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Motivation: High energy-density batteries with limited, tunable cyclability
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5 I FeS, — A combination of intercalation and conversion
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T. A. Yersak, et al, Adv. Energy Mat. (2013)
Combined intercalation and conversion is a unique modeling challenge
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Mesoscale modeling
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LCO image-based studies CBD morphology impacts High-fidelity NMC per-particle analyses

Mendoza et al, J. Electrochem. Soc. (2016) Trembacki et al, J. Electrochem. Soc. (2017) Ferraro et al, J. Electrochem. Soc. (2020)

Mesoscale modeling provides detailed insights into coupled-physics behaviors
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Mesoscale geometry
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Conversion

Fe + Li,S

Fe$S,; + 2Lit + 2e” = LisFeS,
* Insertion via solid-state
Fickian diffusion

Li,FeS, + 2Li* + 2e = Fe + Li,S
* Phase separation via
shrinking core mechanism

Develop model on a simplified geometry to allow detailed focus prior to scaling up

B. Ng et al, in preparation
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Mathematical model
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Li FeS, Particle “Core™:

Electrical transport (voltage) — Ohm’s Law

Intercalated lithium diffusion (Li_FeS, concentration) — Fick’s Law
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Mathematical model
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Li FeS, Particle “Core”

Fe' + 2 1i,S Particle “Shell”:
Electrical transport (voltage) — Ohm’s Law

Lithium ion diffusion (Li" concentration) — Fick’s Law
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Mathematical model
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Li FeS, Particle “Core”
Fe' + 2 Li,S Particle “Shell”

LiTESI in DME Electrolyte:

Charge transport (voltage) — Ohm’s Law + Nernst-Planck Flux

Lithium ion diffusion (Li" concentration) — Fick’s Law + Nernst-Planck
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Mathematical model
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Li FeS, Particle “Core”
Fe' + 2 Li,S Particle “Shell”
LiTFSI in DME Electrolyte

Reaction Surface:

Butler-Volmer reaction kinetics —
2 simultaneous reactions

Reaction surface moves using
level-set field
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Mathematical model
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o

Li _FeS, Particle “Core”

Fe' + 2 Li,S Particle “Shell”
LiTFSI in DME Electrolyte
Reaction Surface:

Key Assumptions:

Isothermal (but temperature-dependent)
Infinite Li" source at separator

Perfect electrical transport at collector
Polysulfide shuttle not considered
No capacity loss mechanisms



13 I Nominal simulation

10% DOD 30% DOD 70% DOD 90% DOD
0.03
0.02
0.01
o 26FT
: !;_3"’ X 25k — Open Circult Potential (Yersack et al.} |
0 | E 2.4k I — Discharge Curve (Yersack et al.)
;_35 L‘? 23-% —— Two Particle Fe5; Voltage Probe
.01 = 2.2r
s Ml
-0.02 I I
%ﬂ 1.9
£ 18}
-0.03 ; 17k
g 1ef
7]
] 1.5+
L4}
0.99 13k
098 __ |
0.97 E 1F I I I 1 1 1
E 0 0.2 0.4 0.6 0.8 1
0.96 = State of Charge
S
0.95 4%31
0.94 -
G
0.93 X
0.92 ™

Clear distinction between intercalation and conversion regimes; reasonable match to data
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Temperature dependence

Arrhenius temperature dependence of solid-state diffusivity, electrical conductivity, and intercalation
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Lower temperatures lead to a larger mixed reaction zone (simultaneous intercalation and conversion)

OCV




15 I Reaction rate dependence
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Higher current densities lead to a slightly larger mixed reaction zone, lower overall voltage
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16 I Summary and future directions

Novel mesoscale model combim'ng intercalation and conversion reactions in FeS2

Studied temperature- and reaction rate-dependences

Future directions

> Additional parametric studies — particle size, electrode thickness, porosity

° Scale up to realistic particle mesostructures
> Heat generation and transport

o Stress generation and degradation
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