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2 I Overview of Thermal Runaway Modeling

$
SIGNIFICANCE:

o Heat source terms in legacy thermal runaway models have limitations

Outdated with respect to current battery materials

Designed for low-temperature onset rather than high-temperature propagation

$$

Models should be designed to keep pace with deployment of new materials

Transition from empirical approaches to materials-centric approaches

Gain ability to forecast safety characteristics in the early stages of materials selection

ALIGNMENT WITH CORE MISSION OF DOE OE:

o Validated safety and reliability is one of the critical challenges identified in 2013 Grid

Energy Storage Strategic Plan

Single Cell

—0.5-5 Ah

Strings and large

$$$

format cells

—10-200 Ah

EV Battery Pack 100s-

1000s cells

10-50 kWh

$$$$

Stationary storage

system 1000s or more

individual cells

MWh+
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4 I Thermal Runaway Modeling Objectives

Predict thermal runaway behavior in large systems (multi-cell) 

o 1 publication accepted in FY2020

Develop improved heat-source models for thermal runaway

Include proper dependence on material properties, temperature, state of charge

o Extend to additional electrode materials of commercial interest

• 1 publication accepted and 1 additional publication submitted in FY2020

Promote effective methods and collaboration in thermal runaway studies 

Publish perspectives, models, and tools
➢ Thermodynamic reaction heat calculator for cathode decomposition posted online in FY2020

Set up thermal runaway collaboration workshops (task for full project team)
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5 I Motivation: Why Study Thermodynamics of Battery Materials?

Variants of layered metal oxide cathodes too numerous for full experimental safety evaluation

Materials science/thermodynamic approach allows predictions of:

o Whether a decomposition reaction can occur

o How much heat release can be expected under different conditions

Heat sources from thermodynamics are readily adapted to new materials

O Can account for multiple stages of heat release

O May also allow kinetic rates in thermal runaway models to be generalized for families of materials



6 I Results: Thermodynamics of Cathode Thermal Runaway Decomposition paths

for de-lithiated LiNO2 I

Layered metal oxide cathode decomposition

• Published database of 36 formation enthalpies compiled

M02

from over 42 literature sources for cathode materials Li M 02 
R4

- Yields up-front predictions of heat release for a whole class

of LixMO2 cathode materials with electrolytes

• Existing or proposed compositions

Excel-based calculator released online

- Simplified web calculator under development

R. C. Shurtz and J. C. Hewson, J. Electrochem. Soc., 167, 090543 (2020) https://dx.doi.org/10.1149/1945-711 1/ab8fd9

R. C. Shurtz. "Thermodynamic Reaction Heat Calculator for Layered Metal Oxide Cathodes in Organic Electrolytes."
https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/ M = Ni, Co, Mn, Al as well as mixtures (NMC, NCA, etc.)

1
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7  Results: Thermodynamics of Solvent Oxidation
Spontaneous processes have negative AG

AG = AH -TASSolvent oxidation has strong effects on
o Cathode heat release
o Gas emissions from decomposing batteries

Contributions to AG include
O Enthalpy (heat release, solid lines)
>Favors full oxidation

o Entropy term (dashed lines)
> Favors more gas generation through partial oxidation

>Bigger impact at high temperature

Full EMC Oxidation:

2 C4H803 + 9 02 4 8 CO2 + 8 H20

Partial EMC Oxidation:
2 C4H803 + 2 02 2 CO2 + 6 CO + 8H2
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8 I Results: Effect of Pressure on Solvent Decomposition

Full EMC Oxidation: 2 C4H803 + 9 02 8 CO2 + 8 H20

Partial EMC Oxidation: 2 C4H803 + 2 02 2 CO2 + 6 CO + 8H2

Entropy contribution is stronger at low pressures
o Cell venting pressure expected to affect gaseous
product distribution and heat release

Weaker confinement in pouch cells compared to
cylindrical cells may lead to more partial oxidation
o Partial oxidation leads to explosive mixtures

>Higher production rates of CO and H2
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9 I Results: Combined Effects of Metal Oxide Decomposition
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I Results: Full-Oxidation Predictions Consistent with Calorimetry

136 total calorimetry measurements compiled from 28

articles for LCO, NMC, and NCA

o Explains variability observed with state of charge

>SOC proportional to 1-x

o High pressure in calorimetry containers favors full

oxidation of solvent
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11 I Results: Effects of Metal Oxide Composition and SOC

Similarities and differences in cathode
decomposition mechanisms identified
from thermodynamic analysis

o Verified through calorimetry and
species measurements from literature

Common M atoms in LixMO2

o Ni (high energy)

o Co (crystallographic stability)

• Mn or Al (strong O-atom binding)

Some steps change with composition

Simpler mechanism at low SOC

•
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R. C. Shurtz and J. C. Hewson, J. Electrochem. Soc., 167, 090543 (2020) https://dx.doi.org/10.1149/1945-7111/ab8fd9 

R. C. Shurtz, "A Thermodynamic Reassessment of Lithium-lon Battery Cathode Calorimetry " J. Electrochem. Soc., (submitted September 2020).



