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SUMMARY
Stress corrosion cracking (SCC) is an important failure degradation mechanism for storage of spent 
nuclear fuel.  Since 2014, Sandia National Laboratories has been developing a probabilistic methodology 
for predicting SCC.  The model is intended to provide qualitative assessment of data needs, model 
sensitivities, and future model development.  In fiscal year 2021, improvement of the SCC model focused 
on the salt deposition, maximum pit size, and crack growth rate models.

 Parameterization of the previous salt deposition model presented significant challenges.  
Measured salt deposition data are sparse with high uncertainties, and the model results are very 
sensitive to parameter and modeling changes.  Instead, a distribution is proposed that samples salt 
deposition directly based on a range informed by operational data.  In general, the new approach 
results in smaller salt deposition rates and should lead to smaller pit size predictions.

 The maximum pit size model was modified to incorporate experimental data that has only 
recently become available, which enables the model to better characterize the important 
electrochemical kinetics relevant to this phenomenon.  For any given environmental condition, 
the new model generally predicts larger maximum pit sizes compared to the old model.

 Lastly, the crack growth rate model was re-calibrated, and the implementation was modified to 
resolve a code bug.  Calibration of the crack growth rate model was performed using a frequentist 
linear regression approach similar to previous calibration efforts, but the data set used for 
calibration was substantially expanded to include data from experiments in which specimens were 
immersed for the duration of the experiment. The previous calibration had only used data 
collected under atmospheric conditions, which was both limited and less accurate. Though the 
new calibration results in only a small change to the previous model, the wider range of 
experimental data lends more justification to the resulting distributions.

All three updates constitute major changes to the modeling approach and will have an impact on predicted 
SCC quantities of interest; however, the overall effect remains a topic for future study.  Currently, the 
changes to the salt deposition and maximum pit size models have opposing effects on maximum pit size 
predictions.  Since changes to the maximum pit size will impact the timing of crack initiation, these 
model changes may have drastic effects on the overall model predictions.  Though the crack growth rate 
model has been re-calibrated and the model has more experimental justification, the new parameter 
distributions are not expected to have a significant impact on the code predictions.
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SPENT FUEL AND WASTE SCIENCE AND TECHNOLOGY

FY21 STATUS REPORT:  PROBABILISTIC SCC 
MODEL FOR SNF DRY STORAGE CANISTERS 

1. INTRODUCTION
Spent Nuclear Fuel (SNF) is initially stored at nuclear power reactor sites in spent fuel pools for at least 
one year.  After sufficient cooling and radioactive decay, SNF is loaded into sealed casks or welded 
canisters filled with inert gas.  Some casks are self-shielding, but the welded canisters are placed within 
passively-ventilated concrete or concrete/steel overpacks, which serve as radiation shielding; the canister 
and overpack together represent the dry storage system. The waste is stored at reactor sites in Independent 
Spent Fuel Storage Installations (ISFSIs). To date, there are more than 3000 dry storage canisters (DSCs) 
stored at over 70 ISFSIs in the United States [1].

The current regulatory framework for ISFSIs is governed by the U.S. Nuclear Regulatory Commission 
(NRC) and documented primarily in 10 CFR Part 71 [2] and 10 CFR Part 72 [3].  Additional 
documentation can also be found in various NRC Regulatory Guides [4, 5], NUREG reports [6, 7], 
NUREG/CR reports [8, 9], and NRC Staff Guidance [10, 11, 12].  The current regulatory framework 
allows for an initial 40-year licensing term, followed by a license renewal for a term of up to 40 years. 

Since a repository for SNF disposal is unlikely, the DSCs will remain at ISFSIs or at a future centralized 
storage facility for the foreseeable future.  For the existing regulatory period of 80 years, design and 
performance of DSCs has been extensively studied and the effectiveness of existing regulations has been 
demonstrated through significant operational experience.  However, compliance with existing regulatory 
frameworks has not been established beyond the current 80-year licensing period.  Because SNF remains 
significantly radioactive for tens to hundreds of thousands of years [13], extending the regulatory 
guidance will become increasingly important over the next few decades.

A phenomenon that is of particular concern for degradation analysis of DSCs is stress corrosion cracking 
(SCC), which is sometimes referred to as atmospheric stress corrosion cracking (ASCC) or chloride-
induced stress corrosion cracking (CISCC).  An illustration of this process and the necessary models is 
shown in Figure 1-1.  Atmospheric SCC describes the buildup of salt aerosols on the surface of a metal 
that will deliquesce to form a corrosive brine, the formation and growth of small pits, the nucleation of 
cracking at the pit sites, and the propagation of the crack through the material thickness.  SCC is an 
important mode of failure because crack penetration through the canister can initiate a release of 
radioactive material.  Modeling of SCC requires complex models for weather, salt deposition, pit size, 
stresses, pit-to-crack transition, and crack growth.
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Figure 1-1. Illustration of the transient SCC process and corresponding models

Three criteria must be met for SCC to take place: (1) the metal of interest must be susceptible, (2) a 
corrosive environment must exist (in this case, through deliquescence of deposited salt aerosols), and (3) 
there must be sufficient tensile stress in the material.  It is well-documented that austenitic stainless steels, 
including those that are used in DSCs, can undergo SCC [14].  Both modeling [16] and experimental 
measurements [17] have shown that through-wall tensile stresses are likely present in canister welds.  
Finally, numerous field studies have shown that chloride-rich salt aerosols are deposited on the canister 
surfaces; these aerosols will eventually deliquesce to produce potentially corrosive brines [18], [19], [20], 
[21].  For these reasons, understanding the timing and occurrence of canister SCC continues to be an 
important technical gap for the back end of the nuclear fuel cycle [22].  

Sandia National Laboratories (SNL) leads a multi-lab DOE effort to understand the timing, occurrence, 
and consequence of potential canister SCC, and as part of that effort, has developed a probabilistic model 
for canister penetration by SCC. This model has been developed and continuously updated at SNL since 
2014 [23, 24, 25, 26].  Model uncertainties are treated using a nested loop structure, where the outer 
epistemic loop accounts for uncertainties due to lack of data and the inner aleatoric loop accounts for 
uncertainties due to natural variation in nature.  By separating uncertainties into these categories, it is 
possible to focus future work on reducing the most influential epistemic uncertainties.  Several 
experimental studies have already been performed to improve the modeling approach through expanded 
process understanding and improved model parameterization [27].  The resulting code is physics-based 
and intended to inform work which identifies (1) important modeling assumptions, (2) experimental data 
needs, and (3) necessary model developments.  In this document, three updates are described to the 
modeling approach.

