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Introduction
+ Stationary energy storage systems (ESS) are increasingly deployed to maintaina Cascading failure in Li-lon cells can be related to premixed flame propagation:
robust and resilient grid. * Negligible reactant diffusion
* As system size increases, financial and safety issues become important topics. * Propagation thr.ough stac.ks of cells is unsteady due to gaps |
* Holistic approach: electrochemistry, materials, and whole-cell abuse will fill * Legacy models effectively predict onset of thermal runaway, but they struggle with

knowledge gaps. high-temperature propagation.

* Models enable knowledge to be applied different scenarios and larger scales. * This work investigates applying an intra-particle diffusion limiter to runaway
reactions within the cathode and anode materials.

Finite Element Model of Pouch Cells leltlng High-Temperature Rates

* Discretization in one direction (x) qsides Lithium and oxygen must diffuse to the particle surface to react with the
* Multi-layered system of batteries and spacers s electrolyte.
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* System of 5 LiCoO2 3 Ah pouch cells * Serial reactions are corrected with the “Damkohler limited” form.
* Empirical chemical reactions e k
* SEl decomposition " 1+ Da
* Anode-electrolyte (Shurtz) . . *  Where the Damkohler number is defined as the ratio of the reaction rate at
« Cathode-electrolyte Qend Qend the surface of a characteristic particle to the rate of diffusion between an
» Short circuit inner radius (7;) and outer radius (7).
* Experimental data Aexp (_ i)
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uncaptured physics. - 100% SOC - sim — exp c1p1 * An intra-particle diffusion rate limiting model for the rate of thermal
Aluminum and Copper ° o am — o G runaway in Li-ion batteries was proposed, characterized by the Damkohler
600 .
Spacers - - =g number at the particle scale.
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* Energy density decreases with %50 Sim exp ca-p3 *  The Damkohler limiter model correctly predicts the boundary of
the addition of spacers. 2a00] [t e b s Propagating thermal runaway with decreasing energy density due to
* Good prediction of “gm_ L\ == Sim —— Exp C5-0 reducing state of charge and the addition of inert spacer materials.
propagation times. ° OSNS— * This model offers an improvement over extrapolating legacy models to
* Decrease in energy density il S T high temperatures as the onset behavior is preserved while the high
quenches propagation in both  100{ |/ e === temperature rates are reduced.
simulations and experiments . e L * Potential areas of improvement include the reaction rate at the onset of
(see |/16” Cu Spacer plot). S P thermal runaway and the dependence of heat release on the SOC.
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