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SANDIA NATIONAL LABORATORIES
MAIN ROLE AND AREAS OF INTEREST

SANDIA HAS FIVE MAJOR
PROGRAM PORTFOLIOS

Advanced
Science &
Technology

National
Security
Programs

Nuclear
Deterrence

Global
Security
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SANDIA NATIONAL LABORATORIES
ADVANCED SCIENCE & TECHNOLOGY
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SANDIA NATIONAL LABORATORIES
ALGORITHMS R&D: FROM CORE SOLVERS TO MODELING AND SIMULATION APPLICATIONS

dal
CUBIT

DAKOTA

syston, Design

Discretization

Partitioning and Mapping

n
...rptimizatIon

and UQ
Adapt Ti me integration

•

Nonlinear solve

Linear solve

I mproved design and understanding

FIGURE: Courtesy of Brian Adams
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SANDIA NATIONAL LABORATORIES
DAKOTA - EXPLORE AND DESIGN WITH CONFIDENCE

Algorithms for design exploration and simulation credibility

0- Suite of iterative mathematical and statistical methods that interface to
computational models

0- Makes sophisticated parametric exploration of simulations practical for a
computational design-analyze-test cycle

Features

0- Sensitivity: Which are the crucial factors/parameters?

0- Uncertainty: How safe, reliable, or robust is my system?

0- Optimization: What is the best performing design or control?

0- Calibration/Parameter Estimation: What models and parameters best match
data?

Credible Prediction
► Verification: Is the model implemented correctly, converging as expected?
1. Validation: How does the model compare to experimental data, including

uncertainties?

Recent Advancements on Multifidelity UQ

DAKOIA 
Explore and predict with confidence.

https://dakota.sandia.gov/
4/106
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UNCERTAINTY QUANTIFICATION
THE COMPLETE WORKFLOW

Statistical Inversion k'

(Bayesian inference)

Random inputs
Quantitiesof
interest (Qol)

Notes:

► Prior distributions based on a priori knowledge

► From observational data (experiments, reference solutions, etc.) we can infer posterior distributions via
Bayes rule

► Use of data can reduce uncertainty in parameter to Qol mapping (priors are constrained)

► Design using prior uncertainties can be overly conservative

► Reduced uncertainty of data-informed UQ can produce designs with greater performance

Recent Advancements on Multifidelity UQ 5/106
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UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES

Stewardship (NNSAASC) Energy (ASCR, EERE, NE)
Safety in abnormal environments Wind turbines, nuclear reactors

Climate (SciDAC CSSEF ACME)
Ice sheets, CISM, CESM, ISSM, CSDMS

00111604i

Addtnl. Office of Science:
WastePD:

i  Posterior 08

CHWM: push fwd

uniform(SciDAC EFRC) 
.14 

Comp. Matls: waste forms /
hazardous matls (WastePD, CHWM) 17.26A-in Pareto-

MHD: Tokamak disruption (TDS) .innnerm informed

0.00 1.50 100 0.50 6.00 1.50 9.00

Ac99011006606151e9)

FIGURE: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC

► Severe simulations budget constraints
0. Significant dimensionality driven by model complexity

Recent Advancements on Multifidelity UQ

Statistical Inference for TDS
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UNCERTAINTY QUANTIFICATION

RICH SET OF MODELING CHOICES — DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

► Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)
10- Numerical methods (high/low order, Euler/RANS/LES, etc...)
0- Numerical discretization (fine/coarse mesh...)
0- Quality of statistics (long/short time history for turbulent flow...)

Potential Flo

Potential Flow Ell

Reynolds
Averaged Navler-
Swam (RANS)

One

nrHan equaHun

Hybrid
RA-NS/LES

Large Eddy
Simulation (LES) MAI

N~bHd SANS/LES

Relationships amongst models can be difficult to anticipate

0- A simple hierarchical sequence can correspond to strict modeling choices (e.g.
discretization levels)

0- More often, for some Qol, we can have peer models

Recent Advancements on Multifidelity UQ 7/106
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UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:

0- High-dimensionality, non-linearity and possibly non-smooth responses

0- Rich physics and several discretization levels/models available

Natural candidate:

0- Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

► Drawback: Slow convergence 0(N-112) —> many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

► Simplified (low-fidelity) models are inaccurate but cheap
o. low-variance estimates

0- High-fidelity models are costly, but accurate
► low-bias estimates

Recent Advancements on Multifidelity UQ 8/106
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MONTE CARLO
A BRIEF OF ITS HISTORY (1/2)

Halton (1970): representing the solution of a problem as a parameter of a hypothetical population, and using a
random sequence of numbers to construct a sample of the population, from which statistical estimates of the
parameter can be obtained.

11. One of the first documented MC experiments is Buffon's needle experiment which Laplace (1812) suggested
can be used to approximate er (Johansen and Evers, 2007)

2N1

— Pt
where

11. N: number of needles

► l: length of the needles

► P: number of needles crossing the lines

10: t: distance between the lines

FIGURE: Buffon's needle experiment based on 17
throws. (Source: Wikipedia)

Recent Advancements on Multifidelity UQ 9/106
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MONTE CARLO

A BRIEF OF ITS HISTORY (2/2) — Los Alamos Science No. 15, Special Issue 1987 — In honor of Stan Ulam

Around 1940:

► ENIAC: first electronic computer at the University of Pennsylvania

[...] Stan's (Stanislaw Ulam) extensive mathematical background made him aware that statistical sampling
techniques had fallen into desuetude because of the length and tediousness of the calculations. But with this

miraculous development of the ENIAC, (...] it occurred to him that statistical techniques should be resuscitated,
and he discussed this idea with von Neumann. Thus was triggered the spark that led to the Monte Carlo method.

I. The name: Ulam had a uncle who would borrow money from relatives because he "just had to go to Monte
Carlo"

THE BEGINNING of the
MONTE CARLO METHOD

FIGURE: Metropolis' contribution to the Los

Alamos Science Special Issue, 1987

FIGURE: Analog device dubbed FERMIAC,

Image from Los Alamos Science No. 15, 1987

Recent Advancements on Multifidelity UQ 10/106
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SAMPLING METHODS
HOW ARE SAMPLING METHODS USED WITHIN UQ?

► There are several applications for the MC method

I. In Uncertainty Quantification (UQ) we are often concerned with the computation of a the expected value of

a function (or higher moments)1

E VW] = f f (OP(Ock

I. Therefore one of the tasks to be performed in UQ is the quadrature in (very often) high-dimension C le)

The Monte Carlo method is based upon three main steps:

II. Pre-processing: generation of random numbers

► Evaluation step: Computation of the Quantity of Interest from the computational code

► Post-processing: Estimator and confidence interval evaluation

1UQ is a much richer area than 'just' numerical quadrature, but nevertheless this is an important task
Recent Advancernents on Multifidelity UQ 11/106
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STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable Q:

1 

z_, 
N= n(i)

"eN i=1,,e

Recent Advancements on Multifidelity UQ
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STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable Q:

1 NM
QNG = (2")N

Two main estimator's properties

1 N
► Unbiased (for each choice of N!): E = — E E [Q = E [Q]

N

► Convergent (Strong law of large numbers): lim QATIC = E [Q] a.s.

Recent Advancements on Multifidelity UQ
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STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable Q:

1 NM
C2NG = (2")N

Two main estimator's properties

1 N „
► Unbiased (for each choice of N!): E [01 = — E E [QH = E [Q]

N i=1

► Convergent (Strong law of large numbers): lim QATIC = E [Q] a.s.
N—roo

Main mathematical tool used for the analysis is the Central Limit Theorem (CLT)

I. Let's define the error eN = E [Q] —

I. Let's assume Var [Q] is finite, then for N oo

eN
J‘i(0, 1),

liVar [01

where
VarN[Q]

Var [ONC]  

Recent Advancements on Multifidelity UQ 12/106
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CENTRAL LIMIT THEOREM
CONFIDENCE INTERVAL

CLT is the fundamental result that enable us to obtain a confidence interval for MC

► p (N1/2 eN < Fz(z),for Z MO, 1)z) =
Var1/2 (Q)

►
1

Fz(z) = (1+ erf (T))2

PP We want to control the probability of N112 eN , therefore
Var1/2 (Q)

eN
P 

N112 1 — 2Fz(z) = erf „i)=
Var1/2 (Q)

0.95

0.9

0.85

0.8

0.75

0.7

0.65
1.5 2 2.5

Recent Advancements on Multifidelity UQ

3 3.5

z 1 — 2Fz(z)
1 0.683
2 0.954
3 0.997
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MONTE CARLO
TARGET ACCURACY

We can use the distribution of eN to estimate the number of simulations required.

► Let's assume we want an estimator accurate at the 99.7% with error eN = e

I. We need to select z = 3 (from the previous table)

Var [Q]► N — 9

Few additional comments:

► The number of samples scales as 62, i.e. one order of increased accuracy is obtained with 100 times more
samples

► Error is not a function of the dimension (eN « N-1/2)
► Error is not a function of the regularity of the quantity Q

10. On the contrary the error for a composite (Cavalieri,Kepler-)Simpson's rule ([0, 1]) is bounded by

A (x)

P(x)

a

FIGURE:
https : //en . wikipedia. org/wiki/Simpsonl27s_rule

114
— max f (4) (x), therefore eN oc N4 = N-4/d

180 xe [0,1] 1D

(MC integration is competitive for d > 8 w.r.t.
Simpson's rule)

Recent Advancements on Multifidelity UQ 14/106
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MONTE CARLO
ESTIMATOR VARIANCE: DERIVATION

ln surnrnary we have seen so far:

► CLT provide a rigorous way to assess the accuracy of a MC simulation

► eN .01ar [ellif J\ f] (0 ,1)

► eN oc N-112 and (numerical cost) is CMC oc N , therefore CMC oc 0,7,2

P. MC convergence is independent from the dimensionality of the problem (indeed more efficient w.r.t. other
strategies as d increases)

► MC does not require a certain degree of regularity to maintain its properties

Recent Advancements on Multifidelity UQ 15/106
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MONTE CARLO
ESTIMATOR VARIANCE: DERIVATION

ln surnrnary we have seen so far:

► CLT provide a rigorous way to assess the accuracy of a MC simulation

► eN ,\IVar [01;1,1 NO, 1)

► eN oc N-112 and (numerical cost) is CMC oc N, therefore CMC oc

P. MC convergence is independent from the dimensionality of the problem (indeed more efficient w.r.t. other
strategies as d increases)

► MC does not require a certain degree of regularity to maintain its properties

Variance of a MC estimator is

1
Var [014C] = Var[— EQ(i)]

N i=i

= 
.1)1 

Var[lC1(i)]
i=i

1
= xr2 E Var [Q]

i=i

1
= —Var [Q]

Recent Advancernents on Multifidelity UQ 15/106
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MONTE CARLO
ESTIMATOR VARIANCE: A SIMPLE DEMONSTRATION

Let consider a random variable Q, we want to cornpute its expected value E [Q] (or some high-order mornent):

N
QPNIIC = vs Q(1)

N

#Hit
Let's use MC to compute the value ir oc  

N

• • • ••
• • • • • •

• ••
• • • • *7.

• • •• „„• 

•
•_ •• • • • % • •

0.5 •>, -AD• •. •
•• •• • • 

•• • • 
•

• •
•

• 0, •
•
• 

8b
• • •

• •• •• 
0 
o 0.5

x

Hit •
Miss •
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MONTE CARLO
ESTIMATOR VARIANCE: A SIMPLE DEMONSTRATION

Let consider a random variable Q, we want to cornpute its expected value E [Q] (or sorne high-order moment):

1 N •QPNIIC = r's Q(1)

N

#Hit
Let's use MC to compute the value ir oc  

N
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MONTE CARLO
ESTIMATOR VARIANCE: A SIMPLE DEMONSTRATION

Let consider a random variable Q, we want to cornpute its expected value E [Q] (or sorne high-order moment):
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VARIANCE REDUCTION STRATEGIES
AN (INCOMPLETE LIST)

Variance of the estimator:

v., variv[Q] LNJ

What can we do to drive down the variance of the estimator?

#0 Increase the number of samples this is going to cost us too much for HF applications

#1 Replace the HF model with a computational cheapest one, e.g. Reduced Order Models (ROMs)

#2 Act on the sampling (Stratification, Important Sampling etc.)

#2 Replace the original Qol with a lower variance alternative (with the same mean)

Sampling-based variance reduction techniques.

P. Importance sampling

► Very useful when the main contribution to E [Q] comes from rare events

I. Stratified sampling

► Very effective in 1D, not clear how to extend to multiple dimensions

II' Latin hypercube

► Effective if the function can be decomposed into a sum of 1D functions

I. (Randomized) quasi-MC

10' Possibly provides better error than MC, but need to be randomized to get the confidence interval

Recent Advancements on Multifidelity UQ 17/106
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>, 0.5 -
•••
•

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

N
OATN def N E (i)

i=i

• •• •
• # • 02 •„T.• •••••

•• ••• • •
•dp 

•
• os • 418

• •

• •
•••

••

• • •

•• 
•

• *
• • •

• •

•

•
•
•

•

•

0 0.5

x

Hit •
Miss •
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced
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MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the statistics of a functional (linear or non-linear) QM of the solution uM

Qm = g(uM) E [QMI

► M is (related to) the number of spatial degrees of freedom

► ]E [Qm] ]E [Q] for some RV Q : ft R

OCN def 1 N Q0)

' N M
,

Looking at the Mean Square Error (MSE):

E [(QAIN E [QD2] = IE [ CON IE [QM] E [Qm] E [Q]>2]

= IE [ (014C,N — E [Qm1)2] + 21E ReemIC,N — E [Qm]) (E [QM[ — E [Q])]

E [(E [Qm] — IE [Q])2]

= var [41111C,N] [QM — (41)2

Recent Advancements on Multifidelity UQ 20/106
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MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E E [Q])2] = var [44,Is] (E [QM — Q1)2

► Sampling error: replacing the expected value by a (finite) sample average, i.e.

