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Motivation

Promising new module architectures have become available
due to Electrically Conductive Adhesives (ECAs)
• Advantages such as reducing frontside metallization shading and
removing soldering related stresses

Like any material, ECAs can degrade with exposure: But how?
• Novel material and novel module designs: conventional knowledge may
not apply

Use a multi-scale modeling approach to elucidate the
driving forces for ECA degradation in a shingled module

Si cell

Si cell
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ECAs use a conductive filler in a

polymer matrix
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A shingled module:
An ECA-enabled architecture
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Multi-scale modeling approach

The input [an environmental condition] is propagated to the output [forces on the ECA
joint] by passing information between computational models at different scales
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3D Full module model

• Developed from datasheet information and a physical example
• Frame, mounting, and assembly details as well as laminate and cell shingle detail
• Thermal viscoelastic encapsulant and backsheet material models from measured datal

• Boundary conditions include mount points frame, edge adhesive
• Informed by previous c-Si module mechanical analyses2
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Discretized model details
1 N. Bosco, M. Springer and X. He, "Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for
Direct Finite-Element Method Input", Journal of Photovoltaics, 2020.
2J. Hartley, et 21., "Effects of Photovoltaic Module Materials and Design on Module Deformation Under Load", Journal of Photovoltaics, 2020
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3D Full module model results
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3D Full module to 2D model handoff details

• 2D model: 5-cells, glass, encapsulant, and backsheet (same dimensions as full module model)
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Which 3D model boundary conditions should be used?

• Consider the extreme hniindarv cnnditinns the 7r) mndel could assume=0)

Glass

Flat

Free

Full module
derived

• Top surface remains flat and domain sides
must stay rectangular

• Constraints for rigid body movement and
rotation. Domain sides are symmetric but
otherwise free.

• Most realistic boundary condition from full
module model

• Can choose flattest and most curved states,
i.e. C2 min and C2 max
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2D model details and features

• Fracture mechanics model includes assumed crack lengths and positions
• Input: Boundary curvatures and temperature vs. time
• Output: Debond driving force in modes I and II vs. crack position and length
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Submodel results: Mode I
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Submodel results: Mode 11
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Key results

• Recall that critical debond driving force is a measurable material property: Strain energy release rate, G
• Comparing modeled values for debond driving force to thresholds tells us if degradation is expected
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3N. Bosco, J. Tracy, and R. Dauskardt, "Environmental Influence on Module Delamination Rate," IEEE Journal of Photovoltaics, vol. PP, pp. 1-7, 12/13 2018, doi: 10.1109/JPHOTOV.2018.2877436.
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Summary and conclusions

• We've developed a method for calculating the debond
driving force affecting an ECA joint inside a full module for
arbitrary environments
• Demonstrated for an IEC thermal cycle
• Demonstrated that 2D modeling assumptions are
conservative

This modeling methodology enables:
• A material design criteria to guarantee joint survival
• Accelerated test design criteria to exactly replicate

real ECA joint stresses
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Backup
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Reference Temperature Selection

minimum energy approach - arbitrary stress-free temperature
Simulations to determine simulation starting point.

minimum strain energy found to exist at -80 C
thermal cycles with different reference temperatures

T
e
m
p
e
r
a
t
u
r
e
 (
°
C
)
 

100

75

50

25

0

-25

0 1 2 3 4
Time (h)

5 6 7

2.00

1.75

-,1,1 1.50

0

'51

Lli

1.25

1.00

0.75

0.50

0.25

total strain energy minimum

0.00  20

Trcf = 25°C

Tref = 55°C
•
•
•
 4 

4111 T„ f = 75°C

• Trcf = 80°C

  4-
• Trcf = 85°C

•

• A Tref = 115°C
•
ro.

.

o
r
ii

Total train energy

minimum at i0°C
•

.44+.• 
....... ...... 

A

60 80 100 120
Temperature (°C)

ninri 1 A

OPE2MAT NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY


