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Tensoring Magic State Gives You Universality

• any universal quantum computation can be writen in terms of
• k-tensored T-gate magic states 7T"k
• then acted on by Clifford unitaries Uc
• then partial traced over to obtain a marginal over any qudit

P = Tr [(01UclYrk 10)®(")] •

Depth of simulatable circuit scales with k.
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• any universal quantum computation can be writen in terms of
• k-tensored T-gate magic states 7T"k
• then acted on by Clifford unitaries Uc
• then partial traced over to obtain a marginal over any qudit

P = Tr [()1 (-7/c IT) ®ie I 
n \ 0(n-k)1
1"/

Depth of simulatable circuit scales with k.

Previous methods have relied on Monte Carlo numerics and stop
converging at k > 7.
We show how to get to k > 14 using an algebraic ips-thod,..E _ , . 1 oc,c,



Stabilizer States as Cost Metric

• Stabilizer states {W}, form an overcomplete basis.
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Stabilizer States as Cost Metric

• Stabilizer states {10i)li form an overcomplete basis.

• Therefore, any state IT) can be expressed as IT) =

IT) = 
'N/2
—(10) +em/411)).

The T-gate magic state extends the Clifford subtheory to
universality.
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Stabilizer States as Cost Metric

• Stabilizer states {10i)li form an overcomplete basis.

• Therefore, any state IT) can be expressed as IT) =

IT) = 
'N/2
—(10) + em/411)).

The T-gate magic state extends the Clifford subtheory to
universality.

It has been postulated that x(T) grows slowest with increasing
number of qubits
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Computational Cost 

P = Tr [(OlticIT)8'k
10)®(n-k)]

Let Xk be the stabilizer rank of 141)k. Since the tensor product of two

stabilizer states is a stabilizer state, it follows that xt < xkt/k.
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Computational Cost

P = Tr [(010C17rk
10)0(n-k)]

Let Xk be the stabilizer rank of14f)k. Since the tensor product of two

stabilizer states is a stabilizer state, it follows that Xt < xkt/k•

[ Bravyi et al. PRL 116 (2016): 250501, & Quantum 3 (2019): 181 1

Numerical Monte Carlo findings:
qubit
k 1 2 3 4 5 6 7

Xk 2 2 3 4 6 7 12

x
tlk
k 2t 20.5t 20.53t 20.47t
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Computational Cost

P = Tr [(010C17rk
10)0(n-k)]

Let Xk be the stabilizer rank of14f)k. Since the tensor product of two

stabilizer states is a stabilizer state, it follows that xt < xkt/k.

[ Bravyi et al. PRL 116 (2016): 250501, & Quantum 3 (2019): 181 1

Numerical Monte Carlo findings:
qubit
k 1 2 3 4 5 6 7

Xk 2 2 3 4 6 7 12

x
t lk
k 2t 20.5t 20.53t 20.47t

Can we push this further?! Not with numerical techniques.
Really want to know if can do better than trivial tensor bound for
large t. This is why x6 is a big deal. o 5 - 1 4-) 4 0'



The Wigner Discrete Propagator

Instead of considering our magic state in terms of vectors in Hilbert
space, we can use a kernel (or quasi-probability) representation
instead;
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The Wigner Discrete Propagator

Instead of considering our magic state in terms of vectors in Hilbert
space, we can use a kernel (or quasi-probability) representation
instead;
Given a set of operators R(x), indexed by x E (Z/pZ)n, that are
Hilbert-Schmidt orthogonal, any operator can be represented as

A = cl- Tr(k(x);4.)R(x) A(x)k(x).
x x
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for

Computation

P Tr [(01tIcIT)®1'10)01-11

P WWM H PT*) 11 (Xqj)

x'ED i=1 j=t+1

D = {x'(M-1 (x' c') 
2/ 2/n

+1 mod 32 = 0}

Basic computational primitive is quadratic Gauss sums. Each one
costs 0 (n3). We want to know how few we need.



Comparison

Hilbert space WWM

Stab state
Clifford

classical probability distribution
symplectic transformation

stabilizer inner product
cost 0(n3)

quadratic Gauss sum
cost O(n3)
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Comparison

Hilbert space WWM

Stab state
Clifford

classical probability distribution
symplectic transformation

stabilizer inner product
cost 0(n3)

quadratic Gauss sum
cost O(n3)

stabilizer rank xt quadratic Gauss sum rank

WWM formalism is simpler for odd-prime-dimensional qudits and
so here we focus on qutrits (d = 3)

1 0 4 4 5 r 4 I. 4 II. I .0 CL 0.