1. The salt deposition model is difficult to parameterize; therefore, it has been replaced by a constant 
salt deposition rate with bounded uncertainty (see Section 2).  This approach is less flexible and 
does not incorporate site-specific knowledge of canister salt loads.  The parameterization will be 
replaced once a validated salt deposition model has been developed, but until then, it allows 
parametric studies.

2. In Section 3, the pit size model has been updated to be consistent with new experimental data.

3. The model for calculating crack growth rates in stainless steel was previously only calibrated 
using experimental data for atmospheric corrosion [28].  In Section 4, the model has been updated 
to include immersed corrosion data from a variety of sources in the literature.  Immersed SCC 
crack growth rate data are collected using well-established methods and are commonly more 
accurate than data collected under atmospheric conditions.  Only recently has confidence risen 
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that the same mechanism controls crack growth rate under both sets of conditions, allowing use of 
the immersed data in the canister SCC model.  

2. SALT DEPOSITION
In the environments of concern for DSCs, the corrosive agent is primarily chloride salt aerosols that 
originate from three sources: the ocean, road salts, and cooling towers.  The amount of salt deposited on 
the surface of a canister controls the thickness of the brine layer formed by salt deliquescence, which is an 
influential parameter in determining the maximum pit size that can occur, a controlling factor for 
initiation of a SCC crack.  Deposition rates are highly variable, but proximity to an ocean is a primary 
factor.  This is shown in Figure 2-1, which plots ground deposition rates at various sites around the world 
as a function of distance from the nearest oceana.  There is a clear logarithmic trend, indicating that salts 
from ocean sources are a dominant factor.

Figure 2-1. Experimentally measured deposition rates (reproduced from [26]) [29] [30] [31] 
[32] [33] [34] 
[35] [36]

Though salt deposition rates should clearly be correlated to distance from an ocean, other aspects of the 
previous modeling approach [26] for salt deposition rates are difficult to parameterize.  Overall, there is a 
lack of experimental data and large variation between different ISFSI sites.  The model is very sensitive to 
parameterization of the deposition velocity model [37], the linear fowling model [38], fluid property 
calculations, surface friction, as well as the particle size distributions for each source of salt.  Since all 
these models are difficult to parameterize, the resulting deposition densities are highly uncertain and 
unreliable.

In fact, similar studies for modeling salt deposition have had similar modeling challenges.  Work at 
PNNL has developed a Computational Fluid Dynamics (CFD) informed model using STAR-CCM+ 
simulations [39].  The resulting model is highly sensitive to the physical processes that are incorporated 
(e.g., thermophoresis, turbophoresis, etc.), and the resulting deposition rates were not compared to 

a The deposition rates in Figure 2-1 are measured in open air, not on DSCs. Deposition velocities on the surface of a DSC will 
be much lower than in open air, resulting in lower deposition rates. However, the deposition rates on both types of surface are 
dependent upon the quantity of available salt aerosols and should therefore have a similar logarithmic relationship with 
proximity to an ocean.
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experimental results, because no relevant data were available.  Similar to the approach taken at SNL [26], 
the Electrical Power Research Institute (EPRI) developed a deposition model using linear fouling [38].  
Through comparison of simulation results to measured deposition rates at ISFSIs, they concluded that the 
model results were only within about an order of magnitude of the field data and that the model was 
conservative.

An accurate and predictive model for salt deposition rates has not yet been proposed in the literature.  
Therefore, the current approach is modified to parameterize the salt deposition rate based on operational 
data at real sites.  Here, we utilize operational data obtained from various sites, as shown in Table 1 [38]. 
A realistic model for the chloride deposition rate would be a function of distance from the ocean and 
location on the canister.  However, the data in Table 1 has few data points and large uncertainties, which 
would impart large errors on any attempt at characterization of the functional form for deposition rate.  
Therefore, the salt deposition rate is given the log-uniform distribution logU(10―4, 0.5), which is 
equivalent to a uniform distribution in log space.  The chosen distribution is shown in Figure 2-2.  This 
parameterization will (1) incorporate all available data for characterization of deposition rates, (2) be site-
independent, and (3) allow chloride deposition rate to be varied for sensitivity studies.

Table 1. Measured average chloride accumulation rates at different sites (reproduced from [38])
Chloride [g/m2/yr]Case

Top surface Vertical surface
Fukushima 0.3 ― 0.5 0.02 ― 0.1
Tokai - < 0.001
Diablo Canyon - < 0.0025
Hope Creek 0.001 ― 0.01 < 0.0015
Main Yankee < 0.0004 0.0001
Calvert Cliffs 0.0001 ― 0.004 -

Figure 2-2. Probability density function for chloride deposition rate

In the SCC code, a new log-uniform distribution has been added so that chloride deposition rate can be 
sampled for each aleatory loop.  By removing the complex calculation of deposition rate at each time step 
and weld location, the simulation time is reduced by about 95% (from about 100 seconds to 5 seconds per 
100-year transient).  This reduction in run time is ideal for probabilistic analysis, as it enables many query 
problems such as sensitivity and uncertainty analysis.
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Note that this implementation does not capture site-specific variations in the salt deposition rate.  These 
variations have been observed and are due to differences in surface orientation, salt aerosol quantities, and 
particle size distributions.  To some extent, these variations could be incorporated into the 
parameterization in the future by incorporating measured salt concentrations for more accurate prediction 
at a given site. 

3. MAXIMUM PIT SIZE
Once deposited salts deliquesce on a susceptible metal surface, corrosion can occur, and pits can form.  
The pits eventually grow large enough to serve as nucleation sites for the stress-driven cracks 
characteristic of SCC.  Therefore, estimation of pit formation, growth, and pit-to-crack transition is an 
important step in the probabilistic modeling of SCC.  Consistent with previous analyses [26], the 
conservative assumption is made that pit nucleation is not a limiting factor in pit formation.  Rather, pits 
nucleate instantaneously once the relative humidity is greater than an experimentally determined 
threshold relative humidity [40].

