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ABSTRACT

Arithmetic Coding (AC) using Prediction by Partial Matching (PPM) is a compression algorithm
that can be used as a machine learning algorithm. This paper describes a new algorithm, NGram
PPM. NGram PPM has all the predictive power of AC/PPM, but at a fraction of the computational
cost. Unlike compression-based analytics, it is also amenable to a vector space interpretation,
which creates the ability for integration with other traditional machine learning algorithms.
AC/PPM is reviewed, including its application to machine learning. Then NGram PPM is
described and test results are presented, comparing them to AC/PPM.
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1. INTRODUCTION

This paper describes a new algorithm, NGram PPM. NGram PPM is an algorithm that assigns a
score to a sequence of tokens (generally bytes) based on a comparison of the statistical
composition of that sequence to the distribution of tokens of some background training set. These
scores can be used in a variety of ways including both rank ordering items and supervised
learning problems.

Normalized Compression Distance (NCD) [4, 14] is a method to produce a score that represents
the similarity of two items. This ability can be leveraged to accomplish various machine learning
tasks. NCD takes advantage of the fact that compression algorithms can be treated as an
approximation of Kolmogorov complexity [15]. In so doing, they compute similarity as shared
information. Arithmetic Coding with Prediction by Partial Matching (AC/PPM) [18] is a
compression algorithm often used for NCD.

There are two key problems with compression-based analytics and with AC/PPM in particular.
One problem is that AC/PPM is slow. This has limited use for larger datasets and real-time
applications. A second problem is explainability. While an advantage of compression-based
algorithms is that they do not require the explicit creation of feature spaces, the downside is that
the algorithm collapses a large number of decisions into a single number based on the ratio of the
size of the original items to their size when compressed. There is no straightforward way to
explain a particular score.

NGram PPM solves both of these problems. It has all of the advantages of AC/PPM-based
analytics but is significantly faster. The algorithm is also more explainable and can be used to
generate feature spaces for integration with other algorithms. It isolates the components of
AC/PPM that contribute to the compressability of an individual data item without actually
performing the compression. In our tests, it is approximately 10 times faster for model creation
and at least 5 times faster for model usage while returning almost exactly the same results as
AC/PPM. It also expresses the scores in terms of weighted ngrams. This enables the creation of
features spaces, opening a wide range of possibilities for hybrid compression-based machine
learning algorithms with traditional vector-based methods.

This paper describes how PPM is utilized by arithmetic coding to accomplish compression,
develops that description into an alternative algorithm that produces a score that correlates with
AC/PPM, shows how that can be used as an efficient alternative to AC/PPM on real and synthetic
data, and describes some modifications and future developments.

2. USE OF AC/PPM AS A MACHINE LEARNING ALGORITHM

Compression-based machine learning algorithms have been shown to perform well on a wide
variety of tasks, including the identification of gene function in biomedical papers [16] and other
aspects of computational biology [11], authorship attribution [19, 21], and topic detection [17].
The utility of these algorithms have also been shown on problems as broad as disinformation
detection [25], seismic data and binary file analysis [10], and network traffic protocol anomaly
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detection [24]. It has also been applied to the problem of hierarchical music clustering [7].
PPM-based compression analytics have been shown to out perform other compression algorithms
in software plagiarism detection [5]. Given this broad applicability of compression-based
clustering, it has been suggested as a general clustering algorithm [8]. Even just these distances
alone have utility for arranging documents in a way that is visually useful to users [23].

In its most basic form, NCD measures the shared information between two individual items by
compressing them individually, compressing an object composed of the individual items
concatenated, and then comparing the resulting compression. If two items are identical and the
compressor (whether based on AC/PPM or some other algorithm) is accomplishing a sufficiently
accurate approximation of the Kolmogorov compexity of the two items, the size of the
compressed form of an individual item should be almost the same as the size of the compressed
form of the two concatenated items compressed. For items that are not identical, the size of the
compressed form of the concatenated object should reflect the similarity of the statistical
distributions of the bytes in each individual item. This is because a compressor learns the
distribution from the first item and then can use that to efficiently compress the second one. By
examining the items byte-by-byte, algorithms like this run the risk of losing information because
the semantics are often at a higher level (e.g., words reveal the meaning of a text, not individual
letters). However, it has been shown that AC/PPM achieves the same performance when it uses
this byte-by-byte configuration as when documents are reconfigured so it operates on a word
level [3].

