

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020-9964C

Cost of Classical Strong Simulation of the T-Gate Magic State

Lucas Kocia
and Mohan Sarovar

¹Sandia, Livermore

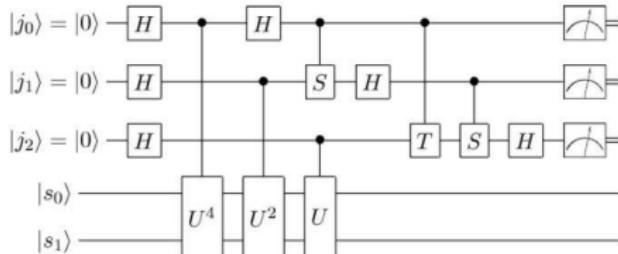
OVER-QC
<https://overqc.sandia.gov>

Sandia
National
Laboratories

National Nuclear Security Administration

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Tensoring Magic State Gives You Universality

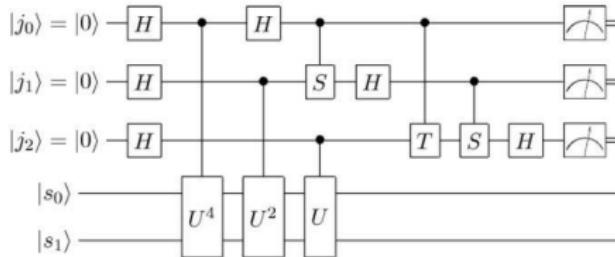


- any universal quantum computation can be written in terms of
 - k -tensored T-gate magic states $|T\rangle^{\otimes k}$
 - then acted on by Clifford unitaries U_C
 - then partially traced over to obtain a marginal over any qudit

$$P = \text{Tr} \left[\langle 0 | \hat{U}_C | T \rangle^{\otimes k} | 0 \rangle^{\otimes (n-k)} \right].$$

Depth of simulatable circuit scales with k .

Tensoring Magic State Gives You Universality



- any universal quantum computation can be written in terms of
 - k -tensored T-gate magic states $|T\rangle^{\otimes k}$
 - then acted on by Clifford unitaries U_C
 - then partially traced over to obtain a marginal over any qudit

$$P = \text{Tr} \left[\langle 0 | \hat{U}_C | T \rangle^{\otimes k} | 0 \rangle^{\otimes (n-k)} \right].$$

Depth of simulatable circuit scales with k .

Previous methods have relied on Monte Carlo numerics and stop converging at $k > 7$.

We show how to get to $k > 14$ using an algebraic method.

Stabilizer States as Cost Metric

- Stabilizer states $\{|\phi_i\rangle\}_i$ form an overcomplete basis.

Stabilizer States as Cost Metric

- Stabilizer states $\{|\phi_i\rangle\}_i$ form an overcomplete basis.
- Therefore, any state $|\Psi\rangle$ can be expressed as $|\Psi\rangle = \sum_i c_i |\phi_i\rangle_i$.

Stabilizer States as Cost Metric

- Stabilizer states $\{|\phi_i\rangle\}_i$ form an overcomplete basis.
- Therefore, any state $|\Psi\rangle$ can be expressed as $|\Psi\rangle = \sum_i c_i |\phi_i\rangle_i$.

$$|T\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{\pi i/4}|1\rangle).$$

The T-gate magic state extends the Clifford subtheory to universality.

Stabilizer States as Cost Metric

- Stabilizer states $\{|\phi_i\rangle\}_i$ form an overcomplete basis.
- Therefore, any state $|\Psi\rangle$ can be expressed as $|\Psi\rangle = \sum_i^\chi c_i |\phi_i\rangle_i$.

$$|T\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{\pi i/4}|1\rangle).$$

The T-gate magic state extends the Clifford subtheory to universality.

It has been postulated that $\chi(T)$ grows slowest with increasing number of qubits

Computational Cost

$$P = \text{Tr} \left[\langle 0 | \hat{U}_C | T \rangle^{\otimes k} | 0 \rangle^{\otimes (n-k)} \right].$$

Remark: Trivial Tensor Bound

Let χ_k be the stabilizer rank of $|\Psi\rangle^k$. Since the tensor product of two stabilizer states is a stabilizer state, it follows that $\chi_t \leq \chi_k^{t/k}$.

Computational Cost

$$P = \text{Tr} \left[\langle 0 | \hat{U}_C | T \rangle^{\otimes k} | 0 \rangle^{\otimes (n-k)} \right].$$

Remark: Trivial Tensor Bound

Let χ_k be the stabilizer rank of $|\Psi\rangle^k$. Since the tensor product of two stabilizer states is a stabilizer state, it follows that $\chi_t \leq \chi_k^{t/k}$.