From the CLT, for N oo

Var [kiffS] — 
VarN[Q]

cozci,N E IQ]) \Iklar [Q1
N(0 1)

N

I. Model fidelity (e.g. discretization): finite accuracy

Recent Advancements on Multifidelity UQ 21/106
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MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E [(dC,N E [Q])2] = var [44,h] (E [QM — Q1)2

► Sampling error: replacing the expected value by a (finite) sample average, i.e.

From the CLT, for N oo

Var [e&C:N] — 
VarN[Q]

Var [Q] 
(CC,N E N ./V-(0, 1)

I. Model fidelity (e.g. discretization): finite accuracy

Accurate estimation Large number of samples evaluated for the high fidelity model

>i 0.5

Hit •
Miss •

Recent Advancernents on Multifidelity UQ 21/106
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ACCELERATING MONTE CARLO

BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

0.5

0
0

Single Fidelity

0.5

x

Hit •
Miss •

Pivotal idea:

• High-fidelity models are costly, but accurate
► low-bias estimates

• Low-fidelity models are inaccurate but cheap-to-evaluate
► low-variance estimates

Multifidelity challenges:

• How do you arrange the information sources?

• How do you optimally allocate samples among models?

Recent Advancements on Multifidelity UQ
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WHY IS THIS SUPPOSED TO WORK?
A PROTOTYPICAL ESTIMATOR: THE DIFFERENCE ESTIMATOR

Ingredients:

► High-fidelity: Q

► Low-fidelity: P

Np
1 

NQ

E [Q] = E [P (Q — P)] = E [P] E [Q — P] 
(

— E ) — E (Q(J) P(B)
Np ,=, NQ j=i

Properties of the difference estimator

► Unbiased

I. Variance

Var [P] V ar [Q — P] Var [P]
1 (Var [Q] Var [P] — 2Cov (Q, P))

Np NQ Np NQ

NOTE: The negative term can help you if the cost of computing P is low and if Var [P] approaches Var [Q]

Recent Advancements on Multifidelity UQ 23/106
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C ONTROL VARIATE
CAN WE DO SLIGHTLY BETTER?

A Control Variate MC estimator (function Qi with pi known)

QN = — (01 — Ai) , E 111

NOTE-1: Q is the MC estimator of the HF and 01 is the MC estimator of the LF
NOTE-2: Q and 0l are obtained with the same samples

Properties:

► Unbiased, i.e. E [Q] = E [0] = E [Q] (for any 0)

Vari/2
► 

 (Q)
argminVar [CI] —> — p 

Var112 (01)

I. Pearson's p =  
CoN{Q Q 1)  

where lpl <1
Var112 (Q) Vari/ 2 (Qi)

Var [ea] = Var [0] (1 — p2)

Let's consider:

► Var Var [Q]

► p 1

► It follows that 0 —1

NOTE: In reality 0 is estimated by a finite number of samples, therefore the variance is slightly higher and there is
a small bias (that can be quantified)..

Recent Advancements on Multifidelity UQ 24/106
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MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity 4, to decrease its variance

QN = 0 + /3 -

Recent Advancements on Multifidelity UQ
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MULTIFIDELITY

PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity 4, to decrease its variance

QN = 0 + /3 -

In practical situations

► the term Ai is unknown (low fidelity ~ analytic function)

P. we use an additional and independent set ALF = (r — 1)NHF

Finally the variance is

,NHF
1

rNHF Q1 •

Var [eg] = Var [0] (1 — r 1r  pl)

[1] Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated
control means. IIE Transactions, 44(5), 381-385, 2012

[2] Ng, L.W.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

[3] Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194, 2016.
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UQOSNL Multifidelity UQ MF Sampling AS for MF UQ Inverse MF UQ Conclusions

MULTIFIDELITY ESTIMATOR
How DO WE SELECT THE IMPORTANT PARAMETERS?

Var = Var [ON] (1 r — 1 )
r p1

Two questions:

1 How do I pick 0?

2 How many samples do I need to evaluate for each model?

r — 1
Q: If   1, why don't we use a very large r for the estimator? (Remember, NLF = „win

Recent Advancements on Multifidelity UQ 26/106
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MULTIFIDELITY ESTIMATOR
How DO WE SELECT THE IMPORTANT PARAMETERS?

Var = Var [ON] (1 r — 1 )
r

Two questions:

1 How do l pick 0?

2 How many samples do l need to evaluate for each model?

r — 1
Q: If   1, why don't we use a very large r for the estimator? (Remember, NLF = rNIIF)

A: An optimal solution for r exists if we try to minimize the overall estimator cost for a certain target variance
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MULTIFIDELITY ESTIMATOR
How DO WE SELECT THE IMPORTANT PARAMETERS?

Var = Var [ON] (1 r — 1 )
r p1

Two questions:

1 How do l pick 0?

2 How many samples do l need to evaluate for each model?

r — 1 = rNRF)Q: lf   1, why don't we use a very large r for the estimator? (Remember, NLF

A: An optimal solution for r exists if we try to minimize the overall estimator cost for a certain target variance

Let's introduce the following notation

► Cost of one low-fidelity realization: CLF

► Cost of one high-fidelity realization: CHF

► Total cost: Ctot(NHF, = NHFCHF rNHFcLF

Remember...

E [(OLIF'CIT — IE [Q])2] = var [OVA] (IE [QM — Q])2

Additional considerations:

► Let's assume someone is giving us the weak error E [QM — Q] committed on the resolution level M

► Let's call (E [QM — Q])2 = e2/2 for simplicity
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MULTIFIDELITY ESTIMATOR
MINIMIZATION OF THE COMPUTATIONAL COST (PROBLEM DEFINITION)

We want to solve the following problem:

0.• Minimization of the total computational cost: Ctot (NBIF = NHF.,HF rNEFCLF

10. We want to reach a target MSE of e2, therefore Var [eqm] = e2/2

► The cost ratio between the two models is: w = CHF /CLF
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MULTIFIDELITY ESTIMATOR
MINIMIZATION OF THE COMPUTATIONAL COST (PROBLEM DEFINITION)

We want to solve the following problem:

0.• Minimization of the total computational cost: Ctot (NBIF 
= NEFCILF 

rNEFCLF

10. We want to reach a target MSE of E2, therefore Var [eT:m] = e2 /2

► The cost ratio between the two models is: w = CHF /CLF

More formally, let's define our optimization problem (Lagrange constrain optimization)

1 
E2

argmin (G) = CtOt — (
NHF 
-Var [Q1-371 A(r)

2 )NHF,r,

Ctot (NHF,r) = NHFCHF 
rN

HFCLF

= NHF (cHF rCLF)

= NHFCeq(r) = NHFCHF,(,)

r — 1 2
A(r) = 1  r pj.

Recent Advancements on Multifidelity UQ 27/106



UQ@SNL Muinfidelity UQ MF Sarnpling AS for MF UQ Inverse MF UQ Conclusions

MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as

r* wp2

1 — p2

NHF,* [QDF]

E2/2 
A(r*),

Recent Advancements on Multifidelity UQ
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as

r* wp2

1 — p2

NHF,* [QDF]

y2/2 
A(r*),

How this compare to MC?

Var [C]
10. Total cost of MC: CPY 

= 
N
HFCHF —  CHF

e2/2

V 
cEIF80„, p2 ), 

where
[]

I. Total cost MF: Cw = NI-7,*Ce4(r*) —
Var Q

yz /2

e(w, p2 ) df 
A(r*)r (r* )

measures the efficiency of the method (w.r.t. MC, i.e. we want 8(w, p2) < 1)
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as (w = CHFICLF)

.
r* =  

02

1 — p2

NHF . = 
Var [QDF] 

1 
r* 

* p
2)

, 
 y2

r* r 
r* 1 Ctot 

= NHF,
*CHF 1 = NMCCHF 1 + 1 02 = NmeCHFe(w, 02)

Co
rr

el
at

io
n 
sq
ua
re
d 

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

10 100
w

1000

Theta
1 —

0.9 
0.8
0.7
0.6
0.5
0.4  
0.3
0.2
0.1

10000
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GEOMETRICAL MLMC
ACCELERATING THE MONTE CARLO METHOD WITH MULTILEVEL STRATEGIES

Multilevel MC: Sarnpling from several approximations Qm of Q (Multigrid...)

Ingredients:

► {Mt = 0, ... ,L} With MO < < • • < MLV M

IP•• Estimation of E [Qm] by means of correction w.r.t. the next lower level

ye 
Ldef QMP QM.e— E [QM] = E [wild _FE E [QM, 

— 
chit = E xel

Q0 t = 0 .e=1. 6=0

0••• Multilevel Monte Carlo estimator

NeeiAlL def =
iL-'=1 Me 4m.e—i)

1.• The Mean Square Error is

E [MIL E [Q])2] = llrar [Yd [Qm — Q])2

¢=0

Note If Qm Q (in a mean square sense), then Var [Irt] >,'s 0
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GEOMETRICAL MLMC
DESIGNING A MLMC SIMULATION: COST ESTIMATION

Let us consider the numerical cost of the estimator

L
CAL) = E N,cE

i=0

Determining the ideal number of samples per level (i.e. minimum cost at fixed variance)

C(Or) = E N,ece
r=0 Lagrange multiplier 2

Are

L C01/21
[Yr]

L — 2
6

2_, (Var [yid
k=0

1/Var

Ce
E NT1Var [Yi] = 62/2

Z=0

L
Var [C] = ENT1Var (Y,e) .

r=0

► MLMC can be reinterpreted as a particular instance of recursive control variate (more on this later)
► MLMC has been originally introduced for problems for which it is possible to control the highest resolution

(full MSE control)

► No need to estimate coefficients, but optimal for very controlled scenarios (i.e. discretization level)

[1] Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617, 2008.

[2] Haji-Ali, A., Nobile, F., Tempone, R. Multi index Monte Carlo: When Sparsity Meets Sampling, Numerische
Mathematik, Vol. 132, 767-806, 2016.
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MULTILEVEL-MULTIFIDELITY APPROACH
COMBINATION OF DISCRETIZATION AND MODEL FORM

10. OUTER SHELL — Multi-level: no need to estimate coefficient (rnesh based, high correlation)

LHF LHF
E [Q1-m1F] = E E [ITF] = E

/=. /=.
► INNER BLOCK — Multi-fidelity (i.e. control variate on each level)

= 1,7 (14F _ E [y/1)

Final properties of the estimator

and

ormF = [kip ± (1(17 E [YVD]
1=0

Var [03131F] = LIEIF Var [Y7F] (1 r%.7e i p2.e))

/=0 Ne
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MULTILEVEL-MULTIFIDELITY
OPTIMAL ALLOCATION ACROSS DISCRETIZATION AND MODEL FORMS

► Target accuracy for the estimator: e2

► Cost per level is now Cr = Cir +CQFrQ

10: the (constrained) optimization problem is

LHF (HF 1 

NHF
argmin (C), where = E Nrcr + E Var [Yr] At (rt) — e2 /2Nr , =(:) P=0

r ► A t (r e) — 1 p2

After the first iteration the algorithm can adjust the number of samples on the HF or LF side depending on the
correlation properties discovered on flight

After the minimization (NliF = NIP + OQF = NQF r ,e)

2r* = pt

p2r 

we 

, where tuf = cyFicliF

Nit ,* = 2 [iZg (Var 
[yr] clri1F ) 1/2

1 — 4

Var [IF]
P!) 
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ENHANCING THE CV EFFECT
MAXIMIZING THE CORRELATION FOR A FIXED LF MODEL (1/2)

Possible cures for low-correlation (of the discrepancy terms):

10: Iteration with the application team to identify the lack of convergence
► LF model improvement

► Algorithmic-contained correlation improvement
I. Reformulation of the LF discrepancy to gain optimality

kf
LF LF 

 = QV_

where ry.e is chosen in order to maximize the correlation between YIP and VE-1.

Following the same MLMF approach

LHF r — 1 0
Var ALMF] = E 

N e 
ar [Y17] (1  p , where

1=0 

2 

et =
Cov

Cov Or, Yle)

Var 07)
TR —  

Var (YF)
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ENHANCING THE CV
MAXIMIZING THE CORRELATION FOR A FIXED LF MODEL (2/2)

The optimal LF model coefficient -yE can be computed analytically:

Cov (Y1-1F, OF 1) Cov (OF, OF 1) — v., (el) Cov (yip, .91/)
Var (QV) Cov QV 1) — Cov (yHF (217) Cov (QLeF 1)

The resulting optimal allocation of samples across levels and model forms is given by

r; =

2
2 "if,T

= CleI F/CliFwe, where we

\

Ae = 1

1 —

2pE

,5,2

r; — 1

717(

1/2

2

-

LEIF

E
k=0

[ Var (Yr) ClIF
Ak (ri: )1,

\

(1 ei \ Var (Yr)

2 

)

1 —e
p,

7 - ) clIFpl
Tt

[1] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity control variate approach for the multilevel Monte Carlo
technique. Center for Turbulence Research, Annual Research Briefs 2015, pp. 169-181.