As a byproduct of compression, PPM produces a model that encodes the probability distribution
of various subsequences in the data, using that for arithmetic coding. By keeping this model and
reapplying it, actual concatenation is no longer necessary. The same effect achieved by
concatenating and compressing is effectively accomplished by compressing an item and then
using that model to compress some other item. This also means that rather than creating a model
based on a single item, an entire training set can be compressed to generate a model that can then
be used to evaluate new items. At this point, one is not simply comparing two items, but
comparing some item to an entire training set.

Compressing a new item with respect to an existing model yields a compressed object. The
compression ratio of this object (the ratio of the number of compressed bytes to the bytes in the
original item) can be used as a score that reflects how well this new item matches the distribution
of the training data, in other words, how similar this new item is to the training data. This can be
used for a variety of analytical tasks, including rank ordering a set of items according to a model
based on training data, or classifying items according their best match to the set of models. For
rank ordering, the compression ratio of each item with respect to some model is computed after
which the items can be ordered from the lowest compression ratio to the highest. The item with
the lowest compression ratio best matches the training data used to create the model and the item
with the highest compression ratio is the poorest match. For classification, the compression ratio
of an item can be computed using each model and a label can be assigned based on which model
resulted in the best (lowest) compression ratio.

In each of these applications of compression for machine learning, the basic operation is the
computation of a compression ratio that serves as a score for the similarity between the item
under consideration and the composition of the data in the model. The lower the score, the better
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the match. The actual compressed form of the object is irrelevant. Even the precise compression
ratio itself is irrelevant. It is the comparison of the scores to one another that is used for
classification and rank ordering. As will be described below, NGram PPM computes a score that
is neither a compression ratio nor a compressed object, but the scores are such that almost
identical results can be computed for machine learning purposes but with more explainability and
better computational efficiency.

3. PREDICTION BY PARTIAL MATCHING

3.1. Overview of Arithmetic Coding

Arithmetic coding encodes a sequence of tokens into an infinite precision real valued number. Let
K be a sequence of t tokens, k0,k1, ...,kt . Each token can take on one of an enumerated set of
distinct v values, b0,b1, ...,bv, denoted B. When each k is encoded, the relevant range is split into
|B|+1 intervals, each corresponding to a potential value plus a range for an escape character
(ESC), described in more detail below. The size of each interval is proportional to the probability
of its corresponding value. Imagine that B = {w,x,y} and that w occurs 50% of the time, x occurs
25% of the time, and y occurs 25% of the time. In this case, w would be allocated half of the
available range and the other two would be allocated a quarter each. In this scenario, all token
sequences starting with w would be encoded between 0 and 0.5. This new range would then be
used to encode the next token with sub ranges being proportionally allocated. Thus all token
sequences starting with ww would be encoded between 0 and 0.5, the second w splitting the range
0 to 0.5 in half again.

Because computers do not actually have infinite precision real valued numbers, integer ranges are
used at each step. Rather than splitting a real valued range between 0 and 1, range coding works
by splitting a large integer range roughly proportionally. This same range is used at each step
based on the relative probability of each token. While in principle a location in a real valued
number is being computed, in practice neither the actual intervals used up to that point nor the
specific range ends up being important. The probabilities and a full range of integers are used at
each step.

It is also the case that at each token, only that token is encoded. The extent to which that token is
compressed is related solely to its probability. For compression, the probabilities of the other
tokens are only needed so that the specific start of the interval for that token’s value can be
specified. This is necessary not to determine how well the token is going to be encoded, only to
determine when and which bits to emit for later decompression.

To the extent that the actual probabilities are estimated for each value of B, arithmetic coding
results in data being compressed. They do this by using fewer bits to encode the high probability
items. The trick is estimating the probabilities correctly. One way to do this is by using PPM. For
the purposes of using AC/PPM for machine learning, we do not care about decompression or
about the specific bit stream that is emitted. We only care about how well that token is going to be
compressed. We can get this value from its probability alone.
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3.2. Overview of PPM

At the point where each token is encoded, arithmetic coding assesses the probability of that
token’s value. There are a variety of ways to estimate probabilities. It would be computationally
well defined to simply use the same probability of every potential value, assigning 1

|B|+1 to each
token plus an interval for dealing with situations where a value is seen in a context where it did
not occur in the training data (called “ESC”). Unless the individual values were equally probable,
however, this would not lead to optimal compression. Another method would be to assign
probabilities based on their occurrence in real data. For example, If B was the set of latin letters
(a-z), the letter u could be assigned a probability of 2.8% 1.

