This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 10029C

Fault Tracking and Modeling in
Advanced Node Processors of

Effects

Presented By

Matthew Cannon

—_— — @EERdY NISA

Collaborators

Arun Rodrigues, Dolores Black, Jeff Black, Luis Bustamante, Ben Feinberg, Heather Quinn Sandia National Laboratories is a multimission

. . laboratory managed and operated by National
Lawrence Clark, John Brunhaver, Hugh Barnaby, Michael McLain, Sapan Agarwal N e
and MattheW Mar]nella Inte;national Inc., for the U.S. Department of

Energy’s National Nuclear Security
1 Administration under contract DE-NA0003525.

> | Introduction

Advanced systems today contain many different components and technologies
o CPUs, GPUs, FPGAs, memories, etc.

Simulations help us analyze performance and power tradeoffs at a system level

But simulations do not necessarily help us analyze SEE tradeoffs
> How do SEEs in one system module affect another?
> How do SEEs propagate throughout the system?

> Do all my modules need the same level of protection/mitigation?

3 I SEE Testing on Processors and Heterogeneous Systems

Two options:

° Fault inject accessible registers over debug port
° Radiation testing (run benchmark, compare to golden) -
SEE testing on complex systems has a limited scope
> Sometimes only done at block level
o CPU, GPU and FPGA have x,y,z cross-sections

° Failure analysis limited

o B.g, CPU failed, system took wrong action, system hang

Limited access to internal state of the system

o Which pipeline stage failed in the CPU?
> Who wrote the bad data to memory?

Proposed Solution

ALGORITHM SIMULATION

Algorithm Event Sequence

I

Leverage simulator models of components/modules for
reliability testing

o Match registers/logic in hardware to architectural models
> Use new tools to convert synthesized netlists into C simulator code PROCESSOR PIPELINE
(future WOI‘k) Discrete event sim of functional blocks
Fault injection rates determined by: 1L LA I
o Target technology (e.g. 14nm Fin-Fet) gl il i il GATE MODELS
o Voltage and circuit tlmmg P w7 Gate-gate interactions, transients
° Logic masking (from the gates) | I

E‘ 54 - %+ CIRCUIT MODELS

v] Current-voltage, timing of circuits

Improvement over previous work
> No hand-waving of SEU rates | I

o Full pipeline model of the processor (all registers are injectable)

DEVICE MODELS

Finite element models of electrical, thermal,
and radiation effects

o Fault tracking built into register data structrures

s | Fault Injection Algorithm and Technology Investigations

M A W R
emercigrmre el
i

:

Discrete Event Simulation of
@ Processor Pipeline
Structural Simulation Toolkit - SST

CPU Instructions, Pipeline stage
Assembly error model
[T L) 5 Gate level faults,
C/C++ code il lmia gty >c»
PR e bit flipping
|

Transistor level

Algorithm radiation models

6 | Structural Simulation Toolkit

High performance simulator used to model highly concurrent systems

Model entire heterogenous system at varying levels of fidelity

> Models hardware and algorithms running on that hardware

Model computational result, timing and energy
> Extended to inject and track faults

http://sst-simulatot.org/

https://github.com/afrodri/sst-elements/tree/afrodri/mips/src/sst/elements/mips_4kc

7 | Fault Tracking within SST

Modity register data structure to track two values:
° Current value (possibly faulty value flowing through simulator due to fault injection)

o Correct value (fault-free value)

Used to determine how a fault spreads through the system
o Can determine when it is quashed (and how)
o Can determine how far it spreads through the system

o Can determine failure trace

| Datava: | oxo1004321 |
[Correct Data Val: I 0x00004321])
Reg. A | Datava: 0x01004322 |
) + [Correct Data Val: 0x00004322]
| Dpatavat: | o0x00000001 | Reg. C
[Correct Data Val: I 0x00000001]
Reg. B

s | Fault Injection Capabilities

Can inject faults at the beginning of every clock cycle
> Randomly, or

> Precomputed table (for repeatability)

Error probability table can be adjusted for environment/technology

° Probabilities calculated from logical masking, register size, etc.

