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UQ@SNL

SANDIA NATIONAL LABORATORIES
MAIN ROLE AND AREAS OF INTEREST
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SANDIA NATIONAL LABORATORIES
ALGORITHMS R&D: FROM CORE SOLVERS TO MODELING AND SIMULATION APPLICATIONS
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FIGURE: Courtesy of Brian Adams
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UQ@SNL

SANDIA NATIONAL LABORATORIES
DAKOTA - EXPLORE AND DESIGN WITH CONFIDENCE

Algorithms for design exploration and simulation credibility
» Suite of iterative mathematical and statistical methods that interface to
computational models
» Makes sophisticated parametric exploration of simulations practical for a
computational design-analyze-test cycle

Features
> Sensitivity: Which are the crucial factors/parameters?
» Uncertainty: How safe, reliable, or robust is my system?
» Optimization: What is the best performing design or control?
» Calibration/Parameter Estimation: What models and parameters best match
data?

Credible Prediction
» Verification: Is the model implemented correctly, converging as expected?
» Validation: How does the model compare to experimental data, including

remamie 5. DAKOTA

https://dakota.sandia.gov/

Recent Advancements on Multifidelity UQ 4/106



UNCERTAINTY QUANTIFICATION
THE COMPLETE WORKFLOW

Quantities of

Random inputs interest (Qol)

Statistical Inversion
(Bayesian inference)

Notes:
»  Prior distributions based on a priori knowledge

» From observational data (experiments, reference solutions, etc.) we can infer posterior distributions via
Bayes rule

Use of data can reduce uncertainty in parameter to Qol mapping (priors are constrained)
Design using prior uncertainties can be overly conservative

Reduced uncertainty of data-informed UQ can produce designs with greater performance

Recent Advancements on Multifidelity UQ 5/106
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Quantification?



Multifidelity UQ

UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES

Stewardship (NNSAASC) Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF, ACME)
Safety in abnormal environments Wind turbines, nuclear reactors Ice sheets, CISM CESM ISSM, CSDMS

fowlaw

shelf geometry

sidinglow
meliresze disu

bedtopography

CHWM: push fwd
Addtnl. Office of Science: , oD
(SCDAC. EFRC)

Uniform
Comp. Matls: waste forms /
hazardous matls (WastePD, CHWM) Pareto-
MHD: Tokamak disruption (TDS) j informed

0
-3.00-1.50 000 150 3.00 450 6:00 7.50 9.00
Activation Energy (eV)

FIGURE: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC
» Severe simulations budget constraints

» Significant dimensionality driven by model complexity
Recent Advancements on Multifidelity UQ
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Multifidelity UQ

UNCERTAINTY QUANTIFICATION
RICH SET OF MODELING CHOICES - DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

» Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)
» Numerical methods (high/low order, Euler/RANS/LES, etc...)

» Numerical discretization (fine/coarse mesh...)

» Quality of statistics (long/short time history for turbulent flow...)

Reynolds

RANS/LES

Large Eddy
Simulation (LES)

Potential Flow

Potential
\ Flow

Regions

vortex sheet

KyPpLa 1PPOIN 3

Hybrid RANS/LE
Relationships amongst models can be difficult to anticipate

» A simple hierarchical sequence can correspond to strict modeling choices (e.g.
discretization levels)

» More often, for some Qol, we can have peer models

Recent Advancements on Multifidelity UQ 7/106
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MF Sampling

UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:
» High-dimensionality, non-linearity and possibly non-smooth responses

» Rich physics and several discretization levels/models available

Natural candidate:

» Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

» Drawback: Slow convergence O(N~1/2) — many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

» Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

» High-fidelity models are costly, but accurate
» low-bias estimates

Recent Advancements on Multifidelity UQ 8/106
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MONTE CARLO
A BRIEF OF ITS HISTORY (1/2)

Halton (1970): representing the solution of a problem as a parameter of a hypothetical population, and using a
random sequence of numbers to construct a sample of the population, from which statistical estimates of the
parameter can be obtained.

» One of the first documented MC experiments is Buffon’s needle experiment which Laplace (1812) suggested
can be used to approximate 7 (Johansen and Evers, 2007)

where
» N: number of needles
» [: length of the needles
» P: number of needles crossing the lines
>

t: distance between the lines

FIGURE: Buffon's needle experiment based on 17
throws. (Source: Wikipedia)

Recent Advancements on Multifidelity UQ 9/106



MF Sampling

MONTE CARLO

A BRIEF OF ITS HISTORY (2/2) - Los Alamos Science No. 15, Special Issue 1987 — In honor of Stan Ulam

Around 1940:

» ENIAC: first electronic computer at the University of Pennsylvania

[...] Stan’s (Stanislaw Ulam) extensive mathematical background made him aware that statistical sampling
techniques had fallen into desuetude because of the length and tediousness of the calculations. But with this

miraculous development of the ENIAC, [...] it occurred to him that statistical techniques should be resuscitated,
and he discussed this idea with von Neumann. Thus was triggered the spark that led to the Monte Carlo method.

» The name: Ulam had a uncle who would borrow money from relatives because he "just had to go to Monte

Carlo*

THE BEGINNING of the
MONTE CARLO METHOD

by N. Metropolis

N a(mrh m}uu}mmm\

1. challenge.to pructise mq

v
M define. ‘
I Ir'rr
| ! \

FIGURE: Metropolis' contribution to the Los
Alamos Science Special Issue, 1987

*beu

Recent Advancements on Multifidelity UQ

FIGURE: Analog device dubbed FERMIAC,
Image from Los Alamos Science No. 15, 1987
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MF Sampling

SAMPLING METHODS
HOW ARE SAMPLING METHODS USED WITHIN UQ?

» There are several applications for the MC method

In Uncertainty Quantification (UQ) we are often concerned with the computation of a the expected value of
a function (or higher moments)1

EF©) = [ f©pe)de

» Therefore one of the tasks to be performed in UQ is the quadrature in (very often) high-dimension (E C Rd)

The Monte Carlo method is based upon three main steps:

» Pre-processing: generation of random numbers
» Evaluation step: Computation of the Quantity of Interest from the computational code

» Post-processing: Estimator and confidence interval evaluation

1UQ is a much richer area than 'just’ numerical quadrature, but nevertheless this is an important task
Recent Advancements on Multifidelity UQ 11/106



MF Sampling

STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable @:

e _ L&
N =< ZQU)
N3

Recent Advancements on Multifidelity UQ 12/106



MF Sampling

STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable @:
. 1 ¥ e
e = T > e®

i=1

Two main estimator's properties
~MC 1 N 5
> Unbiased (for each choice of N1): E [Q% } =S LE [Q(‘>] =E[Q]
i=1

» Convergent (Strong law of large numbers): Nlim QR,’IC =E[Q] ass.
— 00

Recent Advancements on Multifidelity UQ 12/106



MF Sampling

STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable @:
. 1 ¥ e
e = T > e®

i=1
Two main estimator's properties
~MC 1 N 5
> Unbiased (for each choice of N1): E [Q% } =S LE [Q(‘>] =E[Q]
i=1

» Convergent (Strong law of large numbers): Nlim QR,’IC =E[Q] ass.
— 00

Main mathematical tool used for the analysis is the Central Limit Theorem (CLT)

> Let's define the error ey = E [@] — Q%C

» Let's assume Var [@)] is finite, then for N — oo

N N, 1),
1/ Var [Q%C]
where e Var (@]
Var [QN ] = 5

Recent Advancements on Multifidelity UQ 12/106



MF Sampling

CENTRAL LIMIT THEOREM
CONFIDENCE INTERVAL

CLT is the fundamental result that enable us to obtain a confidence interval for MC

1/2__ °N - ~
> P(N Varl/Z (@) §z> Fy(z), for Z ~ N(0,1)

FEPHARIES)

e
» We want to control the probability of N1/2 N , therefore
Varl/2 ()
1/2 en < z )
PIIN/"——F—|<z| =1-2Fz(2) =erf| —
(‘ Varl/2 Q)| ~ > 2() V2
1 T T T
0.95 1
09 | 1
§ 085 | z 1— 2F;(2)
5 1 0.683
é 08 | 4 2 0.954
5 3 0.997
0.75 1
0.7 1
Error function
0.65 .
1 1.5 2 2.5 3 35
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MF Sampling

MONTE CARLO
TARGET ACCURACY

We can use the distribution of ey to estimate the number of simulations required.
> Let's assume we want an estimator accurate at the 99.7% with error ey = &
» We need to select z = 3 (from the previous table)

Var
5
Few additional comments:

» The number of samples scales as 2, ie. one order of increased accuracy is obtained with 100 times more
samples

» Error is not a function of the dimension (e o N71/2)
» Error is not a function of the regularity of the quantity @

» On the contrary the error for a composite (Cavalieri,Kepler-)Simpson's rule ([0, 1]) is bounded by

fx

4

(4) —4 _ —4/d
—— max x), therefore ey < N, =N
w0y @ N

(MC integration is competitive for d > 8 w.r.t.
{ > Simpson’s rule)

FIGURE:
https://en.wikipedia.org/wiki/Simpson’27s_rule

Recent Advancements on Multifidelity UQ 14/106



MF Sampling

MONTE CARLO
ESTIMATOR VARIANCE: DERIVATION

In summary we have seen so far:

» CLT provide a rigorous way to assess the accuracy of a MC simulation

> ey ~ (/Var MC}/\/(O,l)

en o< N—1/2 and (numerical cost) is cMC « N, therefore CMC e;2

MC convergence is independent from the dimensionality of the problem (indeed more efficient w.r.t. other
strategies as d increases)

MC does not require a certain degree of regularity to maintain its properties

Recent Advancements on Multifidelity UQ
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MF Sampling

MONTE CARLO
ESTIMATOR VARIANCE: DERIVATION

In summary we have seen so far:

» CLT provide a rigorous way to assess the accuracy of a MC simulation

> ey ~ (/Var MC}/\/(O,l)

> ey o N—1/2 and (numerical cost) is CMC o N, therefore CMC e;2

MC convergence is independent from the dimensionality of the problem (indeed more efficient w.r.t. other
strategies as d increases)

> MC does not require a certain degree of regularity to maintain its properties

Variance of a MC estimator is
~MC 1 ¥ o
Var |Q = Var | — Q'
[ N ] N Z:I
N

1 .
= ﬁVar Z Q(L)

i=1
Ly
= =3 var(@]
N2 =1

=5V

Recent Advancements on Multifidelity UQ 15/106



1 MF Sampling VI

MONTE CARLO
ESTIMATOR VARIANCE: A SIMPLE DEMONSTRATION

Let consider a random variable @, we want to compute its expected value E [@] (or some high-order moment):
e _ 1SR o)
Qv =-> Q"
N i=1

#Hit
Let's use MC to compute the value 7 o<

Hit
0 P Miss

Recent Advancements on Multifidelity UQ 16/106



MF Sampling M

MONTE CARLO
ESTIMATOR VARIANCE: A SIMPLE DEMONSTRATION

Let consider a random variable @, we want to compute its expected value E [@] (or some high-order moment):
N
LS
N i=1

#Hit

Let's use MC to compute the value 7 o<

Estimated Pi

24 . : . . .
0 100 200 300 400 500 600 700 800 900 1000

Repetition
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MF Sampling M

MONTE CARLO
ESTIMATOR VARIANCE: A SIMPLE DEMONSTRATION

Let consider a random variable @, we want to compute its expected value E [@] (or some high-order moment):

i 1@
%% :—ZQ(L)

i=1

N

#Hit

Let's use MC to compute the value 7 o<

3.8

3.6

34

3.2

3

Estimated Pi

2.8

26

24 . : . . . . .
0 100 200 300 400 500 600 700 800 900 1000

Repetition
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N 1 t MF Sampling MF U )

VARIANCE REDUCTION STRATEGIES
AN (INCOMPLETE LIST)

Variance of the estimator:

Var {Q%C} = Va;v[Q]

What can we do to drive down the variance of the estimator?
#0 Increase the number of samples — this is going to cost us too much for HF applications
#1 , e.g. Reduced Order Models (ROMs)
#2

#2 Replace the original Qol with a lower variance alternative (with the same mean)

Sampling-based variance reduction techniques:
» Importance sampling
» Very useful when the main contribution to E [@] comes from rare events
» Stratified sampling
» Very effective in 1D, not clear how to extend to multiple dimensions
» Latin hypercube
» Effective if the function can be decomposed into a sum of 1D functions
» (Randomized) quasi-MC

» Possibly provides better error than MC, but need to be randomized to get the confidence interval

Recent Advancements on Multifidelity UQ 17/106



1 MF Sampling VI

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

QMC, def 1Y @)
u N = ZQ

1 — Y
p L)
g Qo 030 ° °
\\ 4
s ° ° ‘\’
)
[
> 05}
S
8 °
[ ]
o®
(1] Hit e
0 o ° Miss @
0
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MF Sampling

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

e, der L 1 ZQ(”

N =100, Nx=4 ——

pr =
Est Mean ——
3.8 T T T T T T T T T
36 )
€ 94 }"”" 'l“ il |'|||y|\"|\ i |U i r"?!u”l\h i '.|..“|.‘.'l!!
3 il mw'\&[ . r!”“ }"!ww L !"‘”‘,H: i il ‘l"\.l‘l”l'l‘ll‘;' LA
T il 1 o L !Ilul\l ml‘H AT
= TN ||H|H| ! ‘I Hlnui‘m IFE T i | 1§l
ﬁ 3 | |J gl | ‘ ‘ il | l 1
2.8
26—
0 100 200 300 400 500 600 700 800 900 1000
Repetition

Recent Advancements on Multifidelity UQ 19/106



MF Sampling

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

e, der L 1 ZQ(”

N =100, Nx=16

p!
Est Mean (Nx=4)
Est Mean (Nx=16)

3.8 T T T T T T

|‘|.‘T d w"i’”ﬂl\ ll“ \1’||\||Hu||n i

Estimated Pi

0 100 200 300 400 500 600 700 800 900 1000
Repetition
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MF Sampling

MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the statistics of a functional (linear or non-linear) Qs of the solution uys

Qy =G(uy) — E[Qy]

» M is (related to) the number of spatial degrees of freedom

M— o0

> E[Qy] ——— E[Q] forsome RVQ : Q —» R

c def 1 ZQ(Z)’

Looking at the Mean Square Error (MSE):

2 (@ - 21@)?] = £ [ (@S — Elaul + 2 (ow] - £(@))’]

E {(QMCN _E [QM])Z} + 28 [ (&% — ElQu]) (E[Qu] — E(QD)]
+E[(E [Qu] - E[Q)?]
= var [QN%] + EQm - Q)*

Recent Advancements on Multifidelity UQ 20/106



MF Sampling

MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:
AMC 2 1 [QMC ] 2
E [(@)% — E[QD?] = var [ ] + (E(Qm — Q)
» Sampling error: replacing the expected value by a (finite) sample average, i.e.

var [Q] = 5
From the CLT, for N — oo
% Vi
(@S — @) ~ | w0,

» Model fidelity (e.g. discretization): finite accuracy

Recent Advancements on Multifidelity UQ 21/106



MF Sampling

MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:
AMC 2 1 AMC 2
E [(@)% — E[QD?] = var [ ] + (E(Qm — Q)

» Sampling error: replacing the expected value by a (finite) sample average, i.e.

i Var [Q]
MC

Var = —

[QM,N} N

From the CLT, for N — oo

(@S — @) ~ | w0,

» Model fidelity (e.g. discretization): finite accuracy

Accurate estimation = Large number of samples evaluated for the high fidelity model

. -vé
At ‘ A i
>¢ B w‘t\‘

Hit e
Miss

LY
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MF

ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

Single Fidelity

Pivotal idea:

» High-fidelity models are costly, but accurate
» low-bias estimates

» Low-fidelity models are inaccurate but cheap-to-evaluate
» low-variance estimates
Multifidelity challenges:
» How do you arrange the information sources?
» How do you optimally allocate samples among models?