But it is possible to create better probability estimates given the context within which each item
occurs. Remember that arithmetic coding works over a sequence of tokens. When considering the
probability of any given value, it is possible to take into account the previous tokens in the
sequence. Although a u may have a probability of 2.8% overall in English, the probability of a u
given that the previous token was a q is quite high. So when encoding a u after a q, a different
probability can be used than in a different context. In fact PPM has been used to study the English
langauge [22].

PPM is a way of accumulating and issuing those conditional probabilities. While compressing
data, the probabilities are accumulated while compressing. However, when used for model
creation as described above, only the accumulated probabilities are relevant, not the actual
compressed bits of the training data. To create a model, we do not need to emit any compressed
bits. It is only necessary to accumulate the probabilities. When considering a new item, the model
is fixed (no more probabilities are accumulated) and the accumulated probabilities are
referenced.

PPM takes a parameter d (depth) indicating the maximum size of the context that it considers for
calculating conditional probabilities. It keeps d +1 models, one for each context less than d and a
base model of simple probabilities with no context. Each model, C j records the probability of
each value of a token in all contexts of size j as shown in Equation 1. For example, given a
sequence abc and a depth of two, after encoding a and b, c would be encoded using the
probability of c given the context of ab.

C j(ki) = p(ki|ki− j,ki− j+1, ...ki−1) (1)

This works if, for every token encoded, that token has already been seen in a context of size d. In
practice, this is often not the case. In this situation, an escape character (ESC) is encoded. ESC is
a value that cannot occur in the input data. It exists solely to deal with a situation where a token
has not been seen in a context being considered. AC encodes ESC the same way it encodes any
character and then it checks another context C j−1. In the scenario just described, if c has never
before occurred preceded by ab (which it would know by checking C2, AC would emit an ESC
and then try to encode c by checking C1, corresponding to the context b. If c has also never
occurred preceded by a b, it would fall back to C0 which would be a baseline that encodes a

1https://en.wikipedia.org/wiki/Letter_frequency
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probability for every possible token. ESC tokens are encoded the same way that normal tokens
are. However, that leaves a problem of determining the probability of an ESC token. A approach
described by Cleary and Witten [9] and used in NGramPPM is to treat each context as containing
a single occurrence of an ESC character.

As mentioned earlier, this algorithm can be applied for machine learning. To use AC/PPM for
machine learning, a model is created from a training set by passing it through AC using PPM,
accumulating counts of the numbers of times each token has been seen in each context. For each
C j that AC visits in the course of encoding some ki, regardless of whether it results in an ESC
character being issued, it increments a counter for ki in Ci corresponding to the current context.

4. NGRAM PPM

4.1. Explanation

The use of AC/PPM as an anlytical algorithm requires both that the underlying statistics are
collected (using PPM) and that the item being analyzed is compressed (using arithmetic coding).
NGram PPM collects the statistics needed for AC/PPM, but then uses those statistics directly
without performing arithmetic coding. Instead, it computes a score that reflects how well the item
would have been compressed had arithmetic coding been conducted. This results in a smaller
computation time.

PPM determines probabilities by counting the number of times each token occurs in each context,
tracking the number of times each context occurs, accounting for ESC tokens. The analytic power
of PPM-based base analytics is rooted in the ability to compress some new item. To perform full
compression using AC/PPM, we need to find a specific starting point for each token being
compressed which leads to additional computation during compression. But the compression
ratio of each token is function solely of the probability of each token alone and is independent of
the compression ratio of any other token. Therefore, we can define a score for each K by simply
looking at the accumulated probabilities of each of the underlying tokens, taking into account
ESC tokens. This reduces the number of computations needed in NGram PPM compared to using
full AC/PPM.

We define a function σ that computes a score for any ki indicating how well ki will get
compressed 2. The overall score for a token sequence is simply the sum of those scores. This is
defined in Equation 2. The rest of this section will describe how σ is computed.

ngramppm(K) =
t

∑
i=0

σ(ki) (2)

The function σ will be a combination of the probability of a character occurring given its context
and any ESC tokens that need to emitted as part of the compression. As described above, AC/PPM
looks at the longest context first, encoding an ESC if the token does not occur in that context and

2Implied in the rest of this discussion is that anytime ki is referenced that the previous d tokens from K are available.
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falling back to a shorter context. We can think of this as visiting each context length for every
token, computing a context score based on whether an ESC would have been issued or it was the
appropriate context for returning a probability. In order to define the component score, we need to
compute the count that would be contributed for a given content. Let γ j(ki) be the number of
times ki− j,ki− j+1, ...,ki has occurred in the training data. Then the count (ε) of a token in a given
context taking into account escapes would be defined as in Equation 3. A one is returned if an
escape character would have been issued. This occurs if no longer context would have contained
that character. If the context contains the character in the longest possible context, it is the count
itself that is returned. Otherwise the context is ignored so the count returned would be zero.