Once pits form, they are assumed to be hemispherical and electrochemical kinetics are used to calculate 
the radius.  A schematic is shown in Figure 3-1, where the anode (pit) and the coupled cathode, which 
supplies current to the anode, is on the metal surface around the pit.  For any given pit, the cathodic 
current 𝐼𝑐 available to support pit growth must exceed the anodic current 𝐼𝑎 demand.  If sufficient 
cathodic supply is not available to support dissolution, a pit will repassivate.  Since 𝐼𝑎 increases 
monotonically with pit size, matching of 𝐼𝑎 and 𝐼𝑐 is used to determine the maximum possible pit size 
given any local conditions.  Consistent with previous work, the model of Chen et al. [41] [42] is used to 
approximate the maximum pit size.

Figure 3-1. Schematic of a pit and the corresponding cathode

In the Chen model, the maximum cathodic current 𝐼𝑐,𝑚𝑎𝑥 is expressed as

ln 𝐼𝑐,𝑚𝑎𝑥 =
4𝜋𝜅𝑡Δ𝐸𝑚𝑎𝑥 

𝐼𝑐,𝑚𝑎𝑥
+ ln 𝜋𝑒𝑟2

𝑎𝑖𝑒𝑞 , (3.1)

Where 𝜅 is the brine conductivity, 𝑡 is the brine thickness, Δ𝐸𝑚𝑎𝑥 = 𝐸𝐿 ― 𝐸𝑟𝑝 is the potential drop from 
the pit edge to the outer cathode edge, 𝑒 is Euler’s number, 𝑟𝑎 is the anode (pit) radius, and 𝑖𝑒𝑞 is the 
maximum equivalent current density for the cathode.  The brine properties are determined from the 

t

L

C

C
A

A



SCC FY21 Report
16  July 30, 2021

property tables in [43] using the canister temperature and weather models as described in [26], the pit 
radius is the quantity to be solved for, and the remaining quantities are parameterized in the model.

Once the maximum cathodic current can be calculated, the anode current must also be determined.  This 
value is called the pit stability criterion (measured in one dimension) and expressed as 𝐼𝑎/𝑟𝑎 for a 
hemisphere.  The following sections document the parameterization of Δ𝐸𝑚𝑎𝑥, 𝑖𝑒𝑞, and 𝐼𝑎/𝑟𝑎 in the 
previous and new models.

3.1 Previous Model Parameterization
In the previous model implementation, the maximum cathode equivalent current density 𝑖𝑒𝑞 was 
calculated as the average current available over the cathode as

𝑖𝑒𝑞 =
∫𝐸𝑟𝑝

𝐸𝐿
𝑖𝑐(𝐸) ― 𝑖𝑝 𝑑𝐸
𝐸𝐿 ― 𝐸𝑟𝑝

, (3.2)

Where the integration is between the potentials at the cathode edge 𝐸𝐿 (open circuit potential) and the 
anode edge 𝐸𝑟𝑝 (repassivation potential), 𝑖𝑐(𝐸)  is the cathodic current density function, and 𝑖𝑝 is the 
passive current density at the anode edge.  The repassivation potential 𝐸𝑟𝑝 is calculated based on [44] and 
𝐸𝐿 = ―0.2. Equation (3.2) is integrated analytically using the following functional form of 𝑖𝑐(𝐸):

𝑖𝑐(𝐸) = 𝑖𝑝10
𝐸―𝐸𝐿

𝑏 , (3.3)

Where 𝑏 = 𝑈( ― 0.138, ― 0.169) is estimated based on experimental data [45].  The passive current 
density is approximated using the same equation evaluated at reference repassivation conditions.

𝑖𝑝 = 𝑖𝑟𝑝, 𝑟𝑒𝑓10―
𝐸𝑟𝑝,𝑟𝑒𝑓―𝐸𝐿

𝑏 (3.4)

The remaining parameters (𝑖𝑟𝑝,𝑟𝑒𝑓 and 𝐸𝑟𝑝,𝑟𝑒𝑓) are given values from [45]; see [26] for details.  Finally, 
the pit stability criterion is bounded using a normal distribution based on bounds suggested in [42]: 𝐼𝑎/𝑟𝑎
= 𝑈(1, 3).

Though the above modeling approach incorporates the state of knowledge at the time it was incorporated, 
it is highly uncertain.  The experimental data used to evaluate the integral in Equation (3.2) can exhibit 
time-dependent effects and large fluctuations in parameters.  The experimental basis [45] is derived from 
experiments at a single temperature (25°C) for NaCl brines on 304 stainless steel.  Therefore, variations 
with temperature or chloride species are not treated.  This is especially important for DSCs because 
elevated temperatures are expected on the metal surface and other chloride species are expected to be 
present in the brine.  Therefore, additional experimental data was required to better inform the model for 
elevated temperatures, ranges of relative humidity, and brine composition.

3.2 New Model Parameterization
It is not necessary to implement an analytical integration to calculate equivalent anodic current density, 
since Equation (3.1) is only a function of Δ𝐸𝑚𝑎𝑥 and 𝑖𝑒𝑞.  Therefore, the new model calculates 𝑖𝑒𝑞 from a 
fit to experimental data [46].  A constant value is used for Δ𝐸𝑚𝑎𝑥 (0.18 𝑉), which is consistent with the 
experimental values that showed very little variation.

To experimentally determine 𝑖𝑒𝑞, a polarization scan and determination of 𝐸𝑟𝑝 is necessary.  Polarization 
scans were measured in a chloride-free solution to prevent convolution of cathodic kinetics with anodic 
dissolution due to open circuit localized corrosion.  To determine the composition of the surrogate 
chloride-free solution, the product of 𝐷𝑂2𝐶𝑂2, where 𝐷𝑂2 is the diffusivity of oxygen and 𝐶𝑂2 is the 
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concentration of oxygen, was matched between the chloride solution and the non-chloride solution.  The 
applicability of this method has been shown in multiple studies [47, 48, 46].  Polarization scans were 
determined in multiple surrogate solutions as a function of RH and temperature.