Recent Advancements on Multifidelity UQ
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MF Sampling

WHY IS THIS SUPPOSED TO WORK?
A PROTOTYPICAL ESTIMATOR: THE DIFFERENCE ESTIMATOR

Ingredients:
» High-fidelity: Q
> Low-fidelity: P

N,

Q

EQ =E[P+(@—P) =E[P| +E[Q— P *me =3 (e - 2%
Np i3 Q j=1

Properties of the difference estimator
» Unbiased

» Variance

Var [P] Var[@ —P]  Var[P] 1 Var [Q] + Var [P] — 2Cov (Q, P
N T We = et g (VeIal+ Ver(P) — 30ov(Q,P)

NOTE: The negative term can help you if the cost of computing P is low and if Var [P] approaches Var [Q)]

Recent Advancements on Multifidelity UQ 23/106



MF Sampling

CONTROL VARIATE
CAN WE DO SLIGHTLY BETTER?

A Control Variate MC estimator (function @1 with pq known)
Q}C\‘[V:Q—ﬁ(Ql_Hl)ﬁ BER

NOTE-1: @ is the MC estimator of the HF and @ is the MC estimator of the LF
NOTE-2: @ and @ are obtained with the same samples

Properties:

» Unbiased, i.e. E [QI%V} =E [Q] = E [Q] (for any 3)

: AoV _ Var'/2(Q)
> argémnVar [QN ] — B = pVarl/Z @)
Cov(@, Q1)

» Pearson’s p = where [p| < 1

Varl/2 (Q) Varl/2 (@)

[ var 6] = var @] (1- ) |

Let’s consider:
» Var [Qq] = Var [Q]
> px1

» |t follows that 8 ~ —1

NOTE: In reality 3 is estimated by a finite number of samples, therefore the variance is slightly higher and there is
a small bias (that can be quantified)...

Recent Advancements on Multifidelity UQ 24/106
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MF Sampling

MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity Q, to decrease its variance

QICVV:QJrB(Ql*M)-

Recent Advancements on Multifidelity UQ 25/106



MF Sampling

MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity Q, to decrease its variance

QICVV:QJrﬁ(Ql*M)-

In practical situations

» the term i1 is unknown (low fidelity # analytic function)

» we use an additional and independent set ALF — (r— l)NHF

1 rNHF @

~ i

i =~ o z; Q@
i=

Finally the variance is

Var [QI%V} = Var [Q] (1 — r; 5 p?)

[1] Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated
control means. //E Transactions, 44(5), 381-385, 2012

[2] Ng, LW.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

[3] Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194, 2016.
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MF Sampling

MULTIFIDELITY ESTIMATOR
HOW DO WE SELECT THE IMPORTANT PARAMETERS?

Var [QI(\’}V} = Var [QN] (1 = ; 1 p%)

Two questions:
1 How do I pick 87

2 How many samples do | need to evaluate for each model?

r—1 ' LF HF
Q: If —— — 1, why don't we use a very large r for the estimator? (Remember, N** = rN™")
r

Recent Advancements on Multifidelity UQ 26/106



MF Sampling

MULTIFIDELITY ESTIMATOR
HOW DO WE SELECT THE IMPORTANT PARAMETERS?

Var [QI(\’}V} = Var [QN] (1 = ; 1 p%)

Two questions:
1 How do I pick 87

2 How many samples do | need to evaluate for each model?

r—1 ' LF HF
Q: If —— — 1, why don't we use a very large r for the estimator? (Remember, N** = rN™")

r
A: An optimal solution for r exists if we try to minimize the overall estimator cost for a certain target variance

Recent Advancements on Multifidelity UQ 26/106



MF Sampling

MULTIFIDELITY ESTIMATOR
HOW DO WE SELECT THE IMPORTANT PARAMETERS?

Var [QI(\’}V} = Var [QN] (1 = ; 1 p%)

Two questions:
1 How do | pick 37

2 How many samples do | need to evaluate for each model?

Q: If g — 1, why don't we use a very large r for the estimator? (Remember, NLF — rNHF)
A: An o;timal solution for r exists if we try to minimize the overall estimator cost for a certain target variance
Let's introduce the following notation

» Cost of one low-fidelity realization: iand

» Cost of one high-fidelity realization: cHE

» Total cost: C (NHF,r) — NHFcHF | WHF oLF
Remember...

E (@ —E(@)*] = var [@k%] + (E[Qu — @)*

Additional considerations:
» Let's assume someone is giving us the weak error £ [Qy — Q] committed on the resolution level M

> Let's call (E [Qy — Q)% = £2/2 for simplicity

Recent Advancements on Multifidelity UQ 26/106



MF Sampling

MULTIFIDELITY ESTIMATOR
MINIMIZATION OF THE COMPUTATIONAL COST (PROBLEM DEFINITION)

We want to solve the following problem:

> Minimization of the total computational cost: C (NHF, r) = NHFHF + rNHF cLF

52/2

» We want to reach a target MSE of 52, therefore Var {QI‘QVM}

» The cost ratio between the two models is: w = CHF/CLF

Recent Advancements on Multifidelity UQ 27/106



MF Sampling

MULTIFIDELITY ESTIMATOR
MINIMIZATION OF THE COMPUTATIONAL COST (PROBLEM DEFINITION)

We want to solve the following problem:

> Minimization of the total computational cost: C (NHF, r) = NHFHF + rNHF cLF
> 2 Var [BCV | _ 2
We want to reach a target MSE of £, therefore Var |Qy 'y | = €°/2

» The cost ratio between the two models is: w = CHF/CLF

More formally, let's define our optimization problem (Lagrange constrain optimization)

1 52
argmin (£) £ =% — x| —Var [@IF| A(r) — —
min (£) e Vor (@] AC) = 5

Ctot (NHF, r) = NHFCHF + rNHFCLF
— NHF (CHF + rCLF)

— NHFCeay = NHFCHP L ()

Recent Advancements on Multifidelity UQ 27/106



MF Sampling

MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as

HF
NHE* _ V“"sz[?f; ],A(,*),

Recent Advancements on Multifidelity UQ 28/106



MF Sampling

MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as

HF
NHE* _ V“"sz[?;’f ],A(,*),

How this compare to MC?

Var [QII[I,IF] s
e2/2
Var [Q}f |
£2/2

> Total cost of MC: CMC = NHFCHF — E

> Total cost MF: ¢t = NHF.xceapry — CHF e (w, p?), where

0w, p?) ¥ A*)r¢)

measures the efficiency of the method (w.r.t. MC, i.e. we want ©(w, /)2) <1)

Recent Advancements on Multifidelity UQ 28/106



MF Sampling

MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as (w = Cyp/CLr)

* pr
r* =
HF
HF,*_V”[QM] =1,
N = ——(1-— P
2 r*

' r* r* —1 :
Ciot = N * Cyrp (1 + —> = NmcCur (1 < ) <1 = /'2> = NycCrp® (w, p°)
w w

0.9

05 \\ —
LDAN NN r—

o
o 07 ‘
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g v \ "y =y Theta
S 05 5 S - . Lo
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MF Sampling

GEOMETRICAL MLMC
ACCELERATING THE MONTE CARLO METHOD WITH MULTILEVEL STRATEGIES

Multilevel MC: Sampling from several approximations @y of @ (Multigrid...)

Ingredients:

> (My:0=0,... LywithMy <M; < - <M, &M

» Estimation of E [@p7] by means of correction w.r.t. the next lower level

e QM - QM = £>0 inearii L L
2% M A neortty, i (@] = E [Quag |+ D E [@nr, — Qur,_,| = 0 EIVe]
Qo £=0 =1 =0

»  Multilevel Monte Carlo estimator

L
Qe G = ZN Z(Q o )

£=0 £ i=1

» The Mean Square Error is
E[@F -EQ)7] = Z Ny 'Var [Y,] + (E [Qu — Q)2

Note If @)y — @ (in a mean square sense), then Var [Y,] £
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GEOMETRICAL MLMC
DESIGNING A MLMC SIMULATION: COST ESTIMATION

Let us consider the numerical cost of the estimator

L
c@ity =S Ne,
£=0

Determining the ideal number of samples per level (i.e. minimum cost at fixed variance)

L
AML
C(@y) = E NyCy
=0 Lagrange multiplier Var [Y,]
S ik’ i — e

2| & 1/2
Ne=Z| S (Var [l cp)t/

2

Ll [ Cy

L

-1 2
S N War[Y,] =</2
£=0

L
Var [Q%L} = ZN;lVar (Yy) .
£=0

» MLMC can be reinterpreted as a particular instance of recursive control variate (more on this later)

MLMC has been originally introduced for problems for which it is possible to control the highest resolution
(full MSE control)

> No need to estimate coefficients, but optimal for very controlled scenarios (i.e. discretization level)

[1] Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617, 2008.

[2] Haji-Ali, A., Nobile, F., Tempone, R. Multi Index Monte Carlo: When Sparsity Meets Sampling, Numerische
Mathematik, Vol. 132, 767-806, 2016.
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2In Collaboration with Prof. Gianluca laccarino (Stanford)



MF Sampling

MULTILEVEL-MULTIFIDELITY APPROACH
COMBINATION OF DISCRETIZATION AND MODEL FORM

» OUTER SHELL — Multi-level: no need to estimate coefficient (mesh based, high correlation)

HF “HE HF ity HF
El@i | =D E[Y|=> %
1=0 =0
» INNER BLOCK — Multi-fidelity (i.e. control variate on each level)
YEE ZFHE o, (Y [v))
Final properties of the estimator
R Lur R ;
)
1=0 :

and

AMLMF L
Var [QM ] = Z
=0

Recent Advancements on Multifidelity UQ 32/106



MF Sampling

MULTILEVEL-MULTIFIDELITY
OPTIMAL ALLOCATION ACROSS DISCRETIZATION AND MODEL FORMS

» Target accuracy for the estimator: 2

» Cost per level is now Czq = C?F —+ C%‘Frg

» the (constrained) optimization problem is

Lur - Lar - .
argmin (£), where L = ZNZ Czq+/\ Z ~qF var [Yz ]Az("U —e /2
NHF rp £=0 =Ny
rg—1
> Ag(re) :1*pir7
¢

After the first iteration the algorithm can adjust the number of samples on the HF or LF side depending on the
correlation properties discovered on flight

After the minimization (NII,‘F = N;IF + AII}‘F = N?Frg)

L HF] -HF \ 1/2
wr, 2 |ZEE (Var [viF]
N~ 2 — Ay
€% k=0 )
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ENHANCING THE CV EFFECT
MAXIMIZING THE CORRELATION FOR A FIXED LF MODEL (1/2)

Possible cures for low-correlation (of the discrepancy terms):

» |teration with the application team to identify the lack of convergence
» LF model improvement

»  Algorithmic-contained correlation improvement
» Reformulation of the LF discrepancy to gain optimality

o LF LF _ LF
Y," = 7@ — @71,

where 7y, is chosen in order to maximize the correlation between Y?F and }“,%F

Following the same MLMF approach

Lup _ 2
) 8 (] (24 o

=0 \"V¢ re tm

Cov (Y?F7 ?;;‘F) Var (?%F)

= Cov (YHF YLF) = Var (YLF)
£ 12g £
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MF Sampling

ENHANCING THE CV
MAXIMIZING THE CORRELATION FOR A FIXED LF MODEL (2/2)

The optimal LF model coefficient v, can be computed analytically:
N Cov (Y?F, QIZ‘EI) Cov (QIZF, QIZIil) — Var (Q%El) Cov (Y?F, QIZF)
- LF HF (LF HF QLF LF oLF
Var (QYF) Cov (YHF, Q4 ) — Cov (YHF, QUF) Cov (Q4F, Q4F )

The resulting optimal allocation of samples across levels and model forms is given by

2
L
1
r; = iezw[, where w[:C?F/C%F
/4
l—p%—
TE
0% 7k — 1
27072
Ap=1—py— "
e T}
i/2
L HF\ -HF 2 (HF)
NHF,*_ HF \Var(Yk )Ck o i 23[ Var YI{
e =5 2 £ (%) —Re CHF
k=0 122t 2 ¢
Pe
Te

[1] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity control variate approach for the multilevel Monte Carlo
technique. Center for Turbulence Research, Annual Research Briefs 2015, pp. 169-181.

[2] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity multilevel Monte Carlo method for uncertainty
propagation in aerospace applications 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech
Forum, (AIAA 2017-1951)
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PRACTICAL IMPLEMENTATION
BUDGET-CONSTRAINED OPTIMIZATION

1 (Coupled) Pilot runs for LF and HF

I HF] -HF 1/2
H. 2 |RHF (Var [Yz ]ce
N, = — — L " Ay
‘ 2 1_ 2
€7 | k=0 - Py

2 Optimal ratio sequence (¢ independent!)

HF, x 2 HF HF
NHF, (1 — p3)Var [Ye } (o
HF,» — 2 HF HF
Mg § (1= p}_pvar [ ] cf
HF, % HF, * F,* HF, x
S D R N L _ M x N
= g i T yHF 2 T ONHE < LflfNHF,*’ L T NHF
0 1 L—2 L—1

3 Given the target number Ngfget of HF runs at finer resolution L

HF HF £-1

o * *

N[ - target I l L—q
q=0

4 Optimal low fidelity simulations N%F = rZN?F‘*
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Test problems



MF Sampling

Heat equation — Parabolic 1D
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HEAT EQUATION
VERIFICATION TEST CASE (WE KNOW THE EXACT SOLUTION)

Heat-equation in presence of uncertain thermal diffusivity and initial condition:
du(x,&,t) Pu(x, &)
ot Q)2 -
u(x,€,0) =up(x,€), t€[0,tg] and £€=CR
u(x,€,t)|pq =10
ug(x, &) = G(&)F1(x) + Z(€) F2(x)

0, a>0,x€[0,L]=QCR

800 F

Initial condition
w Fidelity =———
__High Fidelity

600 |
400 - » Low-fidelity:

ow = {1,2,3} = E[Qow] = 33.15
> High-fidelity: 7pigh = flow U {9,21} —

e WA W ARY/EVI E [@pign] = 41.98
200 » Discrepancy E [@nigh] — E [Qiow] = 8.83
-400 (21%)
0 0.2 0.4 016 0.8 1

200 - a!

ulx.te)

-600
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NUMERICAL RESULTS
DESIGNING A CHALLENGING TEST CASE - MC ON N, = 1000

50 , . | |
MC LF —e—
MR
F ]
® exact HF ——
40
| LF HF
S 8 | # modes 3 21
E Nx Wy
£=0 5 30 42
30 e=0 FRNE
£=2 30 100 23
® =3 60 200 23
20 ; ,

0 100000 200000 300000 400000 500000 600000 700000
N

@ The LF cannot increase the overall accuracy because it is heavily biased...
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NUMERICAL RESULTS

MULTI-LEVEL MULTI-FIDELITY (COMPARISON WITH MLMC AND MC)

65

MLMC +--3¢c--=
MLMF —e—

exact e

60

55
50

EQ)

45 -
40 |
35t M—

30

25 ‘ :

e @ X Y X

10 100 1000 10000
N

100000

Expected Value
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epsilon

10
L
01}
0.01 . L L
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N
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MF Sampling

Non-linear elastic waves propagation — Hyperbolic CLAWs 1D
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

» Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws
oa =Kie+Kj, K =1 and K§ =¢ ¢& ~ 1(0.01,0.02)
o =KBe+ KB, K} =15 and Ki=08

» Uncertain initial static (u(x,t = 0) = 0) pre-loading state:

(x — 0.35)(x — 0.25)\ .
&3 exp (——) if 0<x<1/2 &3 ~U(0.5,2)
. 2 x 0.002
( & - 065 — 0‘75)) if 1/2<x<1 U(0.5,6.5)
S %0 2 % 0.002 ! * & o

> Spatially varying uncertain density: p(x) = &; + 0.5sin (27x), £1 ~ U(1.5,2)
» Clamped rod as B.C.

