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Motivation

Promising new module architectures have become available

due to Electrically Conductive Adhesives (ECAs)
* Advantages such as reducing frontside metallization shading and S
removing soldering related stresses Sicell oo

ECAs use a conductive fillerin a
polymer matrix

Like any material, ECAs can degrade with exposure: But how?
* Novel material and novel module designs: conventional knowledge may
not apply
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A shingled module:
An ECA-enabled architecture

» Use a multi-scale modeling approach to elucidate the
driving forces for ECA degradation in a shingled module
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Multi-scale modeling approach

The input [an environmental condition] is propagated to the output [forces on the ECA
joint] by passing information between computational models at different scales
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3D Full module model

/Ansys

i:ﬁwl_aqﬁm&éﬂ'lr NATIONAL RENEWABLE ENERGY LABORATORY + SANDIA NATIONAL LABORATORIES <+ LAWRENCE BERKELEY NATIONAL LABORATORY <« SLAC NATIONAL ACCELERATOR LABORATORY 3




3D Full module model

* Developed from datasheet information and a physical example

* Frame, mounting, and assembly details as well as laminate and cell shingle detail

* Thermal viscoelastic encapsulant and backsheet material models from measured data*
* Boundary conditions include mount points frame, edge adhesive

. . . Thermal load
* Informed by previous c-Si module mechanical analyses?
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IN. Bosco, M. Springer and X. He, "Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Simulation bounda ry conditions

Direct Finite-Element Method Input”, Journal of Photovoltaics, 2020.
2J. Hartley, et al., "Effects of Photovoltaic Module Materials and Design on Module Deformation Under Load*, Journal of Photovoltaics, 2020
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3D Full module model results

Time = 200s (+85°C)
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Confirmation of near-constant

Simulated module displacements strain along cell widths

(quarter symmetric)
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3D Full module to 2D model handoff details

» 2D model: 5-cells, glass, encapsulant, and backsheet (same dimensions as full module model)
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Quantify each 5-cell domain curvature Apply full module domains to 2D model
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Which 3D model boundary conditions should be used?

e Consider the extreme houndarv conditions the 2D model could assume
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2D model details and features

* Fracture mechanics model includes assumed crack lengths and positions
* Input: Boundary curvatures and temperature vs. time
e Output: Debond driving force in modes | and Il vs. crack position and length
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Submodel results: Mode |
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Submodel results: Mode |l
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Key results

* Recall that critical debond driving force is a measurable material property: Strain energy release rate, G
* Comparing modeled values for debond driving force to thresholds tells us if degradation is expected
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3N. Bosco, J. Tracy, and R. Dauskardt, "Environmental Influence on Module Delamination Rate," IEEE Journal of Photovoltaics, vol. PP, pp. 1-7, 12/13 2018, doi: 10.1109/JPHOTOV.2018.2877436.
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Summary and conclusions

* We’ve developed a method for calculating the debond
driving force affecting an ECA joint inside a full module for *
arbitrary environments
* Demonstrated for an IEC thermal cycle - B o 100
* Demonstrated that 2D modeling assumptions are =
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- This modeling methodology enables:
* A material design criteria to guarantee joint survival
* Accelerated test design criteria to exactly replicate

real ECA joint stresses Model predicted debond driving
forces vs. measured criteria
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Backup
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Reference Temperature Selection

minimum energy approach - arbitrary stress-free temperature
Simulations to determine simulation starting point.

minimum strain energy found to exist at ~80 C

thermal cycles with different reference temperatures total strain energy minimum
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