ε j(ki) =


1 if γ j(ki) = 0 ∧ for all j < n≤ d γn(ki) = 0
γ j(ki) if γ j(ki)> 0 ∧ for all j < n≤ d γn(ki) = 0
0 if for some j < n≤ d γn(ki)> 0

(3)

To convert this to a probability, we then need to know the number of times a given context has
been seen. We add one to account for ESC tokens, but can otherwise reuse γ, see Equation 4. The
reuse of γ is significant for implementing the algorithm. The number of times a context occurs is
the same as the number of times the last character has occurred in a context shorter by one token.
For the base case where there is no context, the number of potential tokens plus the tokens
actually seen in the training data is used.

α j(ki) =

{
|B|+ γ0(ki) if j = 0
γ j−1(ki−1)+1 otherwise

(4)

We can now define the score contributed by each context. This is simply the count provided by
the context divided by the number of times the context has been seen, accounting for ESC, see
Equation 5 3. Remember that a higher probability leads to smaller compression ratio. Computing
one minus the probability results in a higher score for low probability tokens given their
context.

ρ j(ki) =

{
0 if ε j(ki) = 0

1− ε j(ki)
α j(ki)

else
(5)

The score for an individual token in a token stream is then simply the sum of the scores among all
the contexts, as defined in Equation 6.

σ(ki) =
d

∑
j=0

ρ j(ki) (6)

These scores will not be the same as the compression ratios that come from a full implementation
of AC using PPM. However, the relative ordering of the scores should be almost the same. The

3See the appendix.
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key difference is that there is some rounding that takes place in AC when encoding into a range of
integers rather than into actual real values. The rounding does not take place in the algorithm
described here. It is also the case that generally a baseline token probability is used in PPM. As
defined here, each potential value is given a count of 1 to which is added the actual value counts.
This creates a more accurate baseline probability for tokens seen in a completely new context. So
where this algorithm differs from PPM, it should more accurately reflect the underlying
probabilities and stay truer to the underlying intention of the algorithm because it avoids rounding
errors.

4.2. Implementation and Testing

NGram PPM is expressed in terms of conditional probabilities, but the entire algorithm is built on
γ. Because of this, the entire algorithm can be implemented in terms of counting ngrams. A
reference implementation was written in Python according to the specification above. Both a pure
Python implementation was tested along with a Cython version of the same code (with modest
adaptation to Cython).

Three studies were conducted to show that NGram PPM produces comparable results to
AC/PPM. For these studies, the NGram PPM implementation was compared to a form of PPM
compression analytics based on a pure Python implementation of AC/PPM 4.

The memory used by PPM grows non linearly with respect to context size (d). In Moffat’s
paper [18], they experiment with contexts sizes between one and five. A context size of zero
would be the equivalent of examining the probability of individual items without context. For
retrieval problems in English language text, a context size of three or four works well. The
experiments described here use a context size of four.

A full description of the algorithmic complexity of AC/PPM is covered in other literature
(e.g. [20]). NGram PPM (as used in these experiments) computes the same statistics as AC/PPM,
but then it skips the compression step. Because of this, the computational complexity of the
algorithm is of the same order of magnitude as the AC/PPM, but as we will show, it is faster for
the datasets studied and because it is able to simply skip computations that AC/PPM performs.
This would be true for any dataset. The memory requirements for the tests shown here are similar
to AC/PPM because the same statistics are collected. However, as will be discussed in
Section 5.2, these statistics can be pruned in a way that would lead to better memory efficiency.

These tests were run on a 2.9 GHz 6-Core Intel Core i9 Macbook Pro with 32GB of RAM.