12
LF21 nodes - - -
L 28322 e Nx N: Ay -
Wi o e - - - LowsFidelity 21 o0 | S4 R0
HF 101 nodes —— 41 100 1.8 x 10
8t HF 201 nodes —— (GODUNOV) _3
HF 401 nodes 81 150 1.2 x 10
HF 1001 nod —4
” Inital Solution 151 | 288 | 6.25 x 10
g \ =7
& High-fidelity 0L | 200 495X 1;)0_ .
(MUSCL-van Leer) 201, 400 -0 X 4
401 900 2x 10

1001 | 2000 9 x 10~°

TABLE: Low- and high- fidelity simulations
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

Standard Deviation of the Estimator

y
' ' YIcV ——
QoY
MC
MLMC
01} ]
w
(2]
2
001 | q
0.001 . ‘ ‘ s
10 100 1000 10000 100000

Equivalent HF runs
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MF Sampling

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES — AVERAGE OF 50 REALIZATIONS

Average Standard Deviation of the Estimator
1 T

MLMC
MLMF Y| ——
MLMF QI —»—
=
2 0.1} 1
8
]
a
B
3
[ =
i 0.01 k|
@
0.001 - -
10 100 1000 10000
Equivalent HF simulations
Level MLMC MLME-YI MLME-QI
N, || NEF | NEF | r, | g2 || NHF | NEF | | g2
0 80029 5960 | 243178 | 40 | 0.97 4682 | 192090 | 40 | 0.97
1 6282 2434 12487 4 0.49 1049 13781 12 | 0.83
2 1271 262 3877 14 | 0.82 151 3657 23 | 0.92
3 212 47 966 19 | 0.84 34 754 21 | 0.86

Recent Advancements on Multifidelity UQ 42/106



MF Sampling

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES — AVERAGE OF 50 REALIZATIONS

Average Standard Deviation of the Estimator
1 T

MLMC *

MLMF Y| ——
MLMF QI —»—

=

2 0.1} k|

8

>

o)

a

ko)

g \

°

=

i 0.01 k!

(2]

0.001 . L
10 100 1000 10000

Equivalent HF simulations

Level MLME-YI MLMF-QI
NF || 2 || NFF | NF |y | B
0 243178 | 40 | 0.97 192090 | 40 | 0.97
1 12487 4 0.49 13781 12 | 0.83
2 3877 14 | 0.82 3657 23 | 0.92
3 966 19 | 0.84 754 21 | 0.86
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MF Sampling

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES — AVERAGE OF 50 REALIZATIONS

Average Standard Deviation of the Estimator

MLMC
MLMF Y| ——
MLMF QI —»—

=
2 0.1 f 1
8
]
[a]
° =
% \
[ =
8 0.01 E
@
0.001 ‘ .
10 100 1000 10000
Equivalent HF simulations
Level MLMC MLME-YI MLMF-QI
N, NEF | NIF NEF | NIF
0 80029 5960 | 243178 4682 | 192090
1 6282 2434 12487 1049 13781
2 1271 262 3877 151 3657
3 212 47 966 34 754
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Representative Applications
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Cardiovascular flow — Flow/Structure interaction
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CARDIOVASCULAR FLOW
IN COLLABORATION WITH FLEETER AND PROF. MARDSEN (STANFORD) AND PROF. SCHIAVAZZI (NOTRE DAME)

L dy

(a) (b) (c) (d)

Recent Advancements on Multifidelity UQ 43/106



MF Sampling M

CARDIOVASCULAR FLOW
COMPUTATIONAL SETTING AND UQ SETUP

| Aorto-Femoral Ranges | Coronary Ranges

Uncertain Parameter | Min Max Min | Max
BC: Total R 1.0079 x 10% 1.8718 x 10° 1.0500 x 10 1.9500 x 10%
BC: Total C 7.0000 x 10~* | 1.3000 x 10~% | 7.0000 x 10=* | 1.3000 x 10~*
BC: Ratio of R,/Riotal 3.9200 x 1072 | 7.2800 x 1072 | 6.3000 x 1072 | 1.1700 x 10~
BC: Ratio of R,/Riota (renal arteries) | 1.9600 x 10~ | 3.6400 x 10~*
Young’s Modulus 4.9700 x 10° 9.2300 x 10° 4.9700 x 10° 9.2300 x 10°
Young’s Modulus (coronary arteries) 8.0500 x 10° 1.4950 x 10°
Inlet waveform total flow 5.8333 x 10! 1.0833 x 10? 6.3490 x 10! 1.1791 x 10?
Blood Density 7.4200 x 107! | 1.3780 7.4200 x 107! | 1.3780
Blood Viscosity 2.8000 x 1072 | 5.2000 x 1072 | 2.8000 x 1072 | 5.2000 x 1072

| Aorto-Femoral Healthy | Aorto-Femoral Diseased | Coronary Healthy ‘ Coronary Diseased
Fidelity & Level I Cost ‘ Effective Cost | Cost ‘ Effective Cost | Cost | Effective Cost ‘ Cost. ‘ Effective Cost
3D Fine Mesh 870.80 h | 1 667.23 h | 1 2164.61 h | 1 119848 h | 1
3D Medium Mesh | 22844 h | 2.62 x 107! 157.05 h | 2.35 x 107! 497.23 h | 2.30 x 1071 286.88 h | 2.39 x 10~!

3D Coarse Mesh 98.02h | 1.13 x 10! 56.21 h | 8.42 x 102 78.65 h | 3.63 x 102 120.63 h | 1.01 x 10~
1D Fine Mesh 11.60 m | 2.22 x 10~* 11.87 m | 2.96 x 10~* 4.33m | 3.34x 107 1.78 m | 6.65 x 10~°
1D Medium Mesh | 2.95 m | 5.65 x 10 2.62m | 6.54 x 107° 1.90m | 1.46 x 107° 2.00m | 2.78 x 107°
1D Coarse Mesh 1.90 m | 3.64 x 107° 1.52m | 3.79 x 107° 1.08 m | 8.34x 107° 113 m | 1.58 x 107°
0D Full Model 0.49 m | 3.64 x 107¢ 0.50 m 25 x 107° 0.17 m | 7.66 x 10~° 0.16 m | 1.36 x 10~*
0D Simple Model 0.03m | 6.60 x 10~° 0.03m | 7.60 x 1077 0.03m | 2.51 x 1071 0.03m | 4.72 x 1071
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MF Sampling VI

CARDIOVASCULAR FLOW

UQ RESULTS - FOR MORE SEE FLEETER, GERACI et al., CMAME, VOLUME 365, 15 JUNE 2020, 113030

Flow at Celiac Trunk Outlet

TAWSS in Superior Mesentaric Branch

2 25F =
g - I
—_ ‘ 3 |
= |
20 ‘ i 20 I
- (-
z | T | ;
g 1f
£15 i | 5 | :
= e L | 3 T }
. | = i
= = ==
s 1
) 5 -
5 |
I i
i 0 =
3D Fine 1D Fine 0D RCL 3D Fine 1D Fine 0D RCL
Models Models

(a)
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1 MF Sampling VI

CARDIOVASCULAR FLOW
UQ RESULTS - FOR MORE SEE FLEETER, GERACI et al., CMAME, VOLUME 365, 15 JUNE 2020, 113030

Aorto-Femoral Healthy (Estimator Standard Deviation)

q «q 0%
\ \ 1
10" A
0~
5 b -
% W w 3 Y h \ Y A e
\ u o | @10 N L NR,
10 107 107 10° 10 10*
Equivalent HF Fine Runs Equivalent HF Fine Runs Equivalent HF Fine Runs Equivalent HF Fine Runs
(a) (b) (c) (d)
Coronary Healthy (Estimator Standard Deviation)
10"
\ = . -1
E p b z x , . N 1
oz AA -] ” LTIt B o, A. L . A A ™
\ o . N o . A . » ) b
107 10° 10° 10° 10° 107 107
Equivalent HF Fine Runs Equivalent HF Fine Runs Equivalent HF Fine Runs Equivalent HF Fine Runs
© ® (® (h)
@ Monte Carlo Multilevel ()= MLMF 3D-1D MLMF 3D-1D-0D
Legend' ‘D’ "‘

> (a)(
> (b)(
» (c)-(g) Time-averaged pressure
> (d)-(h) TAWSS
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f) Outlet pressure
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Nozzle design — Aero-Thermo-Structural interaction
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AERO-THERMO-STRUCTURAL ANALYSIS
PROBLEM DESCRIPTION

(a) X47B UCAS (b) Nozzle close-up

FIGURE: Northrop Grumman X-47B UCAS and close up of its nozzle (Source: http://www.
northropgrumman. com/MediaResources/Pages/MediaGallery.aspx?ProductId=UC-10028)

Recent Advancements on Multifidelity UQ 47/106



MF Sampling

AERO-THERMO-STRUCTURAL ANALYSIS
COMPUTATIONAL SETTING

1~D‘-engir'1'e model

RANS nozzle aerodynamics

Non-ideal nozzle aero
Axisymmetric Euler / RANS aero
Adaptive meshing

I
{ AR sasains

— —
Heat Iuaj Mech load

eat Transfer
1-D Conjugate Heat Transfer -

STF

_p D(x)
a(x) = P(x) 2t :
Simplified hoop stresses : I
\ j KCoarse FEM structural mody FEM structural model
Low-fidelity model Medium-fidelity model __ High-fidelity model
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AERO-THERMO-STRUCTURAL ANALYSIS
15 UNCERTAIN PARAMETERS

[ Parameter [ Range ]
Inlet stagnation temperature [K] 897.75-992.25
Atmospheric Temperature [K] 248.9-275.1
Inlet stagnation pressure [Pa] 216,000-264,000
Atmospheric Pressure [Pa] 57,000-63,000 > HF
Thermal conductivity [W/m K] 8.064-9.856 Flow: Euler
Elastic modulus [Pa] 7.38¢10-9.02¢10 Thermal/Stress: FEM
Thermal expansion coefficient [1/K] 1.8e-6-2.2e-6
lower Bspline 1 [- 0.005-0.03 > LF
lower Bspline 2 [- 0.005-0.03 Flow: 1D non-ideal nozzle
lower Bspline 3 [- 0.005-0.03 Thermal/Stress: Thermal resistances and hoop model
lower Bspline 4 [- 0.005-0.03
upper Bspline 1 [- 0.005 -0.03
upper Bspline 2 [- 0.005-0.03 > LF (updated) )
upper Bspline 3 [- 0.005-0.03 Flow: 1D non-ideal nozzle
upper Bspline 4 [- 0.005-0.03 Thermal/Stress: FEM

TABLE: Uncertain parameters for the nozzle problem.

@ Control variate only at coarsest level!
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AERO-THERMO-STRUCTURAL ANALYSIS
MESH DISCRETIZATION HIERARCHY

RS

5

P ) /N
KNS
AV KL

5

AYAVAY, vy, 0’1}‘4
ORGP
RO

Triangles

Coarse 6,119

Medium 29,025
Fine 142,124

N

b - TABLE: Number of triangles.

(a) Coarse (b) Medium

LF HF

Coarse 0.016 0.053

Medium | N/A  0.253
Fine N/A 1.0

TABLE: Computational cost.

(c) Fine

FIGURE: Close up of the meshes.

Recent Advancements on Multifidelity UQ 50/106



MF Sampling

AERO-THERMO-STRUCTURAL ANALYSIS
CORRELATION AND VARIANCE REDUCTION

LF LF (updated)
correlation | Variance reduction [%] correlation | Variance reduction [%]
Thrust 0.997 91.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 93.4

TABLE: Correlations and variance reduction for 52/58 = 0.001.

2,9 LF HF LF (updated) MF
Accuracy (e7/p) Coarse Coarse Medium Fine Coarse Coarse Medium Fine
0.1 N/A N/A N/A N/A 404 20 20 20
0.01 21,143 1,757 20 20 3,091 177 31 20
0.003 69,580 5,775 36 20 N/A N/A N/A N/A
0.001 212,828 17,715 109 34 32,433 1,773 314 20

TABLE: Sample profiles for the LF and HF model as function of the normalized accuracy 62/6%.

Recent Advancements on Multifidelity UQ 51/106



MF Sampling

AERO-THERMO-STRUCTURAL ANALYSIS
MULTILEVEL/MULTIFIDELITY EFFICIENCY

MC —e—
MLMC —e—

MLMF
MLMF (LF updated)

e N N

1
=
(]
N
£
s 0.1
£
[0
o
<
3
g
~ 0.01
]
©
£
@
w

0.001

10
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Scramjet — 2D /3D LES (Combustion)
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SCRAMJET ENGINES
A LITTLE BIT OF CONTEXT: OPPORTUNITIES AND CHALLENGES

Supersonic combustion ramjet (Scramjet) engines
» are propulsion systems for hypersonic flight
» aim at directly utilize atmospheric air for stable combustion while maintaining supersonic airflow
» obviates the need to carry on-board oxidizer

» overcome the losses from slowing flows to subsonic speeds (no rotating element)

Several challenges

» characterizing and predicting combustion properties for multiscale and multiphysical turbulent flows (under
extreme environments)

» low throughput time vs need for mixture and self-ignition

» stable combustion for constant thrust

Designing an optimal engine requires

»  Maximization of the combustion efficiency

»  Minimization of the pressure losses, thermal loading
» Reducing the risk of unstart and flame blow-out
>

Accomplishing these tasks under uncertain operational conditions (robustness and reliability)

From Jurzay (2018): The challenge of enterprising supersonic combustion in scramjet is [...] as difficult as lighting
a match in a hurricane.