In addition to the polarization scan, 1D electrodes were utilized in order to determine (𝑖 ∙ 𝑥)𝑠𝑓 and 𝐸𝑟𝑝 
using the method of Srinivasan and Kelly [49].  A SS304L wire with a diameter of 50 μm was embedded 
in epoxy so that the diameter of the wire was exposed.  Samples were subsequently placed in a 
temperature controlled (±0.1 ˚C) electrochemical cell with the chloride solution of interest and an anodic 
potential of +0.75 VSCE was applied for 5 to 20 minutes.  The potential was stepped down to +0.45 VSCE 
for different time periods to allow for pit propagation to different depths.  A polarization scan from +0.45 
VSCE to -0.6 VSCE at a scan rate of 5 mV/sec was performed.  After the polarization scan, the pit was 
immediately reinitiated by polarization to +0.75 VSCE, and the cycle was repeated.  Eight to ten repetitions 
of the cycle were performed as it has been shown that the pit depth needs to exceed 8-10 times the 
diameter (~400-500 μm) to prevent measured values from being influenced by the hemispherical 
diffusion at the pit mouth.  Faraday’s law and Fick’s first law were then used to determine (𝑖 ∙ 𝑥)𝑠𝑓.  
Using the one-dimensional electrode experiment was also used to determine 𝐸𝑟𝑝, which corresponds to 
the average of 𝐸𝑟𝑝 of deep pits [49].  Once the experimental polarization scan and 𝐸𝑟𝑝 were determined, 
the integration of Equation (3.2) was performed with the experimentally-derived data. 

The integrated experimental data and corresponding data fit are shown in Figure 3-2.  The fit is found by 
minimizing the sum of squared errors after assuming a model that is logarithmic with respect to chloride 
concentration and linear with respect to temperature.

𝑖𝑒𝑞 = ―0.01.53 ln 𝐶𝑙 + 0.001458 𝑇, (3.5)

Where the chloride concentration 𝐶𝑙 has units of moles/liter, temperature 𝑇 is in ℃, and 𝑖𝑒𝑞 has units 
A/m2.

Figure 3-2. Experimental data and model fit for equivalent current density

The parametric model for 𝐼𝑝𝑖𝑡/𝑟𝑝𝑖𝑡 is replaced by a model that varies with local conditions.  The model is 
parameterized using experimental data from [47, 46].  As previously mentioned, one-dimensional 
electrodes were utilized in order to determine (𝑖 ∙ 𝑥)𝑠𝑓 with the method of Srinivasan and Kelly [49].  
(𝑖 ∙ 𝑥)𝑠𝑓 is then converted to 𝐼𝑎/𝑟𝑎 by a geometric factor of 3 [50]. 
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The experimental data and corresponding data fit are shown in Figure 3-3.  The fit is found by minimizing 
the sum of squared errors after assuming a model that is logarithmic with respect to chloride 
concentration and linear with respect to temperature.

𝐼𝑝𝑖𝑡

𝑟𝑝𝑖𝑡
= 3𝑃𝑆( ―0.3136 ln 𝐶𝑙 + 0.01068𝑇 + 0.562), (3.6)

Where the pit stability product 𝐼𝑝𝑖𝑡/𝑟𝑝𝑖𝑡 is in A/m, temperature 𝑇 is in ℃, and chloride concentration 𝐶𝑙 is 
in moles/liter.  The term 𝑃𝑆 indicates percent saturation and accounts for the variation in necessary FeCl2 
saturation at the surface of the alloy within the pit for pit propagation.  This value is expected to vary with 
bulk cation and temperature; a reasonable range of possible values is 0.4 ≤ 𝑃𝑆 ≤ 0.7  [51, 52, 49], but it 
is set to 0.5 in this work.  The first constant is a geometric parameter that is set to 3, which corresponds to 
conversion from one-dimensional to hemispherical pits.  Though Equation (3.6) is based on data collected 
between 25℃ ≤ 𝑇 ≤ 55℃, Jun et al. have shown that the linear trend in temperature is valid up to 85℃ 
[53].

Figure 3-3. Experimental data and model fit for pit stability product

3.3 Implementation Comparison
The new experimentally-informed maximum pit size model will significantly impact the probabilistic 
SCC model because pit depth is a determining factor in crack initiation.  Therefore, it is important to 
understand the integral effect that changes in 𝑖𝑒𝑞, Δ𝐸𝑚𝑎𝑥, and 𝐼𝑝𝑖𝑡/𝑟𝑝𝑖𝑡 will have on the maximum pit size.  
To document this effect, this section shows results for each of these parameters and the overall effect on 
pit size.

The equivalent anode current 𝑖𝑒𝑞, potential drop Δ𝐸𝑚𝑎𝑥, and pit stability criterion 𝐼𝑝𝑖𝑡/𝑟𝑝𝑖𝑡 are shown as a 
function of temperature and relative humidity in Figure 3-4, Figure 3-5, and Figure 3-6, respectively.  The 
effect of these changes on the maximum pit size is shown in Figure 3-7.  Each subfigure shows the 
maximum pit size for a different fixed value of deposition density.  Overall, the new modeling approach 
results in larger maximum pit sizes by about an order of magnitude.  This change should result in earlier 
crack initiation, since deeper pits correspond to larger tip stresses.
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Finally, note that the new model is not probabilistic; the parameters in Equations (3.5) and (3.6) have not 
been assigned distributions.  However, uncertainty could easily be incorporated into the new model by 
calibrating the model to the experimental data in Figure 3-2 and Figure 3-3.

Figure 3-4. Anode equivalent current Figure 3-5. Potential drop

Figure 3-6. Pit stability criterion
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(a) 0.1 g/m2 (b) 1 g/m2

(c) 10 g/m2 (d) 100 g/m2

Figure 3-7. Effect of model changes on calculated maximum pit size for different salt deposition 

4. CRACK GROWTH RATE
The crack growth rate (CGR) model, as implemented in the SCC probabilistic model in 2018 [26], is 
defined by Equation (4.1).