12 I Results: Modeling Short Circuits in Tandem with Thermal Runaway

Materials science perspective applied to short-
circuit ignition of thermal runaway yields
predictive insights

Short circuits and thermal decomposition
compete for same reactants

Thermal decomposition more energetic

Thermal decomposition faster once ignited

o Depletion of solvent can limit either process

Series resistances specify rate and distribution of
heat release from short circuit
0 Fraction of total resistance specifies heat release
in nail versus cell
> Concentrating heat release in nail yields faster ignition

Voltage and hence short circuit rate calculated
from limiting reactive electrode material

Short Circuit Co02 + LiC6 4 LiCo02 + C6

Sum Thermal Decomposition (consumes Co02 + LiC6 + solvent)

o

Cathode Decomposition 2C0024 2000 + 02 (plus solvent oxidation)

2LiC6 + EC 4 2C6 + C2H4 + Li2CO3Anode Decomposition
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13 I Results: Modeling Ignition from Nail Penetration in Pouch Cells

Identified effects of short circuit geometry and location
O Central heat release yields sharp peak in cell surface temperature

O Off-center heat release slows rise to final temperature
>Makes internal propagation limiting (see previous slide) 450

Total temperature rise can be limited by
O Quantity of electrolyte

O High short-circuit resistance
> Slower short circuit competes poorly with thermal runaway

Legend for plot: 
= measured cell surface temperature

= baseline simulation
• • = 1/2 resistance

= 2x resistance
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14 I Looking Forward

Cathode Decomposition Modeling

o Develop and publish new kinetic models for thermal runaway in LixiVIO2 cathodes

➢Build on heat release from recent thermodynamic analysis

o Integrate improved heat source models into cascading failure simulations

➢Demonstrate and publish practical methods to assess safety risks in larger systems

Lithium-Ion Battery Calorimetry Workshops (with full safety team)

o Set up website for sharing and modeling thermal runaway data

➢Example data set from Sandia Battery Abuse Laboratory has now been prepared for this purpose

o Schedule first workshop, continue recruiting participants



1 5 I FY2020 Publication Summary

Peer-reviewed Publications
• A Kurzawski, L. Torres-Castro, R. Shurtz, J. Lamb, and John Hewson, "Predicting cell-to-cell failure propagation
and limits of propagation in lithium-ion stacks," Proceedzngs of the Combustion Institute (2020)
https://doi.org/10.-1016/j.proci.2020.06.270 

R. C. Shurtz and J. C. Hewson, "Materials Science Predictions of Thermal Runaway in Layered Metal-Oxide
Cathodes: A Review of Thermodynamics,"j Electrochem. Soc., 167, 090543 (2020)
https://dx.doi.org/10.1149/1945-7111/ab fd9. 

• R. C. Shurtz, "A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry J. Electrochem. Soc.,
(submitted September 2020).

Presentations
• R.C. Shurtz and J.C. Hewson "Modeling Thermal Decomposition of Metal Oxide Cathodes in Non-Aqueous

Electrolytes for Prediction of Thermal-Runaway in Lithium-Ion Batteries" 236th ECS Meeting, Atlanta, GA,
October 17, 2019

Online Tool:
• R. C. Shurtz. "Thermodynamic Reaction Heat Calculator for Layered Metal Oxide Cathodes in Organic

Electrolytes" (2020) https://www.sandia.goy/ess-ssl/thermodynamic-web-calculator/ 



16 I Project Contacts
THAN K YOU

• Funded by the U.S. Department of Energy, Office of Electricity, Energy Storage program. Dr. Imre Gyuk,
Program Director.

• Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

For questions about this presentation, contact Randy Shurtz: rshurtz@sandia.gov

For further details pertaining to thermal runaway modeling, see the following presentations and posters: 

Thermal Analysis to Mitigate Cascading Propagation of Lithium-Ion Cell Stacks (presentation by John Hewson)

• Mitigation of Failure Propagation Through Active Cooling: A Model Based Experimental Design (presentation by
Loraine Torres-Castro)

• Predicting Thermal Responses for Actively Cooled Designs Following Thermal Runaway (poster by Randy Shurtz)

• High-Temperature Kinetics of Thermal Runaway Reactions (poster by Andrew Kurzawski)


