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SUMMARY

Stress corrosion cracking (SCC) is an important failure degradation mechanism for storage of spent
nuclear fuel. Since 2014, Sandia National Laboratories has been developing a probabilistic methodology
for predicting SCC. The model is intended to provide qualitative assessment of data needs, model
sensitivities, and future model development. In fiscal year 2021, improvement of the SCC model focused
on the salt deposition, maximum pit size, and crack growth rate models.

e Parameterization of the previous salt deposition model presented significant challenges.
Measured salt deposition data are sparse with high uncertainties, and the model results are very
sensitive to parameter and modeling changes. Instead, a distribution is proposed that samples salt
deposition directly based on a range informed by operational data. In general, the new approach
results in smaller salt deposition rates and should lead to smaller pit size predictions.

e The maximum pit size model was modified to incorporate experimental data that has only
recently become available, which enables the model to better characterize the important
electrochemical kinetics relevant to this phenomenon. For any given environmental condition,
the new model generally predicts larger maximum pit sizes compared to the old model.

e Lastly, the crack growth rate model was re-calibrated, and the implementation was modified to
resolve a code bug. Calibration of the crack growth rate model was performed using a frequentist
linear regression approach similar to previous calibration efforts, but the data set used for
calibration was substantially expanded to include data from experiments in which specimens were
immersed for the duration of the experiment. The previous calibration had only used data
collected under atmospheric conditions, which was both limited and less accurate. Though the
new calibration results in only a small change to the previous model, the wider range of
experimental data lends more justification to the resulting distributions.

All three updates constitute major changes to the modeling approach and will have an impact on predicted
SCC quantities of interest; however, the overall effect remains a topic for future study. Currently, the
changes to the salt deposition and maximum pit size models have opposing effects on maximum pit size
predictions. Since changes to the maximum pit size will impact the timing of crack initiation, these
model changes may have drastic effects on the overall model predictions. Though the crack growth rate
model has been re-calibrated and the model has more experimental justification, the new parameter
distributions are not expected to have a significant impact on the code predictions.
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SPENT FUEL AND WASTE SCIENCE AND TECHNOLOGY

FY21 STATUS REPORT: PROBABILISTIC SCC
MODEL FOR SNF DRY STORAGE CANISTERS

1. INTRODUCTION

Spent Nuclear Fuel (SNF) is initially stored at nuclear power reactor sites in spent fuel pools for at least
one year. After sufficient cooling and radioactive decay, SNF is loaded into sealed casks or welded
canisters filled with inert gas. Some casks are self-shielding, but the welded canisters are placed within
passively-ventilated concrete or concrete/steel overpacks, which serve as radiation shielding; the canister
and overpack together represent the dry storage system. The waste is stored at reactor sites in Independent
Spent Fuel Storage Installations (ISFSIs). To date, there are more than 3000 dry storage canisters (DSCs)
stored at over 70 ISFSIs in the United States [1].

The current regulatory framework for ISFSIs is governed by the U.S. Nuclear Regulatory Commission
(NRC) and documented primarily in 10 CFR Part 71 [2] and 10 CFR Part 72 [3]. Additional
documentation can also be found in various NRC Regulatory Guides [4, 5], NUREG reports [6, 7],
NUREG/CR reports [8, 9], and NRC Staff Guidance [10, 11, 12]. The current regulatory framework
allows for an initial 40-year licensing term, followed by a license renewal for a term of up to 40 years.

Since a repository for SNF disposal is unlikely, the DSCs will remain at ISFSIs or at a future centralized
storage facility for the foreseeable future. For the existing regulatory period of 80 years, design and
performance of DSCs has been extensively studied and the effectiveness of existing regulations has been
demonstrated through significant operational experience. However, compliance with existing regulatory
frameworks has not been established beyond the current 80-year licensing period. Because SNF remains
significantly radioactive for tens to hundreds of thousands of years [13], extending the regulatory
guidance will become increasingly important over the next few decades.

A phenomenon that is of particular concern for degradation analysis of DSCs is stress corrosion cracking
(SCC), which is sometimes referred to as atmospheric stress corrosion cracking (ASCC) or chloride-
induced stress corrosion cracking (CISCC). An illustration of this process and the necessary models is
shown in Figure 1-1. Atmospheric SCC describes the buildup of salt acrosols on the surface of a metal
that will deliquesce to form a corrosive brine, the formation and growth of small pits, the nucleation of
cracking at the pit sites, and the propagation of the crack through the material thickness. SCC is an
important mode of failure because crack penetration through the canister can initiate a release of
radioactive material. Modeling of SCC requires complex models for weather, salt deposition, pit size,
stresses, pit-to-crack transition, and crack growth.
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Figure 1-1. Illustration of the transient SCC process and corresponding models

Three criteria must be met for SCC to take place: (1) the metal of interest must be susceptible, (2) a
corrosive environment must exist (in this case, through deliquescence of deposited salt acrosols), and (3)
there must be sufficient tensile stress in the material. It is well-documented that austenitic stainless steels,
including those that are used in DSCs, can undergo SCC [14]. Both modeling [16] and experimental
measurements [17] have shown that through-wall tensile stresses are likely present in canister welds.
Finally, numerous field studies have shown that chloride-rich salt acrosols are deposited on the canister
surfaces; these aerosols will eventually deliquesce to produce potentially corrosive brines [18], [19], [20],
[21]. For these reasons, understanding the timing and occurrence of canister SCC continues to be an
important technical gap for the back end of the nuclear fuel cycle [22].