[2] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity multilevel Monte Carlo method for uncertainty
propagation in aerospace applications 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech
Forum, (AIAA 2017-1951)
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PRACTICAL IMPLEMENTATION
BUDGET-CONSTRAINED OPTIMIZATION

1 (Coupled) Pilot runs for LF and HF

1 ri; = \ 1 P2iepi2e log , where foie = ClielF /CV

N7F,* 2 [LE (V_ [419 ClIF Aie) 1/21 (1 p_, ,Thr [4.1, 

'2 k =0 1 — 4 U cr
2 Optimal ratio sequence (e- independent!)

N
HF,*

N
HF,*
2-1

(1 — 4)Var [IF] cr1

(1 — 11_1)1, or [1,11F11 CHF

NHF ,* „r1-1F,*

r* = (ri , r 1 * — —2 
HF,* HF *

N '

=  NL —1 

*-2 

3 Given the target number Nffget of HF runs at finer resolution L

L — —1 )

A'P " = NIEget 1-1 —q
g=0

4 Optimal low fidelity simulations ATLiF = 71k1,IF'*
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Heat equation — Parabolic 1D
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MF Sampling

HEAT EQUATION
VERIFICATION TEST CASE (WE KNOW THE EXACT SOLUTION)

Heat-equation in presence of uncertain thermal diffusivity and initial condition:

x,t 2Ou( ,t) a t,t) 
ce(t) = 0, a> 0,xE[O,L]=S2 clil

at a x2

u(x, co) = uo(x, 0, t E [O,tp] and t EEC Rd

u(x, t, t)laci = 0

uo(x, t) = g(t)T1 (x) + I(t)T2(x)

800

600

400

200

0

200

-400

-600

0.2

—Initial condition —
Low Fidelity —
High Fidelity —

0.4 0.6 0.8

P. Low-fidelity:

ntow = {1, 2, 3} E Mow] = 33.15

► High-fidelity: hhigh = niow U {9, 21}
E [Qhigh] = 41.98

p. Discrepancy E [Qhigh] — E [Ciim] = 8.83
(21%)
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NUMERICAL RESULTS
DESIGNING A CHALLENGING TEST CASE - MC ON Nx = 1000

50

45

40

a: 35
Lu

30

25

20
0 100000 200000 300000 400000 500000 600000 700000

N

MC LF
exact LF
MC HF

LF HF

# modes 3 21
Nx we

=0 5 30 42
E =1 15 60 28
E =2 30 100 23
=3 60 200 23

<>, The LF cannot increase the overall accuracy because it is heavily biased...
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NUMERICAL RESULTS
MULTI-LEVEL MULTI-FIDELITY (COMPARISON WITH MLM(.' AND MC)

70

65

60

55

50

45

40

35

30

25
10

MLMF _

100 1000 10000 100000 1e+06 1e+07

N

Expected Value

10

0.1

0.01

MLMF
MLMC

10 100 1000 10000 100000 1e+06 1e+07

N

Accuracy E
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Non-linear elastic waves propagation — Hyperbolic CLAWs 1D
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

in

12

10

8

ll. Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws

1 0.4 = K11 e + rp, 4= 1 and 4 = i — Li (0.01, 0.02)
°..13 = IC13 c + Klic2, le,',. = 1.5 and 4 = 0.8

I. Uncertain initial static (u(x, t = 0) = 0) pre-loading state:

i exp ( (x — 0.35)(x — 0.25)  )
if

2 x 0.002 
0 < x < 1/2 ,.., U (0.5, 2)

cr (x) =
— 0.65)(x — 0.75))exp  if 1/2 < x <

2 x 0.002 
1 U(0.5, 6.5)

► Spatially varying uncertain density: p(x) = + 0.5 sin (2vrx), U(1.5, 2)

► Clamped rod as B.C.

2  
0

LF 21 nodes -
LF 41 nodes - - -
IF 81 nodes - - -

LF 151 nodes - - -
HF 101 nodes -
HF 201 nodes -
HF 401 nodes -
HF 1001 nodes -
initial Solution -

0.2 0.4 0.6 0.8

Nx

Low-fidelity

(GODUNOV)

21

41

81

151

High-fidelity

(MUSCL—van Leer)

101

201

401

1001

Nt At

50 3.6 x 10-
100 1.8 x 10-3
150 1.2 x 10-3
288 6.25 x 10-4

200 9 x 10 4

400 4.5 x 10-4
900 2 x 10-4
2000 9 x 10-5

TABLE: Low- and high- fidelity simulations

Recent Advancements on Multifidelity 40/106



UQOSNL Muinfidelity UQ MF Sarnpling AS for MF UQ Inverse MF UQ Conclusions

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

tn
2

0.1

0.01

0.001
10

Standard Deviation of the Estimator

100 1000

Equivalent HF runs

10000 100000
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES - AVERAGE OF 50 REALIZATIONS

St
an
da
rd
 D
ev
ia
ti
on
 

1

0.1

0.01

0.001

Average Standard Deviation of the Estimator

MLMC
MLMF YI
MLMF QI  

10 100 1000

Equivalent HF simulations

10000

Level MLMC MLMF-Yl MLMF-Ql
Ne NIP NI( re 4 NIIF W re f4

0 80029 5960 243178 40 0.97 4682 192090 40 0.97
1 6282 2434 12487 4 0.49 1049 13781 12 0.83
2 1271 262 3877 14 0.82 151 3657 23 0.92
3 212 47 966 19 0.84 34 754 21 0.86
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES - AVERAGE OF 50 REALIZATIONS

St
an
da
rd
 D
ev
ia
ti
on
 

1

0.1

0.01

0.001

Average Standard Deviation of the Estimator

MLMC
MLMF YI
MLMF QI  

10 100 1000

Equivalent HF simulations

10000

Level MLMC MLMF-Yl MLMF-Ql
NE NI( re ,4 Npl.IF NliF re 4

0
ily-IFffi

243178 40 0.97 4682 192090 40 0.97
1 2434 12487 4 0.49 1049 13781 12 0.83
2 1271 262 3877 14 0.82 1 3657 23 0.92
3 47 966 19 0.84 754 21 0.86

Recent Advancements on Multifidelity UQ 42/106



UQeSNL Muinfidelity UQ MF Sarnpling AS for MF UQ Inverse MF UQ Conclusions

ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES - AVERAGE OF 50 REALIZATIONS

St
an
da
rd
 D
ev
ia
ti
on
 

1

0.1

0.01

0.001

Average Standard Deviation of the Estimator

MLMC
MLMF YI
MLMF QI  

10 100 1000

Equivalent HF simulations

10000

Level MLMC
Ne NIP

MLMF-Yl
NIIF re f)., NIIF

MLMF-Ql
W re

0 80029 5960 243178 0.9 4682 192090
1 6282 2434 12487 4 0.49 1049 13781 12
2 1271 262 3877 14 0.82 

1
151 3657 23

3 212 47 966 19 0.84 34 754 21
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Cardiovascular flow — Flow/Structure interaction
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CARDIOVASCULAR FLOW
IN COLLABORATION WITH FLEETER AND PROF. MARDSEN (STANFORD) AND PROF. SCHIAVAZZI (NOTRE DAME)

1.111111 2.1411.1ras 1.3•AmentatIon Sone

.11

(b)

7.81.1.11en
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CARDIOVASCULAR FLOW
COMPUTATIONAL SETTING AND UQ SETUP

Aorto-Femoral Ranges I Coronary Ranges

Uncertain Parameter Min Max Min Max

BC: Total R 1.0079 x 103 1.8718 x 103 1.0500 x 103 1.9500 x 103
BC: Total C 7.0000 x 10-4 1.3000 x 10-3 7.0000 x 10-4 1.3000 x 10-3
BC: Ratio of Rpl Rtotsi 3.9200 x 10-2 7.2800 x 10-2 6.3000 x 10-2 1.1700 x 10-1
BC: Ratio of RaRtot./ (renal arteries) 1.9600 x 10-1 3.6400 x 10-1
Young's Modulus 4.9700 x 105 9.2300 x 105 4.9700 x 105 9.2300 x 105
Young's Modulus (coronary arteries) 8.0500 x 105 1.4950 x 106
Inlet waveform total flow 5.8333 x 101 1.0833 x 102 6.3490 x 101 1.1791 x 102
Blood Density 7.4200 x 10-1 1.3780 7.4200 x 10-1 1.3780
Blood Viscosity 2.8000 x 10-2 5.2000 x 10-2 2.8000 x 10-2 5.2000 x 10-2

Aorto-Femoral Healthy Aorto-Femoral Diseased Coronary Healthy Coronary Diseased

Fidelity & Level Cost Effective Cost Cost Effective Cost Cost Effective Cost Cost Effective Cost

3D Fine Mesh 870.80 h 1 667.23 h 1 2 164.61 h 1 1 198.48 h 1
3D Medium Mesh 228.44 h 2.62 x 10-1 157.05 h 2.35 x 10-7 497.23 h 2.30 x 10-1 286.88 h 2.39 x 10-7
3D Coarse Mesh 98.02 h 1.13 x 10-1 56.21 h 8.42 x 10-2 78.65 h 3.63 x 10-2 120.63 h 1.01 x 10-1

1D Fine Mesh 11.60 m 2.22 x 11.87 m 2.96 x 10-e 4.33 m 3.34 x 10-5 4.78 m 6.65 x 10-5
1D Medium Mesh 2.95 m 5.65 x 10-5 2.62 m 6.54 x 10-5 1.90 m 1.46 x 10-5 2.00 m 2.78 x 10-5
1D Coarse Mesh 1.90 m 3.64 x 10-5 1.52 m 3.79 x 10-5 1.08 m 8.34 x 10-6 1.13 m 1.58 x 10-5

OD Full Model 0.49 m 3.64 x 10-6 0.50 m 1.25 x 10-° 0.17 m 7.66 x 10-5 0.16 m 1.36 x 10-4
OD Simple Model

I 
0.03 m I 6.60 x 10-7 0.03 m 7.60 x 10-7 0.03 m 2.51 x 10-7 0.03 m

I 
4.72 x 10-7
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CARDIOVASCULAR FLOW
UQ RESULTS - FOR MORE SEE FLEETER, GERACI et al., CMAME, VOLUME 365, 15 JUNE 2020, 113030

25

20

15

10

5

Flow at Celiac Think Outlet

3D Fine 1D Fine

Models

(a)

OD RCL

25

20

1 15

rn 10

5

TAWSS in Superior Mesentaric Branch

3D Fine 1D Fine

Models

(b)

OD RCL
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CARDIOVASCULAR FLOW
UQ RESULTS — FOR MORE SEE FLEETER, GERACI et al., CMAME, VOLUME 365, 15 JUNE 2020, 113030

i

❑

10 105

Equivalent HF Fine Runs Equivalent HF Fine Runs Equivalent HF Fine Runs

(e) (f) (g)

Legend: 
-0- Monte Carlo -1:1- Multilevel -0- MLMF 3D-ID —A— MLMF 3D-1DRD

► (a)-(e) Outlet flow
► (b)-(f) Outlet pressure
► (c)-(g) Time-averaged pressure
► (d)-(h) TAWSS

Recent Advancements on Multifidelity UQ
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Nozzle design — Aero-Thermo-Structural interaction
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AERO-THERMO-STRUCTURAL ANALYSIS
PROBLEM DESCRIPTION

(a) X47B UCAS (b) Nozzle close-up

FIGURE: Northrop Grumman X-47B UCAS and close up of its nozzle (Source: http://www.
northropgrumman.com/MediaResources/Pages/MediaGallery.aspx?ProductId=1.1C-10028)
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AERO-THERMO-STRUCTURAL ANALYSIS
COMPUTATIONAL SETTING

111.strlaselo

1-D engine model

7 8

Non-ideal nozzle aero

-

T,

1-D Conjugate Heat Transfer

a(x) = P(x) 

D 

(

)

Simplified hoop stresses

Low-fidelity model

; • .

1-Dengine model

AVsymmetric Euler / RAN.$ gem
Adaptive meshing

77.77
Heat loal Mech load

/Ai Heat Transfer

Coarse FEM structural mode!"

Maldmin

.114....k

101.!

1-D'engine model

RANS nozzle aerodynamics

CoMugate heat transfer

FEM structural model

Medium-fidelity model High-fidelity model
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AERO-THERMO-STRUCTURAL ANALYSIS
15 UNCERTAIN PARAMETERS

Parameter Range

inlet stagnation temperature [K] 897.75-992.25
Atmospheric Temperature [K] 248.9-275.1
inlet stagnation pressure [Pa] 216,000-264,000
Atmospheric Pressure [Pa] 57,000-63,000

Thermal conductivity [W/m K] 8.064-9.856
Elastic modulus [Pa] 7.38e10-9.02e10

Thermal expansion coefficient [1/K] 1.8e-6-2.2e-6
lower Bspline 1 [-] 0.005-0.03
lower Bspline 2 [-] 0.005-0.03
lower Bspline 3 [-] 0.005-0.03
lower Bspline 4 [-] 0.005-0.03
upper Bspline 1 [-] 0.005 -0.03
upper Bspline 2 [-] 0.005-0.03
upper Bspline 3 [-] 0.005-0.03
upper Bspline 4 [-] 0.005-0.03

TABLE: Uncertain parameters for the nozzle problem

► HF
Flow: Euler
Thermal/Stress: FEM

► LF
Flow: 1D non-ideal nozzle
Thermal/Stress: Thermal resistances and hoop model

► LF (updated)
Flow: 1D non-ideal nozzle
Thermal/Stress: FEM

. Control variate only at coarsest level!
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AERO-THERMO-STRUCTURAL ANALYSIS
MESH DISCRETIZATION HIERARCHY

(a) Coarse

(c) Fine

(b) Medium

FIGURE: Close up of the meshes.