𝑑𝑥𝑐𝑟𝑎𝑐𝑘

𝑑𝑡 = 𝑥 = α ∙ 𝑒𝑥𝑝 ―
𝑄
𝑅

1
𝑇 ―

1
𝑇𝑟𝑒𝑓

∙ (𝐾 ― 𝐾𝑡ℎ)𝛽 (4.1)

where: 
𝑑𝑥𝑐𝑟𝑎𝑐𝑘

𝑑𝑡  is the crack growth rate (m/s), also denoted 𝑥,
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𝑇 is the temperature (K) of interest,
𝛼 is the crack growth amplitude,
𝛽 is the stress intensity factor exponent,
𝑄 is the activation energy (J/mol) for crack growth,
𝑅 is the universal gas constant (8.314 J mol–1 K–1),
𝑇𝑟𝑒𝑓 is a reference temperature (K) at which 𝛼 was derived (15.55℃ = 288.75 𝐾 was used in this 
study),
𝐾 is the crack tip stress intensity factor, and
𝐾𝑡ℎ is the threshold stress intensity factor for SCC.

Realistically, crack growth depends on additional factors which are not explicitly included in this model, 
such as the degree of sensitization, yield stress, chloride concentration, the mass of chloride per unit 
surface area, and solution pH.  However, the experimental data used to calibrate the model contain 
variation in all of these factors, so the factors still contribute to uncertainty in the model [23]. 

The calibration of the 2018 model was based on CGR data for atmospheric corrosion at a narrow range of 
temperatures [28].  In this report, additional atmospheric data and new immersed data are incorporated 
into the calibration process.  The CGR model calibration to experimental data is described in Section 4.1 
and a description and test of the code implementation is given in Section 4.2.

4.1 Calibration
The CGR model is implemented within the SCC probabilistic model to include uncertainty in 𝛼 and 𝛽 via 
uncertainty distributions, which are determined by a combination of assumptions and calibration to the 
immersed and atmospheric experimental data.  The 𝐾 ― 𝐾𝑡ℎ term was set equal to 50 for this calibration, 
as in previous iterations [23].  Hence, 𝑇 is the independent variable; 𝛼, 𝛽, and 𝑄 are parameters; and 𝑅, 
𝑇𝑟𝑒𝑓, 𝐾, and 𝐾𝑡ℎ are constants.

The SCC probabilistic model is a function of temperature and the calibration depends on data at multiple 
temperatures.  The CGR model is calibrated using experimentally measured rates, which are categorized 
under two conditions: atmospheric, immersed. 

 Atmospheric data come from studies in which salt is deposited on a metal surface and exposed to 
a humid atmosphere.  Salt deposition was either observed from natural exposure [54, 55] or 
induced by application of mist [54, 56, 57], droplets [58, 59, 60, 61], or submersion [62] followed 
by evaporation.  The applied salts were sea salts [54, 59, 61, 63, 64], magnesium chloride 
(MgCl2) [56, 59, 60, 62, 63, 65], or sodium chloride (NaCl) [54, 58] in varying concentrations.  In 
addition to the artificial atmospheric corrosion data, some operational data exists for crack growth 
rates on DSCs [66].

 Immersed data come from studies in which the specimens were kept immersed in a solution 
intended to mimic marine environments.  This includes MgCl2 solutions [55, 67], NaCl solutions 
[67], substitute ocean water [68], sea salts [69], and mixtures of NaCl, sodium sulfate (Na2SO4), 
and hydrogen chloride (HCl) [70].

All of the atmospheric and immersed data described above are for 304 stainless steel.  Data also exist for 
316 stainless steel, and though these data were not included in the calibration they are included in Figure 
4-1 for comparison [71, 72, 73, 74, 75].

 

All data are plotted in Figure 4-1 as the natural logarithm of the experimentally measured crack growth 
rate versus the reciprocal of the temperature.  The atmospheric and immersed data follow similar trends, 
which appear clearly linear in this space.  This linear relationship forms the basis for the CGR model and 
its calibration.  Though the two categories of data follow a similar pattern, the immersed data are 
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measured using more accurate techniques, and are therefore considered more representative, so 
calibration is performed to preferentially weight or emphasize the immersed data compared to the 
atmospheric data. 

Figure 4-1 The experimental data used to calibrate the CGR model demonstrate a distinctive linear 
trend when plotted as the natural logarithm of the crack growth rates versus the reciprocal 
temperature.

The experimental and operational data used to calibrate the CGR model contain averages with high/low 
values or standard deviations.  For this iteration of the calibration, the average, high, and low values are 
all treated as individual data points.  Standard deviations were not used due to lack of information about 
the underlying distribution; a mean and standard deviation are only adequately descriptive if describing a 
normal or lognormal distribution.  The consequence of this treatment of the data is that the standard 
deviation of the final model will be wider even though there is a relatively large number of data points.  
Essentially, the data confer information both about the trend the model should follow, but also how much 
uncertainty should be included in it.  Future development of the calibration method for this model should 
investigate other options for this data; one option could be to use only the means to fit the general trend, 
but determine the standard deviation of the final model using the min/max and standard deviation values, 
perhaps assuming that the min/max values represent two standard deviations. 

Two methods were tested for calibrating the CGR, one using a standard linear regression analogous to 
previous calibrations and one using Bayesian statistics.  Both methods are presented here with a 
discussion comparing them, though more attention is given to the method based on linear regression since 
it is the least subjective of the two.

4.1.1 Linear Regression Calibration
Conceptually, the linear regression calibration seeks to identify the best linear model for the data in 
Figure 4-1, with uncertainty, and uses this model to propagate parameter estimates through (4.1) using a 
sequence of assumptions.  The basic process is to define normal distributions at two temperatures.  These 
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distributions can then be sampled with 𝛽 to estimate 𝛼 and 𝑄.  The initial process of defining the normal 
distributions was completed using the following steps:

1. Fit a standard least squares linear regression to the immersed data plotted in Figure 4-1.  For a 
temperature 𝑇𝑖, this model has the form:

𝑦(𝑇𝑖) = 𝑚𝐼𝑚𝑚𝑒𝑟𝑠𝑒𝑑
1
𝑇𝑖

+ 𝑏𝐼𝑚𝑚𝑒𝑟𝑠𝑒𝑑 (4.2)

where 𝑚𝐼𝑚𝑚𝑒𝑟𝑠𝑒𝑑 and 𝑏𝐼𝑚𝑚𝑒𝑟𝑠𝑒𝑑 are determined using least squares, and 𝑦𝑖 denotes the model 
estimate for ln (𝑥) at 𝑇 = 𝑇𝑖.