Sandia National Laboratories (SNL) leads a multi-lab DOE effort to understand the timing, occurrence,
and consequence of potential canister SCC, and as part of that effort, has developed a probabilistic model
for canister penetration by SCC. This model has been developed and continuously updated at SNL since
2014 [23, 24, 25, 26]. Model uncertainties are treated using a nested loop structure, where the outer
epistemic loop accounts for uncertainties due to lack of data and the inner aleatoric loop accounts for
uncertainties due to natural variation in nature. By separating uncertainties into these categories, it is
possible to focus future work on reducing the most influential epistemic uncertainties. Several
experimental studies have already been performed to improve the modeling approach through expanded
process understanding and improved model parameterization [27]. The resulting code is physics-based
and intended to inform work which identifies (1) important modeling assumptions, (2) experimental data
needs, and (3) necessary model developments. In this document, three updates are described to the
modeling approach.

1. The salt deposition model is difficult to parameterize; therefore, it has been replaced by a constant
salt deposition rate with bounded uncertainty (see Section 2). This approach is less flexible and
does not incorporate site-specific knowledge of canister salt loads. The parameterization will be
replaced once a validated salt deposition model has been developed, but until then, it allows
parametric studies.

2. In Section 3, the pit size model has been updated to be consistent with new experimental data.

3. The model for calculating crack growth rates in stainless steel was previously only calibrated
using experimental data for atmospheric corrosion [28]. In Section 4, the model has been updated
to include immersed corrosion data from a variety of sources in the literature. Immersed SCC
crack growth rate data are collected using well-established methods and are commonly more
accurate than data collected under atmospheric conditions. Only recently has confidence risen
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that the same mechanism controls crack growth rate under both sets of conditions, allowing use of
the immersed data in the canister SCC model.

2. SALT DEPOSITION

In the environments of concern for DSCs, the corrosive agent is primarily chloride salt aerosols that
originate from three sources: the ocean, road salts, and cooling towers. The amount of salt deposited on
the surface of a canister controls the thickness of the brine layer formed by salt deliquescence, which is an
influential parameter in determining the maximum pit size that can occur, a controlling factor for
initiation of a SCC crack. Deposition rates are highly variable, but proximity to an ocean is a primary
factor. This is shown in Figure 2-1, which plots ground deposition rates at various sites around the world
as a function of distance from the nearest ocean®. There is a clear logarithmic trend, indicating that salts
from ocean sources are a dominant factor.
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Figure 2-1. Experimentally measured deposition rates (reproduced from [26])

Though salt deposition rates should clearly be correlated to distance from an ocean, other aspects of the
previous modeling approach [26] for salt deposition rates are difficult to parameterize. Overall, there is a
lack of experimental data and large variation between different ISFSI sites. The model is very sensitive to
parameterization of the deposition velocity model [37], the linear fowling model [38], fluid property
calculations, surface friction, as well as the particle size distributions for each source of salt. Since all
these models are difficult to parameterize, the resulting deposition densities are highly uncertain and
unreliable.

In fact, similar studies for modeling salt deposition have had similar modeling challenges. Work at
PNNL has developed a Computational Fluid Dynamics (CFD) informed model using STAR-CCM+
simulations [39]. The resulting model is highly sensitive to the physical processes that are incorporated
(e.g., thermophoresis, turbophoresis, etc.), and the resulting deposition rates were not compared to

2 The deposition rates in Figure 2-1 are measured in open air, not on DSCs. Deposition velocities on the surface of a DSC will
be much lower than in open air, resulting in lower deposition rates. However, the deposition rates on both types of surface are
dependent upon the quantity of available salt aerosols and should therefore have a similar logarithmic relationship with
proximity to an ocean.
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experimental results, because no relevant data were available. Similar to the approach taken at SNL [26],
the Electrical Power Research Institute (EPRI) developed a deposition model using linear fouling [38].
Through comparison of simulation results to measured deposition rates at ISFSIs, they concluded that the
model results were only within about an order of magnitude of the field data and that the model was
conservative.

An accurate and predictive model for salt deposition rates has not yet been proposed in the literature.
Therefore, the current approach is modified to parameterize the salt deposition rate based on operational
data at real sites. Here, we utilize operational data obtained from various sites, as shown in Table 1 [38].
A realistic model for the chloride deposition rate would be a function of distance from the ocean and
location on the canister. However, the data in Table 1 has few data points and large uncertainties, which
would impart large errors on any attempt at characterization of the functional form for deposition rate.
Therefore, the salt deposition rate is given the log-uniform distribution logU(10~4, 0.5), which is
equivalent to a uniform distribution in log space. The chosen distribution is shown in Figure 2-2. This
parameterization will (1) incorporate all available data for characterization of deposition rates, (2) be site-
independent, and (3) allow chloride deposition rate to be varied for sensitivity studies.