Triangles
Coarse 6,119
Medium 29,025
Fine 142,124

TABLE: Number of triangles.

LF HF
Coarse 0.016 0.053
Medium N/A 0.253
Fine N/A 1.0

TABLE: Computational cost.
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AERO-THERMO-STRUCTURAL ANALYSIS
CORRELATION AND VARIANCE REDUCTION

LF
correlation Variance reduction [%]

LF (updated)
correlation Variance reduction [%]

Thrust 0.997 91.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 93.4

TABLE: Correlations and variance reduction for E2/4 = 0.001.

Accuracy (e2 / eP)
LF

Coarse Coarse
HF

Medium Fine
LF (updated)

Coarse Coarse
MF
Medium Fine

0.1
0.01
0.003
0.001

N/A
21,143
69,580
212,828

N/A
1,757
5,775
17,715

N/A
20
36
109

N/A
20
20
34

404
3,091
N/A

32,433

20
177
N/A
1,773

20
31
N/A
314

20
20
N/A
20

TABLE: Sample profiles for the LF and HF model as function of the normalized accuracy E2/4.
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AERO-THERMO-STRUCTURAL ANALYSIS
MULTILEVEL/MULTIFIDELITY EFFICIENCY
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10 100 1000 10000
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Scramjet — 2D/3D LES (Combustion)
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SCRAMJET ENGINES
A LITTLE BIT OF CONTEXT: OPPORTUNITIES AND CHALLENGES

Supersonic combustion ramjet (Scramjet) engines

► are propulsion systems for hypersonic flight

► aim at directly utilize atmospheric air for stable combustion while maintaining supersonic airflow

► obviates the need to carry on-board oxidizer

► overcome the losses from slowing flows to subsonic speeds (no rotating element)

Several challenges

► characterizing and predicting combustion properties for multiscale and multiphysical turbulent flows (under
extreme environments)

► low throughput time vs need for mixture and self-ignition

► stable combustion for constant thrust

Designing an optimal engine requires

► Maximization of the combustion efficiency

► Minimization of the pressure losses, thermal loading

► Reducing the risk of unstart and flame blow-out

► Accomplishing these tasks under uncertain operational conditions (robustness and reliability)

From Jurzay (2018): The challenge of enterprising supersonic combustion in scramjet is b..] as difficult as lighting
a match in a hurricane.

[1] Limy, J., Supersonic Cornbustion in Air-Breathing Propulsion Systems for Hypersonic Flight, Annual Review of Fluid Mechanics,
Vol. 50, No. 1, 2018, pp. 593627. doC10.1146/annurev-fluid-122316-045217.

[2] Leyva, l., The relentless pursuit of hypersonic flight, Physics Today, Vol. 70, No. 11, 2017, pp. 3036. doi:10.1063/PT.3.3762.
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HYPERSONIC INTERNATIONAL FLIGHT RESEARCH AND EXPERIMENTATION (HIFIRE)
PROBLEM DESCRIPTION AND COMPUTATIONAL SETUP

0. The HIFiRE project studied a cavity-based hydrocarbon-fueled dual-mode scramjet configuration

Ground test rig, HIFiRE Direct Connect Rig (HDCR), built to replicated the isolator/combustion section

Co',Mutationa.m te=17
doma, 

l 
NMom

boolstor 
---- I Ca./ 7—I 

T 1"
11.P. corninnnonal damn

FIGURE: Left: HIFIRE Flight 2 payload [1]. Right: HDCR schematic.

Computational setup

► A reduced three-step mechanism to characterize the combustion process
I. Arrhenius formulations of the kinetic reaction rates (parameters are fixed at values that retain robust and

stable combustion)

I. Large Eddy Simulations carried out by using RAPTOR code (Prof. Joe Oefelein)

SNL LES code RAPTOR

► Fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically reacting
flow

11... can handles high Reynolds numbers

► real gas effects

I. robust over wide range of Mach numbers

IP. non-dissipative, discretely conservative, staggered finite-volume schemes

[1] Jackson, K. R., Gruber, M. R., and Buccellato, S., hlIFIRE Flight 2 Overview and Status Uptate 2011, 17th AIAA International
Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2202, San Francisco, CA, 2011.
dok10.2514/6.2011-2202.

Recent Advancements on Multifidelity UQ 54/106



UMNL Multifidelity UQ MF Sarnpling AS for MF UQ Inverse MF UQ Conclusions

SUPERSONIC COMBUSTING RAMJET
PROBLEM DESCRIPTION
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SCRAMJET
INSTANTANEOUS TEMPERATURE FIELD OVER DIFFERENT MESH RESOLUTIONS

T CIO
0 11. 800

2 9 887

1111111111111171x.

1•1111111rimma-

3D,d132

3D, d/16

- _

3D, d/8
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SCRAMJET
24 UNCERTAIN PARAMETERS

Parameter Symbol Range
inflow boundary conditions
inlet
Stagnation pressure
Stagnation temperature
Mach number

Turbulence intensity

Turbulence intensity ratio
Turbulence length scale
Boundary layer thickness

Fuel injection (36%CH4, 64%C2H4)

Mass flux
Static Temperature
Mach Number

Turbulence intensity

Turbulence length scale

Aoi
Toi
M,

4 = ui/ur
I, = vi /ui

Li
bi

»if
Tf
Mf

/,‘. = uf/Uf
Lf

1.48 MPa ± 5%
1550 K ± 5%
2.51 ± 10%

[0.0 — 0.05]
1.0

[0.0 — 8.0]mm
[2.0 — 6.0]mm

7.37 x 10-3 kg/s ± 10%
300.0 K ± 5%

1.0 ± 5%

[0.025 — 0.075]

[0.02 — 1.0] mm

Wall boundary conditions
Wall Temperature T.,, Profile from KLE

Expansion (10 params)

Turbulence model parameters
Static Smagorinsky
Modified Smagorinsky constant
Turbulent Prandtl number
Turbulent Schmidt number

CR
Prt

set

[0.01 — 0.016]
[0.5 — 1.7]
[0.5 — 1.7]

TABLE: Summary of the uncertain parameters for the SCRAMJET problem.
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SCRAMJET
UQ RESULTS

correlation
Coarse Fine

Variance reduction [%]
Coarse Fine

PO mean 0.997 0.761 93 50
PO,,.„„,„,e“„ 0.875 0.593 72 30

Almean 0.975 0.649 89 36
TKEme,. 0.824 0.454 64 17

Xmean 0.450 0.714 19 44

TABLE: Correlations and variance reduction.

2D 3D
d/8
d/16

5E-4 0.11
0.014 1

TABLE: Computational cost.

2D 3D
d/8
d/16

4,191 263
68 9

TABLE: LES simulations (target of 9 runs at 3D d/16 and e2/4 = 0.045).
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SCRAMJET
UQ SETTING

CD
0.1

0.01
10 100 1000 10000

Equivalent HF runs

100000 le+06
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MULTILEVEL, MULTIFIDELITY AND MLMF
RELATIVELY LARGE EXPERIENCE WITH REALISTIC PROBLEMS

Success stories

10. PSAAP II — particle laden turbulence flow in radiative environment (collaborators: Gianluca laccarino,
Alireza Doostan, Lluis Jofre, Hillary Fairbanks)

► Cardiovascular flows — fluid-structure (collaborators: Casey Fleeter, Daniele Schiavazzi, Alison Marsden)

► Aero-thermo-structural analysis for nozzle devices (collaborators: Juan Alonso, Gianluca laccarino, Paul
Constantine)

► SCRAMJET engine (collaborators: Habib Najrn, Cosmin Safta, Xun Huan)

► Large Eddy Simulations for wind plants (collaborators: David Maniaci, Ryan King)

► Computer networks (collaborators: Laura Swiler, Jonathan Crussell, Bert Debusschere)

Does MLMF always work better than MLMC?

► It cannot be worse than MLMC (except for the cost of the pilot samples), but not always better than MC if
MLMC is outside the 'design conditions' (more on this later on)

► An example: Wind turbine analysis with LES where 3-level MLMC performed worse than a 2-level MLMC

Q: How do we ensure that our sequence of models is 'optimal'?
A: Very often you can only control the way in which you fuse information...
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OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

ocv = +

► 0i MC estimator for the ith low-fidelity model

10. known expected value for the ith low-fidelity model

I. a =[ai, . . . , am] T set of weights (to be determined)

Let's define

► The covariance matrix among all the low-fidelity models: C E RMxM

► The vector of covariances between the high-fidelity Q and each low-fidelity Qi: c E RM

► c = c/Var [Q] = [pivar [Qi] , . . , pjuVar [Qm][T, where pi is the correlation coefficient (Q, Qi)

The optimal weights are obtained as ce* = —C-1c and the variance of the OCV estimator

yar [VI/ = Var [0] (1 — eTC-1e)

= Var [0] (1 — /4civ), 0 < /4cv < 1.

For a single low-fidelity model: 4c,_1 = pl.t
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APPROXIMATE CONTROL VARIATE

M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE

For complex engineering models the expected values of the M low-fidelity models are unknown a priori

► Let's define the set of sample used for the high-fidelity model: z

► Let's consider /S/, ordered evaluations for zi (we assume b/, =

► Let's partition zi in two ordered subsets zt u 4 = zi (note that in general 4 n 4 ~ o)
The generic Approximate Control Variate is defined as

(=K,z) = 0(z) + E c,i (0,(z1) — tii(zh) = 0(z) + E c,A,(zi) = Q +
i=i

The optimal weights and variance can be obtained as

aACV = —Cop coy [4, 0]

Var [e? (aACV)] = Var [0] (1 — Coy [A, 01T C" [4'41
[ 0] 

1 Coa [4,0] )
Var 

= Var [0] (1 — R2Acv) .

,<I> For a single low-fidelity model: Ricy_i = V p? (this result does not depend on the partitioning of z1)

NOTES: we are going from Cov [Q,,Qi] to coy [Ai, ,nti]
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RECURSIVE DIFFERENCE ESTIMATOR
A RECURSIVE PARTITIONING WITH INDEPENDENT ESTIMATORS (EQUIVALENT TO MLMC FOR FIXED BIAS)

❑ D

.1

qm

MLMC can be obtained from ACV with

► zt = z
• .1±, for i =1, . . ,M — 1
▪ = —1 for all i

eLmc (z) = Q + E (-1) (ei (4) - tij(z?))
i=1

var. [0mLNIC] = var. [0] 4.0

M2 TM
RLiff = -aTiT? - E — (0,!T? + T? 17i2 1 - 2aiai-lPi,i-lTiTi-1)

QM 1=2 M-1

where

— 
Var 
Var111,22(Q1) and ni = Izi21 /N is the ratio between the cardinality of the sets and z.

(Q)

NOTES

II' Given the recursive nature of RDiff, we can show that R6,. < pi (as ri —> oo and N is fixed)

11. It is actually possible to compute an optimal set of weights instead of using ai = —1 (w-RDiff)
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MULTIFIDELITY MONTE CARLO (PERERSTORFER, WILLCOX AND GUNZBURGER, 2016)
AN APPROXIMATED CONTROL VARIATE WITH A RECURSIVE PARTITIONING

Q2 Qb

I I
sL

► 
MFMC can be obtained from ACV with

zt = I_l and zr = z, for i = 2, ... ,M

= z and zv = z,

MFMC Cov [Q,Qi] 
ai =  for i = 1, . . . ,M,

Var [Qi]

and the variance of the estimator is

Vor [aMFMC] = Var [0] (1 — R4Fmc)

M r •

= r-14 - 1RMFMC (rl i=1
E  ri-1 + 
i=2 riri-1

NOTES

► Given the recursive nature of MFMC, we can show that R1Fmc < pl. (as ri —> oo and N is fixed)

11... Surprisingly, the covariance matrix Cov A] is diagonal you can compute in close form the optimal
weights, but the ability to leverage correlations among all the models is lost
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EXAMPLES OF CONVERGENT ESTIMATORS
IS IT POSSIBLE TO OVERCOME THE LIMITATION OF THE RECURSIVE SAMPLING SCHEMES?

We proposed two sampling strategies that overcome the limitation of the recursive schemes

Q Q, Q, • •

i

Qei

(a) ACV-IS sampling strategy. (b) ACV-MF sampling strategy.

As an example, let's consider the ACV-MF estimator

RACV—MF = [diag (F(MF)) o T[C o diag (F(MF))] —1 [diag (F(MF)) o .

The matrix F(MF) E RAI"I encodes the particular sampling strategy and is defined as

F(34F) =

minfri — 1
min( ri

ri 1
ri

ifi ¢ j
, for ri oo, 0") 1M and 11,2AGv_A4F RPcv

otherwise

NOTE

11.• No closed form for the optimal weights and the samples allocation per model
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A PARAMETRIC MODEL PROBLEM
WHAT HAPPENS FOR A LIMITED NUMBER OF LOW-FIDELITY SIMULATIONS?

