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Investigation of flutter for large, highly flexible wind turbine blades
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Abstract 25| baseline blade, baseline flutter |
Carron describes how flexible a 100 m blade must be for transport along a — ~ Dbaseline blade, new flutter
h a2 bl lagts 5 1 h typical railroad track in the United States [6]. By adjusting our WindPACT rall transport blade, baseline flutter
Improvements to the Sandia blade aeroelastic stability tool have been — — rail transport blade, new flutter

baseline blade, the rail transportable blade in this flutter analysis had the oL |
following properties: The flapwise bending rigidity was reduced by a
factor of 1.6, the edgewise bending rigidity was reduced by a factor of 2.1
and the torsional rigidity was reduced by a factor of 1.9.

implemented to predict flutter for large, highly flexible wind turbine blade Lar ge Blades and Flutter Mar gl ns
designs. The aerodynamic lift and moment caused by harmonic edge-wise

motion are now included, but did not change the flutter solution, even for

highly flexible blades. Flutter analysis of future, large blade designs 1s In the following analysis, the WindPACT 1.5 MW blade was used as the

presented based on .sca.ling trends.. The analysis shows t.hat ﬂut.ter speed baseline blade design [4]. It was scaled from its actual size, 33.25 m, through a
decreases at a rate similar to maximum rotor speed for increasing blade range of values up to 113 m. Blade mass was increased by the scaling exponent The following figure shows that a highly flexible blade has a much lower

. . 1 . . . . . . . .
s1zes: Qfiutter X ratea o . This indicates the flutter margin 1s not 2.5, mass o 125 to match the historical trend of blade designs [5]. The area flutter margin. For example, the hard flutter margin is reduced from 2.7 to

directly affecteq by blade 1ength. Rather, ,it was innovgtive design moment of inertia was scaled geometrically which is to the 4th power, I « L%. In 1.4. This would be concerning to a blade designer as there 1s some T
technology choices that predicted flutter in the operational rotor speed

. . . . . this way, the effect of flutter could be investigated for a range of blade sizes allowable overspeed 1n turbulent winds which could push a turbine close to
range 1n previous studies. A 100 m blade, flexible enough to be rail

. oy without introducing unique design concepts such as aeroelastic tailoring or its flutter speed. And the sqft .ﬂut.ter margir.l i? below 1 fOf 311. blade sizes 0.5 -
transported, was analyzed and 1t exhibited soft tlutter below rated rotor innovative materials as in previous flutter studies. that are transportable by rail, indicating a limit cycle oscillation could

speed. This indicated that excessive fatigue damage may occur due to limit occur for this type of blade. The flutter speed was reduced for a rail
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cycle oscillations for blades that incorporate highly flexible designs. The BLAST simulations for a range of blade sizes are seen below. It was transport blade design because the ratio of second flap and first torsion 0 | | g |
observed that as rotor speed increases, both hard and soft flutter frequencies frequencies was reduced due to the reduction in rigidity. Therefore it 1s 20 40 60 80 100 120
reduce at a rate nearly equal to maximum rotor speed seen in the following recommended that highly flexible blade designs increase their biaxial skin Blade Length (m)
figure. The flutter margin stays constant with blade length based on the previous compogitign or similar Flesign choices to .increase torsional rigidity but still
scaling. Therefore, flutter is not expected to be a problem for large blade designs allow significant flapwise bending for rail transport. Conclusions
ObjECtiVES that follow the historical mass change with blade length, and the increase of area
+ Modify Sandia Blade Aeroelastic Stability Tool (BLAST) to include design changes could disrupt this trend. A—— 100 m in length for historically scaled mass anq inertia trends because
harmonic lift and moment due to edgewise (in-plane) blade motion for 35| — — Soft Flutter, Rail Transportable | - flutter speed dec.reas.es at the same ra.te as maxn.n.um rot(.)r speed.
classical flutter analysis 50 | l Hard Flutter * The flutter so}uthn 1s not changed Wl‘th the addition of 11fj[ and moment
+ Analyze the importance of edgewise motions for prediction of flutter ﬁoftd F#Im;ter — — Hard Flutter, Rail Transportable due to edgewise (in-plane) blade motion, even for large displacements
ar utier | _ . . :
speeds 1n modern, highly flexible rotor designs 45 - Rated Rotor Speed | - 3 on highly flexible rotor designs.
+ Investigate the flutter margins for blade length growth trends into the * C(lassical flutter codes do not predict edgewise aeroelastic instabilities
firire 40 L . c 25L _ even when the forces with edge degree of freedom are added.
o) . : . L.
* Determine feasibility of highly flexible, and rail transportable blade o The.reductllon 9f t}(;fSlopal r1g1d1t.§]; and theﬂcoalescen@ of filap .and .
designs with respect to acroelastic instabilities a5 | | > 5 | | tqrsmn modes 1 t. ¢ prime contributor to ptter margin reductions in a
o highly flexible, rail transportable blade designs.
ap . = * Biaxial skin would be a potential solution to keeping the first torsion
£ L 1.57 i} mode high while still allowing a blade to have low flap-wise rigidity for
; rail transport.
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