Table 1. Measured average chloride accumulation rates at different sites (reproduced from [38])

Case Chloride [g/m?*/yr]
Top surface Vertical surface
Fukushima 0.3—-0.5 0.02—-0.1
Tokai - < 0.001
Diablo Canyon - < 0.0025
Hope Creek 0.001 —0.01 < 0.0015
Main Yankee < 0.0004 0.0001
Calvert Cliffs 0.0001 — 0.004 -
2.5
2.0 1
E 1.5 A
2
g_- 1.0
0.5 -
0.0

LELELELELALL | LA | LELELLELALL | T
1074 1073 1072 1071
Deposition Rate [g/m?/yr]

Figure 2-2. Probability density function for chloride deposition rate

In the SCC code, a new log-uniform distribution has been added so that chloride deposition rate can be
sampled for each aleatory loop. By removing the complex calculation of deposition rate at each time step
and weld location, the simulation time is reduced by about 95% (from about 100 seconds to 5 seconds per
100-year transient). This reduction in run time is ideal for probabilistic analysis, as it enables many query
problems such as sensitivity and uncertainty analysis.
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Note that this implementation does not capture site-specific variations in the salt deposition rate. These
variations have been observed and are due to differences in surface orientation, salt acrosol quantities, and
particle size distributions. To some extent, these variations could be incorporated into the
parameterization in the future by incorporating measured salt concentrations for more accurate prediction
at a given site.

3. MAXIMUM PIT SIZE

Once deposited salts deliquesce on a susceptible metal surface, corrosion can occur, and pits can form.
The pits eventually grow large enough to serve as nucleation sites for the stress-driven cracks
characteristic of SCC. Therefore, estimation of pit formation, growth, and pit-to-crack transition is an
important step in the probabilistic modeling of SCC. Consistent with previous analyses [26], the
conservative assumption is made that pit nucleation is not a limiting factor in pit formation. Rather, pits
nucleate instantaneously once the relative humidity is greater than an experimentally determined
threshold relative humidity [40].

Once pits form, they are assumed to be hemispherical and electrochemical kinetics are used to calculate
the radius. A schematic is shown in Figure 3-1, where the anode (pit) and the coupled cathode, which
supplies current to the anode, is on the metal surface around the pit. For any given pit, the cathodic
current I available to support pit growth must exceed the anodic current I, demand. If sufficient
cathodic supply is not available to support dissolution, a pit will repassivate. Since I, increases
monotonically with pit size, matching of I, and I, is used to determine the maximum possible pit size
given any local conditions. Consistent with previous work, the model of Chen et al. [41] [42] is used to
approximate the maximum pit size.

Cathode: area with radius r,

Figure 3-1. Schematic of a pit and the corresponding cathode
In the Chen model, the maximum cathodic current I 4y is expressed as

4nktAE
—— 4+ (nerczlieq) , 3.

In/ cmax — I
c,max
Where k is the brine conductivity, t is the brine thickness, AE 4, = E [, — E}, is the potential drop from
the pit edge to the outer cathode edge, e is Euler’s number, 7 is the anode (pit) radius, and i, is the
maximum equivalent current density for the cathode. The brine properties are determined from the
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property tables in [43] using the canister temperature and weather models as described in [26], the pit
radius is the quantity to be solved for, and the remaining quantities are parameterized in the model.

Once the maximum cathodic current can be calculated, the anode current must also be determined. This
value is called the pit stability criterion (measured in one dimension) and expressed as I,/ for a
hemisphere. The following sections document the parameterization of AEqy, leq, and I4/7, in the
previous and new models.

3.1 Previous Model Parameterization

In the previous model implementation, the maximum cathode equivalent current density i., was
calculated as the average current available over the cathode as

e GeB) — ip)dE

P = (3.2)
eq E,— Erp '

Where the integration is between the potentials at the cathode edge E; (open circuit potential) and the
anode edge E, (repassivation potential), i.(E) is the cathodic current density function, and i, is the
passive current density at the anode edge. The repassivation potential E-, is calculated based on [44] and
E; = —0.2. Equation (3.2) is integrated analytically using the following functional form of i.(E):
E—E
i(E)=iy10 B, (33)

Where b = U(— 0.138, — 0.169) is estimated based on experimental data [45]. The passive current
density is approximated using the same equation evaluated at reference repassivation conditions.

E; ,ref_EL
by = irp o107 b (3.4)
The remaining parameters (i, ref and Eyp, rof) are given values from [45]; see [26] for details. Finally,

the pit stability criterion is bounded using a normal distribution based on bounds suggested in [42]: I,/74
=U(1, 3).

Though the above modeling approach incorporates the state of knowledge at the time it was incorporated,
it is highly uncertain. The experimental data used to evaluate the integral in Equation (3.2) can exhibit
time-dependent effects and large fluctuations in parameters. The experimental basis [45] is derived from
experiments at a single temperature (25°C) for NaCl brines on 304 stainless steel. Therefore, variations
with temperature or chloride species are not treated. This is especially important for DSCs because
elevated temperatures are expected on the metal surface and other chloride species are expected to be
present in the brine. Therefore, additional experimental data was required to better inform the model for
elevated temperatures, ranges of relative humidity, and brine composition.