[Bravyi *et al.* PRL 116 (2016): 250501, & Quantum 3 (2019): 181]

Numerical Monte Carlo findings:

qubit k	1	2	3	4	5	6	7
χ_k	2	2	3	4	6	7	12
$\chi_k^{t/k}$	2^t	$2^{0.5t}$	$2^{0.53t}$			$2^{0.47t}$	

Computational Cost

$$P = \text{Tr} \left[\langle 0 | \hat{U}_C | T \rangle^{\otimes k} | 0 \rangle^{\otimes (n-k)} \right].$$

Remark: Trivial Tensor Bound

Let χ_k be the stabilizer rank of $|\Psi\rangle^k$. Since the tensor product of two stabilizer states is a stabilizer state, it follows that $\chi_t \leq \chi_k^{t/k}$.

[Bravyi *et al.* PRL 116 (2016): 250501, & Quantum 3 (2019): 181]

Numerical Monte Carlo findings:

qubit k	1	2	3	4	5	6	7
χ_k	2	2	3	4	6	7	12
$\chi_k^{t/k}$	2^t	$2^{0.5t}$	$2^{0.53t}$			$2^{0.47t}$	

Can we push this further?! Not with numerical techniques.

Really want to know if can do better than trivial tensor bound for large t . This is why χ_6 is a big deal.

The Wigner Discrete Propagator

Instead of considering our magic state in terms of vectors in Hilbert space, we can use a kernel (or quasi-probability) representation instead;

The Wigner Discrete Propagator

Instead of considering our magic state in terms of vectors in Hilbert space, we can use a kernel (or quasi-probability) representation instead;

Given a set of operators $R(\mathbf{x})$, indexed by $\mathbf{x} \in (\mathbb{Z}/p\mathbb{Z})^n$, that are Hilbert-Schmidt orthogonal, any operator can be represented as

$$\hat{A} = d^{-1} \sum_{\mathbf{x}} \text{Tr}(\hat{R}(\mathbf{x}) \hat{A}) \hat{R}(\mathbf{x}) \equiv \sum_{\mathbf{x}} A(\mathbf{x}) \hat{R}(\mathbf{x}).$$

Computation

$$\begin{aligned} P &= \text{Tr} \left[\langle 0 | \hat{U}_C | T \rangle^{\otimes k} | 0 \rangle^{\otimes (n-k)} \right] \\ P &\stackrel{\text{WWM}}{=} \sum_{\mathbf{x}' \in D} \left[\prod_{i=1}^t \rho_T(\mathbf{x}'_i) \prod_{j=t+1}^n \delta(x'_{q_j}) \right]. \end{aligned}$$

for

$$D = \left\{ \mathbf{x}' \left| \left(\mathcal{M}^{-1} \left(\mathbf{x}' - \frac{\alpha}{2} \right) - \frac{\alpha}{2} \right)_{n+1} \bmod 3^2 = 0 \right. \right\}$$

Basic computational primitive is quadratic Gauss sums. Each one costs $\mathcal{O}(n^3)$. We want to know how few we need.

Comparison

Hilbert space	WWM
Stab state	classical probability distribution
Clifford	symplectic transformation
stabilizer inner product cost $\mathcal{O}(n^3)$	quadratic Gauss sum cost $\mathcal{O}(n^3)$

Comparison

Hilbert space	WWM
Stab state	classical probability distribution
Clifford	symplectic transformation
stabilizer inner product cost $\mathcal{O}(n^3)$	quadratic Gauss sum cost $\mathcal{O}(n^3)$
stabilizer rank χ_t	quadratic Gauss sum rank ξ_t

Comparison

Hilbert space	WWM
Stab state	classical probability distribution
Clifford	symplectic transformation
stabilizer inner product cost $\mathcal{O}(n^3)$	quadratic Gauss sum cost $\mathcal{O}(n^3)$
stabilizer rank χ_t	quadratic Gauss sum rank ξ_t

WWM formalism is simpler for odd-prime-dimensional qudits and so here we focus on qutrits ($d = 3$)

Using WWM to Bound Stab Rank

[Kocia & Love, arXiv:1810.03622] Prior Algebraic Findings:

k	1	2
qutrit		
χ_k	3	3
ξ_k	3	3
$\xi_k^{t/k}$	3^t	$3^{0.5t}$

Using WWM to Bound Stab Rank

[Kocia & Love, arXiv:1810.03622] Prior Algebraic Findings:

k	1	2
qutrit		
χ_k	3	3
ξ_k	3	3
$\xi_k^{t/k}$	3^t	$3^{0.5t}$
qubit		
$\chi_k^{t/k}$	2^t	$2^{0.5t}$