[1]1 Urzay, J., Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight, Annual Review of Fluid Mechanics,
Vol. 50, No. 1, 2018, pp. 593627. doi:10.1146/annurev-fluid-122316-045217.

[2] Leyva, I., The relentless pursuit of hypersonic flight, Physics Today, Vol. 70, No. 11, 2017, pp. 3036. doi:10.1063/PT.3.3762.
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HYPERSONIC INTERNATIONAL FLIGHT RESEARCH AND EXPERIMENTATION (HIFIRE)
PROBLEM DESCRIPTION AND COMPUTATIONAL SETUP

» The HIFiRE project studied a cavity-based hydrocarbon-fueled dual-mode scramjet configuration
» Ground test rig, HIFIRE Direct Connect Rig (HDCR), built to replicated the isolator/combustion section

Fuel System
(4 Secondary

omputationa Primar
Computational ry Infoctors

domain injectors

Forsbooy et
Y b .
i 3 L

Combustion chamber

25.4mm

ExhaustNozzie Tsofator iy

o 208 204 205 350401 419 751mm

Shroua  's0lator/ Combustor

(b) HDCR computational dormain

FIGURE: Left: HIFIRE Flight 2 payload [1]. Right: HDCR schematic.

Computational setup
» A reduced three-step mechanism to characterize the combustion process

» Arrhenius formulations of the kinetic reaction rates (parameters are fixed at values that retain robust and
stable combustion)

» Large Eddy Simulations carried out by using RAPTOR code (Prof. Joe Oefelein)

SNL LES code RAPTOR

»  Fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically reacting
flow

can handles high Reynolds numbers
real gas effects
robust over wide range of Mach numbers

vyvyvyy

non-dissipative, discretely conservative, staggered finite-volume schemes

[1] Jackson, K. R., Gruber, M. R., and Buccellato, S., HIFiRE Flight 2 Overview and Status Uptate 2011, 17th AIAA International
Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2202, San Francisco, CA, 2011.

doi:10.2514/6.2011-2202.
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SUPERSONIC COMBUSTING RAMJET
PROBLEM DESCRIPTION
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MF Sampling

SCRAMJET
INSTANTANEOUS TEMPERATURE FIELD OVER DIFFERENT MESH RESOLUTIONS

T [K]
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MF Sampling

SCRAMJET
24 UNCERTAIN PARAMETERS

Parameter Symbol Range
Inflow boundary conditions

Inlet

Stagnation pressure Do,i 1.48 MPa + 5%
Stagnation temperature To,i 1550 K + 5%
Mach number M; 2.51 + 10%
Turbulence intensity L= u: /U; [0.0 — 0.05]
Turbulence intensity ratio I, = v: /ui/ 1.0
Turbulence length scale L; [0.0 — 8.0]mm
Boundary layer thickness &; [2.0 — 6.0]mm
Fuel injection (36%CHy, 64%CoH )

Mass flux tiy 7.37 x 1073 kg/s + 10%
Static Temperature T,c 300.0 K £ 5%
Mach Number My 1.0 + 5%
Turbulence intensity Iy = u;/Uf [0.025 — 0.075]
Turbulence length scale Ly [0.02 — 1.0] mm

Wall boundary conditions
Wall Temperature Tw Profile from KLE
Expansion (10 params)

Turbulence model parameters
Static Smagorinsky

Modified Smagorinsky constant Cgr [0.01 — 0.016]
Turbulent Prandtl number Pry [0.5 —1.7]
Turbulent Schmidt number Sct [0.5 — 1.7]

TABLE: Summary of the uncertain parameters for the SCRAMJET problem.
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MF Sampling

SCRAMJET
UQ RESULTS

correlation Variance reduction [%)]
i i Coarse | Fine ‘ ‘ Coarse | Fine
Po moan 0997 | 0.761 93 50
Po rms.moan 0875 | 0593 72 30
Mmnean 0.975 0.649 89 36
TKE nean 0.824 0.454 64 17
pY— 0450 | 0.714 19 75

TABLE: Correlations and variance reduction.

2D 3D
d/8 | 564 011
d/16 | 0014 1

TABLE: Computational cost.

2D 3D
d/8 | 4191 263
d/16 68 9

TABLE: LES simulations (target of 9 runs at 3D d/16 and sz/s% = 0.045).
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MF Sampling

SCRAMJET
UQ SETTING

1 T —
MC ——
MLMC ——
MLMF
& 01 : : J
()
0.01 - -
10 100 1000 10000 100000 1e+06

Equivalent HF runs
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MF Sampling

MULTILEVEL, MULTIFIDELITY AND MLMF
RELATIVELY LARGE EXPERIENCE WITH REALISTIC PROBLEMS

Success stories

» PSAAP Il — particle laden turbulence flow in radiative environment (collaborators: Gianluca laccarino,
Alireza Doostan, Lluis Jofre, Hillary Fairbanks)

Cardiovascular flows — fluid-structure (collaborators: Casey Fleeter, Daniele Schiavazzi, Alison Marsden)

Aero-thermo-structural analysis for nozzle devices (collaborators: Juan Alonso, Gianluca laccarino, Paul
Constantine)

SCRAMUJET engine (collaborators: Habib Najm, Cosmin Safta, Xun Huan)
» Large Eddy Simulations for wind plants (collaborators: David Maniaci, Ryan King)

Computer networks (collaborators: Laura Swiler, Jonathan Crussell, Bert Debusschere)

Does MLMF always work better than MLMC?

» It cannot be worse than MLMC (except for the cost of the pilot samples), but not always better than MC if
MLMC is outside the 'design conditions’ (more on this later on)

» An example: Wind turbine analysis with LES where 3-level MLMC performed worse than a 2-level MLMC

Q: How do we ensure that our sequence of models is 'optimal’?
A: Very often you can only control the way in which you fuse information...
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MF Sampling

OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

QCV:Q+£%’ (Qi*“i)

> Qi MC estimator for the ith low-fidelity model

» 11; known expected value for the ith low-fidelity model
> a=la;..., aM]T set of weights (to be determined)
Let's define
» The covariance matrix among all the low-fidelity models: C € RMXM
» The vector of covariances between the high-fidelity @ and each low-fidelity @;: ¢ € rRM

> ¢ =c¢/Var[Q] = [p1Var[Q4], ..., pyVar [QM]]T, where p; is the correlation coefficient (@, @;)

The optimal weights are obtained as a* = —C~Lc and the variance of the OCV estimator
Var [QCV] = Var [Q} (1 — éTC_lé)

=Var [Q] (1 - Rjey), 0 <Rpey < 1.

@ For a single low-fidelity model: R%CV~1 = p?
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MF Sampling

APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE

For complex engineering models the expected values of the M low-fidelity models are unknown a priori
P Let's define the set of sample used for the high-fidelity model: z

> Let's consider N; ordered evaluations for @;: z; (we assume N; = [r;N])

» Let's partition z; in two ordered subsets zi1 §] z-l2 = z; (note that in general zi1 n zi2 #0)
The generic Approximate Control Variate is defined as

M M
Qa,2) = Q@) + > o (Qu(z) — i(2)) = Q@) + Y cidi(z) = @ +a"A,
i=1 i=1

The optimal weights and variance can be obtained as

var [@ ()] = var [@] 1 - cov [4,@]" %ﬁ*l@, [, @})

oAV = —cov [, Al Cov [A, Q)]

=Var [@] (1 - Rev) -

@ For a single low-fidelity model: RiCV—l — =l p% (this result does not depend on the partitioning of zy)

1

NOTES: we are going from Cov [Qi, Qj] to Cov [Ai, Aj]
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MF Sampling MF U

RECURSIVE DIFFERENCE ESTIMATOR

A RECURSIVE PARTITIONING WITH INDEPENDENT ESTIMATORS (EQUIVALENT TO MLMC FOR FIXED BIAS)

Q [ Q Qu
MLMC can be obtained from ACV with
> Zil =z
> z?:z}+1 fori=1,...,M—1
» a3 = —1foralli
= o
~MLMC - | L2
ﬂ QMM (2) =@+ > (1) (Qiz) — D)
i=1
Var [QMLMC] = Var [Q] (1 - R%{Diff)
M
2 2_2 2 ™ 1 2.2, 2 2
Rppiy = —o171 — 2a1p171 — O‘ME - — (O‘i T+ T 1T — 20‘i0‘i—lﬂi,i—1"i7'i—1) )
1=2 i—

where

1/2¢0.
Ll Varl—Z(QL) and n; = ‘zg‘ /N is the ratio between the cardinality of the sets 22 and z.
varl/2(Q) : !
NOTES

» Given the recursive nature of RDiff, we can show that R%{Diff < p{‘{ (asr; — oo and N is fixed)
» It is actually possible to compute an optimal set of weights instead of using o; = —1 (w-RDiff)
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MF Sampling MF U

MULTIFIDELITY MONTE CARLO (PEHERSTORFER, WILLCOX AND GUNZBURGER, 2016)
AN APPROXIMATED CONTROL VARIATE WITH A RECURSIVE PARTITIONING

Q @ Q2 e Qu

. . MFMC can be obtained from ACV with
* B >z;:zi71andz?:zifori:&...,M
z
%

> z}:zandz%:zl

=——————— for i=1,...,M,

JMrve _ Cov[Q, Qi
' Var [@;]

and the variance of the estimator is

Var [QMFMC} = Var {Q] (1 - RIZVIFMC)

2 Ao —ria 2 2
RyMpMc = D ————p; =Pl
= FiF-1
i=1 1

NOTES
» Given the recursive nature of MFMC, we can show that R12V[FMC < p? (asr; — oo and N is fixed)

» Surprisingly, the covariance matrix Cov [A, A] is diagonal — you can compute in close form the optimal
weights, but the ability to leverage correlations among all the models is lost
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MF Sampling VI

EXAMPLES OF CONVERGENT ESTIMATORS
IS IT POSSIBLE TO OVERCOME THE LIMITATION OF THE RECURSIVE SAMPLING SCHEMES?

We proposed two sampling strategies that overcome the limitation of the recursive schemes
Q Q Q Qe Q Q Q Qu

| z;' l | I

(a) ACV-IS sampling strategy. (b) ACV-MF sampling strategy.

As an example, let's consider the ACV-MF estimator

By = [ding (FMP) 0¢]” [C o diag (FO)] " [diag (FM™) o e]

The matrix FIMF) ¢ RMXM gncodes the particular sampling strategy and is defined as
min(rl-,rj)fl o X
—mmery— i #EJ
Fl.(jMF) = min(r;,7;) o, for 1 oo, FM) 1y and Rigy_yp — Roy
otherwise

NOTE
» No closed form for the optimal weights and the samples allocation per model
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1 MF Sampling VI

A PARAMETRIC MODEL PROBLEM
WHAT HAPPENS FOR A LIMITED NUMBER OF LOW-FIDELITY SIMULATIONS?

We designed a parametric test problem to explore different cost and correlation scenarios (x,y ~ U(—1,1))
5 . 5
Q:A(cos@x +sm9y)

Q1 =4, (cos 01 x> + sin 01 y3)

Qo = Ag (cos Oy x + sin Oy y)
We use the following definitions
> A =+11,A; = V7, and Ay = /3 (give unitary variance for each model)
» 0 = m/2and 63 = 7/6 and 61 varies uniformly in the bounds 0y < 61 < 6

> We consider a fixed cost ratio between models, i.e. a relative cost of 1 for @, 1/w for @ and 1/w? for @y

—_— 00V
—e— 0CV-1
— 0CV/OCV-1

0.4 0.0
0.6 0.8 1.0 1.2 14 0.6 0.8 1.0 12 14

0

(a) Correlations
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MF Sampling M

A PARAMETRIC MODEL PROBLEM
COMPARISON OF DIFFERENT ESTIMATORS (EQ. CosT 100 HF)

& 04
Ell 2
=

0.0 0.0 0.0

0.6 0.8 L0 12 14 0.6 0.8 L0 1.2 14 0.6 0.8 L0 12 14
0 6 0,
(a) w=10 (b) w=15 (c) w=20

1.0 1.0 1.0
208
E(H.
£ 04
iﬂ‘
=

0.0

0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 14 0.6 0.8 1.0 12 14
o 0 6

(d) w =50 (e) w =100 (f) w = 1000

FIGURE: Variance reduction for cost ratios of [1,1/w, 1/w?] for @, @1, and Q2
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Non-linear elasticity in heterogeneous media — Hyperbolic 2D CLAWSs
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MF Sampling M

NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
PROBLEM SETUP

Hyperbolic system of equations describing the elastic wave propagation (normal and shear components) in two
spatial dimensions for a domain with two materials

qt +Aqx + Bgy = 0, where

0 0 0 (A+2u) 0 0 0 0 0 A
0 0 0 A 0 0 0 0 0 (A+2u)
A7_2 0 0 0 mul g _ o0 (1) w 0
1 9 o 0 0 o o 1 o 0
Iz o
o o 1 0 0 o 1L o o 0
P P
vE E
A= i ,
1+ )1 —2v) 21+ v)

Parameters | nr A I pr Ap r
Distribution | U(0.5,1.5)  U(3.0,5.0) 74(0.25,0.75)  U(0.5,1.5)  U(1.0,3.0) (0.5, 1.5)
Trace(sigma) -- Initial Condition u -- Initial Condition
1 1 T — T 0
8
0.75 6 075 B o5
05 i@ 05 - 4 ’
0.25 > 025 N
0 0 0~ 4
0.25 2 025 - Bl
-05 4 05 | -
-6 2
-0.75 -0.75 | 4
-8
4 4 L ] 25
-1 -0.75-0.5-0.25 0 0.250.50.75 1 -1 -0.75-0.5-0.25 0 0.250.50.75 1
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MF

ampling

NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
DETERMINISTIC RESULTS - CLAWPACK http://wwu.clawpack.org (VER. 5.X)

| order Il order
Resolution 200 100 50 25 10 200 100 50 25 10
Norm. Cost | 1.000 0.147 0.026 0.009 0.002 | 0.498 0.080 0.013 0.004 0.002

TABLE: Normalized cost with respect to the cost of the second order 200 x 200 resolution.