3.2 New Model Parameterization

It is not necessary to implement an analytical integration to calculate equivalent anodic current density,
since Equation (3.1) is only a function of AE,qx and ieq. Therefore, the new model calculates i, from a
fit to experimental data [46]. A constant value is used for AE,,,, (0.18 V), which is consistent with the
experimental values that showed very little variation.

To experimentally determine i.4, a polarization scan and determination of E}, is necessary. Polarization
scans were measured in a chloride-free solution to prevent convolution of cathodic kinetics with anodic
dissolution due to open circuit localized corrosion. To determine the composition of the surrogate
chloride-free solution, the product of Dy, Cop,, where Dy, is the diffusivity of oxygen and Co, is the
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concentration of oxygen, was matched between the chloride solution and the non-chloride solution. The
applicability of this method has been shown in multiple studies [47, 48, 46]. Polarization scans were
determined in multiple surrogate solutions as a function of RH and temperature.

In addition to the polarization scan, 1D electrodes were utilized in order to determine (i - x)sr and E;,
using the method of Srinivasan and Kelly [49]. A SS304L wire with a diameter of 50 pm was embedded
in epoxy so that the diameter of the wire was exposed. Samples were subsequently placed in a
temperature controlled (+0.1 °C) electrochemical cell with the chloride solution of interest and an anodic
potential of +0.75 Vgcg was applied for 5 to 20 minutes. The potential was stepped down to +0.45 Vgcg
for different time periods to allow for pit propagation to different depths. A polarization scan from +0.45
VscE to -0.6 Ve at a scan rate of 5 mV/sec was performed. After the polarization scan, the pit was
immediately reinitiated by polarization to +0.75 Vscg, and the cycle was repeated. Eight to ten repetitions
of the cycle were performed as it has been shown that the pit depth needs to exceed 8-10 times the
diameter (~400-500 pm) to prevent measured values from being influenced by the hemispherical
diffusion at the pit mouth. Faraday’s law and Fick’s first law were then used to determine (i - x)sy.
Using the one-dimensional electrode experiment was also used to determine E}», which corresponds to
the average of E, of deep pits [49]. Once the experimental polarization scan and E, were determined,
the integration of Equation (3.2) was performed with the experimentally-derived data.

The integrated experimental data and corresponding data fit are shown in Figure 3-2. The fit is found by
minimizing the sum of squared errors after assuming a model that is logarithmic with respect to chloride
concentration and linear with respect to temperature.

iog=—0.01.531InCl + 0.001458 T, (3.5)

Where the chloride concentration Cl has units of moles/liter, temperature T is in °C, and i.4 has units
A/m?,

mm 25°C
0.12 - mm 35 C
55°C
0.10 4 O MgcCl;
f;:c_? O Nacl
= 0.08 -
=
=
o
5
O 0.06 1
-
=
@
g
S 0.04
= o
0.02 4
]
L*]
0.00 4
T T T T T T
0 2 4 6 g 10

Chloride molarity [mol/L]

Figure 3-2. Experimental data and model fit for equivalent current density

The parametric model for Ip,;:/7p;; is replaced by a model that varies with local conditions. The model is
parameterized using experimental data from [47, 46]. As previously mentioned, one-dimensional
electrodes were utilized in order to determine (i - x)s¢ with the method of Srinivasan and Kelly [49].
(i*x)sf is then converted to I,/ by a geometric factor of 3 [50].
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The experimental data and corresponding data fit are shown in Figure 3-3. The fit is found by minimizing
the sum of squared errors after assuming a model that is logarithmic with respect to chloride
concentration and linear with respect to temperature.
I :
r’”t =3PS(—0.3136InCl + 0.01068T + 0.562), (3.6)
pit

Where the pit stability product Ip;:/7p; is in A/m, temperature T is in °C, and chloride concentration Cl is
in moles/liter. The term PS indicates percent saturation and accounts for the variation in necessary FeCl,
saturation at the surface of the alloy within the pit for pit propagation. This value is expected to vary with
bulk cation and temperature; a reasonable range of possible values is 0.4 < PS < 0.7 [51, 52, 49], but it
is set to 0.5 in this work. The first constant is a geometric parameter that is set to 3, which corresponds to
conversion from one-dimensional to hemispherical pits. Though Equation (3.6) is based on data collected
between 25°C < T < 55°C, Jun et al. have shown that the linear trend in temperature is valid up to 85°C
[53].

Hm 25°C
3.0 1 mm 35°C
mm 45°C
2.5 - 55°C
E MgCl;
< 50 Nacl
g : A Seawater
B
T
= 15
;.
o]
n 1.0 A
=
o
0.5
0.0

0 2 4 6 8 10
Chloride molarity [mol/L]

Figure 3-3. Experimental data and model fit for pit stability product

3.3 Implementation Comparison

The new experimentally-informed maximum pit size model will significantly impact the probabilistic
SCC model because pit depth is a determining factor in crack initiation. Therefore, it is important to
understand the integral effect that changes in ioq, AE 4y, and Ip;/Tpic Will have on the maximum pit size.
To document this effect, this section shows results for each of these parameters and the overall effect on
pit size.