We designed a parametric test problem to explore different cost and correlation scenarios (x, y /A-1, 1))

Q = A (cos (9 x2 + sin 61 3/5)

Q1 = A1 (cos 191 x3 + sin Si y3)

Q2 = A2 (Ms 02 X + sin 02Y)

We use the following definitions

0.• A = N/il., A1 = -0, and A2 = isA (give unitary variance for each model)

► = fr/2 and 82 = fr/6 and 191 varies uniformly in the bounds 02 < 01 <

I. We consider a fixed cost ratio between models, i.e. a relative cost of 1 for Q, 1/w for Ql and 1/w2 for Qg

1.0

0.9

0.8

0 7

d 0.6

0.5

0.4
1.0
Bi

(a) Correlations

0.6 1.0
01

(b) Var. reduction ratios
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A PARAMETRIC MODEL PROBLEM
COMPARISON OF DIFFERENT ESTIMATORS (EQ. COST 100 HF)
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,6 0.4
.°1
0 2
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1.0

0.8

0.6

ci&' 0.4

; 0.2
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(a) w = 10
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(d) w = 50
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(b) w = 15
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(e) w = 100
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(f) w = 1000
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FIGURE: Variance reduction for cost ratios of [1, 1/w, 1/w2] for Q, Qi, and Q2
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Non-linear elasticity in heterogeneous media — Hyperbolic 2D CLAWs
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
PROBLEM SETUP

Hyperbolic system of equations describing the elastic wave propagation (normal and shear components) in two

spatial dimensions for a domain with two materials

qt Aq. +13.7), = 0,

0 0 0 (.), + 2µ) 0

A = —
0
.,[ 

0 0
0

0 À 0
0 0 MU

+
P

0 0 0 0

0 0 1 0 0
p

E
À = and A

(1 + v)(1 — 2v)

Parameters I P1 AL A 1
Distribution U (0 .5 ,1.5) U(3.0, 5.0) U (0 .25 , 0.75)

0.75

0.5

0.25

0

-0.25

-0.5

-0.75

1

Trace(sigma) -- Initial Condition

-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1

where

0 0 0 0 A
0 0 0 0 (À + 2µ)
0 0 0 p, 0

0 0 1 0 0
P

0 1 0 0
P
E

2(1 +

Pr
U(0.5, 1.5) U(1.0, 3.0) U(0.5, 1.5)

8

u -- Initial Condition

0.75

4 0.5

2 0.25 -

0 0 -

-2 -0.25 _

-4 -0.5

-6
-0.75 -

-8
-1 ' '

- -0.75-0.5-0.25 0 0.25 0.5 0.75

-0.5

-1.5

-2

2.5
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA

DETERMINISTIC RESULTS — CLAWPACK http: //www. clawpack .org (VER. 5.x)

I order II order
Resolution 200 100 50 25 10 200 100 50 25 10
Norm. Cost 1.000 0.147 0.026 0.009 0.002 0.498 0.080 0.013 0.004 0.002

TABLE: Normalized cost with respect to the cost of the second order 200 x 200 resolution.

)1 -005 -0555

HF: top row — LF: bottom row

02

005 0-05

0 0

075-05-0-25 0 025050

9nra, saws -.0510,--26.20

r

Li

FIGURE: Shear stress at final time 0.5 for the two model fidelities (top and bottom rows) and the five
discretization levels (200 x 200, 100 x 100, 50 x 50, 25 x 25, 10 x 10 from left to right) corresponding to the mean
values of the random parameters. The Qol is the average value of the shear in the dashed region within the right
materia I.
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
CORRELATION MATRIX

200 (11) 100 (II) 50 (11) 25 (11) 10 (II) 200 (I) 100 (I) 50 (I) 25 (I) 10 (I)
1.00000 0.99838 0.99245 0.96560 0.70267 0.99312 0.98333 0.93857 0.85400 0.56719
0.99838 1.00000 0.99092 0.96461 0.69060 0.99160 0.98380 0.93360 0,84743 0.55127
0.99245 0.99092 1.00000 0.98759 0.76255 0.99866 0.99484 0.96738 0.89785 0.63184
0.96560 0.96461 0.98759 1.00000 0.83904 0.98697 0.99400 0.99102 0.94874 0.71607
0.70267 0.69060 0.76255 0.83904 1.00000 0.76356 0.79165 0.89148 0.96032 0.96725
0.99312 0.99160 0.99866 0.98697 0.76356 1.00000 0.99700 0.96965 0.90058 0.63184
0.98333 0.98380 0.99484 0.99400 0.79165 0.99700 1.00000 0.98022 0.92207 0.66156
0.93857 0.93360 0.96738 0.99102 0.89148 0.96965 0.98022 1.00000 0.97785 0.78607
0.85400 0.84743 0.89785 0.94874 0.96032 0.90058 0.92207 0.97785 1.00000 0.89023
0.56719 0.55127 0.63184 0.71607 0.96725 0.63184 0.66156 0.78607 0,89023 1.00000

Table 6: Correlation matrix for the ten models used in the elastic equation problem Equation (45). The second-order (II) and the first-order (I)
schemes both employ five different resolution levels.
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
ALGORITHMS PERFORMANCE UNDER THREE REALISTIC SCENARIOS

P. Single fidelity (coarsening only): HF: 200 (II), LF: 100 (II), 50 (II), 25 (II), 10 (II)

I. MultiFidelity + Coarsening: HF: 200 (II), LF: 100 (I), 50 (I), 25 (I), 10 (I)

► MultiFidelity + Aggressive Coarsening: HF: 200 (II), LF: 50 (I), 25 (I), 10 (I)

lo-. 11)-3

Haft

-V-

10-4 10-4

—
'>•
10-0
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100 tot
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FIGURE: Coarsening only

100
Target cost

FIGURE: MF + Coarsening

10-3

10-6

10-0

Target cost

FIGURE: MF + Aggr. Coarsening
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Nozzle design — A more realistic engineering example
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AERO-THERMO-STRUCTURAL ANALYSIS OF A JET ENGINE NOZZLE
COMPUTATIONAL SETUP (DATA COURTESY OF JEFF HORANSON AND PAUL CONSTANTINE, CU BOULDER)

Operative conditions

1. Reconnaissance mission for an high-subsonic aircraft

► Most critical condition is the top-of-climb (Required thrust is 21 500 N) @ 40 000 ft and Mach 0.51

Nozzle structure Two layers separated by an air gap

I. Inner thermal layer: ceramic matrix composite

1. Outer load layer: composite sandwich material (titanium honeycomb between two layers of
graphite-bismaleimide Gr/BMI)

Uncertain parameters 40 uncertain parameters — mix of uniform and log-normal variables

IP. 35 material properties variables

I. 2 atmospheric conditions

1. 2 inlet conditions

► 1 heat transfer coefficient

Quantities of Interest (Qols)

I. Mass as a surrogate for the cost of the device

► Thrust for the aerodynamics performance

10. A temperature failure criterion in the inner load layer (Thermal stresses)

I. A strain failure criterion in the thermal layer (Mechanical stresses)
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NUMERICAL EXPLORATION OF THE OCV/ACV PERFORMANCE
COMPUTATIONAL SETUP (DATA COURTESY OF JEFF HOHANSON AND PAUL CONSTANTINE, CU BOULDER)

P. Exploration of the theoretical performance for ACV, i.e. lqx, > .176,1

CFD FEM (Thermal/Structural) Cost
1D

Euler 2D COARSE
Euler 2D MEDIUM

Euler 2D FINE
Euler 3D COARSE
Euler 3D MEDIUM
RANS 3D COARSE

COARSE
COARSE (axisymmetric)
MEDIUM (axisymmetric)
FINE (axisymmetric)

COARSE
MEDIUM
COARSE

2.63e-04
9.69e-04
3.18e-03
9.05e-03
1.16e-02
3.58e-02

1.00

TABLE: Relative computational cost for several model fidelities for the nozzle problem. All the cost
are normalized with respect to the 3D RANS solver.

Variance reduction

Qol OCV OCV-1 Ratio OCV/OCV-1

Thrust 0.020595 0.050432 0.41
Thermal stresses 0.0043612 0.0075662 0.58

Mechanical stresses 6.2981e-04 0.011720 0.05

TABLE: Performance of OCV and OCV-1 for the nozzle problem and three different Qols.

► A separation between OCV and OCV-1 exists for all Qols
► OCV-1 attains more than one order of magnitude reduction over MC
► For Thrust and Thermal stresses an additional 60% and 40% reduction can be gained with OCV

► For the Mechanical stresses the additional benefit is larger than 90%
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MFNETS: MULTIFIDELITY NETWORKS
A FRAMEWORK TO ENCODE ARBITRARY RELATIONSHIPS BETWEEN INFORMATION SOURCES

A simple three model case

10-
8

(a) Full

11) 16,
Number of lowest fidelity samples

(a) No corrupted data

8

10-1

(b) Peer

1(P 101
Number of lowest fidelity samples

(b) 1% corruption

10

Ea 10-3
8

10-]

(c) Hierarchical

101 103 103
Number of lowest fidelity samples

(c) 10% corruption

[1] Gorodetsky, Jakernan, Geraci, Eldred, MFNets: Multi-fidelity data-driven networks for Bayesian learning and prediction.
international Journal for Uncertainty Quantification, In press, 2020.

[2] Gorodetsky, Jakeman, Geraci, MFNets: Learning network representations for multifidelity surrogate modeling Journal of
Computational Physics, Under reviw, 2020.
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PYAPPROX: A RESEARCH-ORIENTED SOFTWARE FOR UQ
SOFTWARE AND TUTORIALS ON MULTIFIDELITY UQ - https://sandialabs.github. io/pyapprox/index . html

PyApprox Tutorials

Below is a gallery of tutorials providing deMiled mathematical background on Me methods in

This tutorials provide snore deMil Man Me set of examples found here which simply show how to

use different memoir with the least amount of roar.

Foundations

Below is a gallery of foundational tutorials on model and data analysis.

Model Depration

pygpprox Tutorials

= Foundations

_ mum-Fidelity Metro&

= Polynomial <boos Expansions

Benchmarks

leurnergal Monte Co lo

Arrimaimo of Quadrat, e

Governing Equations

Bayer. inference Posh Forward Dosed surrogate Modeling

USER REFERENCE GUIDE

Our Reference Guide

DEVELOPER REFERENCE GUIDE

Devebper Reference Guide

• h. •

Recent Advancements on Multifidelity UQ 72/106



UQ@SNL Multifidelity UQ MF Sarnpling AS for MF UQ Inverse MF UG Conclusions

PYAPPROX: A RESEARCH-ORIENTED SOFTWARE FOR UQ
SOFTWARE AND TUTORIALS ON MULTIFIDELITY UQ — https //sandialabs . github . io/pyapprox/index . html

onyAFprptutmqls

Foandallona

IYIPNeto WM-fidelity neMiorks

Polynomial Chaos Expansions

TS:

Control Norio. Monte Approximate Control Multidevel Monte Carlo

Carlo Varian Mon t e Carlo

Multi-fiGelilyMonte Generalized Multi-index Realm.

Carlo Approximate 

Vari 

Control Collocation

an Monte Carlo

MFNets: Multi-A.6(y

networks

Polynomial Chaos Expansions
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CAN WE ENHANCE CORRELATION BETWEEN MODELS?
MULTIFIDELITY UQ ON THE REDUCED (SHARED) SPACE

Core Question
Q: Can we identify a shared space between models (possibly with independent/non-shared parameterization) where
the correlation is higher?
A: Active Subspace method seems well suited for this (but this idea is not limited to it)

Pivotal idea and its main features

► For each model one can search for Active Directions independently

► lf the input variables of a models are standard Gaussian variables then the Active Variables are also
standard Gaussian variables

► Therefore, for each model the Qol can be represented on a (possibly reduced) space characterized by a join
standard Gaussian distribution

► We can sample along these shared Active Directions and 'map back' to the original coordinates of each
model separately

Some Questions:

► How do we treat the inactive variables?

1.• What if the model input are not Gaussian variables?