HF: top row — LF: bottom row

100100 S50
o

—

57’

' 0z 02
107505025 0 02505075 1 107505025 0 02505075 1

02 1
7505025 0 02505075 1 107595025 0 02505075 1| 107505025 0 02505075 1

St stoss - 15t rdr — 2001200 Shearstess - 15 oxdr 1004100 ‘Shear stoss — 16t rdr - 25125 Shearsess - 1 ordr 10510
02 — 02 1

4 02 4 02 0z - 02 4 o
107505025 0 02505075 1 107505025 0 02505075 1 107505025 0 02505075 1

FIGURE: Shear stress at final time 0.5 for the two model fidelities (top and bottom rows) and the five
discretization levels (200 x 200, 100 x 100, 50 x 50, 25 x 25, 10 x 10 from left to right) corresponding to the mean
values of the random parameters. The Qol is the average value of the shear in the dashed region within the right
material.
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
CORRELATION MATRIX

200 (I1) 100 (IT) 50 (1) 25 (I 10 (IT) 200 (I) 100 (I) 50 (I) 25() 10 (I)

1.00000 099838 0.99245  0.96560 0.70267 0.99312 0.98333  0.93857 0.85400 0.56719
0.99838  1.00000  0.99092 096461  0.69060  0.99160 098380 0.93360 0.84743  0.55127
0.99245  0.99092  1.00000  0.98759  0.76255 0.99866  0.99484  0.96738  0.89785 0.63184
0.96560  0.96461  0.98759  1.00000  0.83904 098697  0.99400 099102 094874  0.71607
0.70267  0.69060  0.76255  0.83904  1.00000  0.76356  0.79165 0.89148 096032  0.96725
0.99312 0.99160  0.99866 0.98697 0.76356 1.00000 0.99700 0.96965 0.90058 0.63184
0.98333  0.98380  0.99484 099400 0.79165 0.99700  1.00000 098022  0.92207 0.66156
0.93857  0.93360 0.96738 0.99102 0.89148 0.96965 098022 1.00000 0.97785  0.78607
0.85400  0.84743  0.89785 0.94874 096032 0.90058 092207 097785 1.00000  0.89023
0.56719  0.55127  0.63184  0.71607 096725 0.63184 0.66156  0.78607  0.89023  1.00000

Table 6: Correlation matrix for the ten models used in the elastic equation problem Equation (45). The second-order (II) and the first-order (I)
schemes both employ five different resolution levels.
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MF Sampling

NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
ALGORITHMS PERFORMANCE UNDER THREE REALISTIC SCENARIOS

» Single fidelity (coarsening only): HF: 200 (II), LF: 100 (I1), 50 (I1), 25 (I1), 10 (II)
> MultiFidelity + Coarsening: HF: 200 (I1), LF: 100 (1), 50 (1), 25 (1), 10 (I)
» MultiFidelity + Aggressive Coarsening: HF: 200 (I1), LF: 50 (1), 25 (1), 10 (1)

107% 1073 1078
MFMC
RDif
—— WRDif
—— ACV-MF 107
ACV-KL
— e 5
e 5107
41076
1077 1077 5 1077 i
10% 10° 10% 10° 10? 10°
Target cost Target cost Target cost.
FIGURE: Coarsening only FIGURE: MF + Coarsening FIGURE: MF 4 Aggr. Coarsening
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MF Sampling

Nozzle design — A more realistic engineering example
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MF Sampling

AERO-THERMO-STRUCTURAL ANALYSIS OF A JET ENGINE NOZZLE
COMPUTATIONAL SETUP (DATA COURTESY OF JEFF HOKANSON AND PAUL CONSTANTINE, CU BOULDER)

Operative conditions
» Reconnaissance mission for an high-subsonic aircraft

» Most critical condition is the top-of-climb (Required thrust is 21500 N) @ 40 000 ft and Mach 0.51

Nozzle structure Two layers separated by an air gap
» Inner thermal layer: ceramic matrix composite
» Outer load layer: composite sandwich material (titanium honeycomb between two layers of
graphite-bismaleimide Gr/BMI)
Uncertain parameters 40 uncertain parameters — mix of uniform and log-normal variables
» 35 material properties variables
» 2 atmospheric conditions
» 2 inlet conditions
>

1 heat transfer coefficient

Quantities of Interest (Qols)
» Mass as a surrogate for the cost of the device
» Thrust for the aerodynamics performance
» A temperature failure criterion in the inner load layer (Thermal stresses)
>

A strain failure criterion in the thermal layer (Mechanical stresses)
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MF Sampling

NUMERICAL EXPLORATION OF THE OCV/ACV PERFORMANCE
COMPUTATIONAL SETUP (DATA COURTESY OF JEFF HOKANSON AND PAUL CONSTANTINE, CU BOULDER)

» Exploration of the theoretical performance for ACV, i.e. RZOCV > R?)CV—I

CFD FEM (Thermal/Structural) Cost
1D COARSE 2.63e-04
Euler 2D COARSE COARSE (axisymmetric) 9.69e-04
Euler 2D MEDIUM MEDIUM (axisymmetric) 3.18e-03
Euler 2D FINE FINE (axisymmetric) 9.05e-03
Euler 3D COARSE COARSE 1.16e-02
Euler 3D MEDIUM MEDIUM 3.58e-02
RANS 3D COARSE COARSE 1.00

TABLE: Relative computational cost for several model fidelities for the nozzle problem. All the cost
are normalized with respect to the 3D RANS solver.

Variance reduction
Qol ocv OCV-1 Ratio OCV/0OCV-1
Thrust 0.020595 0.050432 0.41
Thermal stresses 0.0043612 0.0075662 0.58
Mechanical stresses 6.2981e-04 0.011720 0.05

TABLE: Performance of OCV and OCV-1 for the nozzle problem and three different Qols.

» A separation between OCV and OCV-1 exists for all Qols

» OCV-1 attains more than one order of magnitude reduction over MC

» For Thrust and Thermal stresses an additional 60% and 40% reduction can be gained with OCV
» For the Mechanical stresses the additional benefit is larger than 90%
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How do we cover even more arbitrary
models relationships??



MF Samplin,

MFNETS: MULTIFIDELITY NETWORKS
A FRAMEWORK TO ENCODE ARBITRARY RELATIONSHIPS BETWEEN INFORMATION SOURCES

A simple three model case

(a) Full (b) Peer (c) Hierarchical

107! 10 10°!
—f— single
w =} recursive w 7]
20 3 2w Ly
-~ == peer = =
5 5 5
@ 2 P
g 8 8
Ew §10 10
S S 3
[} <] 3
10
101 101
10 o 10* 10° 0} 10! 10% 10 10!
Number of lowest fidelity samples Number of lowest fidelity samples Number of lowest fidelity samples
(a) No corrupted data (b) 1% corruption (¢) 10% corruption
[1] Gorodetsky, Jakeman, Geraci, Eldred, MFNets: Multi-fidelity data-driven networks for Bayesian learning and prediction.

International Journal for Uncertainty Quantification, In press, 2020.

2] Gorodetsky, Jakeman, Geraci, MFNets: Learning network representations for multifidelity surrogate modeling Journal of
Computational Physics, Under reviw, 2020.
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A note on software



PYAPPROX: A RESEARCH-ORIENTED SOFTWARE FOR UQ
SOFTWARE AND TUTORIALS ON MULTIFIDELITY UQ - https://sandialabs.github.io/pyapprox/index.html

PyApprox Tutorials

Below is a gallery of tutorials providing detalled mathematical background on the methods in
Pyapprox

This tutorials provide more detail than the set of examples found here which simply show how to
use different methods with the least amount of code.

Foundations

Below is a gallery of foundational tutorials on model and data analysis.

Model Definitior Numerical

Quadratur

& PyApprox Tutorials
Foundations
Multi-Fidelity Methods

Polynomial Chaos Expansions

& > =

Bayesian Inference Modeling

e ho e s e

Sensitivity Analysis Gaussian Netw,
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PYAPPROX: A RESEARCH-ORIENTED SOFTWARE FOR UQ
SOFTWARE AND TUTORIALS ON MULTIFIDELITY UQ - https://sandialabs.github.io/pyapprox/index.html

& PyApprox Tutorials

Foundations b’a
© Multi-Fidelity Methods

Control Variate Monte Carlo

Approximate Control Variate

MFNets: Multi-fidelit
Monte Carlo

etworks
Multi-level Monte Carlo

Mult-fidefity Monte Carlo

Generaiized Approximate Control

Polynomial Chaos Expansions
Variate Monte Carlo

Multi-index Stochastic
Callocation

MENets: Multi-fidelity networks |

Polynomial Chaos Expansions

Seauences
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Topic 11

Leveraging Active Directions for
Multifidelity UQ



CAN WE ENHANCE CORRELATION BETWEEN MODELS?
MULTIFIDELITY UQ ON THE REDUCED (SHARED) SPACE

Core Question
Q: Can we identify a shared space between models (possibly with independent/non-shared parameterization) where
the correlation is higher?
A: Active Subspace method seems well suited for this (but this idea is not limited to it)
Pivotal idea and its main features
» For each model one can search for Active Directions independently

» If the input variables of a models are standard Gaussian variables then the Active Variables are also
standard Gaussian variables

» Therefore, for each model the Qol can be represented on a (possibly reduced) space characterized by a join
standard Gaussian distribution

» We can sample along these shared Active Directions and 'map back’ to the original coordinates of each
model separately

Some Questions:
» How do we treat the inactive variables?
» What if the model input are not Gaussian variables?

» What does it happen if the Active Directions are different between models? We expect this to happen often
in practice

» Why is this even supposed to work from a physical standpoint?
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N I t u AS for MF U e MF U )

ACTIVE SUBSPACES IN A NUTSHELL
(ALMOST) EVERYTHING YOU NEED TO KNOW TO USE IT WITH MULTIFIDELITY — SEE CONSTANTINE (2015) FOR MORE

We consider a black-box approach, i.e. the Qol @ is obtained through a computational model f given a vector of
input parameters x

> Vector of Input parameters: x € R™ with joint distribution p(x)

Let’s introduce the m X m matrix C
" = = X
c-— / (%7) (97)" pwyax
» Since C is I) Positive semidefinite and Il) Symmetric, it exists a real eigenvalue decomposition
C= WAWT, where
» W is the m X m orthogonal matrix whose columns are the normalized eigenvectors

A =diag{A,..., Am}and Ay > - > Ay >0

Let's define two sets of variables
y= ng eR" (Active)
i = x=Wuy+Wizx Wy
z=W;x € R™=) (Inactive)

Linearity:

(X =R™) then Y = {y S iR",y:WXx,x € ]Rm} and

This is true for each model, i.e. there will always be a shared space between different models (even if they have
a different parameterization)
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AS for MF UQ

A QUICK DEMONSTRATION — GAUSSIAN INPUT
LOW-CORRELATED MODELS (CORRELATION SQUARED 0.05)

High-Fidelity / Low-Fidelity
25 s
2
f(x,y) 1.5 3
1 25
2

a(xy)
@
T
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AS for MF UQ

A QUICK DEMONSTRATION — GAUSSIAN INPUT
IMPORTANT DIRECTIONS IN ACTIONS (CORRELATION SQUARED FROM 0.05 TO 0.9)

Independent Important Directions
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G
05 E—I— - =
\ R ==
\ XY
717 ¥
> o B S = i - 0
T <& \ e AN
05 [ a 1 05 [ =
it TS !
i inY X T
N Yy ‘
PR ius! I 1 VWY 4 I I |
A 05 0 05 1 Bl 05 0 05 1
x x
RegoTasS TG AS Responses and Correlation along the AS Scaiter Plotalong AS
3 T T T T T T 3 T T T T
=
25 & 25 B
2 A 2 B
= //
2 sl q g 15+ q
11 q 1+ B
o5yl L W 05 - s
av) >
0 1 | I L 1 f § 1 1 I 1 1
-4 3 2 1 0 1 2 3 0 05 1 15 2 25 3

Recent Advancements on Multifidelity UQ 77/106



AS for MF UQ

A QUICK DEMONSTRATION — GAUSSIAN INPUT
NUMERICAL EXPERIMENT SETUP

We performed the following numerical experiment:
» We fix a computational budget (300 HF runs)
» We compute 1000 realizations for each estimator
» For MF estimator the cost of the total set of HF+LF runs is considered
> We report the pdf of the estimated Expected Value

NOTE 1: For this problem the expected value is known

NOTE 2: In this example the AS are searched for each estimator realization during
the pilot sample phase (this cost is not included, but they can be reused if needed...)
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE

1000 Estimator Realizations (LF cost = 0.01 HF cost)

o4 L MC(300HF)I:I_

0.35 |- -

0.25 |- -

0.15 |- _

Probability Density Function

0.05 - -1

o L+ I I L 1
0.95 1 1.05 1.1 1.15
Expected Value
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AS for MF UQ

A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE

1000 Estimator Realizations (LF cost = 0.01 HF cost)

T
MC (300 HF) =1
MC-AS (300 HF) =1 |
0.35 _

0.3
0.25
0.2
0.15

Probability Density Function

0.1

0.05

0.95 1 1.05 1.1 1.15
Expected Value
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AS for MF UQ

A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE

1000 Estimator Realizations (LF cost = 0.01 HF cost)
0.45 T T

T
MC (300 HF) =1
MC-AS (300 HF) =1 |
0.35 | MC-MF (100 HF + 20000 LF) =1

0.3 - ]
0.25 - ]
0.2 - ]
0.15 - n

Probability Density Function

0.05 |- ]

0.95 1 1.05 1.1 1.15
Expected Value
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AS for MF UQ

A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE

1000 Estimator Realizations (LF cost = 0.01 HF cost)

0.45 — T T T T
MC (300 HF) =1
G I MC-AS (300 HF) == |
5 035} MC-MF (100 HF + 20000 LF) [
g MC-MFAS (100 HF + 20000 LF) =1
Z 0.3 -
P
% 025 -
st
[
a 02 | -
=
2 015 -
I :
& 01 - - -
0.05 _
oL
0.95 1 1.05 1.1 1.15

Expected Value
@ Same computational cost for all the estimators!
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AS for MF UQ

WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

¥—1

P, =Py (1+ Mz) 7 =1, where
v+1

ing = _A = F [ 2 T=Le\er -1
arﬁzﬂnﬁ_f(Me) e with f(Me)_ME {’y+1<1+ 5 Me)]

> Given the shape of the nozzle (and its exit radius k), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

The area ratio (A, /A*) is linear in the 2D case (ke /ht) and quadratic in the 3D case (hz /htz)

Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle

2D Nozzle Exit Pressure 3D Nozzle Exit Pressure
26 T T T T T T T T 2108 26 T 8-10%
sl | 2:10° 2 b | 7.10%
’ 1108
6:10*
22 B 1-10% 22 B 4
[ ] 510°
5 1-10° il
c  2F = i < 2 B 4-10*
g 810 & 310
18 - R 6-10* 18 R
4104 2:10%
16| . 16 -
2104 1-10%
14 1 1 1 1 1 1 1 1 0-10° 1.4 L L L L Il I L L 0-10°
2:105 3105 4105 5:105 6:10° 7:105 8105 9-10° 1:10° 1:108 2:405 310° 4105 5405 6-10% 7:105 8:105 9105 1:108 1-10°
Stagnation Pressure Stagnation Pressure
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WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS (p2 =0.9 — 0.99)

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

~
-1 —=—
P, =P, (1+ ’YTMZ) v—1 ,  where

e

v+1
)] 2D

avgnitn s <Oy — 2% with PO = {L (1_,_ il
M, A

M, Ly +1 2

» Given the shape of the nozzle (and its exit radius A.), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

> The area ratio (A, /A*) is linear in the 2D case (ke /h¢) and quadratic in the 3D case (hz /htz)
»  Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle

Scatter Plot

2:10° T T T T T
2105 |- o |
1:10° |-
1-10° -
1:10° |-

2D

810 -
6:10% -
4-10% -

Original ~ ®
2:10* -

Rotated ~ *
0100 1 L L I ! I 1

010 1-10* 2:10* 3-10* 4-10* 510* 610 7-10* 810%

3D
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Lid- and Buoyancy-driven cavity flow — A CFD example
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
TEST CASE GENERALITIES

Physical test case
» Combination of the Lid- and Buoyancy-driven test cases

» Navier-Stokes equations for a fluid with density p and kinematic viscosity v enclosed in a square cavity of
size L

Top wall sliding with velocity Uy,

» Top and bottom walls held at different temperature — net body force (buoyancy term via Boussinesq
approx.)