The equivalent anode current i.q, potential drop AE 4y, and pit stability criterion I,;:/Tp;; are shown as a
function of temperature and relative humidity in Figure 3-4, Figure 3-5, and Figure 3-6, respectively. The
effect of these changes on the maximum pit size is shown in Figure 3-7. Each subfigure shows the
maximum pit size for a different fixed value of deposition density. Overall, the new modeling approach
results in larger maximum pit sizes by about an order of magnitude. This change should result in earlier
crack initiation, since deeper pits correspond to larger tip stresses.
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Finally, note that the new model is not probabilistic; the parameters in Equations (3.5) and (3.6) have not
been assigned distributions. However, uncertainty could easily be incorporated into the new model by

calibrating the model to the experimental data in Figure 3-2 and Figure 3-3.
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Figure 3-7. Effect of model changes on calculated maximum pit size for different salt deposition

4. CRACK GROWTH RATE
The crack growth rate (CGR) model, as implemented in the SCC probabilistic model in 2018 [26], is

defined by Equation (4.1).

AdXcrack . [ Q (1 1 )]
— =y —=_ . — B
¢ =X a-exp R\T Tref (K Kth) (41)

where:

d crack - 3
% is the crack growth rate (m/s), also denoted x,
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T is the temperature (K) of interest,

« is the crack growth amplitude,

B is the stress intensity factor exponent,

Q is the activation energy (J/mol) for crack growth,

R is the universal gas constant (8.314 J mol™! K™'),

Tref is a reference temperature (K) at which a was derived (15.55°C = 288.75 K was used in this
study),

K is the crack tip stress intensity factor, and

K 1s the threshold stress intensity factor for SCC.

Realistically, crack growth depends on additional factors which are not explicitly included in this model,
such as the degree of sensitization, yield stress, chloride concentration, the mass of chloride per unit
surface area, and solution pH. However, the experimental data used to calibrate the model contain
variation in all of these factors, so the factors still contribute to uncertainty in the model [23].

The calibration of the 2018 model was based on CGR data for atmospheric corrosion at a narrow range of
temperatures [28]. In this report, additional atmospheric data and new immersed data are incorporated
into the calibration process. The CGR model calibration to experimental data is described in Section 4.1
and a description and test of the code implementation is given in Section 4.2.

4.1 Calibration

The CGR model is implemented within the SCC probabilistic model to include uncertainty in @ and f via
uncertainty distributions, which are determined by a combination of assumptions and calibration to the
immersed and atmospheric experimental data. The K — K, term was set equal to 50 for this calibration,
as in previous iterations [23]. Hence, T is the independent variable; a, 8, and Q are parameters; and R,
Tref, K, and Ky, are constants.

The SCC probabilistic model is a function of temperature and the calibration depends on data at multiple
temperatures. The CGR model is calibrated using experimentally measured rates, which are categorized
under two conditions: atmospheric, immersed.

e Atmospheric data come from studies in which salt is deposited on a metal surface and exposed to
a humid atmosphere. Salt deposition was either observed from natural exposure [54, 55] or
induced by application of mist [54, 56, 57], droplets [58, 59, 60, 61], or submersion [62] followed
by evaporation. The applied salts were sea salts [54, 59, 61, 63, 64], magnesium chloride
(MgClp) [56, 59, 60, 62, 63, 65], or sodium chloride (NaCl) [54, 58] in varying concentrations. In
addition to the artificial atmospheric corrosion data, some operational data exists for crack growth
rates on DSCs [66].

e Immersed data come from studies in which the specimens were kept immersed in a solution
intended to mimic marine environments. This includes MgCl, solutions [55, 67], NaCl solutions
[67], substitute ocean water [68], sea salts [69], and mixtures of NaCl, sodium sulfate (Na,SO,),
and hydrogen chloride (HCI) [70].

All of the atmospheric and immersed data described above are for 304 stainless steel. Data also exist for
316 stainless steel, and though these data were not included in the calibration they are included in Figure
4-1 for comparison [71, 72, 73, 74, 75].

All data are plotted in Figure 4-1 as the natural logarithm of the experimentally measured crack growth
rate versus the reciprocal of the temperature. The atmospheric and immersed data follow similar trends,
which appear clearly linear in this space. This linear relationship forms the basis for the CGR model and
its calibration. Though the two categories of data follow a similar pattern, the immersed data are
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measured using more accurate techniques, and are therefore considered more representative, so
calibration is performed to preferentially weight or emphasize the immersed data compared to the
atmospheric data.

-14 T ‘ T
] +  Atmospheric 304 SS Data
° ® [Immersed 304 SS Data
-16 +  Atmospheric 316 SS Data | |
0 o ° ® Immersed 316 SS Data
e
-18 F 4 ° .
— S, ¢
w o . "
~
[
S 208 ° ¥ t
= ARG LN
,E:;\ 22| % $ L ] _
~— + + i + @ °
+ .'
~ + +
24 | * T e U
°®
-26
_28 1 1 Il 1 1
2.2 2.4 2.6 28 3 3.2 3.4
1/T (K] <10°

Figure 4-1 The experimental data used to calibrate the CGR model demonstrate a distinctive linear
trend when plotted as the natural logarithm of the crack growth rates versus the reciprocal
temperature.

