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Introduction
• Stationary energy storage systems (ESS) are increasingly deployed to maintain a

robust and resilient grid.
• As system size increases, financial and safety issues become important topics.
• Holistic approach: electrochemistry, materials, and whole-cell abuse will fill

knowledge gaps.
• Models enable knowledge to be applied to different scenarios and larger scales.

• When thermal runaway models include enough realistic physics, they can be used to:
• Identify experimentally accessible parameters that strongly influence

cascading propagation of thermal runaway through modules of cells.
• Predict trends in heat transfer and cascading propagation behavior.
• Identify regions of parameter space of greatest interest for experiments.
• Evaluate mitigation strategies and explain novel experimental observations.

Modeling Short Circuit Ignition 
• Adjust resistances in model to match surface temperature rise for single cells.
• Series resistances specify rate and heat release distribution from short circuit.

• Fraction of total resistance specifies heat release in nail versus cell.
• Concentrating heat release in small nail volume yields faster ignition.
• Internal resistance grows and limits rate as solvent is depleted.

• Voltage correlated to limiting reactive electrode material.
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• Short circuits and thermal decomposition compete for the same reactants.
• Thermal decomposition can be more energetic.
• Thermal decomposition is typically faster once ignited.
• Depleted solvent (from electrolyte) can limit either process.

Short Circui (solvent not consumed in short circuit)

Sum Thermal Decomposition (consumes Ca) + ' + solvent)

Cathode Decomposition

Anode Decomposition

2CoO2 4 2Co0 + 02 (plus solvent oxidation)

2LiC6 + EC 4 2C6 + C2H4 + Li2CO3
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• Effects of short circuit geometry and location:
• Central heat release yields sharp peak in cell surface temperature.
• Off-center heat release slows rise to final temperature

• Makes internal propagation limiting
• Temperature rise may be limited by low electrolyte or high short resistance.
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Legend for plot: 
= measured cell surface temperature

  = baseline simulation
• • • • = M resistance
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Predicted Effectiveness ofActive Cooling
• Aim is to reduce heat available to a hypothetical adjacent module.

• Measurements are reality, but simulations enable better understanding.
• Simulations of 3-cell stack (4 Ah each) with plates used to examine heat transfer.

• Scoping simulations to down-select parameter space for experiments.
• Heat flux out of batteries similar for all cases; variation occurs at plates.
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• Insulators decrease heat transfer from batteries through plates.
• More time available for heat losses perpendicular to the stack.

• Faster decay of heat transfer in the stack direction with water cooling.
• Indicates more heat loss perpendicular to the stack.
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Experiments Verify Simulated Trends 

Hypothetical
Adjacent 

• Maximum temperature adjacent to failed cells was nearly constant.
• Without insulator mitigation, temperature and heat transfer available to

hypothetical adjacent module sufficient to trigger thermal runaway (>350°C).
• With insulator mitigation, hypothetical adjacent module is exposed to

temperatures between I 00°C and I 50°C.
• Reduced risk of propagating thermal runaway.
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Multi-Cell Active Cooling Configuration 
• Three cells between aluminum plates and cement boards (two each).

• Option to insert plates into a water bath, plate thickness can vary.
• Optional insulators on each side of the plates, thickness can vary.

• Penetrate center cell, model as described above (calibrated to single-cell data).
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3. 7"F• Use new experimental data to refine assumptions in model and parameters.
• Extract more learning from simulations and publish results.
• Identify more active cooling scenarios of interest for simulations and experiments.
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Next Steps 
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