2. Calculate the residual,  𝑟𝑖 =  ln (𝑥𝑖) ― 𝑦𝑖, for every 𝑥𝑖 in the data set (atmospheric and immersed).  
The residuals characterize how far the predictions of the linear regression are from the true values 
in the data. 

3. Fit a second standard linear regression, this time between the predictions and the absolute values 
of the residuals, |𝑟𝑖|, and evaluate 𝑦𝑖 at each prediction to estimate the standard deviation.  This 
model can be expressed as: 

 𝜎𝑖 = 𝑚𝜎𝑦𝑖 + 𝑏𝜎 (4.3)

where 𝑚𝜎 and 𝑏𝜎 are again determined using least squares.  This step characterizes a systematic 
relationship between the predictions and the residuals as a model for the standard deviation of 
data at each temperature.  If there were many repeated measurements at each temperature, this 
step would be unnecessary since standard deviation would be calculated directly in that case.  

4. Use the estimates of standard deviation, 𝜎𝑖, to define a weight for every data point as:

𝑤𝑖 =
1
𝜎𝑖

(4.4)

This method for defining weights assigns the highest weight to data that are close to Equation 
(4.2), which is the linear model that was fit to only immersed data. 

5. Fit a final linear regression predicting crack growth rate as a function of the reciprocal 
temperature using weighted least squares.  In essence, this step re-fits the model in Equation (4.2) 
using non-equal weights for the data points.  This regression was performed in MATLAB 2020a 
using the lscov function [76, 77].  As in (4.2), this model has the form:

𝑦(𝑇) = 𝑚𝐹𝑖𝑛𝑎𝑙
1
𝑇 + 𝑏𝐹𝑖𝑛𝑎𝑙 (4.5)

where 𝑚𝐹𝑖𝑛𝑎𝑙 and 𝑏𝐹𝑖𝑛𝑎𝑙 are determined using weighted least squares.  Note that this method also 
provides the mean squared error, MSE, which is used to estimate the standard deviation of the 
final model. 

6. Let 𝑇1 = 15.55℃ = 288.71𝐾 and 𝑇2 = 80℃ = 353.15𝐾.  Define the following distributions at 
these two temperature test points using the results of the final linear regression:

ln [𝑥(𝑇1)] ~ 𝑁𝑜𝑟𝑚𝑎𝑙 𝑚𝐹𝑖𝑛𝑎𝑙
1

𝑇1
+ 𝑏𝐹𝑖𝑛𝑎𝑙, 𝑀𝑆𝐸 (4.6)

ln [𝑥(𝑇2)] ~ 𝑁𝑜𝑟𝑚𝑎𝑙 𝑚𝐹𝑖𝑛𝑎𝑙
1

𝑇2
+ 𝑏𝐹𝑖𝑛𝑎𝑙, 𝑀𝑆𝐸 (4.7)

These first six steps effectively establish the model.  All that remains is to sample from the distributions 
in (4.6) and (4.7), and then apply (4.1) with some assumptions to convert these crack growth rate samples 
into samples for the model parameters.  The sampling procedure described in the following steps results 
in a final distribution on 𝛼, which is input to the SCC probabilistic code.  Steps are also included to 
produce the resulting sample distributions for the crack growth rate and 𝑄 for evaluation of the calibration 
quality before applying to the SCC probabilistic model.  The calibration sampling steps are:
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1. Denote samples from Equation (4.6) as ln (𝑥15𝐶) and denote samples from Equation (4.7) as ln (
𝑥80℃).  Sample values for ln (𝑥15℃) and ln (𝑥80℃) from (4.6) and (4.7) respectively and 
calculate the line between these two points.  This line defines the model for that sample 
realization:

ln [𝑥(T)] = 𝑚𝑠𝑎𝑚𝑝𝑙𝑒
1
𝑇 + 𝑏𝑠𝑎𝑚𝑝𝑙𝑒 (4.8)

2. Also sample a value, 𝛽𝑠𝑎𝑚𝑝𝑙𝑒, for 𝛽 from (4.2).  As in previous iteration of the CGR model [23], 
𝛽 is sampled from a normal distribution, 𝛽~𝑁(𝜇 = 0.5, 𝜎 = 0.2) truncated to [0, 1].

3. Assume that 𝑇 = 𝑇𝑅𝑒𝑓 = 15.55℃ and use this assumption with (4.1) to obtain the value of 
𝛼𝑠𝑎𝑚𝑝𝑙𝑒. Expressing (4.1) in terms of samples, this calculation is: 

𝑥15𝐶 = 𝛼𝑠𝑎𝑚𝑝𝑙𝑒 ∙ (𝐾 ― 𝐾𝑡ℎ)𝛽𝑠𝑎𝑚𝑝𝑙𝑒 = 𝛼𝑠𝑎𝑚𝑝𝑙𝑒 ∙ 50βsample (4.9)

𝛼𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑥15𝐶

50𝛽𝑠𝑎𝑚𝑝𝑙𝑒
(4.10)

4. Use the samples 𝛼𝑠𝑎𝑚𝑝𝑙𝑒, 𝛽𝑠𝑎𝑚𝑝𝑙𝑒, and 𝑥80℃ to calculate the resulting sample for activation 
energy:

𝑄𝑠𝑎𝑚𝑝𝑙𝑒 =
―𝑅

1
353.25 ― 1

𝑇𝑅𝑒𝑓
 
ln

𝑥80𝐶
𝛼𝑠𝑎𝑚𝑝𝑙𝑒 ⋅ 50𝛽𝑠𝑎𝑚𝑝𝑙𝑒 (4.11)

5. Apply (4.1) to 𝛼𝑠𝑎𝑚𝑝𝑙𝑒, 𝛽𝑠𝑎𝑚𝑝𝑙𝑒, and 𝑄𝑠𝑎𝑚𝑝𝑙𝑒 to calculate the final sample for the crack growth 
rate for this sample realization at any temperature, 𝑇: 

