

Nalu-Wind simulations

Thomas Herges¹, Christopher Kelley¹, Alan Hsieh¹, Kenneth Brown¹, David Maniaci¹, and Jonathan Naughton²

¹Sandia National Laboratories, Albuquerque, N.M., U.S.A.

²University of Wyoming, Laramie, W.Y., U.S.A.

Abstract

- Goal: understand if field campaigns can capture quantities required to calculate rotor thrust forces from a momentum deficit analysis of a wind turbine wake
- Inflow and wake velocities typically acquired during a field campaign are sufficient for simplified 1D momentum analysis of the wake
- Control volume surface analysis around a SWIFT turbine was conducted using 10-minute Nalu simulation with neutral inflow
- Extracted necessary quantities for a full Reynolds-Averaged Navier-Stokes analysis along the control volume surfaces
- Full RANS approach matched wind turbine thrust force well at all downstream locations
- 1D analysis results in 70% difference in rotor C_t at 2D and 40% from 5D to 8D
- Results suggest typical field campaign measurements are insufficient to capture accurate rotor thrust measurements
- Relative difference improves to less than 10% if streamwise pressure is included

Introduction

- Understanding and predicting how wind turbine wakes evolve downstream for different atmospheric inflow stratifications is important for both wind turbine and wind plant design [1]
- Measurements and simulations can be used together through validation efforts to improve understanding and prediction of wind turbine wakes

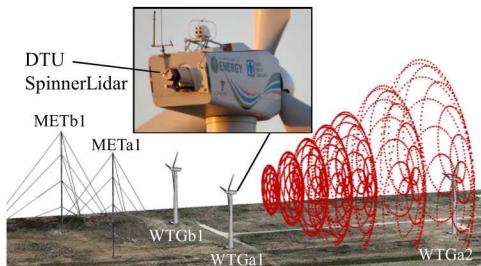


Figure 1: Schematic of how SWIFT benchmark data was acquired

- Inflow measured using meteorological tower (METb1), inflow and wind turbine model were only aspect of the benchmark used in analysis
- Benchmark included line-of-sight velocity measurements in wake using DTU SpinnerLidar, but wake measurements are not used for comparison in current work

Method

- Paper detailed derivation of control volume RANS formulation
- Final RANS formulation applied along control volume surfaces:

$$\rho \left(\iint \bar{u} \bar{u} \bar{n}_x dy dz + \iint \bar{u}' \bar{u}' \bar{n}_x dy dz + \iint \bar{u} \bar{v} \bar{n}_y dx dz + \iint \bar{u}' \bar{v}' \bar{n}_y dx dz \right. \\ \left. + \iint \bar{u} \bar{w} \bar{n}_z dx dy + \iint \bar{u}' \bar{w}' \bar{n}_z dx dy \right) \\ = F_x - \rho \iint_{wall} (w' u'^2 + w' v'^2)^{1/2} \bar{n}_z dx dy - \iint \bar{p} \bar{n}_x dy dz$$

- 1D momentum formulation:

$$\rho \iint \bar{u} \bar{u} \bar{n}_x dy dz - \rho \iint \bar{u}_\infty \bar{u} \bar{n}_x dy dz = F_x$$

- Coefficient of thrust: $C_t = \frac{F_x}{\frac{1}{2} \rho A_{turb} u_\infty^2}$

- Simulation models WTG1 Vestas V27 turbine
- Hub height = 32.1 m
- Rotor diameter = 27 m
- Neutral ABL
- Freestream hub-height Wind speed = 8.69 m/s
- Simulated 660 seconds (removed first 60 s to remove start up)
- Control volume box dimensions, 283.5 m \times 110 m \times 100 m
- Control volume extended $x = -2.5D$ upstream (where METb1 is located) to 8D downstream
- Turbine located in center of control volume
- Transverse planes sampled at 2D, 3D, 4D, 5D, 6D, and 7D from rotor
- Upper surface, XY2 at $z = 100$ m ($\approx 3.7D$)
- Lower surface, XZ1 at $z = 0$ m
- Side planes, XZ1 and XZ2 at $y = \pm 55$ m ($\approx \pm 2.0D$)
- Transverse planes analogous to experimental configuration of SWIFT site in figure 1 used during neutral benchmark [2,3]

Setup

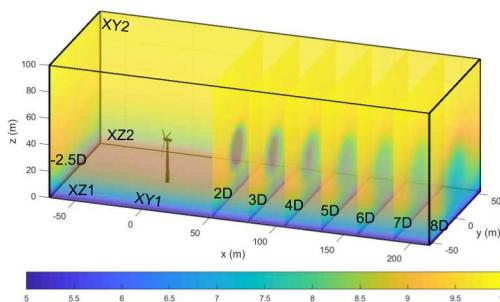


Figure 2: Control volume planes

Results

- Forces from RANS equation matches wind turbine thrust well throughout wake from 2D to 8D, maximum difference of 0.055 at 5D
- Figure 3 plots show force contribution of each RANS term (uu , uv , $u'v'$, uw , $u'w'$, and $w'w'$) through each control volume plane (YZ, XY, and XZ)
- Velocity and pressure terms contribute greatest amount to forces in YZ planes
- Followed by uv term applied along XZ planes and pressure term along YZ planes
- Contributions from uw , $u'w'$, $u'v'$, and $w'w'$ terms is relatively weaker in this particular case