4.2.1. Testing Ranking Using Synthetic Data

A basic way to use these algorithms for machine learning is to create a model from some training
data and then produce a score from a test item. The scores serve as a kind of distance measure,
with a lower score for either algorithm (compressing to a smaller number of bytes or generating a

4https://github.com/nayuki/Reference-arithmetic-coding
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Figure 4-1 Ordering study showing that AC/PPM and NGram PPM order data in the
same way

lower ngramppm score) indicating that the test item’s composition matches that of the training
data. A set of items can be rank ordered by generating a score for each item against a model and
ordering according to the scores returned. If ordered from smallest to largest score, the items
would be ordered according to how well they match the training data, from the best to the worst
match.

The first test comparing AC/PPM and NGram PPM consisted of created a training set generated
from a single distribution and then creating a test data set where each item was systematically
different from the training data in some predictable way. If each algorithm orders these test items
in the same way, we can have confidence that they are accomplishing an equivalent computation,
at least for our purposes.

This test was conducted with synthetic data to compare the ngramppm score from Equation 2
with the compression ratio achieved using AC/PPM. Two hundred randomly generated training
byte arrays of 5000 bytes each were used to create models. Each array was created by drawing
from an alphabet |B|= 10, each having a different probability (0.0, 0.022, 0.044, 0.067, 0.089,
0.111, 0.133, 0.156, 0.178, 0.2). Then a series of test datasets were created. For each test dataset,
twenty different test items were created. For each item in a test dataset, the probability of the
most likely byte in the training dataset (probability of 0.2) was decreased by some value and the
probability of the least likely byte (0.0 and thus not in the training set) was increased by the
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Figure 4-2 Identical classification performance of standard PPM and both implemen-
tations of NGram PPM for classifying by topic

corresponding amount. This means that there was a natural ordering for each item in a test dataset
according to how well it matched the training dataset. Each test dataset used a different range for
these modifications, 0 indicating that the distribution in the test dataset matched the training
dataset exactly and 1 meaning that the probability of the least and most probable bytes in the
training sets were fully reversed. The Kendall rank correlation coefficient [12] was then computed
between the ordering of the test item according to AC/PPM and NGram PPM. In this measure, τ

is a measure of how well the ordering match and the p values indicate the results of a statistical
test where the null hypothesis is that τ is 0. Figure 4-1 shows how τ and the p values changed as
the items were more differentiated from each other.

When all the test data closely match the training data, the ordering is arbitrary and small
differences in the algorithm results in a low correlation between the two algorithms. But as soon
as the test items were drawn from different distributions, the correlation rapidly approached one
and the p values were near zero. This shows that the compression ratios achieved from PPM
correspond to the NGram PPM scores except in cases where the items are identical in their
composition.

4.2.2. Testing Classification - Topic Classification

To compare the speed of the implementations, a classification experiment was conducted on
documents in the classic “20 newsgroup dataset.” This dataset is available from a variety of
sources including in scikit-learn 5. Specifically, 195 documents each from sci.crypt and
alt.atheism were used for classification. The documents were split into a stratified crossfold four
ways and one of the folds was testing and timed. Figure 4-2 shows a confusion matrix with the
results. The confusion matrices demonstrate identical performance. Given the combination of the
strong results from the ordering test and identical classification performance we conclude that
NGram PPM captures the value of AC/PPM for machine learning purposes.

5https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
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Figure 4-3 Comparison of timing for training and testing (seconds per item)

It is possible for the results between the two algorithms to vary slightly. This can happen when an
item is an almost equal match between the two models. This is for two reasons. The first is that
PPM/AC ultimately has to effectively round the probabilities to fit them within an integer range.
The second is that while normal PPM has a baseline probability for tokens with no contexts,
NGram PPM can accumulate the actual base probabilities of the individual tokens. Figure 4-2
shows that the classification performance between the two algorithms was identical in the test run.
Other experimentation has shown that there can be minor differences between the two algorithms.
As described above, in the cases where the two differ NGram PPM would be preferred because it
is keeping more information about the underlying data.

Figure 4-3 compares the mean time it took per item for training and testing. The relative time
does, of course, depend on the nature of the implementation. Neither implementation is optimized
for speed. An earlier form of NGram PPM was 26 times faster for training and 12 times faster for
testing, but this came at the expense of being inefficient in memory usage and would not scale to
larger datasets. The form shown here implemented a context data structure similar the PPM’s
implementation for memory efficiency. It is approximately 10 times faster for training and 5 times
faster for testing. The variance for NGram PPM was smaller than the variance for AC/PPM.