𝑑𝑥𝑐𝑟𝑎𝑐𝑘

𝑑𝑡 = 𝑥 = 𝛼𝑠𝑎𝑚𝑝𝑙𝑒 ∙ 𝑒𝑥𝑝 ―
𝑄𝑠𝑎𝑚𝑝𝑙𝑒

8.314
1
𝑇 ―

1
288.71 ∙ (50)𝛽𝑠𝑎𝑚𝑝𝑙𝑒 (4.12)

The result of this calibration is shown in Figure 4-2.  The plot includes 95% bounds on the model and 
each of the grey lines represents one realization of the model; 100 out of 100,000 total realizations are 
plotted.  Rank correlation was applied between 𝛼 and 𝛽 to plot the calibration results since correlation is 
applied within the SCC probabilistic model.  This is why the variation in the slopes of the model 
realizations in the plot is lower than would otherwise be expected due to 𝑥15℃ and 𝑥80℃ being sampled 
independently.  This is an analysis step meant to support the calibration; the actual results from the 
implemented CGR model with these parameters are presented in Section 4.2.

The distribution on 𝑄 is not a calibration; it results from the sampled values for 𝛼 and 𝛽 and the 
correlation imposed between the parameters.  The 𝑄 distribution is reported to support analysis of 
reasonableness of the model.  The mean value for 𝑄 that results from the model seems reasonable when 
compared to activation energies reported in the literature for sensitized Type 304 stainless steel (e.g. 50-
65 kJ/mol [78] and 58.8 kJ/mol [79]).  Overall, the new calibration results in slightly more uncertainty in 
the CGR, which is representative of the additional data.
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Figure 4-2 The final model from the linear regression method trends consistently with the data.  These 
results are plotted including a rank correlation between 𝜶 and 𝜷, which somewhat limits variability 
in the slope of the linear model.  Q is not calibrated, but its distribution results from the uncertainty 
in 𝜶 and 𝜷 and the imposed correlation between them. 

4.1.2 Bayesian Calibration
The calibration method discussed in Section 4.1.1 calibrates the uncertainty distribution for 𝛼 based on 
evaluation of the model at 𝑇 = 𝑇𝑟𝑒𝑓, and the procedure for performing the calibration is complex since it 
requires a sequence of modeling steps, assumptions, and evaluations at particular points.  One option for 
simplifying the calibration is to simultaneously calibrate all of the parameters.  Implementation of the 
same model in Bayesian software treats 𝛼, 𝛽, 𝑄, and the standard deviation of the final model as 
hyperparameters that are simultaneously calibrated using Gibbs sampling [80].  

This calibration was implemented using the JAGS software [81].  The log of (4.1) was defined as the 
mean of a normal distribution with standard deviation 𝜎, analogous to the final model from Section 4.1.1.  
In a Bayesian calibration, the parameters (𝛼, 𝛽, 𝑄, and 𝜎) are all assigned prior assumed distributions 
meant to reflect the current state of knowledge about those parameters.  The sampling procedure then 
compares the model form to the data to refine/shift/stretch/reshape those distributions as dictated by the 
data. 

This type of calibration necessarily includes some subjectivity in the model results.  If the prior 
distributions are highly specific, the data may not have as much power over the final model as it should.  
If the prior distributions are too broad, the data may not be sufficient to result in a meaningful final 
model.  Ideally, there should either be some reasonable justification for prior values, or it should be 
demonstrated that the final model is not highly sensitive to the subjective prior selection. 

The ability to include expert judgement or prior knowledge in a Bayesian calibration using prior 
distributions is valuable in some cases, but for the CGR model, the goal is to rely on the plentiful data and 
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not subjective judgements.  Thus, the Bayesian calibration was attempted with broad (i.e. uninformed) 
prior distributions but failed to converge to a useful result.  The distributions were refined, essentially by 
using the methods in Section 4.1.1 to estimate them, but then the Bayesian calibration did not change the 
prior distributions at all, making this method of calibration essentially equivalent to Section 4.1.1. 

Bayesian calibration may still have some utility for this model in the future, especially if more relevant 
data are published, but it did not confer any benefit over the method in Section 4.1.1 in this analysis.

4.2 Implementation
To implement the calibrated model in Section 4.1.1, three uncertain distributions are sampled at each 
epistemic code loop: 𝛼, 𝛽, and  𝑥80℃.  This approach is the same as the 2018 model, but with slightly 
different definitions for the three parameters.  A comparison between the 2018 and 2021 parameter 
distributions is shown in Table 2.

Table 2. Comparison of CGR parameterization between 2018 and 2021 models. Note that, to avoid 
sampling in the distribution tails, all distributions are truncated at two standard deviations.

Parameter 2018 Model 2021 Model
ln 𝛼 𝑁( ― 25.92, 1.57) 𝑁( ― 27.75, 1.50)

𝛽 𝑁(0.5, 0.2) 𝑁(0.5, 0.2)
𝛼-𝛽 correlation ―0.47 ―0.50

𝑥80℃ 𝑁( ― 20.14, 1.33) 𝑁( ― 20.50, 1.23)
Similar to the 2018 approach, 𝛼 and 𝛽 are correlated after being sampled.  This process starts with two 
random samples from the standard normal distribution 𝑁(0,1), which will be called 𝑋1 and 𝑋2b.  
According to [82], these standard normal samples can be transformed to correlated normal variables with 
a desired mean and standard deviation (in this case, 𝛼 and 𝛽) by defining a third random variable 𝑋3.

𝑋3 = 𝜌𝑋1 + 1 ― 𝜌2𝑋2, (4.13)

Where the desired correlation is 𝜌. Then, samples from the correlated distributions of 𝛼 and 𝛽 can be 
calculated.

𝛽𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜇𝛽 + 𝜎𝛽𝑋3 (4.14)

𝛼𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜇𝛼 + 𝜎𝛼𝑋1, (4.15)

Where 𝜇𝛽 and 𝜎𝛽 are the desired mean and standard deviation of 𝛽.  Similarly, 𝜇𝛼 and 𝜎𝛼 are the desired 
mean and standard deviation of 𝛼.