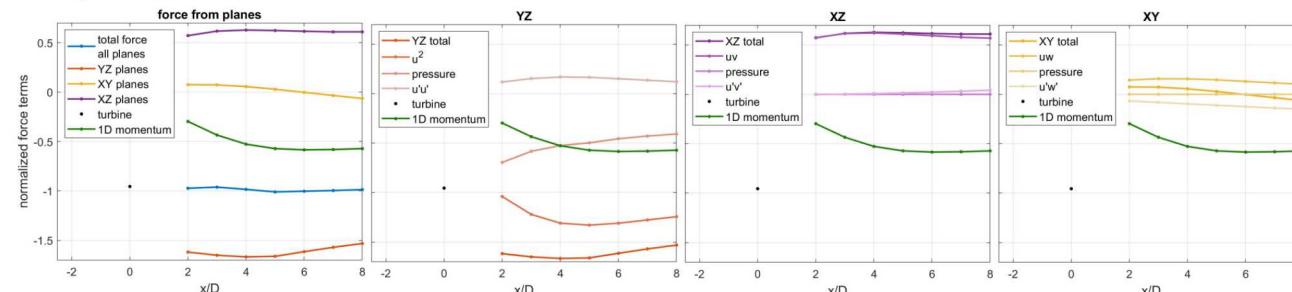


Figure 3: Contribution of each plane and term to C_t

Results (cont.)

- 1D-momentum analysis matches summation of force contributions from velocity component terms (uu , uv , and uw) with largest difference in C_t occurring at 2D (0.026)
- Shows assumption during 1D momentum derivation that relating momentum flux through sides of control volume to the freestream velocity using continuity was reasonable
- Still large discrepancy between total thrust forces and 1D momentum estimation due to contribution from pressure and Reynolds shear stress terms

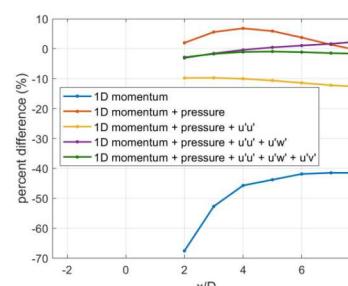


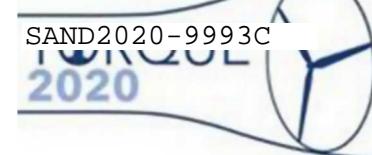
Figure 4: Relative difference of C_t to full RANS approach

- Figure 4 continues analysis showing contribution of each term relative to a percent difference
- Comparison starts with contribution of 1D momentum estimation, which has largest contribution in momentum deficit relative to RANS approach
- Figure 4 adds each term with subsequent importance to momentum deficit contribution as determined from figure 3
- Simplified 1D momentum formulation results in difference ranging from 70% at 2D to 40% from 5D to 8D**
- Indicates that field test that only captures streamwise velocity of inflow and wake would be inadequate to capture C_t of rotor using momentum deficit analysis of wake
- However, if pressure was acquired at streamwise locations, result would be slightly over estimated but to within 10% of correct rotor C_t
- Adding $u'v'$, $u'w'$, and $w'w'$ reduces difference to almost zero
- Estimation of rotor C_t can be conducted using 1D momentum analysis and pressure measurements
- But an experiment would need to be complemented by full RANS calculation or turbulence estimation to reduce relative difference to less than 5%

Conclusions

- Nalu-Wind used to simulate WTG1 wind turbine for neutral SWIFT benchmark case, extracting necessary quantities of interest along control volume surfaces
- Full Reynolds-Averaged Navier Stokes approach applied around six-surface control volume over 10-minute period, matching thrust in wake to wind turbine rotor thrust from 2D to 8D
- Traditional, simplified one-dimensional analysis was included for comparison between RANS approaches
- Simplified 1D analysis resulted in 70% difference relative to the full RANS calculation of C_t at 2D and 40% difference from 5D to 8D
- Appears that capturing inflow and wake velocities is insufficient for C_t analysis of wake unless correction factor is created
- Wake momentum deficit analysis can be within 10% of wind turbine thrust force if pressure is acquired at corresponding streamwise locations
- Even though 1D momentum terms, or quantities, do not capture full turbine thrust force, these terms are still useful for validation purposes in comparing experiments to simulations**
- Analysis highlights how 1D momentum quantities evolve downstream and could inform what is not captured in wake when discrepancies exist in validation comparisons

References


- [1] Moriarty P, Rodriguez J S, Gancarski P, Churchfield M, Naughton J W, Hansen K S, Machefaux E, Maguire E, Castellani F, Terzi L, Breton S-P and Ueda Y 2014 IEA-Task 31 Wakebench: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models *Journal of Physics: Conference Series* **524** 012185.
- [2] Doubrava P, Debnath M, Moriarty P J, Branlard E, Herges T G, Maniaci D C and Naughton B 2019 Benchmarks for Model Validation based on Lidar Wake Measurements. *Journal of Physics: Conference Series* **1256** 012024.
- [3] Doubrava P, Quon E W, Martinez-Tossas L A, Shaler K, Debnath M, Hamilton N, Herges T G, Maniaci D C, Kelley C L, Hsieh A S, Blaylock M L, Laan P v d, Andersen S J, Krueger S, Cathelain M, Schlez W, Jonkman J, Branlard E, Steinfeld G, Schmidt S, Blondel F, Lukassen L J and Moriarty P 2020 Multimodel validation of single wakes in neutral and stratified atmospheric conditions *Wind Energy* doi:10.1002/we.2543.

Contact Information

Tommy Herges, therges@sandia.gov

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. Funding provided by the U.S. Department of Energy's Wind Energy Technologies Office.