» Adiabatic side walls
Cavity immersed in a gravity field with components g and g,

Nominal conditions: Re = 1000 and Ra = 100000 for air Pr = 0.71 (constant)

Non-dimensional parameters

UrL
R OBL
v
B(T), — Te)L?
Gr=lg| = —5——
v
v
Pr=—
«@
Ra = PrGr

Numerical approach
» Implicit FV code on structured mesh with pressure-based SIMPLE discretization and dual-time stepping

» BC imposed via ghost cells
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
FLOW FIELD FOR THE NOMINAL CONDITIONS
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY UQ CASE

> HF: 101 x 101 spatial cells, T = 80 and Dt = 0.25 — CHF = 1
> LF: 21 x 21 spatial cells, T = 15 and Dt = 0.5 — C*F = 0.00107

4
HF ——
3 LF
5 /
/
1 [
> /
g8 0 / /
2 |
= A |
8 /
£ 2
>
=
4
5
-6
06 04 -0.2 0 02 0.4 06

X

FIGURE: Vertical velocity profile at the horizontal mid-plane of the cavity for the reference
condition for both HF and LF models.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION

Parameter Min Max Mean
v 0.009 0.011 0.01
AT 9 11 10
& 8.1 9.9 9
&n 3.6 4.4 4
Uy 9 11 10

TABLE: Ranges for the uniform variables of the cavity problem.

Let’s have a look at the non-dimensional numbers (Pr is constant and Gr = Gr(Ra, Re) for this case)
Re = Re(v, Ur)
Ra = Ra(gy,8y, AT, v)

Low-fidelity
@
3

@
3

3.1 32 33 34 35 36 37 38 39 4

High-fidelity
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AS for MF UQ

LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION

1.93

1.92

1.91

- 19 3 Model
E Variable HE LF
g 18 v -0.0860585 | -0.31282
S s AT -0.0036777 | 0.94981
: & -0.0057946 -
1.87 8n -0.0144436 -
U 0.9961617 -

1.86
TABLE: Dominant eigenvectors for the cavity
31 32 33 34 35 36 37 38 39 4 problem.

High-fidelity

1.85

FIGURE: Scatter plot corresponding to 500
realizations of the HF and LF model with samples
drawn in the physical space and 60 samples drawn
along the common active direction.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
NUMERICAL TEST FOR MULTIFIDELITY

1 Fixed number of pilot samples equal to 30 samples (in
the physical space) 300 Estimator Realizations (Eq. Tot Cost 34 HF)
0.25 T T T T T
2 AS evaluated (first order regression, no derivatives) from mMC =3
MF-AS [

the pilot samples and this sample set is discarded 63 i

o

Initialization of the MF algorithm with 30 samples in the
Active variables to estimate the correlation

ity Density Function
°
&
T
|

'S

Optimal oversampling ratio for the LF and perform the

. " 01| 4
mean estimation

» Items (1-4) are repeated 300 times and the estimated

mean are reported 34 3.45 35 355 36 3.65 37
Expected Value

» In mean we used an equivalent cost of 34 HF samples

per estimator realization (this number is used for MC, " . . . .
300 repetitions) FI(.XURE. Probability de_n5|ty fur\ctlon for the
estimators computed with 300 independent
» Variance of the mean estimator reduced by one order of realizations.

magnitude
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Nozzle design — Aero-thermo-structural analysis
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
PROBLEM SETUP

» We only consider the ACV-1 estimator here, but the extension to ACV is straightforward
» The high-fidelity model is 3D Euler with a COARSE mesh

The low-fidelity model is 2D Euler with either a consistent or inconsistent parametrization, i.e. the area of
the duct is forced to correspond to the one of 3D geometry

CFD FEM (Thermal/Structural) Parameterization Cost
3D Euler COARSE COARSE 1.00
2D Euler COARSE COARSE (axisymmetric) Consistent 0.201
2D Euler COARSE COARSE (axisymmetric) Inconstistent 0.135

TABLE: Relative computational cost for the models used for the Active Subspace tests for the
nozzle problem. All the costs are normalized with respect to the 3D Euler COARSE solver.

We considered three scenarios

1 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of samples (40
UQ parameters);

2 High- and low-fidelity model with consistent parametrization evaluated at an independent set of samples
(40 UQ parameters);

3 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of nominal
samples (96 + 40 UQ parameters).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 - INCONSISTENT PARAMETRIZATION AND DIMENSIONALITY 136 VS 40

640 - 16000
.
635 i B
630 ®
14000
625
620 13000
E} 4
615 12000
610
11000
605
600 4
Physical varisbles & Physical variables @
- . ive variables  ® sco L2 Kotve variabios _w
3 95 370 375 30 85 3% 26000 28000 30000 32000 34000 35000 38000 40000 42000 4000
HE
(2) Mass (b) Thrust
13 — 13 ¥
L -
12 4 12 -
11 11
1 1
09 09
08 08
07 07
Prysialvarabes o Physical variables  ®
ctive vari At N
73 05
05 06 07 08 09 1 T 05 08 07 08 09 1 11
HF HE
(c) Thermal Stresses (d) Mechanical Stresses

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 3).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 - INCONSISTENT DIMENSIONALITY 136 VS 40

Qols Estimator St.Dev
o2 p2s | MC  OCV-1  OCV-1 (AS)
Mass 0.822 0.999 1 0.178 0.001
Thrust 0.956 0.998 1 0.044 0.002
Thermal Stress 0.982 0.998 1 0.018 0.002
Mechanical Stress 0.985 0.986 1 0.015 0.014

TABLE: (Estimated) Standard Deviation for OCV-1 and OCV-1 (AS) (normalized w.r.t. MC) for
the Sequoia application problem in the case of inconsistent parameterization and uncertain design

input in HF (Scenario 3).

@ These results are estimated through the PCE along the active directions. We need to confirm the results by

running the model
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Supersonic Combustion — A challenging multiphysics problem
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RAPTOR CODE

COMPUTATIONAL FEATURES

RAPTOR

>

v vyVvVYy

Fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically reacting
flow

can handles high Reynolds numbers
real gas effects
robust over wide range of Mach numbers

non-dissipative, discretely conservative, staggered finite-volume schemes

Numerical settings

>

vVvyY VVYyy

2D simulations

3 grid resolutions where cell sizes are 1/8, 1/16, and 1/32 of the injector diameter d = 3.175 mm (denoted
as d/8, d/16, and d/32)

63K, 250K and 1M grid points, respectively

adaptive time steps with approximately equal simulation physical time
warm start from a quasi-steady state nominal condition run

1.7 x 103, 1.1 x 104, and 7.3 x 10* CPU hours per run, respectively

Roughly a cost factor equal to 8 between resolution levels
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RAPTOR CODE

EXAMPLE OF FLOW FIELDS

-
5 -4
X
-8| M (d/8)
05 TO
=
5 4
izg
8| M (d/16)
B 0.5 1.0
=
o 4
= g
8 M (d/32)

FIGURE: Solution fields of Mach number M (top three) and carbon monoxide mass fraction Y¢o
(bottom three) simulated at a randomly sampled input settings using the three different grids.

b
S s
81 Yeo (4/8)

Yeo (d/16)
g 007 001 006 008 010 01z 00 016
o
-
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I g
8 Yeo (4/32)
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SCRAMJET

QUANTITIES OF INTEREST (5)

» Combustion efficiency (7).mp), defined based on static enthalpy quantities

H(Tef, Ye) — H(Tref, Yief)
H(Tef, Ye,ideal) — H(Tref; Yref)

Tlcomb =

» Burned equivalence ratio (¢pyy,) is defined to be equal to dpurn = PG Meomb-
> Stagnation pressure loss ratio (Pggqgless) is defined as
Ps,e

P )
Ps,i

stagloss = 1-

» Maximum and average root-mean-square (RMS) pressures (max Prys and ave Pryg) are, respectively, the
maximum RMS pressure across the entire spatial domain, and the RMS pressure averaged across the spatial
domain between two injectors:

)
- 2 _
max Prms —Iggvwa(x,y) [P(x,y)} ;
1 — — 12
ave Prms :_/ VP2 — [P,y dxdy.
V Jxy

» Initial shock location (xg},oc)) is the most upstream shock location.
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SCRAMJET

UNCERTAIN PARAMETERS (11)

Parameter Range Description
Inlet boundary conditions:
Po [1.406, 1.554] x 10° Pa Stagnation pressure
Ty [1472.5, 1627.5] K Stagnation temperature
M, [2.259, 2.761] Mach number
I [0, 0.05] Turbulence intensity horizontal component
R; [0.8,1.2] Ratio of turbulence intensity vertical to horizontal components
L; [0,8] x 1073 m Turbulence length scale
Fuel inflow boundary conditions:
Iy [0, 0.05] Turbulence intensity magnitude
Ly [0,1] x 1073 m Turbulence length scale
Turbulence model parameters:
Cr [0.01, 0.06] Modified Smagorinsky constant
Pry [0.5,1.7] Turbulent Prandtl number
Sct [0.5,1.7] Turbulent Schmidt number

TABLE: Uncertain model input parameters. The uncertain distributions are assumed uniform

across the ranges shown.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

» 2 spatial resolutions
» 16 random variables (11 uncertainties 4+ 5 design parameters)

» Dataset with 200 realizations (consistent parameterization)

22 4!
0 : HE - 045 HF
- HE(PCE) - HF (PCE)
- LF (PCE) 04 LF (PCE)
nal* $ {PCE) . . (PCE)
0.19 L 035
. 018 ”
2 5 03
< o7 =
0.16 025
015
02
0.14 . 3 .
013 0.15
3 2 1 [) 1 2 3 4 3 2 4 0 1 2 3 4
Active variable Active variable
() Pburn () Meombp

FIGURE: Qols w.r.t. the active variables for the scramjet application problem.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

» 2 spatial resolutions
» 16 random variables

» Dataset with 200 realizations (consistent parameterization)

0.22 042
.
04
021 .
0.38 0.-'
02 036
034
019 0.32
w w
= 5
0.18 o8
028
017 0.26
024
0.16 -
L d Physical variables @ 0.22 Physical variables @
- Active varjables _® o Active variables  ®
013 014 015 016 017 048 019 02 021 018 02 022 024 026 028 03 032 0.34 036 038
HF HF
() Pburn () Meombp

FIGURE: Scatter plot for the active variables for the scramjet application problem.
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AS for MF UQ
SCRAMJET DATASET

MULTIFIDELITY APPROACH FROM DATASET

» 2 spatial resolutions

» 16 random variables

» Dataset with 200 realizations (consistent parameterization)

Estimator St.Dev
Qols 9 9
0 pig | MC  OCv-1  OCV-1 (AS)
Pourn 0.802  0.967 1 0.198 0.033
Teomb 0.933  0.986 1 0.067 0.014
scramjet application problem.

TABLE: (Estimated) Standard Deviation for MF and MF-AS (normalized w.r.t. MC) for the
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TOPIC 111

Surrogate-based UQ in action:
Multifidelity Bayesian Calibration’®

3In collaboration with: Tom Seidl (SNL), Friedrich Menhorn (TUM) and Ryan King (NREL)



CHARACTERIZATION AND DESIGN OF WIND PLAN SYSTEMS
SANDIA NATIONAL LABORATORIES SCALED WIND FARM TECHNOLOGY (SWIFT)

ty virtually at tours.sandia.gov/SWIFT/

FIGURE: From
https://energy.sandia.gov/programs/renewable-energy/wind-power/wind_plant_opt/

Sandia National Laboratories Scaled Wind Farm Technology (SWiFT)
» Located at Texas Tech Universitys National Wind Institute Research Center in Lubbock, Texas

»  Principal facility for investigating wind turbine wakes as part of the U.S. Department of Energy Atmosphere
to Electrons research initiative (DOE-A2e)

Site features

» Research-grade turbines: three variable-speed variable pitch modified Vestas V27 wind turbines with full
power conversion and extensive sensor suites

» Highly characterized site: more than two years of historical data
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COMPUTATIONAL TOOLS
WIDE RANGE OF MODEL FIDELITIES FROM ENGINEERING MODELS TO LES

Several computational models can be used for wind energy applications:

» Nalu: a generalized unstructured massively parallel low Mach flow code built on the Sierra Toolkit and
Trilinos solver Tpetra solver stack

» WindSE: a python package that uses a FEniCS backend to perform wind farm simulations and optimization

WindSE
» Medium fidelity tool for 3D Reynolds-averaged Navier Stokes (RANS) simulations
»  Turbines are represented by means of non-rotating actuator disks
» Turbulence closure via mixing length
>

Based on FEniCS which enables easy user customization of finite elements, mesh discretizations, turbulence
models, and turbine representation
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR - PROBLEM SETUP

(a) Coarse: 5252 DoFs

(b) Medium:

W
g

428 DoFs (c) Fine: 228064 DoFs

[ Model Resolution [ Ny [ Ny =N, [ Cost (s) |

Coarse 12 8 8.51
Medium 24 16 60.4
Fine 48 32 1270

TABLE: Multilevel model hierarchy unrefined grid discretization and simulation cost
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR - PROBLEM SETUP

—40

FIGURE:

Recent Advancements on Multifidelity UQ

Flow Fields over the Slice for all Model Levels
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Inverse MF UQ

BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR - PROBLEM DEFINITION

[[Param [ ug () [ @ [ Ouwing (°) | Effective Thickness (m) [ Axial Induction Factor [ £max (m) |
[ B [ 82 002 ] 15 ] 24 I 015 [ 35 |
[ UB | s8m [ 05 | 15 | 15 I 0.9 [ 15|

TABLE: Uniform parameter bounds for the forward and inverse UQ studies.

