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Introduction
* Stationary energy storage systems (ESS) are increasingly deployed to maintaina ¢ When thermal runaway models include enough realistic physics, they can be used to:
robust and resilient grid. * Identify experimentally accessible parameters that strongly influence
* As system size increases, financial and safety issues become important topics. cascading propagation of thermal runaway through modules of cells.
* Holistic approach: electrochemistry, materials, and whole-cell abuse will fill * Predict trends in heat transfer and cascading propagation behavior.
knowledge gaps. * lIdentify regions of parameter space of greatest interest for experiments.
* Models enable knowledge to be applied to different scenarios and larger scales. * Evaluate mitigation strategies and explain novel experimental observations.

Modeling Short Circuit Ignition Predicted Effectiveness of Active Cooling

* Off-center heat release slows rise to final temperature o
* Makes internal propagation limiting

» Temperature rise may be limited by low electrolyte or high short resistance. Expe riments Ve I"ify Simulated Trends

0 * Maximum temperature adjacent to failed cells was nearly constant. }
* Without insulator mitigation, temperature and heat transfer available to
hypothetical adjacent module sufficient to trigger thermal runaway (>350°C). +

* Adjust resistances in model to match surface temperature rise for single cells. * Aim is to reduce heat available to a hypothetical adjacent module.
* Series resistances specify rate and heat release distribution from short circuit. * Measurements are reality, but simulations enable better understanding.
* Fraction of total resistance specifies heat release in nail versus cell. * Simulations of 3-cell stack (4 Ah each) with plates used to examine heat transfer.
* Concentrating heat release in small nail volume yields faster ignition. * Scoping simulations to down-select parameter space for experiments.
* Internal resistance grows and limits rate as solvent is depleted. * Heat flux out of batteries similar for all cases; variation occurs at plates.
* Voltage correlated to limiting reactive electrode material. Space Crossing + Cell Crossing Simulated heat transfer with 0.8 mm plates in air, no insulators
6.0e+02 _I_I
Internal - Lo l - Difference between heat out of last cell and heat out of plate
Nail | =V/R - i
i Cell . tot ‘ initiation
- 50 S 124 l
J\N\/\/_/VW\ﬁ Ptot =V Rtot [450 = Z 10- m ] o
_ 400 >
Small Large P = Ru(V/Rwe)’ [350 s —_— — —p
A y ment Board - P, - -G - 3—P, P,—CementBoa
Volume Volume Pc = Rc(V/IR,,)? 3.00+02 Zj Cell 2 e i D B B A
1sec 4sec 8sec 61sec . Fies s 1 1 B
 Short circuits and thermal decomposition compete for the same reactants. - L = £ £ £ 3
0 20 40 60 80 100 120 140 > N
* Thermal decomposition can be more energetic. Time, s
e Thermal decomposition is typically faster once ignited. * Insulators decrease heat transfer from batteries through plates.
»  Depleted solvent (from electrolyte) can limit either process. * More time available for heat losses perpendicular to the stack.
Short Circuit PIATIEYI (solvent not consumed in short circuit) * Faster decay of heat transfer in the stack direction with water cooling.
S ” : * Indicates more heat loss perpendicular to the stack.
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ZOO Legend for plot: * With insulator mitigation, hypothetical adjacent module is exposed to
—, — = measured cell surface temperature

150 = baseline simulation temperatures between 100°C and 150°C.
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Multi-Cell Active Cooling Configuration

* Three cells between aluminum plates and cement boards (two each).
* Option to insert plates into a water bath, plate thickness can vary.
* Optional insulators on each side of the plates, thickness can vary.
* Penetrate center cell, model as described above (calibrated to single-cell data).
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Next Steps
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e | * Use new experimental data to refine assumptions in model and parameters.
~ 135" = * Extract more learning from simulations and publish results.
 — — - B0 ; * Identify more active cooling scenarios of interest for simulations and experiments.

GER U.s. DEPARTMENT OF Sandia National I._aboratories isa muItim.issior? Iaboratfary managec.I and Acknowledgements: Sa d'
W ENERGY ;’Pwe;f,;;dzn'j;t;‘;g:j::y"g;’L‘;i{,f;ﬁ';ﬁ'T:f;:ij;’,ﬂ;f'f;?‘;Lfi;j‘i;;m  Funded by Dr. Imre Gyuk through the U.S. Department of Energy; Office of Electricity naia
A 1Y &~ Department of Energy’s National Nuclear Security Administration under Natlonal .
!ﬁxg;waﬁ“ 4 D N 003 SAND?2020- Laboratories




