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m any universal quantum computation can be writen in terms of

m k-tensored T-gate magic states |T)®*
m then acted on by Clifford unitaries Ug
m then partial traced over to obtain a marginal over any qudit

P=Tr <O|UC|T>®k|O)®(”*k)} .

Depth of simulatable circuit scales with k.

Previous methods have relied on Monte Carlo numerics and stop
converging at & > 7.
We show how to get to £ > 14 using an algebraic method.
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m Stabilizer states {|¢;)}; form an overcomplete basis.

m Therefore, any state | V) can be expressed as |V) = > "X c¢;|¢;);.
1

V2

The T-gate magic state extends the Clifford subtheory to
universality.

) (10) +€™/4|1)).

It has been postulated that x(7") grows slowest with increasing
number of qubits
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Computational Cost

P=Tr [<O|UC|T>®k|O)®(”*k)} .

Let x;, be the stabilizer rank of |¥)*. Since the tensor product of two

stabilizer states is a stabilizer state, it follows that x; < XZ/ k|

[ Bravyiet al. PRL 116 (2016): 250501, & Quantum 3 (2019): 181 ]

Numerical Monte Carlo findings:
qubit
k 1 2 3 4|5 6 7

Xe | 2| 2 3 |46 7 |12
t/k | ot | 90.5t | 90.53t 90.47¢

Can we push this further?! Not with numerical techniques.
Really want to know if can do better than trivial tensor bound for
large ¢. This is why x¢ is a big deal. e iy s ol B
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The Wigner Discrete Propagator

Instead of considering our magic state in terms of vectors in Hilbert
space, we can use a kernel (or quasi-probability) representation
instead,;

Given a set of operators R(x), indexed by x € (Z/pZ)", that are
Hilbert-Schmidt orthogonal, any operator can be represented as

A= dIZTr x)A)R (x ZA )R (x



Computation

P = Tr|(0]Uc|T)®*0)*"H]
t n
P wwm [Ter) 1] d(xg,) | -
x'eD |i=1 j=t+1

for

D= {x’ (Mfl (x’ - %) - %>n+l mod 32 = 0}

Basic computational primitive is quadratic Gauss sums. Each one
costs O(n3). We want to know how few we need.
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Hilbert space ‘ WWM
Stab state classical probability distribution
Clifford symplectic transformation
stabilizer inner product quadratic Gauss sum
cost O(n?) cost O(n?)

stabilizer rank y;

quadratic Gauss sum rank &

WWDM formalism is simpler for odd-prime-dimensional qudits and
so here we focus on qutrits (d = 3)
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Three Qutrit T-Gate Magic State:

p(MCi?,C?ﬁ = o Z eXp|: 7yl]1 +8x ) A3<y¢I17le27x)

y<11 y42
€7./37

X [5(ﬂ(y<h - qu)) + 5(yQ1 - qu)é(A)] ’

¥q, and yq, index 9 quadratic Gauss sums.

However, due to the additional delta functions, the Wigner function

of three tensored qutrit magic states can be expressed in terms of

only 8 non-zero quadratic Gauss sums

Extrapolating to higher ¢ counts using the trivial tensor bound, this
log 8

result shows that 350es’ ~ 30-63¢ quadratic Gauss sums can

represent ¢ magic states, for ¢ a multiple of 3.
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Monte Carlo numeric search for qubit stops converging at ¢ = 7
when the stabilizer state space consists of

8.3 x 10130

possible states for a stabilizer rank of 12.
Assuming a similar reduction occurs for qubits at ¢ = 12 as for
qutrits, the WWM method is able to algebraically search a space
that consists of

> 8.3 x 1013000

possible stabilizer states!
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m Converting these results into the discrete setting would likely
help validate and simulate NISQ devices.

m To show this, we extended of the Wigner-Weyl Moyal (WWM)
formalism for discrete odd prime dimensions to higher order 7
corrections through uniformization.

m Produces bounds that follow the stabilizer rank of qubits (after
conversion from base d to base 2).

Thanks!
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