► What does it happen if the Active Directions are different between models? We expect this to happen often
in practice

10. Why is this even supposed to work from a physical standpoint?
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ACTIVE SUBSPACES IN A NUTSHELL
(ALMOST) EVERYTHING YOU NEED TO KNOW TO USE IT WITH MULTIFIDELITY — SEE CONSTANTINE (2015) FOR MORE

We consider a black-box approach, i.e. the Qol Q is obtained through a computational model f given a vector of
input parameters x

—> f (a) Q

► Vector of input parameters: x E R" with joint distribution p(x)

► Let's introduce the m x m matrix C

C = f f)T p(a)d x

► Since C is l) Positive semidefinite and II) Symmetric, it exists a real eigenvalue decomposition

C = WAWT, where

► W is the m x m orthogonal matrix whose columns are the normalized eigenvectors

P. A = diag • • • , Xa,} and .Xj. > • • • > am, > 0

Let's define two sets of variables

y = E Rn (Active)
x = WAY + Wrz WAY

z = Via E R(m—o) (Inactive)

Linearity: x •-•••• JV(0, (X = Rm) then y = E , y = Wjkx, x E and y ,•••• N(0, I)

This is true for each model, i.e. there will always be a shared space between different models (even if they have
a different parameterization)
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A QUICK DEMONSTRATION - GAUSSIAN INPUT
LOW-CORRELATED MODELS (CORRELATION SQUARED 0.05)

3
2.5
2

f(x,y)1.5
1

0.5
0

High-Fidelity

y) = exp (0.7 + 0.3y) + 0.15 (arm)

3

2.5

2

0.5

0

0.5

3
2.5
2

g(x,y)1.5
1

0.5
0

Scatter plot

1.5

f(11.7)

2 2.5 3

Low-Fidelity
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A QUICK DEMONSTRATION - GAUSSIAN INPUT
IMPORTANT DIRECTIONS IN ACTIONS (CORRELATION SQUARED FROM 0.05 TO 0.9)
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A QUICK DEMONSTRATION — GAUSSIAN INPUT
NUMERICAL EXPERIMENT SETUP

We performed the following numerical experiment:

► We fix a computational budget (300 HF runs)
► We compute 1000 realizations for each estimator
► For MF estimator the cost of the total set of HF+LF runs is considered
► We report the pdf of the estimated Expected Value

NOTE 1: For this problem the expected value is known
NOTE 2: In this example the AS are searched for each estimator realization during
the pilot sample phase (this cost is not included, but they can be reused if needed...)
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

'Y

Pe = PO 
(1 + 1 MO — 1 , where

2

Ae

M, [ 

2

„ 1 (1+ -Y 

—

2

1

11101

2( 1)argmin = f(Me) — — with f (Me) = —
Me A*

104 Given the shape of the nozzle (and its exit radius he), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

► The area ratio (Ae / A*) is linear in the 2D case (he / ht) and quadratic in the 3D case (4/4)
► Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle
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WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS (p2 = 0.9 -) 0.99)

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

ry

Pe = PO (1 + 
1 M) -Y — , where

2 e

+ 1 
Ae 1 2 l  2( 1)—argmin = f(X) — — with f (Me) =

Me [ „ 1 (1 2 11'4)]A*Me

► Given the shape of the nozzle (and its exit radius he), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

► The area ratio (Ae/A*) is linear in the 2D case (he /ht) and quadratic in the 3D case (g/q)
10. Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle

❑

Scatter Plot

1 04 2-104 3.104 4-104 5-104 6104 7104 8. 04

3D
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AS (or MF UQ

Lid- and Buoyancy-driven cavity flow — A CFD example
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
TEST CASE GENERALITIES

Physical test case

I. Combination of the Lid- and Buoyancy-driven test cases

► Navier-Stokes equations for a fluid with density p and kinematic viscosity v enclosed in a square cavity of
size L

I. Top wall sliding with velocity UL

► Top and bottom walls held at different temperature —r net body force (buoyancy term via Boussinesq
approx.)

► Adiabatic side walls

► Cavity immersed in a gravity field with components gh and gu

► Nominal conditions: Re = 1000 and Ra = 100000 for air Pr = 0.71 (constant)

Non-dimensional parameters

ULL
Re = —

Gr — lgl
v2

[3(Th — TO)L3

Pr = —
a

Ra = Pr Gr

Numerical approach

I. Implicit FV code on structured mesh with pressure-based SIMPLE discretiza on and dual-time stepping

► BC imposed via ghost cells
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
FLOW FIELD FOR THE NOMINAL CONDITIONS
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY UQ CASE

► HF: 101 x 101 spatial cells, T = 80 and Dt = 0.25 CHF = 1

► LF: 21 x 21 spatial cells, T = 15 and Dt = 0.5 —r CLF = 0.00107
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FIGURE: Vertical velocity profile at the horizontal mid-plane of the cavity for the reference
condition for both HF and LF models.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION

Parameter Min Max Mean
v 0.009 0.011 0.01
AT 9 11 10

g,,
gh

8.1
3.6

9.9
4.4

9
4

Liz, 9 11 10

TABLE: Ranges for the uniform variables of the cavity problem.

Let's have a look at the non-dimensional numbers (Pr is constant and Gr = Gr(Ra, Re) for this case)

Re = Re(v, UL)

Ra = Ra(g,,,gh, AT, v)

1 93  
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION
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3.7 3.8 3.9

FIGURE: Scatter plot corresponding to 500
realizations of the HF and LF model with samples
drawn in the physical space and 60 samples drawn
along the common active direction.

4

Varia ble
Model

HF LF
v -0.0860585 -0.31282
AT -0.0036777 0.94981

gu -0.0057946 -a -0.0144436 -
Ul 0.9961617 -

TABLE: Dominant eigenvectors for the cavlty
problem.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW

NUMERICAL TEST FOR MULTIFIDELITY

1 Fixed number of pilot sarnples equal to 30 samples (in
the physical space)

2 AS evaluated (first order regression, no derivatives) from
the pilot samples and this sample set is discarded

3 Initialization of the MF algorithm with 30 samples in the
Active variables to estimate the correlation

4 Optimal oversampling ratio for the LF and perform the
mean estimation

IP. Items (1-4) are repeated 300 times and the estimated
mean are reported

► In mean we used an equivalent cost of 34 HF samples
per estimator realization (this number is used for MC,
300 repetitions)

► Variance of the mean estimator reduced by one order of
magnitude
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.15
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300 Estimator Realizations (Eq. Tot Cost 34 HF)
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MF-AS

_NEL i _MN
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FIGURE: Probability density function for the

estimators computed with 300 independent

realizations.

Recent Advancements on Multifidelity UQ 87/106



UQ(OSNL MulGffdF AS for M F UQ

Nozzle design — Aero-thermo-structural analysis
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
PROBLEM SETUP

► We only consider the ACV-1 estimator here, but the extension to ACV is straightforward

► The high-fidelity model is 3D Euler with a COARSE mesh

► The low-fidelity model is 2D Euler with either a consistent or inconsistent parametrization, i.e. the area of
the duct is forced to correspond to the one of 3D geometry

CFD FEM (Thermal/Structural) Parameterization Cost
3D Euler COARSE COARSE 1.00
2D Euler COARSE COARSE (axisymmetric) Consistent 0.201
2D Euler COARSE COARSE (axisymmetric) Mconstistent 0.135

TABLE: Re ative computational cost for the models used for the Active Subspace tests for the
nozzle problem. All the costs are normalized with respect to the 3D Euler COARSE solver.

We considered three scenarios

1 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of samples (40
UQ parameters);

2 High- and low-fidelity model with consistent parametrization evaluated at an independent set of samples
(40 UQ parameters);

3 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of nominal
samples (96 + 40 UQ parameters).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 - INCONSISTENT PARAMETRIZATION AND DIMENSIONALITY 136 vs 40

9000
380 335 28000 28000 30000 32000 34000 33000 38000 40000 42000 44000

5

(c) Thermal Stresses

del Thrup

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 3).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 — INCONSISTENT DIMENSIONALITY 136 vs 40

Qols p2 p As 2 MC

Estimator St.Dev

OCV -1 OCV-1 (AS)
Mass 0.822 0.999 1 0.178 0.001
Thrust 0.956 0.998 1 0.044 0.002

Thermal Stress 0.982 0.998 1 0.018 0.002
Mechanical Stress 0.985 0.986 1 0.015 0.014

TABLE: (Estimated) Standard DeVation for OCV-1 and OCV-1 (AS) (normalized w r.t. MC) for

the Sequoia application problem in the case of inconsistent parameterization and uncertain design

input in HF (Scenario 3).

<> These results are estimated through the PCE along the active directions. We need to confirm the results by
running the model
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Supersonic Combustion — A challenging multiphysics problem
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RAPTOR CODE
COMPUTATIONAL FEATURES

RAPTOR

► Fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically reacting
flow

► can handles high Reynolds numbers

► real gas efFects

► robust over wide range of Mach numbers

► non-dissipative, discretely conservative, staggered finite-volume schemes

Numerical settings

► 2D simulations

► 3 grid resolutions where cell sizes are 1/8, 1/16, and 1/32 of the injector diameter d = 3.175 mm (denoted
as d/8, d/16, and d/32)

► 63K, 250K and 1M grid points, respectively

► adaptive time steps with approximately equal simulation physical time

► warm start from a quasi-steady state nominal condition run

► 1.7 x 103, 1.1 x 104, and 7.3 x 10 CPU hours per run, respectively

► Roughly a cost factor equal to 8 between resolution levels
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RAPTOR CODE
EXAMPLE OF FLOW FIELDS

(d/32)1

Yco (d/n) 

0 08 0 10 0.14 0.16

FIGURE: Solution fields of Mach number M (top three) and carbon monoxide mass fraction Yco
(bottom three) simulated at a randomly sampled input settings using the three difFerent grids.
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SC RAMJE T
QUANTITIES OF INTEREST (5)

► Combustion efficiency (ricomb), defined based on static enthalpy quantities

11(Tref Ye) — H(Trefl Yref) 

ncomb H(Tref Ye,ideal) H(Tref Yref)

► Burned equivalence ratio (Oburn) is defined to be equal to tbbuyn 95G7/comb•

► Stagnation pressure loss ratio (Patagle,„s) is defined as

Paie
Petagloss = 1 •

► Maximum and average root-mean-square (RMS) pressures (max Prms and ave Prms) are, respectively, the
maximum RMS pressure across the entire spatial domain, and the RMS pressure averaged across the spatial
domain between two injectors:

maxPrms =Max \IP(xiy)2 — [P(x, y)]

Ave Pymu =— \IP(x, y)2 — [P(x, y)]
 2 

dx dy.
V x,y

P. Initial shock location (xshock) is the most upstream shock location.
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SCRAMJET

UNCERTAIN PARAMETERS (11)

Parameter Range Description
inlet boundary conditions:

Po [1.406, 1.554] x 106 Pa
To [1472.5, 1627.5] K

MO [2.259, 2.761]
4 [0, 0.05]
Ri [0.8, 1.2]

Li [0, 8] x 10-3 m

Fuel inflow boundary conditions:
If [0, 0.05]

Lf [0, 1] x 10-3 m

Turbulence model parameters:
CR [0.01, 0.06]
Prt [0.5, 1.7]
Set [0.5, 1.7]

Stagnation pressure
Stagnation temperature
Mach number
Turbulence intensity horizontal component
Ratio of turbulence intensity vertical to horizontal components

Turbulence length scale

Turbulence intensity magnitude

Turbulence length scale

Modified Smagorinsky constant
Turbulent Prandtl number
Turbulent Schmidt number

TABLE: Uncertain model input parameters. The uncertain distributions are assumed uniform

across the ranges shown.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

I. 16 random variables (11 uncertainties + 5 design parameters)

► Dataset with 200 realizations (consistent parameterization)
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FIGURE: Qols w.r.t. the active variables for the scramjet application problem.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

le 16 random variables

► Dataset with 200 realizations (consistent parameterization)
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FIGURE: Scatter plot for the active variables for the scramjet application problem.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

lo• 16 random variables

► Dataset with 200 realizations (consistent parameterization)

Qols
Estimator St.Dev

p2
pAsi 
2

MC OCV-1 OCV-1 (AS)

d,b,”.7t 0.802 0.967 1 0.198 0.033
ncomb 0.933 0.986 1 0.067 0.014

TABLE: (Estimated) Standard Deviation for MF and MF-AS (normalized w.r.t MC) for the
scramjet application problem.
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CHARACTERIZATION AND DESIGN OF WIND PLAN SYSTEMS
SANDIA NATIONAL LABORATORIES SCALED WIND FARM TECHNOLOGY (SWIFT)

Visit the SwiFT facility virtually at tours.santhagov/SWIFI/

FIGURE: From
https : //energy. sandia.gov/programs/renewable—energy/wind—power/wind_plant_opt/

Sandia National Laboratories Scaled Wind Farm Technology (SWiFT)

► Located at Texas Tech Universitys National Wind Institute Research Center in Lubbock, Texas

► Principal facility for investigating wind turbine wakes as part of the U.S. Department of Energy Atmosphere
to Electrons research initiative (DOE-A2e)

Site features

► Research-grade turbines: three variable-speed variable pitch modified Vestas V27 wind turbines with full
power conversion and extensive sensor suites

► Highly characterized site: more than two years of historical data

Recent Advancements on Multifidelity UQ 95/106



UQOSNL Multifidelity UQ MF Sarnpling AS for MF UQ Inverse MF UQ Conclusions

C OMPUTATIONAL TOOLS

WIDE RANGE OF MODEL FIDELITIES FROM ENGINEERING MODELS TO LES

Several computational models can be used for wind energy applications:

► Nalu: a generalized unstructured massively parallel low Mach flow code built on the Sierra Toolkit and
Trilinos solver Tpetra solver stack

► WindSE: a python package that uses a FEniCS backend to perform wind farm simulations and optimization

WindSE

► Medium fidelity tool for 3D Reynolds-averaged Navier Stokes (RANS) simulations

► Turbines are represented by means of non-rotating actuator disks

► Turbulence closure via mixing length

► Based on FEniCS which enables easy user customization of finite elements, mesh discretizations, turbulence
models, and turbine representation
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — PROBLEM SETUP

(a) Coarse: 5252 DoFs (b) Medium: 33428 DoFs

Model Resolution IV,c I Ny = Nz Cost (s)

Coarse 12 8 8.51
Medium 24 16 60.4
Fine 48 32 1270

I

(c)Fine: 228064 DoFs

TABLE: Multilevel model hierarchy unrefined grid discretization and simulation cost.
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR - PROBLEM SETUP
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FIGURE: Nominal output for three velocity components u, v and w over all models.
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — PROBLEM DEFINITION

I Param I uji I a I 61,,,md (°) I Effective Thickness (m) I Axial Induction Factor I imax (m) I

LB 8.25 0.02 -15 2.4 0.15 3.5
UB 8.75 0.5 15 15 0.9 15

TABLE: Uniform parameter bounds for the forward and inverse UQ studies.