A comparison between the 2018 and 2021 implementations is shown in Figure 4-3c.  The top row shows 
the two models as a function of inverse temperature.  For comparison, the experimental data for each 
calibration is also included in the plots.  For each model, 5,000 samples are taken from the model at 
random temperatures and are colored by point density, which allows easy visualization of the sampled 
data.  Finally, the sampled linear trends are also shown, which allows comparison with Figure 4-2.  As 

b Note that the 2018 implementation incorrectly sampled these distributions from 𝑁(𝜇𝛼,𝜎𝛼) and 𝑁(𝜇𝛽, 𝜎𝛽), which resulted in the 
wrong crack growth rates. This error has been corrected by transforming the samples to standard normal, then correctly 
applying the correlation methodology. The code results shown in Figure 4-3 for the 2018 model were generated after 
implementing the code fix.

c The samples shown in Figure 4-3 are actual output from the Fortran source code. This serves as a test of the model 
implementation, as the samples are representative of the experimental data.
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noted in Section 4.1, the new correlation parameterization results in more uncertainty in the CGR.  The 
wider uncertainty range is representative of the new data, which has more variability than the old data.

The second row of plots in Figure 4-3 shows the relationship between 𝛼 and 𝛽.  Though there is a clear 
correlation between the two variables, it is not as drastic as the correlation used in Equation (4.13).  The 
target value for the old model is ―0.47 and the new model is ―0.50, whereas the actual correlations are 
both about ―0.2.  This discrepancy is primarily caused by the application of the correlation process to 
truncated normal distributions instead of standard normal distributions.  In addition, the process described 
in Equations (4.13)-(4.15) is approximate with some error.  Though the samples seem correlated enough 
to correctly match the experimental data, this lack of correlation may have an impact on the behavior of 
CGR as the stress intensity factor 𝐾 varies.  Therefore, properly implementing the correlation remains a 
topic for future study.

The final row of plots in Figure 4-3 shows the probability density function of 𝑄 for the 2018 and 2021 
models.  This plot is included to show that the updated distribution for sampling 𝑥80℃ results in a 
distribution for 𝑄 that is similar to the old model.  The new distribution of 𝑄 is slightly narrower and is 
centered higher than the previous distribution.  Most notably, this avoids the negative values of 𝑄 that 
were permitted in the old model.  Note that the 𝑥80℃-𝛼 or 𝑥80℃-𝛽 correlations are not accounted for in 
the sampling scheme.  This lack of correlation causes a wider distribution for 𝑄 than in the calibration 
(see Figure 4-2).  Since 𝑄 has more variance, a wider range of slopes are seen in the model.  However, the 
sampling scheme still matches relatively well with the underlying data.  Improving the sampling scheme 
remains a topic for future study.
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Figure 4-3. Sample results of new CGR model implementation
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5. Conclusion and Future Work
In this report, three major model updates were described for probabilistic modeling of SCC of DSCs: salt 
deposition model, maximum pit size, and CGR calibration.  All three updates constitute major changes to 
the modeling approach and will have an impact on predicted SCC quantities of interest; however, the 
overall effect remains a topic for future study.  Currently, the changes to the salt deposition and maximum 
pit size models have opposing effects on maximum pit size predictions.  Since changes to the maximum 
pit size will impact the timing of crack initiation, these model changes may have drastic effects on the 
overall model predictions.  Though the crack growth rate model has been re-calibrated and the model has 
more experimental justification, the new parameter distributions are not expected to have a significant 
impact on the code predictions.

If additional experimental data become available, significant work remains to properly implement an 
accurate salt deposition model with uncertainty.  Critical data will be collected by the Canister Deposition 
Field Demonstration project, a 10-year project to evaluate dust deposition onto dry storage canisters.  
However, these data will not begin to be available for 3-4 years, at the earliest.  Therefore, efforts in the 
near future will focus on incorporating the functional relationship between salt deposition rates and ocean 
proximity.  An approach that incorporates available site-specific data relating to proximity to the ocean 
and canister orientation could be possible.  Because the available data are sparse, experimental results for 
other surfaces may be useful to inform an appropriate uncertainty range on the parameterization.

The maximum pit size model has been completely reformulated and now predicts much larger pits.  An 
obvious next step would be to incorporate uncertainty by calibrating the new model to experimental data.  
The new model is specific to 304L stainless steel, the most common SNF dry storage canister material.  
The model calibration could incorporate more experimental data, which would expand the range of 
applicability and better inform the uncertainty of the model.

Future work for the crack growth rate model may include gathering additional data and more advanced 
statistical treatment of the data.  The current study treats minimums, maximums, and means as equivalent 
data points.  This treatment of the data inflates uncertainty around the crack growth rate trend with respect 
to the reciprocal temperature.  Alternative formulations of these data require assumptions since these 
statistics are often reported without sufficient information of the underlying distribution.  Future work 
could examine the most justifiable assumptions on the data and re-calibrate the model under those 
assumptions.  Additionally, current calibration of the crack growth rate model occurs in distinct stages 
where the values of some parameters are estimated as specific points on the model (e.g. 𝛼 when 𝑇 = 𝑇𝑟𝑒𝑓)
.  This creates a circular process within the model calibration; it may be more efficient and clearer to 
apply a different approach to calibration that can simultaneously calibrate all parameters.

The model updates that are presented here have not yet been propagated through the entire probabilistic 
SCC model.  Each of these changes could have a large effect on the model predictions.  The changes to 
the maximum pit size model yield significantly different maximum pit sizes than the previous model, 
which will impact the necessary salt load for pit-to-crack transition.  The changes to the crack growth rate 
model only have a small impact on predicted crack growth rates compared to the previous model.  
However, an error in the previous model implementation, discovered while implementing the new model, 
means that the new CGR model may have a significant effect on code outputs of canister penetration.  
Finally, the predictions of dust deposition onto the canisters in the previous iteration of the probabilistic 
SCC model were recognized to be orders of magnitude higher than the available data.  Because the model 
predictions and the observational data could not be reconciled, it was decided to parameterize the dust 
deposition rate.   
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