This suggests that NGram PPM captures the predictive power of AC/PPM but in a much more
efficient algorithm. The Cython version of NGram PPM is almost twice as fast as the pure Python
implementation for training and almost 2.5 times faster for testing.

4.2.3. Testing Classification - Detecting Toxic Tweets

As a second test to compare the classification performance of the two algorithms, a dataset of
toxic and non-toxic tweets was downloaded 6 from Kaggle. From the dataset, 1000 toxic and
1000 non-toxic tweets were selected at random. The results of training on three fourths of the data
and testing on one fourth are showin in Figure 4-4. Any substantial difference between the two

6https://www.kaggle.com/ashwiniyer176/toxic-tweets-dataset
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Figure 4-4 Near Identical Performance of standard PPM and NGram PPM on identify-
ing Toxic Tweets

algorithms could easily lead to significantly different results, especially given the small size of
individual tweets.

5. FURTHER IMPROVEMENTS

This form of the algorithm is not only faster, but it is expressed in a way that lends itself to further
expansion and improvements. A few of these ideas are outlined here.

5.1. Ignoring Escapes

Other research [25] has demonstrated that AC/PPM suffers from a class imbalance problem and
that these problems can be mitigated by altering AC/PPM to not emit escapes. Implementing this
strategy in NGram PPM is trivial. The first condition resulting in a 1 being returned in Equation 3
is the algorithm emitting an escape. Changing that condition to 0 would have the same effect.
This work also suggests that changing Equation 4 so that it does not add 1 could be useful.
Especially for poorly represented contexts, adding a 1 to the context count drastically changes the
probability of the other tokens in the same context, resulting in a significantly different token
score (σ, see Equation 6).

5.2. Controlling for Infrequent Contexts through Thresholds

Contexts that occur infrequently in the training data can have an unusually large effect on scores.
Given Ziff’s law, [27] contexts that are individually infrequent make up a significant portion of
the actual data that gets encoded. Although infrequent items contribute less to the overall scores,
there are more of them and explicitly controlling for them can be useful. This is often done in
statistical text analysis, where all terms occurring less than some threshold might be dropped from
further analysis. This can be accomplished in this algorithm by changing the threshold in the
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second two conditions of Equation 3. By requiring a larger count, say γ j(ki)> 5, a token will
need to have been in a particular context at least 6 times before it would contribute to the score.
Removing low frequency counts from the counter dictionary (γ) altogether might also be useful.

5.3. Controlling for Infrequent Contexts through Smoothing

The context score in Equation 5 computes a probability. At that point it loses the information
about how many times that context has been seen. Probabilities based on small sample sizes can
have a disproportionate effect in computations such as pointwise mutual information (PMI) [6]. It
has been shown that for PMI computations, smoothing can mitigate the effects of low probability
items [13]. Something analogous could be done with NGram PPM that could not be done for full
AC/PPM to help control for these effects.

5.4. Analogy to and Creation of Feature Spaces

Probably the most significant implication of this algorithm is that it shows how to express the
predictive power of AC/PPM in terms of scores over ngrams, which enables us to interpret the
scores as a feature space. For a model of depth d, these sequences in some K are essentially
decomposed into d-shingles. Each distinct shingle has a score defined by Equation 6 that is
invariant with respect to where in K the shingle occurs. For NGram PPM, these scores are simply
added together to reflect a compression ratio (Equation 2). Let SK be an enumerated set of distinct
d shingles in K and si be a shingle that can be treated as a short token sequence (so that sid refers
to the last token of shingle i) and β is the number of times each shingle si occurs in the testing
document, Equation 2 can be expressed as:

ngramppm(K) =
|Sk|

∑
i=0

β(si)σ(sid) (7)

This formulation can be leveraged into creating a feature space. When converting a document
corpus into a matrix for text analysis, each term in each document is given a score. This score is
often a product of a local score that reflects the significance of the term in some document (a local
weight) and the significance of the term in the corpus as a whole (the global weight). Equation 7
can be thought of treating β as a local weight and σ as a global weight, computing a product [1].
Rather than simply adding all the products together, they can be kept separate and be treated as a
feature space. Because our formulation of NGram PPM gives lower scores to items that
contribute the most to compression, σ−1 will be used as a global weight. Insight from traditional
statistical analysis and conventional ML can now be applied.

