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Environmental Tests and Computational Simulation
Capabilities Required to Design, and Qualify the Stockpile
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Integrated theory, computational simulation and experimental
discovery/validation across length and time scales is critical to
develop the technical basis for complex systems.
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Inverse Problem Strategy in Sierra

Finite Element and Optimization Codes operate as
iIndependent entities

Obijective function,
derivative operators

— RAPID OPTIMIZATION LIBRARY

Next iterate of
design variables

Gradient-based optimization
(adjoint methods used to compute
gradients)

Sierra Mechanics — massively parallel
multiphysics simulation




Inverse Problems: B
Observing the Unobservable

Suppose we have a “black box” system in the as-manufactured state that has
only partially known parameters

Question: can we non-destructively interrogate the system to “see what is inside”?

Typical quantities of interest:
» Material properties
 Loads

« Boundary conditions

* Residual stresses

« Size/shape/location of inclusions (e.g. composite materials)

Example applications:

* Seismic imaging

* Medical imaging

* Non-destructive evaluation




Categories of Inverse Problems UL

= |maging
= Medical ultrasound

= Seismic exploration

= Calibration of material models

= Structural material properties, circuits, thermal properties, etc.

" Force reconstruction

= Sub-structuring for mechanical testing of components

= Optimal Experimental Design

= Best placement of sensors, test fixture setups

= Shape reconstruction

= E.g.inverse scattering




Use Cases for Inverse Problems
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Adjoint-based inversion enables new use cases for Sierra Apps

RAPID OPTIMIZATION LIBRARY
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Flux boundary conditions

Source
Reconstruction

Enables use cases

Thermal/meéhanical material
reconstruction, residual stress,
metamaterial design

Material/residual
stress
Reconstruction

Detected debonded regions

(Thresholded plot)

Delamination/weld
characterization

Contact surface
Reconstruction

Ground-based
acoustic/thermal tests

Design of
Experiments

Sierra apps with embedded sensitivities (adjoints, etc)

Goal: enable all Sierra apps to reconstruct forces, materials,

contact surfaces, and assist in designing experiments

Uniqueness: Massively parallel inverse optimization
framework that leverages Sierra Mechanics




PDE-Constrained Optimization

=,
Formulation
minimize J(w,p) ~ Objective function
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Example: Source Reconstruction — @i

= Goal: reconstruct structural, thermal, and/or acoustic energy
sources that produce the given
accelerometer/temperature/microphone measurements

= Large parameter space — time histories for pressure functions
= Sensor placement — design of experiments

Structural loads AI(;O“S“C '02‘_13,[ butions f Thermal flux loads
Attachment forces from - PIessUre CISMUULONS oM £y distributions from
accelerometer measurements microphone measurements temperature measurements

L W Fire flux boundary
conditions
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Example: Partially Connected Surfac88%:.

« Partially-bonded plates/cylinders — can we invert for the

bonded/debonded regions?
« Large parameter space — number of FEM modes on surfaces

Frequency-domain pressure load at 2000Hz
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Example: Material Parameter

Extraction

Problem: in-situ material parameters often unknown

« Parameters not measurable without destroying structure
* Interrogate material with mechanical/thermal inputs

* Measure response, infer missing in-situ properties

» Large parameter space — spatially-varying parameters

A
. ' . - Orthotropic material Reconstructed thermal
Viscoelastic material and joint extraction for composite conductivity from

stiffness extraction using Sierra-SD panel using Sierra-SD Sierra-TF (Ana)




Example: Residual Stress Extraction

Problem: additively manufactured parts suffer from large
residual stresses

« Compromises part integrity

 FEM modeling needs stresses for initial conditions

« Stress is not a measurable quantity

« Large parameter space — spatially-varying stress fields

Goal: estimate residual stress fields from measured
displacement data (digital image correlation)

Reconstructed stress

Predicted traction field from field from
inverse solution (Sierra-SD) inverse solution
(Sierra-SD)




Optimal Experimental Design (OED) in Sierra

Motivation:
« Experiments are expensive and time-consuming
« Would like to use simulation and optimization to
accelerate the process
« Sensor placement optimization
« Source design/placement for control problems
« Decomposition into two optimization problems
* Design of experiment
« Solution of inverse problem from gathered
experimental measurements

= G =

“Sequential” design of experiments

S 40 ve Inver<se

Problem




Sandia
Example: Optimization for Sensor Placement W)t

Inverse problem of interest

«
e sl ) '

s = T(H)S =€ Additive noise model

_ . ' Data from
0 := arg min ¢(C(9)) Form covariance matrix experiment
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Conclusions ) 2=

= Adjoint-based optimization enables inversions with large
parameter spaces and/or high dimensionality of interest to
Sandia

= Sandia’s Sierra Mechanics suite ported to NGP platforms
= Leveraging Sandia software components

= Sierra Mechanics for massively parallel multiphysics forward
simulations

= Rapid Optimization Library (ROL) for gradient-based optimization

= Application spaces at Sandia are broad and continuing to
grow




Design, Optimization, and Fabrication of
Mechanical Metamaterials for Vibration
Isolation
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Outline 7 i

= The need for large-scale optimization in mechanical
metamaterials

= Optimization strategy — Sierra + ROL

= Parameter estimation and optimization of unit cells
= joint work with Aquino et al, Duke University

= 3D printing of mechanical metamaterials
= Single material
= Multi-material

= Optimization of multi-material metamaterials
= Comparison of vibration test results and FEM simulations
= Metasurfaces for vibration control (joint work with
Semperlotti et al, Purdue)