Using WWM to Bound Stab Rank

[ Kocia & Love, arXiv:1810.03622 ] Prior Algebraic Findings:
k 1 2

qutrit

Xk 

ctlk
k

3
3t

3

3 
3o 5t
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Using WWM to Bound Stab Rank
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Pushing Forward

Three Qutrit T-Gate Magic State:

p(m-q,c2,3x) 3 E exp [27ri 
(75,

3 
+ 82 ) ] A3 (Yql , Yq, , x)9 ql q1

Yq1 i'q2
EZ/3Z

x [S(-,(yq, —xq1)) + S(yq, — xq1)6(A)],

yq, and yq2 index 9 quadratic Gauss sums.
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Pushing Forward

Three Qutrit T-Gate Magic State:

p(A4-cl 3c2 3x) 3 E exp  (7yq3, +84)] .A3(yq,,y72,x)
Yql 'Yq2

EZOZ

X [6(-Kyq, - xq1)) + S(yq, - x4,)8(A)] ,

yq, and yq2 index 9 quadratic Gauss sums.

However, due to the additional delta functions, the Wigner function
of three tensored qutrit magic states can be expressed in terms of
only 8 non-zero quadratic Gauss sums
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Pushing Forward

Three Qutrit T-Gate Magic State:

,C2 3X) 3 E exp  (7yq3, +84i)] .A3(yq,,y72,x)
Yql 'Yq2

EZ/3Z

X [SH(yq, — xq1)) + S(yq, — xq,)8(0)] ,

yq, and Yq2 index 9 quadratic Gauss sums.

However, due to the additional delta functions, the Wigner function
of three tensored qutrit magic states can be expressed in terms of
only 8 non-zero quadratic Gauss sums

Extrapolating to higher t counts using the trivial tensor bound, this
log 8  t

result shows that 3 3 log 3 3 0 63t quadratic Gauss sums can
represent t magic states, for t a multiple of 3.



Pushing Forward Summary
New algebraic findings:

k 1 2 3 4 5 6 7

qutrit

Xk 3 3 8? inaccessible to M.C.

4 0 ID. 401. 4 I. 4 II. I ,OCLO,



Pushing Forward Summary
New algebraic findings:

k 1 2 3 4 5 6 7

qutrit

Xk 3 3 8? inaccessible to M.C.
3 3 8 9 21 23 < 63

4 0 ID. 401. 4 I. 4 II. I ,OCLO,



Pushing Forward Summary
New algebraic findings:

k 1 2 3 4 5 6 7

qutrit

Xk 3 3 8? inaccessible to M.C.

3 3 8 9 21 23 < 63

dlk 3t 30.5t 30.631t 30.554 30.476t
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3 3 8 9 21 23 < 63
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tlk
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qubit
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k 8 9 10 11 12 13 14

qutrit

Xk 
6z 

d/k 

69 < 189
inaccessible to Monte Carlo
207 < 513

< 30.528t

513
< 30.473t

< 1539 1539
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Pushing Forward Summary
New algebraic findings:

k 1 2 3 4 5 6 7

qutrit

Xk 3 3 8? inaccessible to M.C.

6? 3 3 8 9 21 23 < 63
etlk 3t 30.5t 30.631t 30.554 30.476t

qubit
tlk

Xk
2t 20.5t 20.528t 20.468t

k 8 9 10 11 12 13 14

qutrit

Xk inaccessible to Monte Carlo

6? 69 < 189 207 < 513 513 < 1539 1539
tklk < 30.528t < 30.473t

qubit
tlk

Xk inaccessible to Monte Carlo



Monte Carlo numeric search for qubit stops converging at t = 7
when the stabilizer state space consists of

8.3 x 10130

possible states for a stabilizer rank of 12.
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Monte Carlo numeric search for qubit stops converging at t = 7
when the stabilizer state space consists of

8.3 x 10130

possible states for a stabilizer rank of 12.
Assuming a similar reduction occurs for qubits at t = 12 as for
qutrits, the WWM method is able to algebraically search a space
that consists of

> 8.3 x 1013000

possible stabilizer states!
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Conclusion

■ Converting these results into the discrete setting would likely
help validate and simulate NISQ devices.
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corrections through uniformization.
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■ Produces bounds that follow the stabilizer rank of qubits (after
conversion from base d to base 2).



Conclusion

• Converting these results into the discrete setting would likely
help validate and simulate NISQ devices.

• To show this, we extended of the Wigner-Weyl Moyal (WWM)
formalism for discrete odd prime dimensions to higher order h
corrections through uniformization.

• Produces bounds that follow the stabilizer rank of qubits (after
conversion from base d to base 2).

Thanks!
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