Figure 5-1 shows the results of applying this methodology to the newsgroups datasets described
previously. An NGram PPM model was created for each category. Vectors were then created by
finding all the ngrams that occurred in more than five documents. There were 16,724. A vector
space was then created with one vector per document. The model corresponding to the
document’s newsgroup was used for the global weights. Then t-SNE [26] was used to embed each
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Figure 5-1 t-SNE embedding of NGram PPM vector space

post into a two dimensional space. As can be seen, there is a clear separation among the
documents from vectors created using this methodology.

AC/PPM has outperformed other vector-based techniques that require more feature engineering
on problems such as authorship detection. But vector-based techniques have other advantages and
a large body of research. NGram PPM brings these two different families of algorithms under a
common framework.

5.4.1. Alternative Weightings

Rather than using simple shingle counts, alternatives to β can be used. It is common in statistical
text analysis to use the log of the count rather than the count directly.

5.4.2. Explainability

The individual components of the summation can be used for explainability. The components
with the smallest product are contributing the least to the total sum and most to the
compressibility. The question “why does this sequence compress better with model A than with
model B,” can be answered by extracting frequent ngrams with low scores in model A and high
scores in model B.

A more general question about the difference between two categories can also be computed. For
situations where there are two known categories, the global weights can take into account those
categories. In particular, if the goal is to classify one of the categories, the global weights can be
computed by subtracting the weight of the target category from the weight of the other categories.
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NGram sci.crypt alt.atheism

\n___ 64 54
Marc 16 1
cmay 16 0
\t\t\t\t 13 2
_fir 59 32

Table 5-1 Top NGrams for a specific sci.crypt document

NGram sci.crypt alt.atheism

\n>_> 2 8
___* 1 7
3Apr 25 60
du>_ 25 36
@po. 0 8

Table 5-2 Top NGrams for a specific alt.atheism document

This would result in a feature space where individual weights could be used to understand what
ngrams best characterize each category.

To illustrate this idea of explainability, two sample documents from the newsgroup dataset were
analyzed. For each token in each post, the difference between the token score (σ) in each model
was computed. Specifically, σ from the sci.crypt model was subtracted from the alt.atheism score
and multiplied by the number of times the ngram occured in the document. Because small scores
means higher probability (and better compression), a small score indicates that the term is more
indicative of alt.atheism. A large score indicates that the score is more indicative of sci.crypt.

Table 5-1 shows the top terms for a sample sci.crypt document. The table shows how many
documents in each category contained the corresponding ngram. For the sci.crypt document, the
top scoring ngrams were ones that occurred more often in the other sci.crypt documents.
Table 5-2 shows the same table, but for a sample alt.atheism document. What these values mean
is that if regular PPM compression was applied to each of these documents, these are the ngrams
that would have compressed the best, contributing the most to the document compressing well.
However, with NGram PPM, these computations can be performed without the complexity of
actually compressing the documents.

5.4.3. Parallelization

The core of the algorithm is counting shingles. This can be done in parallel. For situations such as
crossfold validation or "leave-one-out" protocols, the creation of models can also be made
significantly more efficient by computing shingles on a per-document basis and then creating new
models by adding different subsets of the individual document shingle counts together. The
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computation of individual document scores can also be parallelized, although at the level of an
individual document, it is probably not necessary.

5.4.4. Streaming

This algorithm is also, unlike AC/PPM, amenable to streaming. It only keeps track of counts.
These counts could be managed by keeping a fixed size window, decrementing the oldest counts
as new ones are added. This makes the algorithm amenable to techniques that operate over sliding
windows [10]. It could also be accomplished by using a probabilistic method to delete infrequent
ngrams (e.g. [2]). Such methods would minimize the memory impact incurred if utilizing
memoized scores.

6. CONCLUSION

This paper has described how AC/PPM works and formalized the utility of AC/PPM for machine
learning in a way that results in a new algorithm, NGram PPM. NGram PPM is faster than full
compression, yields nearly identical results, and presents an opportunity for future development
of new algorithms.
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APPENDIX A. ADDENDUM TO NGRAMPPM

After this work was completed, but before this report was finalized, the algorithm was modified.
Rather than using the probability directly as a score, it is more accurate to use the log of the
probability, which yields the number of bits that a particular token would require when
compressed.

Specifically, Equation 5 should be rewritten as Equation 8.

ρ j(ki) =

{
0 if ε j(ki) = 0

− log2
ε j(ki)
α j(ki)

else
(8)

In subsequent experimentation, scores that use this equation match the results of NGramPPM
almost exactly. This form of the algorithm will be used in future work.
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