The experimental and operational data used to calibrate the CGR model contain averages with high/low
values or standard deviations. For this iteration of the calibration, the average, high, and low values are
all treated as individual data points. Standard deviations were not used due to lack of information about
the underlying distribution; a mean and standard deviation are only adequately descriptive if describing a
normal or lognormal distribution. The consequence of this treatment of the data is that the standard
deviation of the final model will be wider even though there is a relatively large number of data points.
Essentially, the data confer information both about the trend the model should follow, but also how much
uncertainty should be included in it. Future development of the calibration method for this model should
investigate other options for this data; one option could be to use only the means to fit the general trend,
but determine the standard deviation of the final model using the min/max and standard deviation values,
perhaps assuming that the min/max values represent two standard deviations.

Two methods were tested for calibrating the CGR, one using a standard linear regression analogous to
previous calibrations and one using Bayesian statistics. Both methods are presented here with a
discussion comparing them, though more attention is given to the method based on linear regression since
it is the least subjective of the two.

411 Linear Regression Calibration

Conceptually, the linear regression calibration seeks to identify the best linear model for the data in
Figure 4-1, with uncertainty, and uses this model to propagate parameter estimates through (4.1) using a
sequence of assumptions. The basic process is to define normal distributions at two temperatures. These



SCC FY21 Report
July 30, 2021 23

distributions can then be sampled with £ to estimate @ and Q. The initial process of defining the normal
distributions was completed using the following steps:

1.

Fit a standard least squares linear regression to the immersed data plotted in Figure 4-1. For a
temperature T, this model has the form:

R 1
y(Ti) = mlmmersedf + bimmersed 4.2)
i

where Mymersed aNd Dimmerseq are determined using least squares, and y; denotes the model
estimate for In (x) at T =T,.

Calculate the residual, r; = In (x;) — ¥;, for every X; in the data set (atmospheric and immersed).
The residuals characterize how far the predictions of the linear regression are from the true values
in the data.

Fit a second standard linear regression, this time between the predictions and the absolute values
of the residuals, |r;|, and evaluate ¥; at each prediction to estimate the standard deviation. This
model can be expressed as:

61' = maj’/‘i + bg (43)

where m, and b, are again determined using least squares. This step characterizes a systematic
relationship between the predictions and the residuals as a model for the standard deviation of
data at each temperature. If there were many repeated measurements at each temperature, this
step would be unnecessary since standard deviation would be calculated directly in that case.
Use the estimates of standard deviation, &, to define a weight for every data point as:

_ 1 4.4

wi= (44)
This method for defining weights assigns the highest weight to data that are close to Equation
(4.2), which is the linear model that was fit to only immersed data.
Fit a final linear regression predicting crack growth rate as a function of the reciprocal
temperature using weighted least squares. In essence, this step re-fits the model in Equation (4.2)
using non-equal weights for the data points. This regression was performed in MATLAB 2020a
using the 1scov function [76, 77]. As in (4.2), this model has the form:

. 1
y(T) = mFinalf + bFinal (4.5)

where Mpinq; and bring; are determined using weighted least squares. Note that this method also
provides the mean squared error, MSE, which is used to estimate the standard deviation of the
final model.

Let T1 = 15.55°C = 288.71K and T, = 80°C = 353.15K. Define the following distributions at
these two temperature test points using the results of the final linear regression:

1

In [+(7)] ~ Normal(meinarzr+ brinas MSE) *6)
. 1

In [x(T2)] ~N Ormal(mFinalT_z + brina, VM SE) 4.7)

These first six steps effectively establish the model. All that remains is to sample from the distributions
in (4.6) and (4.7), and then apply (4.1) with some assumptions to convert these crack growth rate samples
into samples for the model parameters. The sampling procedure described in the following steps results
in a final distribution on a, which is input to the SCC probabilistic code. Steps are also included to
produce the resulting sample distributions for the crack growth rate and Q for evaluation of the calibration
quality before applying to the SCC probabilistic model. The calibration sampling steps are:
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1. Denote samples from Equation (4.6) as In (%15¢) and denote samples from Equation (4.7) as In (
Xgoec). Sample values for In (X15o¢) and In (Xggec) from (4.6) and (4.7) respectively and
calculate the line between these two points. This line defines the model for that sample
realization:

) 1
In [X(T)] = msample? + bsample (4-8)

2. Also sample a value, Bsample, for  from (4.2). As in previous iteration of the CGR model [23],
B is sampled from a normal distribution, ~N(u = 0.5, ¢ = 0.2) truncated to [0, 1].

3. Assume that T = Tg.r = 15.55°C and use this assumption with (4.1) to obtain the value of
sample- Expressing (4.1) in terms of samples, this calculation is:

X15¢ = Asample (K — Kth)'gsample = Usample 50Psampte (4.9)
X15¢
Asample = 50Bsampie (4.10)

4. Use the samples @sample, Bsample> and Xgoec to calculate the resulting sample for activation
energy:

B —R | Xgoc
Qsample = 1 _ l n Asample * 50Bsample (4.11)
353.25 TRef

5. Apply (4.1) to Asampies Bsample, and Qsample to calculate the final sample for the crack growth
rate for this sample realization at any temperature, T

dXcrack . Qsample (1 1 )
— — . — — . ﬂsam e .
dt - F = Qsample " €XP| — g1~ \7 ~ g 77) | - (GO (4.12)

The result of this calibration is shown in Figure 4-2. The plot includes 95% bounds on the model and
each of the grey lines represents one realization of the model; 100 out of 100,000 total realizations are
plotted. Rank correlation was applied between a and £ to plot the calibration results since correlation is
applied within the SCC probabilistic model. This is why the variation in the slopes of the model
realizations in the plot is lower than would otherwise be expected due to x5o¢c and Xggec being sampled
independently. This is an analysis step meant to support the calibration; the actual results from the
implemented CGR model with these parameters are presented in Section 4.2.