" Experimental data“ from Nalu
» 100 m X110 m slice 5D downstream (135m)
» Data acquired each second for 10 minutes

» Reference data are averaged

RANS data
» First tests demonstrated that the misfit between the data was dominated by boundary layer data
» We truncated the spatial region of interest to 30 < z < 70 (total of 131 X 161 points)

» The total number of Qols to be considered is 31 395
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR - HF (NALU-WIND) SNAPSHOT
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M Inverse MF UQ

BAYESIAN INVERSION
ML PCE CONSTRUCTION AND PERFORMANCE

Tolerance 5e-4 5e-5 5e-6
PCE Type SF ML SF ML SF ML
Coarse Evaluations N/A 129 N/A 409 N/A 1201
Medium Evaluations N/A 53 N/A 137 N/A 601
Fine Evaluations 13 17 61
Equivalent Fine Evaluations
ML Speedup 4.9 8.0 4.4

TABLE: Number of model evaluations for SF (single high-fidelity) and ML (multilevel) PCEs for
three tolerances. The construction of each ML PCE requires less than a quarter of the cost of the
corresponding SF model.
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BAYESIAN INVERSION
ML PCE STATISTICS

o
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Nalu Data
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FIGURE: ML PCE built for all velocity components compared with the time-averaged Nalu slice
data. The mean u component resembles the Nalu data but the other components do not due to

Nalu Data and Forward UQ Results
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MF

BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR - MAP SOLUTION

Inference Results from u, v, and w Nalu Data
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BAYESIAN INVERSION
POSTERIOR DISTRIBUTION
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FIGURE: Visualization of the six-dimensional posterior distribution obtained through
emulator-based inference from all velocity components. Marginal distributions are shown as
histograms and pairwise joint distributions are displayed as contour plots.
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CONCLUDING REMARKS
OPEN CHALLENGES

We have both advanced the state-of-the-art in multilevel/multifidelity UQ and developed an experience in
deploying these techniques to several application areas (aerospace, biomedical, energy, cybersecurity, etc.)

Can we still improve our frameworks/understanding?
A number of outstanding challenges still remain, a non exhaustive list:

1 How do we exploit very large model ensemble by efficiently discovering the relationships among models?
2 Can we take advantage of a multi-physics context?

3 Optimization Under Uncertainty and Reliability/Safety analysis require the estimation of higher-order
moments, rare events, etc. (coll. with Prof. Marzouk, MIT and Friedrich Menhorn, TUM/MIT, Prof.
Daniel Tartakovsky, Stanford)

4 Global Sensitivity Analysis (coll. with Prof. Gremaud and Michael Merritt, NCSU)

5 Can we integrate online determi
Prof. Guglielmo Scovazzi, Duke)

stic error estimators in our multilevel/multifidelity workflow? (coll. with

6 Can we extend our AS approach to other dimension reduction strategies? (coll. with Xiaoshu Zeng and
Prof. Roger Ghanem, USC)

7 Can we build low-fidelity models on-line with a data-driven approach (e.g. ROM and Machine Learning)?
(coll. with Dr. Patrick Blonigan, Francesco Rizzi, SNL and Ahmad Rushdi, SNL)
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Conclusions

CONCLUDING REMARKS
STILL AN ACTIVE RESEARCH AREA

Summary:
» Multifidelity strategies are appealing techniques for UQ
Hiererchical /Recursive estimators are limited in their performance
ACV is a new framework to overcome this issue
MFNets generalize this concept and enable to encode more flexible and arbitrary relationships

Enhancing the correlation seems also possible by resorting to Active Directions/Latent Variables

vyVyYVYyYVvYYy

Sampling and surrogates are complementary tools, e.g. (MF) surrogates are very helpful for inference

(Incomplete) list of references:

» N. Metropolis, The beginning of the Monte Carlo Method, Los Alamos Science, No. 15, Special Issue 1987.

P Mike Giles' website: https://people.maths.ox.ac.uk/gilesm/ (I've borrowed some material from his lectures)
Monte Carlo Methods by Johansen and Evers, Lecture note. University of Bristol
Pasupathy et al, Control-variate estimation using estimated control means, |IE Transactions 44(5), 381-385, 2014.

Halton, J. H., A retrospective and prospective survey of the Monte Carlo method. SIAM Review, 12, 163, 1970.

yvyvyy

G. Geraci, M.S. Eldred & G. laccarino, A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace
applications 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum, (AIAA 2017-1951)

A.A. Gorodetsky, G. Geraci, M.S. Eldred & J.D. Jakeman, A Generalized Framework for Approximate Control Variates. Journal of
Computational Physics, 2020.

v

P G. Geraci, M.S. Eldred, Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification. Sandia Report
SAND2018-10817, 2018.

P G. Geraci, M.S. Eldred, A.A. Gorodetsky & J.D. Jakeman, Recent advancements in Multilevel-Multifidelity techniques for forward
UQ in the DARPA Sequoia project. AIAA Scitech 2019 Forum

P G Geraci, F Menhorn, X Huan, C Safta, Y Marzouk, HN Najm, MS Eldred, Progress in Scramjet Design Optimization Under
Uncertainty Using Simulations of the HIFIRE Direct Connect Rig. AIAA Scitech 2019 Forum

P A. Gorodetsky, J. Jakeman, G. Geraci, M. Eldred, MFNets: Multi-fidelity data-driven networks for Bayesian learning and
prediction. International Journal for Uncertainty Quantification, In press, 2020.

P A. Gorodetsky, J. Jakeman, G. Geraci, MFNets: Learning network representations for multifidelity surrogate modeling Journal of
Computational Physics, Under reviw, 2020. https://arxiv.org/pdf/2008.02672.pdf

P PyApprox: https://sandialabs.github.io/pyapprox/index.html
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PRE-PROCESSING
RANDOM NUMBER GENERATOR

» A random number generator is required for each Monte Carlo simulation
» Random number generation requires two main stages

> Generation of independent random variables ¢4(0, 1)
> Conversion of the RVs to desired distribution
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Conclusions

PRE-PROCESSING
RANDOM NUMBER GENERATOR

» A random number generator is required for each Monte Carlo simulation
» Random number generation requires two main stages

> Generation of independent random variables ¢4(0, 1)
> Conversion of the RVs to desired distribution

@ (Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers
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Conclusions

PRE-PROCESSING
RANDOM NUMBER GENERATOR

» A random number generator is required for each Monte Carlo simulation
» Random number generation requires two main stages

> Generation of independent random variables ¢4(0, 1)
> Conversion of the RVs to desired distribution

(Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers

Properties for a good random generator
> Several statistical tests exist to measure randomness, therefore reliable software has been verified against
them
» A long period is needed before the sequence repeats (at least 240 jg required)

» A control-based seed is provided to skip to an arbitrary point of the sequence (useful in parallel applications)
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Conclusions

PRE-PROCESSING
RANDOM NUMBER GENERATOR

» A random number generator is required for each Monte Carlo simulation
» Random number generation requires two main stages

> Generation of independent random variables ¢4(0, 1)
> Conversion of the RVs to desired distribution

(Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers

Properties for a good random generator
> Several statistical tests exist to measure randomness, therefore reliable software has been verified against
them
» A long period is needed before the sequence repeats (at least 240 jg required)

» A control-based seed is provided to skip to an arbitrary point of the sequence (useful in parallel applications)

Bottom line...
» do not use your own generator, but use reputable sources

» For instance, Intel Math Kernel Library (MKL) are free
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PRE-PROCESSING
VARIABLE TRANSFORMATION

Random generators produce uniform RV 1£(0, 1), but usually we need other distributions
Let's assume that the cumulative distribution function Fz for a variable £ is available

Fz(§) =P(E<S)

» The random generator produces U ~ U(0, 1), i.e. Fy(u) = u

» We want to determine the function g(U) which gives E = g(U) with cdf F= (&)
» We write the cdf for Fz (&)

F=(§) =P(E <¢) =PU) <€)

» We also assume:

The function g is invertible on its range

The function g is strictly increasing (only for simplicity)
Fs(€) =PE(W) < &) =PU <& (&) =Fyle (&) =g~ (&)

Finally we can choose g_l(g) =Fz(£), ie E= Fgl(U) in order to get the desired distribution
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N \ t r MF U Conclusions

WHAT ABOUT THE INACTIVE VARIABLES?
HOW DO YOU TREAT THE INACTIVE VARIABLES?

x = Way + WNaz

» Given a sample along the Active Variable y, we need to recover x
» This mapping is ill-posed (infinitely many x exist)
» One possible regularization: conditional expected value of f given y

fas 8) = [ F(Way + Wyan) pyig dz ~ f (Way + WiE [2]) [ o1y dz = F (Way)

fxy) ——
AS sampling ©
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JOINT NORMALITY: IS THIS REQUIRED?

NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example x; ~ U (—1,1) and w; ~ N (0, 1), we can define (i.e. Rosenblatt, Nataf, etc.) a non

linear function x = h(w) such that

Wi
— @, where x; = h(w;) = erf(—)

V2

From an AS perspective, only w exists (however, for each w we can obtain x)

w = Way + Wnaz =~ Wt

Responses along AS (Uniform Distribution)

T T T T T T 3
e

- 25
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JOINT NORMALITY: IS THIS REQUIRED?

NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example x; ~ U (—1,1) and w; ~ N (0, 1), we can define (i.e. Rosenblatt, Nataf, etc.) a non

linear function x = h(w) such that

Wi
— @, where x; = h(w;) = erf(—)

V2

From an AS perspective, only w exists (however, for each w we can obtain x)
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DISSIMILAR PARAMETERIZATION
ADDITIONAL INPUT VARIABLE FOR THE HIGH-FIDELITY MODEL

f(x,v,2) = exp (0.7x + 0.3y) + 0.15 sin (27x) + 0.75z°, where 2z~ N(0,1/3)

1000 Estimator Realizations (Eq. Tot Cost 300 HF)
03 T T T T T

T
MC =31

MC-MFAS [ |

Probability Density Function

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
Expected Value

FIGURE: Normalized histograms for 1000 realizations in the case of dissimilar parametrization.

% In this case we used 2 active directions for the HF and 1 for the LF
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Conclusions

Non-linear elastic waves propagation — Hyperbolic CLAWs 1D
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N \ t r MF U Conclusions

NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

Let's consider an 'extreme’ scenario (within the previous test problem)

LF 5 nodes
HF 801 nodes

N, | N Ay
Low-fidelity 5 50 | 36 x 104

High-fidelity [[ 801 [ 600 [ 30 x 10—

Stress

TABLE: HF to LF Cost ratio ~ 2800

» We compute the AS without the gradient (we use a linear regression)
» We use 40 HF samples for our estimator

» We perform 250 repetitions
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N A t r MF U Conclusions

NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

Low-Fidelity

High-fidelity

Active Direction Agnostic sampling: p? = 0.89
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NON-LINEAR ELASTICITY PROBLEM

CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

®
E
A
>
»
.

Low-Fidelity

High-fidelity
Active Direction Agnostic sampling: p2 = 0.89

Active Direction Aware sampling:
% =0.99
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Conclusions

LID- AND BUOYANCY-DRIVEN CAVITY FLOW
ALLEVIATING THE COST OF AS ESTIMATION

» The cost of the pilot samples accounted to
30 x 14 30 x 0.001 = 30.03 HF (coming from HF

mainly in this case) 300 Estimator Realizations (Eq. Tot Cost 34 HF)
. i ; ; 2 03
» Can we re-use the HF samples without discarding them? v ! v T Fpp——
_ oas| MF-AS (HF reused)
2
g
1 Pilot samples are generated in the physical space (30 as E 02 |- i e
done before) s
& o B
2 The LF samples are discarded 2 L
3 o1f
3 The HF pilot samples are projected onto the active é
direction & oost b
4 LF samples are generated at the Active Variables 5 - L | L\ ] I
locations of the HF 352 353 354 355 3.56 357
L . L Expected Value
5 Correlation is estimated and the oversampling is
computed (always on the active variables) FIGURE: Probability density function for the
6 The MF estimator is evaluated estimators MF-AS computed with 300

independent realizations with and without
reusing the HF samples.

» |tems (1-6) are repeated 300 times and the estimated
mean are reported

Recent Advancements on Multifidelity UQ 106/106



N A t r MF U Conclusions

LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

4
(1]
3.9 8 &
of
38 .-'
37 8
» By reusing the HF samples, we need to handle samples 36 f
that have not been generated along the active variables k /
35
» Due to the nature of the mapping (inactive variables) i .‘
this projection will exhibit a noisy behavior : .“'
33 o8
32 s
“ Joo% HE e
» A very simple approach to improve this step is to 3.1 HF (regularized) @
2 45 4 05 0 05 1 15 2 25 3

perform a regression over the active variables
Active variable

FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space
with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

1.92
1.91
19
» By reusing the HF samples, we need to handle samples
that have not been generated along the active variables Y189
» Due to the nature of the mapping (inactive variables) o~
this projection will exhibit a noisy behavior :
1.87
oo _HF-LF o
» A very simple approach to improve this step is to 186 L & HE (feguianized): LF' @
31 32 33 34 35 36 37 38 39 4

perform a regression over the active variables i

FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space
with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
CAN I RE-USE ALSO THE LF PILOT SAMPLES?

[un

no

We can conceptually apply the same strategy for the LF
samples, however there is an additional challenge...

...we do not have a common sample set to estimate
the correlation along the active variables

In order to compute the correlation before evaluating the
additional LF samples we use the PC expansion
(analytical expression)

Once the correlation is evaluated and the LF
oversampling is defined the initial LF set might be fully
re-used

We can now perform MF-AS (re)starting from legacy
dataset

30 pilot samples extracted from a dataset of 500
evaluations (LF and HF are consistent)

300 repetitions of the estimator with full re-use of both
HF and LF

NOTE: there is a non-zero probability of using the same
evaluation multiple time (for different estimator
realizations)

Recent Advancements on Multifidelity UQ

300 Estimator Realizations (Eq. Tot Cost 34 HF)
035 T T T T T

T
MC =3

03 - MF-AS [
5 MF-AS (HF reused)
S o025 MF-AS (all pilot reused) -
Z i
el
2 02} ) 4
2
] -
E 0.15 - i |
£
-1 0.1 [ |
=S
«

0.05 - & |

o ot il ) .

34 345 35 355 36 365 87 375
Expected Value

FIGURE: Probability density function for the
estimators MF-AS computed with 300
independent realizations with and without
reusing the pilot samples.
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Overview of recent developments in
surrogate-based MF UQ



N A t r MF U Conclusions

SURROGATE-BASED MF UQ
MOTIVATION

Why do we want to use surrogate-based UQ if we already have sampling-based MF approaches?

» Sampling methods are very robust and often the only viable solution for UQ studies of high-dimensional,
noisy and possibly discontinuous problems...

» ...however many applications (especially their Qols) are much more regular than one might expect a priori

» In these circumstances, surrogate-based approach offer a huge advantage in term of their convergence rate

A recent example:

» DARPA SEQUOIA — aero-thermo-structural design of a nozzle (RANS+FEM): the Qols where reasonably
well behaved and lower order (at least along the active direction(s))

» DARPA SCRAMUJET - supersonic combustion (LES): the Qols were very noisy (additional error contribution
coming from unconverged statistics)

We currently continue the development in both areas to cover different needs for different applications
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THE TWO MAIN BUILDING BLOCKS
NON-INTRUSIVE PC AND SC

» Polynomial Chaos: Spectral projection using orthogonal polynomial basis

1
Br¥e
0

~
Il
> v
I +

» Stochastic Collocation: Form interpolants for known coefficients

Notes:

» Common tools are regression, tensor/sparse quadrature, etc.
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SEMINAL IDEA
DECREASING ’COMPLEXITY’ FOR THE DISCREPANCY FUNCTION

» The concept of multifidelity has been known/exploited in the optimization community for decades
» One of the first applications of this concept in UQ:

Ng and Eldred. Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic
collocation. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, 2012.

