF)

• •

CPO
Registcrs

• p-DTLB

.1111111

TMR DMR

Legend

Single
Instance Clock/Power

Managernent

•

Back End PC External Data Bus(es)

Instruction Fetch Unit (IFU)

Data Cache Unit (DCU)

Store Buffer

Miscellaneous
Control Logic

Write Buffer

Address

Data

Bus Interface
Unit (BIU)

External Address Bus

11 Register Modeling

Clspim MIPS pipeline model was integrated into SST.

Registers found in synthesized netlist were found & mapped into the pipeline model

O RF : Corrupt random register

o ALU/MDU : Corrupt registers used for calculations or output

o MEM_PRE : Corrupt address or store value

O MEM_POST : Corrupt value read from memory

O WB : Corrupt value written back to register file

Instruction
Fetch
I

RF

-4.-
Register

File

MEM_PRE

Write
Back

WB

•

I

12 Software Benchmarks

Matrix Multiply (12x12 w/ 32-bit unsigned integers)
O Uses triple-nested loop

Variations of MM used

O Compiler optimizations (02)

o Software redundancy (DMR, TMR)

Initial results demonstrate expected results

o Optimizations make each instruction more vulnerable

O But optimizations make program less vulnerable (fewer
instructions / faster execution)

Re
la
ti
ve
 P
ro

ba
bi

li
ty

1 .2

1 .0

0.8

0.6

0.4

0.2

• Per Fault

Per Computation

1
z„ .<e, .., c,.e e\ ,,,s c •,<4., 0 oz,

4c2 () 4'
J.C) (3) 8
' Oq

1 3 Fault Injection Results

simplex

0.5-

0.4

5

0.1 -

0.0 -
RF MEM POST WB MDU ALU MEM PRE

95.2% 7674% 87.6% 49.7% 44.8% 46.6%

7um SDC

IC] Terminated

IL-I Timeout

CI Failed

ii.-_-_ di,

tmr

0.30 -

0.25 -

SDC

NM Terminated

Timeout

Failed

0.10 -

0.05 -

0.00
RF MEM POST WB MDU ALU MEM PRE

96.7% 9379% 96.1% 100.0% 70.4% 87.6%

simplex03

0.7-

0.6

1,1' 0.3 -

0.2-

0.1-

0.0
RF MEM POST WB MDU ALU MEM PRE

41.4% 2771% 86.2% 49.5% 77.2% 49.8%

SDC

MI Terminated

Timeout

0 Failed
a._

0.30

0.25

tmrO3

SDC

I= Terminated

Timeout

Failed

0.20 -

2 0.15 -
w
v.)

0.10 -

0.05 -

0.00 11=
RF MEM_POST WB MDU ALU MEM_PRE

85.0% 99.3% 94.8% 100.0% 79.5% 68.8%

14 Future Work

Current focus is on creating our error probability tables
O Using MRED to determine rad characteristics of our targeted technology

O Analyzing netlist to determine natural logical masking effects

Create simulation model directly from synthesized netlist
o Simulation models already exist for post-synthesis debug — extend to allow fault tracking capabilities

Extend fault injection studies
o Perform in-depth studies of timing effects of faults

Add more software to benchmark suite
O AES, qsort, etc.

Perform radiation test on HERMES processor and compare results

•

1 5 Conclusion

Current SEE studies on complex systems lack insight into system state that causes failure

O Limited resources to gather real-time, system state information

High performance simulators can be used to perform SEE studies on complex systems
O Ability to track faults within the system

O Easier failure-cause analysis

HERMES processor can be used to validate simulated, fault-injection approach

O HERMES can dump internal state upon detected SEU

Initial fault studies produce expected results

O Will be used to perform more complex fault tracking studies

•