The distribution on @Q is not a calibration; it results from the sampled values for @ and £ and the
correlation imposed between the parameters. The @ distribution is reported to support analysis of
reasonableness of the model. The mean value for Q that results from the model seems reasonable when
compared to activation energies reported in the literature for sensitized Type 304 stainless steel (e.g. 50-
65 kJ/mol [78] and 58.8 kJ/mol [79]). Overall, the new calibration results in slightly more uncertainty in
the CGR, which is representative of the additional data.
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Figure 4-2 The final model from the linear regression method trends consistently with the data. These
results are plotted including a rank correlation between a and £, which somewhat limits variability
in the slope of the linear model. Q is not calibrated, but its distribution results from the uncertainty
in o and B and the imposed correlation between them.

41.2 Bayesian Calibration

The calibration method discussed in Section 4.1.1 calibrates the uncertainty distribution for a based on
evaluation of the model at T = T'.¢, and the procedure for performing the calibration is complex since it
requires a sequence of modeling steps, assumptions, and evaluations at particular points. One option for
simplifying the calibration is to simultaneously calibrate all of the parameters. Implementation of the
same model in Bayesian software treats «, 8, Q, and the standard deviation of the final model as
hyperparameters that are simultaneously calibrated using Gibbs sampling [80].

This calibration was implemented using the JAGS software [81]. The log of (4.1) was defined as the
mean of a normal distribution with standard deviation g, analogous to the final model from Section 4.1.1.
In a Bayesian calibration, the parameters (a, B, @, and o) are all assigned prior assumed distributions
meant to reflect the current state of knowledge about those parameters. The sampling procedure then
compares the model form to the data to refine/shift/stretch/reshape those distributions as dictated by the

data.

This type of calibration necessarily includes some subjectivity in the model results. If the prior
distributions are highly specific, the data may not have as much power over the final model as it should.
If the prior distributions are too broad, the data may not be sufficient to result in a meaningful final
model. Ideally, there should either be some reasonable justification for prior values, or it should be
demonstrated that the final model is not highly sensitive to the subjective prior selection.

The ability to include expert judgement or prior knowledge in a Bayesian calibration using prior
distributions is valuable in some cases, but for the CGR model, the goal is to rely on the plentiful data and
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not subjective judgements. Thus, the Bayesian calibration was attempted with broad (i.e. uninformed)
prior distributions but failed to converge to a useful result. The distributions were refined, essentially by
using the methods in Section 4.1.1 to estimate them, but then the Bayesian calibration did not change the
prior distributions at all, making this method of calibration essentially equivalent to Section 4.1.1.

Bayesian calibration may still have some utility for this model in the future, especially if more relevant
data are published, but it did not confer any benefit over the method in Section 4.1.1 in this analysis.

4.2 Implementation

To implement the calibrated model in Section 4.1.1, three uncertain distributions are sampled at each
epistemic code loop: a, 5, and Xxggec. This approach is the same as the 2018 model, but with slightly
different definitions for the three parameters. A comparison between the 2018 and 2021 parameter
distributions is shown in Table 2.

Table 2. Comparison of CGR parameterization between 2018 and 2021 models. Note that, to avoid
sampling in the distribution tails, all distributions are truncated at two standard deviations.

Parameter 2018 Model 2021 Model
Ina N(—25.92,1.57) N(—27.75,1.50)
B N(0.5,0.2) N(0.5,0.2)
a-f correlation —0.47 —0.50
Xgoec N(—20.14,1.33) N(—20.50,1.23)

Similar to the 2018 approach, a and f§ are correlated after being sampled. This process starts with two
random samples from the standard normal distribution N(0,1), which will be called X; and X;°.
According to [82], these standard normal samples can be transformed to correlated normal variables with
a desired mean and standard deviation (in this case, @ and f8) by defining a third random variable X3.

X3 =pX1++/1—p%X,, (4.13)

Where the desired correlation is p. Then, samples from the correlated distributions of @ and f can be
calculated.

.Bsample =Up + UBXS 4.14)
Asample = Ua T+ 0oX1, (4.15)

Where ug and o are the desired mean and standard deviation of §. Similarly, p, and o, are the desired
mean and standard deviation of «.