The main idea is quite simple and effective: Can you use a LF model to capture most of the response and use
only fewer HF evaluations to correct it?

Qup = exp —0.05¢2 cos 0.5¢ 0.5 exp —0.02(¢ — 5
QL = exp ——0.0552 cos 0.5¢

10 10
P 107
=
3 8 s
g 1078 w w
3 £10™ 2
T 3 2
8 < 2
Q
%)
1071° Correction Function
10 15 20 0 5 10 15 20 0 5 10 15 20
Polynomial Order Number of High-Fidelity Model Evaluations Number of High-Fidelity Model Evaluations
FIGURE: Spectral content FIGURE: Error (Mean) FIGURE: Error (Mean)
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Conclusions

’COMPLEXITY’ OF A FUNCTION
ORDER, SPARSITY, LOW-RANK STRUCTURE...

The original idea was based on the following assumptions:
» the LF model is able to capture the high frequencies of the response

» only the low-order terms are included in the discrepancy term — few evaluations of the discrepancy are
needed to build the response for the discrepancy

In many practical applications:
» the LF model only capture low-order effects

» however the discrepancy term can have a structure that we can still exploit

Two possible structures that we can exploit are:

» Sparsity — Compressed sensing: orthogonal matching pursuit (OMP), basis pursuit denoising (BPDN), least
angle regression (LARS), least absolute selection and shrinkage operator (LASSO)...

» Low-rank — Functional Tensor-Train decomposition (TT)

Recent Advancements on Multifidelity UQ 106/106



EXPLOITING FAVORABLE FUNCTION’S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:

1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)
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EXPLOITING FAVORABLE FUNCTION’S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:
1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)

2 Exploiting Restricted Isometry Property (RIP)
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EXPLOITING FAVORABLE FUNCTION’S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:
1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)
2 Exploiting Restricted Isometry Property (RIP)

3 Greedy Multilevel Refinement

Recent Advancements on Multifidelity UQ

106/106



M Conclu 5

EXPLOITING FAVORABLE FUNCTION’S STRUCTURES
STRATEGY 1: EXTENDING THE MLMC SAMPLING APPROACH TO SURROGATES

Main idea: Two parameters can be added to parametrize the variance of the recovered discrepancy term

L k+1
N Var [Y, Z Var [Yq] C, Var [Y,]
}: [Z]—)Ng vV qk+1 [z

Nk ve2/2

Notes:
» ~ and k can be obtained as by-product of the k-fold cross-validation process

» this approach can be extended to level-dependent parameters, i.e. v, and k, (slightly different closed form
solution)

Findings:
»  Abrupt transition in both sparse and low-rank recovery does not allow to efficiently estimate the
parameters and exploit the faster convergence

Low-fidelity 600, High-fidelity 20, degree 4 Low-fidelity 600, High-fidelity 40, degree 4
s s
H H
g B
2 H
g £
& &
2 z
3 3
g g
& £
245 25 255 26 265 27 275 28 285 29 25 255 26 265 27 275 28 285 29
Expected Value Expected Value
(a) Niow = 600, Npigh = 20 and deg = 4 (b) Niow = 600, Nyigh = 40 and deg = 4
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EXPLOITING FAVORABLE FUNCTION’S STRUCTURES
STRATEGY 2: RESTRICTED ISOMETRY PROPERTY (RIP) FROM Jakeman, Narayan, Zhou, 2016

Main idea: Address/Avoid abrupt transition by ensuring enough samples for accurate recovery

RIP: N, > seLglog® (sg) log (Cp)
where
» sy is the sparsity, i.e. number of non-zero coefficients
» L, is the mutual coherence, i.e. if a; are the normalized (a;rai = 1) columns of the matrix A then
L = max |a?aj‘ fori #j

» (Cy is the cardinality of the dictionary

Algorithm:
> Start with pilot sample to estimate sparsity at each level ¢
» Number of samples is increased to allow the recovery

Findings:
» RIP is quite conservative and it is likely to overshoot so it is necessary to add a constraint on the profile —
very difficult to handle the feedback

Mean Standard Deviation
0.12008 00137
012008
0.12904 - - " 0.01365
0.12002 |-
Q20 § oowsf
§ Otz | 3
: Qi g
0.12804 |- g ooass:
0.12802 .
01289 | 00135 | :
0.12888
0.12888 001345
10 100 1000 10 100 1000
e Eq. Number of HF Eq. Number of HF
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EXPLOITING FAVORABLE FUNCTION’S STRUCTURES
STRATEGY 3: GREEDY MULTILEVEL REFINEMENT

Main issues discovered with strategy #1 and #2 are:
» Difficult to estimate a trend

» Difficult to handle the allocation strategy in order to avoid overshoot in term on number of samples

Proposed solution: Greedy refinement - compete refinement candidates to maximize induced change per unit cost

Algorithm:
» One or more candidates are generated per each level

» The impact of each candidate on the final Qols statistics is evaluated and normalized by the relative cost
of level increment

» Greedy selection of the best candidate

Generation of new candidates for the selected level
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Conclusions

GREEDY MULTILEVEL REFINEMENT
LEVEL CANDIDATE GENERATORS

v

Uniform refinement: coarse-grained refinement with one expansion order / grid
level candidate per model level

> Tensor / sparse grids: projection PCE and nodal/hierarchical SC

> Regression PCE: least squares / compressed sensing using a fixed sample ratio
» Anisotropic refinement: coarse-grained refinement with one expansion order /

grid level candidate per model level

> Tensor / sparse grids: projection PCE and nodal/hierarchical SC

> Index-set-based refinement: fine-grained refinement with multiple index set
candidates per model level; exponential growth in size of candidate set with
dimension.

> Generalized sparse grids: projection PCE and nodal/hierarchical SC

> Basis selection: coarse-grained refinement with a few expansion order frontier
advancements per model level

» Regression PCE
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GREEDY MULTILEVEL REFINEMENT
TEST CASE

Steady-state diffusion

L lmoTwo] =10, weoeoxI
— |a(x, &) — (x, =10, (x, y 1) Xlg,
dx dx s
x is the spatial coordinate

£ a vector of independent random input parameters

a(x, §)

inourtestd =9, ie. Ig = [—1, 1]? denotes the (random) diffusivity field

vy vy vyy

Dirichlet boundary conditions are also assumed

u(0,€) =0, u(1,§)=0.
Qols defined as the solution u at specified spatial locations: X = 0.05, 0.5, 0.95. We represent the random
diffusivity field a using the following expansion

d
1
a(x, &) =1+o Z o) cos(27kx)€&y,
=17

Multilevel setup: discretization corresponding to 4, 8, 16, 32 and 64 elements

Recent Advancements on Multifidelity UQ 106/106



f Conclusions

GREEDY MULTILEVEL REFINEMENT
COMPRESSED SENSING - STATISTICS

0 107,
E e E =9~ PGE G g e
MF PCE CS 2 evelp = 10 MF PCE CS 2 level 4 IF PCE CS 2 levelp =
MLPCE S5 velr 1 MLPCE GS 5 ovel £
[ ML PCE CS 5 level x = 1.5 ML PCE CS 5 level 4t
@t MLPCE CS S velx -2 MLPCE GS S ovelx -2
o |- ML PCE CS S lovelx = 3 <1~ ML PCE CS 5 levelx - 3 i <1~ ML PCE OS 5 evel
O~ Greedy ML PCE CS 5 level O~ Greedy ML PCE CS 5 level O~ Greedy ML PCE CS 5 level
10 B
u g
H &
107 z
10°
0]
107 107 - - 10eLs
10 10° 10° 10° 10" 10° 10° 10 10’
Eaant HE Siuiaions. EauiaantHF Simialons. Eauhalon HE Sinulaions

FIGURE: Convergence for greedy multilevel PCE based on compressed sensing. Test problem is
steady state diffusion with nine random variables and one, two, or five discretization levels.
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GREEDY MULTILEVEL REFINEMENT
COMPRESSED SENSING — SAMPLES ALLOCATION

[ ConvTol [ Ny Ny [ N3 [ Ny [ Nj
lel 198 9 9 9 9
le2 644 198 9 9 9
le3 1802 644 9 9 9
le4 4505 1802 50 9 9

TABLE: Final sample profiles for greedy multilevel compressed sensing applied to steady state
diffusion (9 random variables, 5 discretization levels).

Notes:

» We impose a collocation ration of 0.9, i.e. the system is underdetermined

» The first order correspond to 10 terms, therefore 9 simulations are needed (initialization/pilot)

» The second order correspond to 55 terms, therefore 50 simulations are needed
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Conclusions

GREEDY MULTILEVEL REFINEMENT
GENERALIZED SPARSE GRID - STATISTICS

10 10
—8— PCE UniSG single level —8— PCE UniSG single level
—6— PCE GenSG single level —6— PCE GenSG single level
107 -0~ Greedy ML PCE UniSG 5 level 107 -0~ Greedy ML PCE UniSG 5 level
~O- Greedy ML HSC UniSG 5 level O~ Greedy ML HSC UniSG 5 level
-O- Greedy ML PCE GenSG 5 level -O- Greedy ML PCE GenSG 5 level
109 i -O- Greedy ML HSC GenSG 5 level 10° -O- Greedy ML HSC GenSG 5 level
%ﬂ 13X
10° W 10° [y
\J AR
\ &
5
&t S} g ' OR
Fw 210 o
< k4
g
2 10° 8 10°
v
&
10° 10°
107 107
10" 10"
107 107
10' 10° 3 * 10° 10° 10 10° ¢ 10° 10f

Equivalent HF Simulations

Equivalent HF Simulations

FIGURE: Convergence for greedy multilevel PCE based on (generalized) sparse grids. Test problem

is steady state diffusion with nine random variables and one or five discretization levels (solid and

dashed lines, respectively).
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GREEDY MULTILEVEL REFINEMENT
GENERALIZED SPARSE GRID - SAMPLES ALLOCATION

[ Conv Tol ] Ni ] Ny, | Ns | Ny [ N5 |
le2 43 23 19 19 19
le-4 211 83 19 19 19
le6 391 271 156 19 19
le8 1359 743 327 59 19
l.e-10 3535 2311 1039 391 19
le12 10319 5783 2783 1343 43
le-14 | 26655 14991 8063 3703 1535

TABLE: Final sample profiles for greedy multilevel refinement applied to steady state diffusion (9
random variables, 5 discretization levels).

Notes:

» All levels incur a minimum 2n + 1 = 19 evaluation cost due to the initial set of level-one candidate index sets
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Conclusions

GREEDY MULTILEVEL REFINEMENT
CS/GSG - STATISTICS
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—— PCE CS single level —O—PCECS gggle level
MF PGE CS 2 levelp = 10 MF PCE CS 2 level p = 10
10° ML PCE CSSIEVelZ:i 10° <7~ MLPCE CS 5 levelx =1
ML PCE CS6 level x = 1.5 A~ ML PCE CS 5 level
10 ML PCE CS 5 level x =2 10 ML PCE CS 5 level
<J~ ML PCE CS 5 level x =3 <]~ ML PCE CS 5 level x=3
~O~ Greedy ML PCE CS 5 level =O~ Greedy ML PCE CS 5 level
10° —B— PCE UniSG single level 107 —B— PCE UniSG single level
—6— PCE GenSG single level —6— PCE GenSG single level
-~ Greedy ML PCE UniSG 5 level i -0~ Greedy ML PCE UniSG 5 level
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FIGURE: Convergence for greedy multilevel PCE comparing generalized sparse grids and
compressed sensing.

Notes:
»  The explicit nature of the sparse grid approaches allows for more precise convergence

> The compressed sensing approaches, while supporting sample profiles at the lower end of the cost spectrum,
are currently hampered in accuracy by solution of the large implicit systems that are allocated at the coarse
level
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BAYESIAN INVERSION
GENERALITIES ON THE APPROACH ADOPTED IN THIS WORK

Bayesian calibration
» Sandia’s UQ software Dakota (see Dakota Theory Manual for more details)

Markov Chain Monte Carlo for computing a sample-based posterior distribution

>

» We are interested in calibrating the parameters 6

» We assume that a surrogate for the computational model is available for the Qol: @ = q(6)
>

Reference data d are available
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BAYESIAN INVERSION
FEW DETAILS

Bayesian rule

o (1) = (2O L&)
fp (d)
Posterior probability fg |p (6]d)

Conservative Prior distribution fg (8)

Likelihood L (6;d)

Evidence fp (d)

vvyVvyy

If the difference between the model quantity of interest q and the data d is Gaussian

1re—1
——r Ed r),

1
Janregl T ( 2

where 34 represents the covariance matrix of the Gaussian data.

L£(0;d) =

NOTES:

» From computational perspective it is more convenient to work with the negative log-likelihood
n 1 1.1
—log £(0;d) = ~log(2m) + —log|Zg|+ -r" I, r
2 2 2
The term rTE; L is called Misfit Function

Minimizing the Misfit Function corresponds to maximizing the Likelihood

>
>
» Maximizing the Likelihood (MLE) does not in general correspond to the Maximum A posteriori (MAP) point
» Posterior probability is analytically intractable and therefore MCMC is used to approximate it

>

We use the QUESO library in Dakota to perform MCMC
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Conclusions

BAYESIAN INVERSION
WHY DOES HAVING A SURROGATE HELP?

» The computational code can be queried directly, but MCMC requires a very large number of evaluations to
converge

» Surrogates can provide:

» Computing local accurate proposal density (by using Hessian information)
» Pre-solving for the MAP in order to eliminate the initial burn-in phase

Computing a local accurate proposal density

» The MCMC proposal covariance to be the inverse of the Hessian of the negative log posterior
2 2 2
Vi [—log(mpest (0))] = VM (8) — Vg [log(mo(8))]

» A standard approximation is the multivariate normal (MVN) distribution with mean centered at the actual
point in the chain and prescribed covariance

2 =1 2 2 =1
— Vg [log(mo(8))] = X, — Vg [~ log(mpest(8))] = VM(0) + ¢ [log(m(6))]
» The Heassian of the Misfit Function can be computed through the surrogate model as

VaM(0) = Voa(6)" =5 Voa(6) + V5a(6) - [B5 7] .

Avoiding the burn-in phase

» When a surrogate is available the burn-in can be avoided by pre-solving for the MAP point using an
optimizer to minimize the negative log posterior

Opap = arg‘emin [ log(mpost (0))]
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Conclusions

PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 1 - INCONSISTENT PARAMETERIZATION AND SAME SAMPLE SET
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FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active

variable (Scenario 1).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 2 - CONSISTENT PARAMETERIZATION AND INDEPENDENT SAME SAMPLE SET
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FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 2).
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BAYESIAN INVERSION
POSTERIOR DISTRIBUTION
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FIGURE: Visualization of the six-dimensional posterior distribution obtained through
emulator-based inference from u data only. Marginal distributions are shown as histograms and
pairwise joint distributions are displayed as contour plots.

Recent Advancements on Multifidelity UQ

Conclusions

106/106