Pushing Forward

Three Qutrit T-Gate Magic State:

$$\begin{aligned}\rho(\mathcal{M}_{C_{1,3}^2 C_{2,3}} \mathbf{x}) &= 3 \sum_{\substack{y_{q_1}, y_{q_2} \\ \in \mathbb{Z}/3\mathbb{Z}}} \exp \left[\frac{2\pi i}{9} (7y_{q_1}^3 + 8x_{q_1}^3) \right] \mathcal{A}_3(y_{q_1}, y_{q_2}, \mathbf{x}) \\ &\quad \times [\delta(\neg(y_{q_1} - x_{q_1})) + \delta(y_{q_1} - x_{q_1})\delta(\Delta)],\end{aligned}$$

y_{q_1} and y_{q_2} index 9 quadratic Gauss sums.

Pushing Forward

Three Qutrit T-Gate Magic State:

$$\begin{aligned}\rho(\mathcal{M}_{C_{1,3}^2 C_{2,3}} \mathbf{x}) &= 3 \sum_{\substack{y_{q_1}, y_{q_2} \\ \in \mathbb{Z}/3\mathbb{Z}}} \exp \left[\frac{2\pi i}{9} (7y_{q_1}^3 + 8x_{q_1}^3) \right] \mathcal{A}_3(y_{q_1}, y_{q_2}, \mathbf{x}) \\ &\quad \times [\delta(\neg(y_{q_1} - x_{q_1})) + \delta(y_{q_1} - x_{q_1})\delta(\Delta)],\end{aligned}$$

y_{q_1} and y_{q_2} index 9 quadratic Gauss sums.

However, due to the additional delta functions, the Wigner function of three tensored qutrit magic states can be expressed in terms of only 8 non-zero quadratic Gauss sums

Pushing Forward

Three Qutrit T-Gate Magic State:

$$\begin{aligned}\rho(\mathcal{M}_{C_{1,3}^2 C_{2,3}} \mathbf{x}) &= 3 \sum_{\substack{y_{q_1}, y_{q_2} \\ \in \mathbb{Z}/3\mathbb{Z}}} \exp \left[\frac{2\pi i}{9} (7y_{q_1}^3 + 8x_{q_1}^3) \right] \mathcal{A}_3(y_{q_1}, y_{q_2}, \mathbf{x}) \\ &\quad \times [\delta(\neg(y_{q_1} - x_{q_1})) + \delta(y_{q_1} - x_{q_1})\delta(\Delta)],\end{aligned}$$

y_{q_1} and y_{q_2} index 9 quadratic Gauss sums.

However, due to the additional delta functions, the Wigner function of three tensored qutrit magic states can be expressed in terms of only 8 non-zero quadratic Gauss sums

Extrapolating to higher t counts using the trivial tensor bound, this result shows that $3^{\frac{\log 8}{3 \log 3} t} \approx 3^{0.63t}$ quadratic Gauss sums can represent t magic states, for t a multiple of 3.

Pushing Forward Summary

New algebraic findings:

k	1	2	3	4	5	6	7
qutrit	3	3	8?				<i>inaccessible to M.C.</i>

Pushing Forward Summary

New algebraic findings:

k	1	2	3	4	5	6	7
qutrit							
χ_k	3	3	8?		<i>inaccessible to M.C.</i>		
ξ_k	3	3	8	9	21	23	≤ 63

Pushing Forward Summary

New algebraic findings:

k	1	2	3	4	5	6	7
qutrit							
χ_k	3	3	8?		<i>inaccessible to M.C.</i>		
ξ_k	3	3	8	9	21	23	≤ 63
$\xi_k^{t/k}$	3^t	$3^{0.5t}$	$3^{0.631t}$		$3^{0.554}$	$3^{0.476t}$	

Pushing Forward Summary

New algebraic findings:

k	1	2	3	4	5	6	7
qutrit							
χ_k	3	3	8?		<i>inaccessible to M.C.</i>		
ξ_k	3	3	8	9	21	23	≤ 63
$\xi_k^{t/k}$	3^t	$3^{0.5t}$	$3^{0.631t}$		$3^{0.554}$	$3^{0.476t}$	
qubit							
$\chi_k^{t/k}$	2^t	$2^{0.5t}$	$2^{0.528t}$			$2^{0.468t}$	