"Experimental data" from Nalu

► 100 m x 110 rn slice 5D downstream (135m)

► Data acquired each second for 10 minutes

► Reference data are averaged

RANS data

► First tests dernonstrated that the misfit between the data was dominated by boundary layer data

► We truncated the spatial region of interest to 30 < z < 70 (total of 131 x 161 points)

► The total number of Qols to be considered is 31 395
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BAYE RAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — HF (NALU-WIND) SNAPSHOT
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BAYESIAN INVERSION
ML PCE CONSTRUCTION AND PERFORMANCE

Tolerance 5e 4 5e 5 5e-6
PCE Type SF ML SF ML SF ML

Coarse Evaluations N/A 129 N/A 409 N/A 1201
Medium Evaluations N/A 53 N/A 137 N/A 601
Fine Evaluations

Equivalent Fine Evaluations
ML Speedup

13

4.9

17

8.0

61

4.4

TABLE: Number of model evaluations for SF (single high-fidelity) and ML (multilevel) PCEs for
three tolerances. The construction of each ML PCE requires less than a quarter of the cost of the
corresponding SF model.
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BAYESIAN INVERSION
ML PCE STATISTICS
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FIGURE: ML PCE built for all velocity components compared with the time-averaged Nalu slice
data. The mean u component resembles the Nalu data but the other components do not due to
the model error between WindSE and Nalu.
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — MAP SOLUTION
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BAYESIAN INVERSION
POSTERIOR DISTRIBUTION

-.358r,r 

 k112 0114
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FIGURE: Visualization of the six-dimensional posterior distribution obtained through
emulator-based inference from all velocity components. Marginal distributions are shown as
histograms and pairwise joint distributions are displayed as contour plots.
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C ONCLUDING REMARKS
OPEN CHALLENGES

We have both advanced the state-of-the-art in multilevel/multifidelity UQ and developed an experience in
deploying these techniques to several application areas (aerospace, biomedical, energy, cybersecurity, etc.)

Can we still improve our frameworks/understanding?
A number of outstanding challenges still remain, a non exhaustive list:

1 How do we exploit very large model ensemble by efficiently discovering the relationships among models?

2 Can we take advantage of a multi-physics context?

3 Optimization Under Uncertainty and Reliability/Safety analysis require the estimation of higher-order
moments, rare events, etc. (coll. with Prof. Marzouk, MIT and Friedrich Menhorn, TUM/MIT, Prof.
Daniel Tartakovsky, Stanford)

4 Global Sensitivity Analysis (coll. with Prof. Gremaud and Michael Merritt, NCSU)

5 Can we integrate online deterministic error estimators in our multilevel/multifidelity workflow? (coll. with
Prof. Guglielmo Scovazzi, Duke)

6 Can we extend our AS approach to other dimension reduction strategies? (coll. with Xiaoshu Zeng and
Prof. Roger Ghanem, USC)

7 Can we build low-fidelity models on-line with a data-driven approach (e.g. ROM and Machine Learning)?
(coll. with Dr. Patrick Blonigan, Francesco Rizzi, SNL and Ahmad Rushdi, SNL)
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C ONCLUDING REMARKS
STILL AN ACTIVE RESEARCH AREA

Summary:

► Multifidelity strategies are appealing techniques for UQ

► Hiererchical/Recursive estimators are limited in their performance

► ACV is a new framework to overcome this issue

► MFNets generalize this concept and enable to encode more flexible and arbitrary relationships

► Enhancing the correlation seems also possible by resorting to Active Directions/Latent Variables

► Sampling and surrogates are complementary tools, e.g. (MF) surrogates are very helpful for inference
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PRE-PROCESSING
RANDOM NUMBER GENERATOR

► A random number generator is required for each Monte Carlo simulation

► Random number generation requires two main stages

► Generation of independent random variables U(0,1)
► Conversion of the RVs to desired distribution
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PRE-PROCESSING
RANDOM NUMBER GENERATOR

► A random number generator is required for each Monte Carlo simulation

► Random number generation requires two main stages

► Generation of independent random variables U(0,1)
► Conversion of the RVs to desired distribution

(Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers
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PRE-PROCESSING
RANDOM NUMBER GENERATOR

► A random number generator is required for each Monte Carlo simulation

► Random number generation requires two main stages

► Generation of independent random variables U(0,1)
► Conversion of the RVs to desired distribution

(Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers

Properties for a good random generator

► Several statistical tests exist to measure randomness, therefore reliable software has been verified against
them

► A long period is needed before the sequence repeats (at least 240 is required)

► A control-based seed is provided to skip to an arbitrary point of the sequence (useful in parallel applications)

Recent Advancements on Multifidelity UQ 106/106



UQOSNL Muinfidelity UQ MF Sarnpling AS for MF UQ Inverse MF UQ Conclusions

PRE-PROCESSING
RANDOM NUMBER GENERATOR

► A random number generator is required for each Monte Carlo simulation

► Random number generation requires two main stages

► Generation of independent random variables U(0,1)
► Conversion of the RVs to desired distribution

(Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers

Properties for a good random generator

► Several statistical tests exist to measure randomness, therefore reliable software has been verified against
them

► A long period is needed before the sequence repeats (at least 240 is required)

► A control-based seed is provided to skip to an arbitrary point of the sequence (useful in parallel applications)

Bottom line...

► do not use your own generator, but use reputable sources

► For instance, Intel Math Kernel Library (MKL) are free
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PRE-PROCESSING
VARIABLE TRANSFORMATION

I. Random generators produce uniform RV WO, 1), but usually we need other distributions

► Let's assume that the cumulative distribution function F., for a variable is available

FEW = P(E' < e)

► The random generator produces U WO, 1), i.e. Fu(u) = u

► We want to determine the function g(U) which gives E = g(U) with cdf FE (0
I. We write the cdf for F.,. (0

F.,(0 = P(E < = P(g(U)

O. We also assume:

► The function g is invertible on its range

I. The function g is strictly increasing (only for simplicity)

FE(0 = P(g(U) = P(U g-1(0) = Fu(g-1(0) = g-1(0

► Finally we can choose g-1(0 = FE (0, i.e. E = F.-7;1(U) in order to get the desired distribution
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WHAT ABOUT THE INACTIVE VARIABLES?
HOW DO YOU TREAT THE INACTIVE VARIABLES?

x = WAY + WNAX

► Given a sample along the Active Variable y, we need to recover x

► This mapping is ill-posed (infinitely many x exist)
► One possible regularization: conditional expected value of f given y

fAs (3') = f f (WAY + WNAZ) Pzly d z f (WAY + WIE [z]) f Pzly dz = f (WAY)
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JOINT NORMALITY: IS THIS REQUIRED?
NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example xi U (-1, 1) and coi ./V. (0, 1), we can define (i.e. Rosenblatt, Nataf, etc.) a non
linear function x = h(w) such that

CO —) h(w) f(R)
wi

Q, where xi = h(wi) = erf (—)
N/

From an AS perspective only co exists (however, for each co we can obtain x)

= WAY + WNAZ st WAt

Responses along AS (Uniform Distribution) Scatter Plot along AS (Uniform Distribution)
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JOINT NORMALITY: IS THIS REQUIRED?
NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example xi U (-1, 1) and toi ./V. (0, 1), we can define (i.e. Rosenblatt, Nataf, etc.) a non
linear function x = h(w) such that

h(w) f(R)
wi

Q, where xi = h(wi) = erf (—)
N/

From an AS perspective only w exists (however, for each w we can obtain x)

= WAY + WNAZ WAt
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DISSIMILAR PARAMETERIZATION
ADDITIONAL INPUT VARIABLE FOR THE HIGH-FIDELITY MODEL

f (x , y , z) = exp (0.7x + 0.3y) + 0.15 sin (27x) 0.75z3, where z — N(0, 1/3)

0.3

= 0.25

0.2

g, 0.15

0

1000 Estimator Realizations (Eq. Tot Cost 300 I-IF)

MC MCI

MC-MFAS =

— -

1 02 1.04 1.06 1.08

Expected Value

1.12

FIGURE: Normalized histograms for 1000 realizations in the case of dissimilar parametrization.

<> In this case we used 2 active directions for the HF and 1 for the LF
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Non-linear elastic waves propagation — Hyperbolic CLAWs 1D
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

rn

7

5

4

2

Let's consider an 'extreme' scenario (within the previous test problem)

LF 5 ncides —
HF 801 nodes —

/1-41k, A

0.2 0.4 0.6 0.8

Nx Nt I At
Low-fidelity 5 50 I 36 x 10-4

High-fidelity 801 600 30 x 10-5

TABLE: HF to LF Cost ratio r, 2800

► We compute the AS without the gradient (we use a linear regression)

► We use 40 HF samples for our estimator
IP- We perform 250 repetitions
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

8

7

6

ti 5

A 4

3

2 3 4 5

High-fidelity

6 7 8 9

Active Direction Agnostic sampling: p2 = 0.89
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
ALLEVIATING THE COST OF AS ESTIMATION

► The cost of the pilot samples accounted to
30 x 1 + 30 x 0.001 = 30.03 HF (coming from HF
mainly in this case)

► Can we re-use the HF samples without discarding them?

1 Pilot samples are generated in the physical space (30 as
done before)

2 The LF samples are discarded

3 The HF pilot samples are projected onto the active
direction

4 LF samples are generated at the Active Variables
locations of the HF

5 Correlation is estimated and the oversampling is
computed (always on the active variables)

6 The MF estimator is evaluated

► items (1-6) are repeated 300 times and the estimated
mean are reported
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FIGURE: Probability density function for the
estimators MF-AS computed with 300

independent realizations with and without

reusing the HF samples.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

10. By reusing the HF sarnples, we need to handle samples
that have not been generated along the active variables

10: Due to the nature of the mapping (inactive variables)
this projection will exhibit a noisy behavior

10: A very simple approach to improve this step is to
perform a regression over the active variables

4
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HF •
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FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space

with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

► By reusing the HF sarnples, we need to handle samples
that have not been generated along the active variables

► Due to the nature of the mapping (inactive variables)
this projection will exhibit a noisy behavior

11. A very simple approach to improve this step is to
perform a regression over the active variables
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FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space

with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
CAN I RE-USE ALSO THE LF PILOT SAMPLES?

► We can conceptually apply the same strategy for the LF
samples, however there is an additional challenge...

► ..we do not have a common sample set to estimate
the correlation along the active variables

► In order to compute the correlation before evaluating the
additional LF samples we use the PC expansion
(analytical expression)

P. Once the correlation is evaluated and the LF
oversampling is defined the initial LF set might be fully
re-used

► We can now perform MF-AS (re)starting from legacy
dataset

1 30 pilot samples extracted from a dataset of 500
evaluations (LF and HF are consistent)

2 300 repetitions of the estimator with full re-use of both
HF and LF

0. NOTE: there is a non-zero probability of using the same
evaluation multiple time (for different estimator
realizations)
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estimators MF-AS computed with 300

independent realizations with and without
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SURROGATE-BASED MF UQ
MOTIVATION

Why do we want to use surrogate-based UQ if we already have sampling-based MF approaches?

► Sampling methods are very robust and often the only viable solution for UQ studies of high-dimensional,
noisy and possibly discontinuous problems...

► ...however many applications (especially their Qols) are much more regular than one might expect a priori

► In these circumstances, surrogate-based approach offer a huge advantage in term of their convergence rate

A recent example:

► DARPA SEQUOIA — aero-thermo-structural design of a nozzle (RANSH-FEM): the Qols where reasonably
well behaved and lower order (at least along the active direction(s))

► DARPA SCRAMJET — supersonic combustion (LES): the Qols were very noisy (additional error contribution
coming from unconverged statistics)

We currently continue the development in both areas to cover different needs for different applications
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THE TWO MAIN BUILDING BLOCKS
NON-INTRUSIVE PC AND SC

11,- Polynomial Chaos: Spectral projection using orthogonal polynomial basis

P+1

f = E #1z‘Plx
k=0

► Stochastic Collocation: Form interpolants for known coefficients

Notes:

► Common tools are regression, tensor/sparse quadrature, etc.
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SEMINAL IDEA
DECREASING 'COMPLEXITY' FOR THE DISCREPANCY FUNCTION

IL'

► The concept of multifidelity has been known/exploited in the optimization community for decades

11. One of the first applications of this concept in UQ:
Ng and Eldred. Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic
collocation. ln 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, 2012.

The main idea is quite simple and effective: Can you use a LF model to capture most of the response and use
only fewer HF evaluations to correct it?

QHF = exp —0.05e cos 0.5g-0.5 exp — 5)2

QLF = exp —0.05e cos 0.54.

— High-Fidelity Model
— Correction Function

5 10 15
Polynomial Order

FIGURE: Spectral content
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'COMPLEXITY' OF A FUNCTION
ORDER, SPARSITY, LOW-RANK STRUCTURE...