Allows for targeted or system wide fault injection

Error Probability Table

Machine State & IO
Radar Fix Processor Performance

MIPS 4Kc / Hermes # Faults

Application (MIPS

Assembly) Model i

Network #Fault Corrections

o I Error Types

Silent Data Corruption (SDC)

> Program completed, but results were corrupted

Terminated
> Program failed to complete, usually due to an illegal memory operation

Timeout
° Program still running after 4x times number of (normal) cycles have completed, probably stuck in an infinite
loop

Correct
> Program completed and results are correct

Case Study : HERMES Processor

. . Control Logic Front End PC Back End PC External Data Bus(es)
Radiation hardened by design | e I
HilLo Reg %ipeline Instruction Fetch Unit (IFU)
) JTLB
Faster and lower energy then triple redundancy. —— > uitie | oo
1 ith Multiply | Decode (Y} lcache [@
reports errors to algorithm onigour | TEL ~ I = " Data
. . Register [
Caches are dual redundant and invalidated on File (RF) Data Cache Unit (DCU)
Instruction Bad b 4 Fill Buffer
an error e e
5:::::23’; [‘_ »{ u-DTLB | D-cache |« | Address H—'b
, . . s Data
Logic that can be re-run if incorrect 1s c!o Lt I F L_— T
Write Buffer
protected by dual redundancy (DMR) Registers [~ |
ore Buffer Address r.._b
- Data »
1on 1 f lled
Correction 1s software controlle - omr || Single o
Instance Clock/Power Miscellaneous Unit (BIU)
Legend Management Control Logic External Address Bus

Critical logic is protected by triple redundancy
(TMR)

Arizona State
University

11 | Register Modeling

Clspim MIPS pipeline model was integrated into SST.

Registers found in synthesized netlist were found & mapped into the pipeline model

o RF : Corrupt random register

o

ALU/MDU : Corrupt registers used for calculations or output
MEM_PRE : Corrupt address or store value
MEM_POST : Corrupt value read from memory

o

o

o

WB : Corrupt value written back to register file

ALU
MEM_PRE
$RF AL -
Addr_¢]
Instruction Register ™ g Write
Fetch File MDU — Back
e
A

2 | Software Benchmarks

B Per Fault
| Per Computation
Matrix Multiply (12x12 w/ 32-bit unsigned integers)
° Uses triple-nested loop 1.2
>
Variations of MM used E 1.0
o Compiler optimizations (O2) §
° Software redundancy (DMR, TMR) g 0.8
.. &
Initial results demonstrate expected results 2 0.6
> Optimizations make each instruction more vulnerable %
° But optimizations make program less vulnerable (fewer e 0.4
instructions/faster execution) 0.2
> X
22 NS
& &L
- O . AP
F O
o
O

13 | Fault Injection Results

Sensitivity
© © © o
N w = w

o
=

0.0

o
N
o

Sensitivity

0.10 1

0.05 1

0.00

simplex

I SDC

{ Il Terminated

Il Timeout

| 3 Failed

o
(=)
w

'y

-

ALU MEM_PRE

RF MEM_POST WB MDU
95.2% 76.4% 87.6% 49.7% 44.8% 46.6%
tmr
1 Il SDC I
Il Terminated
1 HEl Timeout
[Failed
RF MEM_POST WwB MbU ALU MEM_PRE
96.7% 93.9% 96.1% 100.0% 70.4% 87.6%

Sensitivity

simplexO3
0.7 r I SDC
I Terminated
0.6 1 i I Timeout
[Failed
0.51 e e

Sensitivity
© © o
N w sy

o
[y
I

RF MEM_POST WB MDU ALU MEM_PRE
41.4% 27.1% 86.2% 49.5% 77.2% 49.8%

tmrO3

0.30 |

0.25

0.20 1

0.15 1

0.10 1

0.05 |

0.00 -

I SDC

I Terminated
Il Timeout
[0 Failed

I

RF MEM_POST WB MDU ALU MEM_PRE

85.0% 99.3% 94.8% 100.0% 79.5% 68.8%

14 | Future Work

Current focus is on creating our error probability tables
o Using MRED to determine rad characteristics of our targeted technology

° Analyzing netlist to determine natural logical masking effects

Create simulation model directly from synthesized netlist
o Simulation models already exist for post-synthesis debug — extend to allow fault tracking capabilities

Extend fault injection studies
o Perform in-depth studies of timing effects of faults

Add more software to benchmark suite
> AES, gsort, etc.

Perform radiation test on HERMES processor and compare results

5 I Conclusion

Current SEE studies on complex systems lack insight into system state that causes failure

o Limited resources to gather real-time, system state information

High performance simulators can be used to perform SEE studies on complex systems
o Ability to track faults within the system

o Hasier failure-cause analysis

HERMES processor can be used to validate simulated, fault-injection approach
o HERMES can dump internal state upon detected SEU

Initial fault studies produce expected results
o Will be used to perform more complex fault tracking studies