= Total internal reflection (TIR) elastic metasurfaces
= Achieves filtering with extremely thin material layer




The Need for Large-Scale Optimizationg g
in Metamaterial Design

= Acoustic metamaterials: large number of parameters (>1000’s to
millions) poses challenge for global search-based optimization

= Adjoint (gradient) based optimization allows for sensitivity
computations that are independent of number of design

variables
Partarodes lattice Large number of tunable

Multiphase composite

parameters

Lattice with
embedded

masses Single-material print (steel)




),

Design Optimization for Metamaterials

Finite Element and Optimization Codes operate as
iIndependent entities

Obijective function,
derivative operators

— RAPID OPTIMIZATION LIBRARY

Next iterate of
design variables

Sierra Mechanics — massively parallel Gradient-based optimization
multiphysics simulation (adjoint methods used to compute



PDE-Constrained Optimization

Formulation for Material Design

minimize J(u, p)

Abstract o
optimization subject to g(u.p) =0
formulation

Llu.p.w):=J+wlg

),

Objective function

PDE constraint

Lagrangian

First order optimality
conditions

Hessian calculation
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Objective Functions for Inverse Problem ™"

Time Domain objective function

I} 4pY) = 5 () — o)) ' 0] (100} — {un}) + 2({p}).

Mode Shape/Frequency objective function

I A} p) = DY + 5 () (i) + ()

A
Fi = lmi

Frequency Domain objective function

N
{P} gkz‘,] ka (Z k— ka) - %’({p})




Discrete Equations for Inverse Problent® -

Time-domain
g(u,p) = Mi+ C(p)u+ K(p)u — f

Frequency-domain

g(u.p) = [K(p) +iwC(p) —w’M|u— f

Eigenvalue (modal)

8i :g(ul'rlf.&p) — K(p)uf_)‘f'Mui =0




Optimization Results

Structural Isolation:
Material distribution

Frequency-domain
objective: Two-phase
material distribution

Viscoelastic foam
optimization

-

Acoustic cloaking:
Viscoelastic foam
optimization

2000 Hz
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Split-Ring Resonators: resonator
radius and beam thickness
optimization

--

Initial guess

Optimized Structure

Optimized mass
distribution

2 strategies: optimize continuum material vs optimize distribution of discrete parameters



3D Printing Optimized Internal Mass @&
Resonators

Multi-material additive manufacturing enables optimized
mass distributions

]Glol)aIVariables.txt - Notepad

File Edit Format View Help
"ml"=0.1

"m2"=0.25
1..In.put 5
optimized "m4"=0.75
llmsll=1
resonator |~ w125 2. Global variables modify

mass "m7"=2

values "m8"=3 resonatqr geometry in
"m9"=4 SolidWorks
. "'m10"=5
:"20_;123";1-05 4. 3D print optimized resonator masses up to 7.3
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c s gcode
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L L
iF2z9imeteddigram




3D Printed Lattices with Embedded me=

Resonators

3D vibration control applications require additively
manufactured materials that filter in kHz regime

Single material — stainless steel Multi-material — ABS lattice with

with embedded resonators — embedded tungsten cube
) ) g -y



3D Acoustic Metamaterial: ABS Lattige..
with Tungsten Resonators

Resonator
Locations

Triaxis
accellerometers




ABS-Tungsten Metamaterials =
Generated with the Stratasys Polylet

Multi-material 3D printing still requires some manual assembly

Print time is ~4 hrs per layer in acrylic “Vero”
-36 hr total print time
-4 .5hr total support removal time

729 tungsten cubes

Structure assembly and bonding
-8 hr (estimate)

Material with
Support Removed

Material Requiring
Support Removal




Sierra SD simulation of vibrational @)=,
energy transfer

Large-scale FEM for 3D metamaterials with microstructure

-Direct frequency response analysis in Sierra-SD

-5.45 million hex elements

-Ran in 7 hours on 1303 processors

-Mass elements tied to lattice mesh

-Traction applied in negative X-direction on positive X-face of
structure. Positive X-face nodes are constrained to remain co-
planar.

-Output (transmitted signal) and Input (incident signal)
extracted as average displacement/velocity of X-face nodes.

Lattice (Vero Clear) Properties:

G =1.18 GPa

E=3.3GPa Cut-away of unit cell mesh

Density = 1.185 g/cm?® Lattice structure meshed with 0.55 mm
elements

Mass (Tungsten) Properties:  \jasses meshed with a single 9.85 mm

G =156 GPa element

E =400 GPa

Density = 19.25 g/cm3



FEM vs. Experiment Comparison =

FEM simulation Experiment
Additional accel,
glued directly to
lattice
' Flight accel
. .
Measure with 2
accels on top
Average transmitted amplitude normalized by the peak amplitude as a function of frequency.
10°
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% 102 o o e M € - e M L o
= ' ~100-1000x
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£ reduction at
= 10 3kHz
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Application: Accelerometer Gauge
Frequency Isolation

Goal: filter out gauge resonance without altering signal otherwise
Typical gauge resonance (Endevco) 90kHz
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Conclusions ) e,

= 3D printed, optimized mechanical metamaterials and
metasurfaces are practical for kHz filtering

= |nverse optimization framework has been developed in Sierra
using Rapid Optimization Library (ROL)

= Spatially-varying mass/stiffness distributions achieved from
optimization can be realized with multi-material printing

= 3D metamaterial designs printed on a variety of example
applications

= Material samples have been dynamically tested. Initial results
demonstrate promising filtering behavior

= Metasurfaces can achieve similar vibration isolation as
volumetric metamaterials, but with much thinner layers