The original idea was based on the following assumptions:

II. the LF model is able to capture the high frequencies of the response

0: only the low-order terms are included in the discrepancy term —> few evaluations of the discrepancy are
needed to build the response for the discrepancy

In many practical applications:

P. the LF model only capture low-order effects

► however the discrepancy term can have a structure that we can still exploit

Two possible structures that we can exploit are:

► Sparsity —r Compressed sensing: orthogonal matching pursuit (OMP), basis pursuit denoising (BPDN), least
angle regression (LARS), least absolute selection and shrinkage operator (LASSO)...

P. Low-rank —r Functional Tensor-Train decomposition (TT)
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:

1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:

1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)

2 Exploiting Restricted Isometry Property (RIP)

Recent Advancements on Multifidelity UQ 106/106



UMNL Muinfidelity UQ MF Sarnpling AS for MF UQ Inverse MF UQ Conclusions

EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:

1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)

2 Exploiting Restricted Isometry Property (RIP)

3 Greedy Multilevel Refinement
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
STRATEGY 1: EXTENDING THE MLMC SAMPLING APPROACH TO SURROGATES

Main idea: Two parameters can be added to parametrize the variance of the recovered discrepancy term

VarN[Ykd Ne
Var [Ýt]

E.c; klyar [Yq] Cg k+, !liar [Yd
7,2 /2

Notes:

► -y and k can be obtained as by-product of the k-fold cross-validation process
► this approach can be extended to level-dependent parameters, i.e. y E and k0 (slightly different closed form

solution)

Findings:

► Abrupt transition in both sparse and low-rank recovery does not allow to efficiently estimate the
parameters and exploit the faster convergence

Low,lidelity 600, High-fidelity 20, degree a Lax4Le1M 600, Hgn,1menry 40. degree 4

1648iMM

FT 1= _
rc o 5

A

0.8

81LIAG = —

FT =

PC =

2 5 2.55 2.6 2.65 2.7 2.75 2.8 2 85 2 9

Expected Value Expecte:I Value

(a) Ng,„„ = 600, = 20 and deg = 4 (b) = 000, = 40 and deg = 4
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
STRATEGY 2: RESTRICTED ISOMETRY PROPERTY (RIP) FROM Jakeman, Narayan, Zhou, 2016

Main idea: Address/Avoid abrupt transition by ensuring enough samples for accurate recovery

RIP : NQ > stLt log3 (s) log (ce )

where

► st is the sparsity, i.e. number of non-zero coefficients

I. Li is the mutual coherence, i.e. if ai are the normalized (aTai = 1) columns of the matrix A then

L = maxlaT oil for i j

► C,e is the cardinality of the dictionary

Algorithm:

► Start with pilot sample to estimate sparsity at each level k
► Number of samples is increased to allow the recovery

Findings:

I. RIP is quite conservative and it is likely to overshoot so it is necessary to add a constraint on the profile
very difficult to handle the feedback
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0.12890

0.12892

0.1299

0.12888

0.12086 10 
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
STRATEGY 3: GREEDY MULTILEVEL REFINEMENT

Main issues discovered with strategy #1 and #2 are:

► Difficult to estimate a trend

► Difficult to handle the allocation strategy in order to avoid overshoot in term on number of samples

Proposed solution: Greedy refinement - compete refinement candidates to maximize induced change per unit cost

Algorithm:

► One or more candidates are generated per each level

► The impact of each candidate on the final Qols statistics is evaluated and normalized by the relative cost
of level increment

► Greedy selection of the best candidate

► Generation of new candidates for the selected level
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GREEDY MULTILEVEL REFINEMENT
LEVEL CANDIDATE GENERATORS

► Uniform refinement: coarse-grained refinement with one expansion order / grid
level candidate per model level
► Tensor / sparse grids: projection PCE and nodal/hierarchical SC
► Regression PCE: least squares / compressed sensing using a fixed sample ratio

► Anisotropic refinement: coarse-grained refinement with one expansion order /
grid level candidate per model level
► Tensor / sparse grids: projection PCE and nodal/hierarchical SC

► Index-set-based refinement: fine-grained refinement with multiple index set
candidates per model level; exponential growth in size of candidate set with
dimension.
► Generalized sparse grids: projection PCE and nodal/hierarchical SC

► Basis selection: coarse-grained refinement with a few expansion order frontier
advancements per model level
► Regression PCE
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GREEDY MULTILEVEL REFINEMENT
TEST CASE

Steady-state diffusion

— —
d [ du

a(x, — (x, = 10, (x, E (0, 1) x
dx dx

► x is the spatial coordinate

• a vector of independent random input parameters

10. a(x,

► in our test d = 9, i.e. = [-1, 1]9 denotes the (random) diffusivity field
Dirichlet boundary conditions are also assumed

u(0, c) = 0, .(1, c) = 0.

Qols defined as the solution u at specified spatial locations: x= 0.05, 0.5, 0.95. We represent the random
diffusivity field a using the following expansion

d 1
a(x, e) = 1 +  cos(2zrkx)4

k=1 k2'2

Multilevel setup: discretization corresponding to 4, 8, 16, 32 and 64 elements
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GREEDY MULTILEVEL REFINEMENT
COMPRESSED SENSING - STATISTICS

9

Pr, CS eh. level
-0-MFPCEOStlevel,0

l'avvn:', 5
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O-Gre.MLPOEC651evel

,v°

1 XF PCE 0621evelp.10
Pcv

hiLPOECS 61evelx -
<1./IL PCs. 55.15-3
0-Gra.MPOECSSIevel
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• • •
.0-ereevovvc cssw.,

FIGURE: Convergence for greedy multilevel PCE based on compressed sensing. Test problem is
steady state diffusion with nine random variables and one, two, or five discretization levels.
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GREEDY MULTILEVEL REFINEMENT
COMPRESSED SENSING - SAMPLES ALLOCATION

Conv Tol N1 N2 I N3 I N4 ± N5 I
1.e-1 198 9 9 9 9
1.e-2 644 198 9 9 9
1.e-3 1802 644 9 9 9
1.e-4 4505 1802 50 9 9

TABLE: Final sample profiles for greedy multilevel compressed sensing applied to steady state
diffusion (9 random variables, 5 discretization levels).

Notes:

P. We impose a collocation ration of 0.9, i.e. the system is underdetermined

► The first order correspond to 10 terms, therefore 9 simulations are needed (initialization/pilot)

► The second order correspond to 55 terms, therefore 50 simulations are needed
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GREEDY MULTILEVEL REFINEMENT
GENERALIZED SPARSE GRID - STATISTICS

—E— PCE UNSG single level
—e— PCE GenSG slegle level
-13- Greedy ML PCE UnGG 5 level

Greedy ML FISC UniSG 5 level
-0- Greedy ML PCE GenSG 5 level
-0- Greedy ML MSC GenSG 5 level

1 0.-3

10-°

10'

62 .7

0

—E— PCE UNSG single level
—e— PCE GenSG slegle level
-13- Greedy ML PCE UnGG 5 level

• -13- Greedy ML FISC UniSG 5 level
.-0- Greedy ML PCE GenSG 5 level
• -0- Greedy ML MSC GenSG 5 level

io'° ' '° 'iloi ' le 10° 10° 10° 10' 10' 10° 10° 10°
Equivalent HF Simulations Equivalent HF Simulations

FIGURE: Convergence for greedy multilevel PCE based on (generalized) sparse grids. Test problem
is steady state diffusion with nine random variables and one or five discretization levels (solid and
dashed lines, respectively).

°
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GREEDY MULTILEVEL REFINEMENT
GENERALIZED SPARSE GRID - SAMPLES ALLOCATION

Cone Tol N1 N2 I N3 N4 I N5

1.e-2 43 23 19 19 19
1.e-4 211 83 19 19 19
1.e-6 391 271 156 19 19
1.e-8 1359 743 327 59 19

1.e-10 3535 2311 1039 391 19
1.e-12 10319 5783 2783 1343 43
1.e-14 26655 14991 8063 3703 1535

TABLE: Final sample profiles for greedy multilevel refinement applied to steady state diffusion (9

random variables, 5 discretization levels).

Notes:

► All levels incur a minimum 2n + 1 = 19 evaluation cost due to the initial set of level-one candidate index sets
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GREEDY MULTILEVEL REFINEMENT
CS/GSG — STATISTICS

10

PCE CS single level
MF PCE CS 2 level p -10
ML PCE CS 5 level 1
ML PCE CS 5 level = 1.5
ML PCE CS 5 level

-Cl- MLPCECS5levelc=3
-0- Greedy ML PCE CS 5 level
—E— PCE UniSG single level

PCE Gen. single level
-0- Greedy ML PCE UniSC 5 level
-1:1- Greedy ML HSC UniSG 5 level
-0- Greedy ML PCE GenSG 5 level
-0- Greedy IAL FISC Gense 5 level

10' 104
Equivalent HF Simulations

PCE CS single level
MF PCE CS 2 level p -10
ML PCE CS 5 level 1
ML PCE CS 5 level = 1.5

-ID- kIL PCE CS 5 level
ML PCE CS 5 level e 3

-0- Greedy ML PCE CS 5 level
—E— PCE UMSG single level
—e— PCE GenSO single level
-1:1- Greedy ML PCE UniSG 5 level
-1:1- Greedy ML HSC UniSG 5 level
-0- Greedy ML PCE GenSG 5 level
-0- Greedy ML FISC GenSG 5 level 

10° 10' 10°
Equivalent HF Simulabons

10°

FIGURE: Convergence for greedy multilevel PCE comparing generalized sparse grids and
compressed sensing.

Notes:

► The explicit nature of the sparse grid approaches allows for more precise convergence
► The compressed sensing approaches, while supporting sample profiles at the lower end of the cost spectrum,

are currently hampered in accuracy by solution of the large implicit systems that are allocated at the coarse
level

Recent Advancements on Multifidelity UQ 106/106



UCileSNL Muinfidelity UQ MF Sarnpling AS for MF UQ Inverse MF UQ Conclusions

BAYESIAN INVERSION
GENERALITIES ON THE APPROACH ADOPTED IN THIS WORK

Bayesian calibration

► Sandia's UQ software Dakota (see Dakota Theory Manual for more details)

► Markov Chain Monte Carlo for computing a sample-based posterior distribution

► We are interested in calibrating the parameters 61

► We assume that a surrogate for the computational model is available for the Qol: q = q(60)

► Reference data d are available
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BAYESIAN INVERSION
FEW DETAILS

Bayesian rule
fe (9) G (151; d)

f elD (e1d) =
fD (d)

S. Posterior probability fell) (Old)

► Conservative Prior distribution f® (0)
► Likelihood C (0; d)

► Evidence fD (d)

If the difference between the model quantity of interest q and the data d is Gaussian

.C(O; d) =  
1 

exp ( 
1 
r
T 
E ,

021TrlEdl 2 d 

1

where Ed represents the covariance matrix of the Gaussian data.

NOTES:

► From computational perspective it is more convenient to work with the negative log-likelihood
1 1 T

— log (0; d) = 
2 
— log(27r) — 

2 
log IEdl — 

2 
r E

d 
r

S. The term rT E,i1r is called Misfit Function

► Minimizing the Misfit Function corresponds to maximizing the Likelihood

IP. Maximizing the Likelihood (MLE) does not in general correspond to the Maximum A posteriori (MAP) point

le Posterior probability is analytically intractable and therefore MCMC is used to approximate it

► We use the QUESO library in Dakota to perform MCMC
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BAYESIAN INVERSION
WHY DOES HAVING A SURROGATE HELP?

IP' The computational code can be queried directly, but MCMC requires a very large number of evaluations to
converge

I. Surrogates can provide:

11. Computing local accurate proposal density (by using Hessian information)

► Pre-solving for the MAP in order to eliminate the initial burn-in phase

Computing a local accurate proposal density

► The MCMC proposal covariance to be the inverse of the Hessian of the negative log posterior

ve [— log(rp.A(19))] = V20211(9) — ve [log(ro(9))]

► A standard approximation is the multivariate normal (MVN) distribution with mean centered at the actual
point in the chain and prescribed covariance

Rog(7r0(9))] = E(11 '720 [— log(rpost(0))] = V20M(0) [log(tr0(0))]

► The Heassian of the Misfit Function can be computed through the surrogate model as

v2,,m(e) = v eq(e)T Eg 1 v 9.7(e) + '720(0) •[Ea 1 r] •

Avoiding the burn-in phase

lo• When a surrogate is available the burn-in can be avoided by pre-solving for the MAP point using an
optimizer to minimize the negative log posterior

mAp = argmin [— log('rpost(9))]

Recent Advancements on Multifidelity UQ 106/106



UQeSNL Multifidelity UQ MF Sampling AS for MF UQ Inverse MF UQ Conclusions

PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 1 - INCONSISTENT PARAMETERIZATION AND SAME SAMPLE SET

4 1 0 1

Aalv•Varlable

(a)Mass

Pave veriable

(c) Thermal Stresses

HF (PCS

aA •

(b) Thrust

/tan Oh.

(d)Mechanical Stresses

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 1).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 2 - CONSISTENT PARAMETERIZATION AND INDEPENDENT SAME SAMPLE SET
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FIGT_TRE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 2).
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BAYESIAN INVERSION
POSTERIOR DISTRIBUTION

•

Eff. Th. Av. IF

FIGURE: Visualization of the six-dimensional posterior distribution obtained through
emulator-based inference from u data only. Marginal distributions are shown as histograms and
pairwise joint distributions are displayed as contour plots.
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