A comparison between the 2018 and 2021 implementations is shown in Figure 4-3¢. The top row shows
the two models as a function of inverse temperature. For comparison, the experimental data for each
calibration is also included in the plots. For each model, 5,000 samples are taken from the model at
random temperatures and are colored by point density, which allows easy visualization of the sampled
data. Finally, the sampled linear trends are also shown, which allows comparison with Figure 4-2. As

b Note that the 2018 implementation incorrectly sampled these distributions from N({q,04) and N(tg, dg), which resulted in the
wrong crack growth rates. This error has been corrected by transforming the samples to standard normal, then correctly
applying the correlation methodology. The code results shown in Figure 4-3 for the 2018 model were generated after
implementing the code fix.

¢ The samples shown in Figure 4-3 are actual output from the Fortran source code. This serves as a test of the model
implementation, as the samples are representative of the experimental data.
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noted in Section 4.1, the new correlation parameterization results in more uncertainty in the CGR. The
wider uncertainty range is representative of the new data, which has more variability than the old data.

The second row of plots in Figure 4-3 shows the relationship between a and . Though there is a clear
correlation between the two variables, it is not as drastic as the correlation used in Equation (4.13). The
target value for the old model is —0.47 and the new model is —0.50, whereas the actual correlations are
both about —0.2. This discrepancy is primarily caused by the application of the correlation process to
truncated normal distributions instead of standard normal distributions. In addition, the process described
in Equations (4.13)-(4.15) is approximate with some error. Though the samples seem correlated enough
to correctly match the experimental data, this lack of correlation may have an impact on the behavior of
CGR as the stress intensity factor K varies. Therefore, properly implementing the correlation remains a
topic for future study.

The final row of plots in Figure 4-3 shows the probability density function of Q for the 2018 and 2021
models. This plot is included to show that the updated distribution for sampling Xggec results in a
distribution for @ that is similar to the old model. The new distribution of @ is slightly narrower and is
centered higher than the previous distribution. Most notably, this avoids the negative values of Q that
were permitted in the old model. Note that the Xggoc-a or Xggec-f correlations are not accounted for in
the sampling scheme. This lack of correlation causes a wider distribution for Q than in the calibration
(see Figure 4-2). Since Q has more variance, a wider range of slopes are seen in the model. However, the
sampling scheme still matches relatively well with the underlying data. Improving the sampling scheme
remains a topic for future study.
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Figure 4-3. Sample results of new CGR model implementation
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5. Conclusion and Future Work

In this report, three major model updates were described for probabilistic modeling of SCC of DSCs: salt
deposition model, maximum pit size, and CGR calibration. All three updates constitute major changes to
the modeling approach and will have an impact on predicted SCC quantities of interest; however, the
overall effect remains a topic for future study. Currently, the changes to the salt deposition and maximum
pit size models have opposing effects on maximum pit size predictions. Since changes to the maximum
pit size will impact the timing of crack initiation, these model changes may have drastic effects on the
overall model predictions. Though the crack growth rate model has been re-calibrated and the model has
more experimental justification, the new parameter distributions are not expected to have a significant
impact on the code predictions.

If additional experimental data become available, significant work remains to properly implement an
accurate salt deposition model with uncertainty. Critical data will be collected by the Canister Deposition
Field Demonstration project, a 10-year project to evaluate dust deposition onto dry storage canisters.
However, these data will not begin to be available for 3-4 years, at the earliest. Therefore, efforts in the
near future will focus on incorporating the functional relationship between salt deposition rates and ocean
proximity. An approach that incorporates available site-specific data relating to proximity to the ocean
and canister orientation could be possible. Because the available data are sparse, experimental results for
other surfaces may be useful to inform an appropriate uncertainty range on the parameterization.

The maximum pit size model has been completely reformulated and now predicts much larger pits. An
obvious next step would be to incorporate uncertainty by calibrating the new model to experimental data.
The new model is specific to 304L stainless steel, the most common SNF dry storage canister material.
The model calibration could incorporate more experimental data, which would expand the range of
applicability and better inform the uncertainty of the model.

Future work for the crack growth rate model may include gathering additional data and more advanced
statistical treatment of the data. The current study treats minimums, maximums, and means as equivalent
data points. This treatment of the data inflates uncertainty around the crack growth rate trend with respect
to the reciprocal temperature. Alternative formulations of these data require assumptions since these
statistics are often reported without sufficient information of the underlying distribution. Future work
could examine the most justifiable assumptions on the data and re-calibrate the model under those
assumptions. Additionally, current calibration of the crack growth rate model occurs in distinct stages
where the values of some parameters are estimated as specific points on the model (e.g. @ when T' = T,f)
. This creates a circular process within the model calibration; it may be more efficient and clearer to
apply a different approach to calibration that can simultaneously calibrate all parameters.

The model updates that are presented here have not yet been propagated through the entire probabilistic
SCC model. Each of these changes could have a large effect on the model predictions. The changes to
the maximum pit size model yield significantly different maximum pit sizes than the previous model,
which will impact the necessary salt load for pit-to-crack transition. The changes to the crack growth rate
model only have a small impact on predicted crack growth rates compared to the previous model.
However, an error in the previous model implementation, discovered while implementing the new model,
means that the new CGR model may have a significant effect on code outputs of canister penetration.
Finally, the predictions of dust deposition onto the canisters in the previous iteration of the probabilistic
SCC model were recognized to be orders of magnitude higher than the available data. Because the model
predictions and the observational data could not be reconciled, it was decided to parameterize the dust
deposition rate.
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