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5 I FeS2 — A combination of intercalation and conversion

Intercalation*Conversion*End-of-Discharge

Generalized Reaction Mechanism

(1) FeS2 + 2Li+ + 2e-~ Li2FeS2 Intercalation

(2) Li2FeS2 + 2Li+ + 2e-~ Fe° + 2Li2S Conversion

T. A. Yersak, et al, Adv. Energy Mat. (2013)
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Combined intercalation and conversion is a unique modeling challenge
10/6/2020



6 I Mesoscale modeling
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High-fidelity NMC per-particle analyses
Ferraro et al, J. Electrochem. Soc. (2020)
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Mesoscale modeling provides detailed insights into coupled-physics behaviors
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7 I Mesoscale geometry
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Develop model on a simplified geometry to allow detailed focus prior to scaling up
10/6/2020 B. Ng et al, in preparation



8 1 Mathematical model

Li„FeS2  Particle "Core": 

Electrical transport (voltage) — Ohm's Law

Intercalated lithium diffusion (Li„FeS2 concentration) — Fick's Law

10/6/2020



9 Mathematical model

Li„FeS2 Particle "Core"

/Fe° + 2 Li2S Particle "Shell": 

14,1ectrical transport (voltage) — Ohm's Law

Lithium ion diffusion (Li+ concentration) — Fick's Law
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10 Mathematical model

LixFeS2 Particle "Core"

/Fe° + 2 Li2S Particle "Shell"

/ LiTFSI in DWI, Filectrolyte: 

Charge transport (voltage) — Ohm's Law + -Nernst-Planck Flux

Lithium ion diffusion (Li+ concentration) — Fick's Law + Nernst-Planck

10/6/2020



I11 Mathematical model

10/6/2020

LixFeS2 Particle "Core"

Fe° + 2 Li2S Particle "Shell"

LiTFSI in DME Electrolyte

Reaction Surface: 

Butler-Volmer reaction kinetics —

2 simultaneous reactions
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12 I Mathematical model

Li„FeS2 Particle "Core"

Fe° + 2 Li2S Particle "Shell"

LiTFSI in DME Electrolyte

Reaction Surface:

Key Assumptions: 

Isothermal (but temperature-dependent)

Infinite Li+ source at separator

Perfect electrical transport at collector

Polysulfide shuttle not considered

No capacity loss mechanisms

10/6/2020



13 Nominal simulation
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14 Temperature dependence

Arrhenius temperature dependence of solid-state diffusivity, electrical conductivity, and intercalation OCV
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Lower temperatures lead to a larger mixed reaction zone (simultaneous intercalation and conversion) j
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15 I Reaction rate dependence
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Higher current densities lead to a slightly larger mixed reaction zone, lower overall voltage
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16 I Summary and future directions

Novel mesoscale model combining intercalation and conversion reactions in FeS2

Studied temperature- and reaction rate-dependences

Future directions

. Additional parametric studies — particle size, electrode thickness, porosity

o Scale up to realistic particle mesostructures

o Heat generation and transport Z\

o Stress generation and degradation
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