Pushing Forward Summary

New algebraic findings:

k	1	2	3	4	5	6	7
qutrit							
χ_k	3	3	8?		<i>inaccessible to M.C.</i>		
ξ_k	3	3	8	9	21	23	≤ 63
$\xi_k^{t/k}$	3^t	$3^{0.5t}$	$3^{0.631t}$		$3^{0.554}$	$3^{0.476t}$	
qubit							
$\chi_k^{t/k}$	2^t	$2^{0.5t}$	$2^{0.528t}$			$2^{0.468t}$	

k	8	9	10	11	12	13	14
qutrit							
χ_k		<i>inaccessible to Monte Carlo</i>					

Pushing Forward Summary

New algebraic findings:

k	1	2	3	4	5	6	7
qutrit							
χ_k	3	3	8?		<i>inaccessible to M.C.</i>		
ξ_k	3	3	8	9	21	23	≤ 63
$\xi_k^{t/k}$	3^t	$3^{0.5t}$	$3^{0.631t}$		$3^{0.554}$	$3^{0.476t}$	
qubit							
$\chi_k^{t/k}$	2^t	$2^{0.5t}$	$2^{0.528t}$			$2^{0.468t}$	

k	8	9	10	11	12	13	14
qutrit							
χ_k				<i>inaccessible to Monte Carlo</i>			
ξ_k	69	≤ 189	207	< 513	513	< 1539	1539

Pushing Forward Summary

New algebraic findings:

k	1	2	3	4	5	6	7
qutrit							
χ_k	3	3	8?		<i>inaccessible to M.C.</i>		
ξ_k	3	3	8	9	21	23	≤ 63
$\xi_k^{t/k}$	3^t	$3^{0.5t}$	$3^{0.631t}$		$3^{0.554}$	$3^{0.476t}$	
qubit							
$\chi_k^{t/k}$	2^t	$2^{0.5t}$	$2^{0.528t}$			$2^{0.468t}$	

k	8	9	10	11	12	13	14
qutrit							
χ_k				<i>inaccessible to Monte Carlo</i>			
ξ_k	69	≤ 189	207	< 513	513	< 1539	1539
$\xi_k^{t/k}$				$< 3^{0.528t}$	$< 3^{0.473t}$		

Pushing Forward Summary

New algebraic findings:

k	1	2	3	4	5	6	7
qutrit							
χ_k	3	3	8?		<i>inaccessible to M.C.</i>		
ξ_k	3	3	8	9	21	23	≤ 63
$\xi_k^{t/k}$	3^t	$3^{0.5t}$	$3^{0.631t}$		$3^{0.554}$	$3^{0.476t}$	
qubit							
$\chi_k^{t/k}$	2^t	$2^{0.5t}$	$2^{0.528t}$			$2^{0.468t}$	

k	8	9	10	11	12	13	14
qutrit							
χ_k				<i>inaccessible to Monte Carlo</i>			
ξ_k	69	≤ 189	207	< 513	513	< 1539	1539
$\xi_k^{t/k}$				$< 3^{0.528t}$	$< 3^{0.473t}$		
qubit							
$\chi_k^{t/k}$				<i>inaccessible to Monte Carlo</i>			

Monte Carlo numeric search for qubit stops converging at $t = 7$ when the stabilizer state space consists of

$$8.3 \times 10^{130}$$

possible states for a stabilizer rank of 12.

Monte Carlo numeric search for qubit stops converging at $t = 7$ when the stabilizer state space consists of

$$8.3 \times 10^{130}$$

possible states for a stabilizer rank of 12.

Assuming a similar reduction occurs for qubits at $t = 12$ as for qutrits, the WWM method is able to algebraically search a space that consists of

$$> 8.3 \times 10^{13000}$$

possible stabilizer states!

Conclusion

- Converting these results into the discrete setting would likely help validate and simulate NISQ devices.

Conclusion

- Converting these results into the discrete setting would likely help validate and simulate NISQ devices.
- To show this, we extended of the Wigner-Weyl Moyal (WWM) formalism for discrete odd prime dimensions to higher order \hbar corrections through uniformization.

Conclusion

- Converting these results into the discrete setting would likely help validate and simulate NISQ devices.
- To show this, we extended of the Wigner-Weyl Moyal (WWM) formalism for discrete odd prime dimensions to higher order \hbar corrections through uniformization.
- Produces bounds that follow the stabilizer rank of qubits (after conversion from base d to base 2).

Conclusion

- Converting these results into the discrete setting would likely help validate and simulate NISQ devices.
- To show this, we extended of the Wigner-Weyl Moyal (WWM) formalism for discrete odd prime dimensions to higher order \hbar corrections through uniformization.
- Produces bounds that follow the stabilizer rank of qubits (after conversion from base d to base 2).

Thanks!

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.