

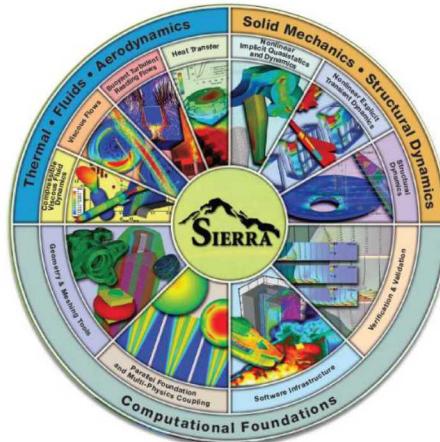
Solving Complex Inverse Problems for Design and Manufacturing Using High-Performance Computing

Timothy Walsh, Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

Acknowledgments

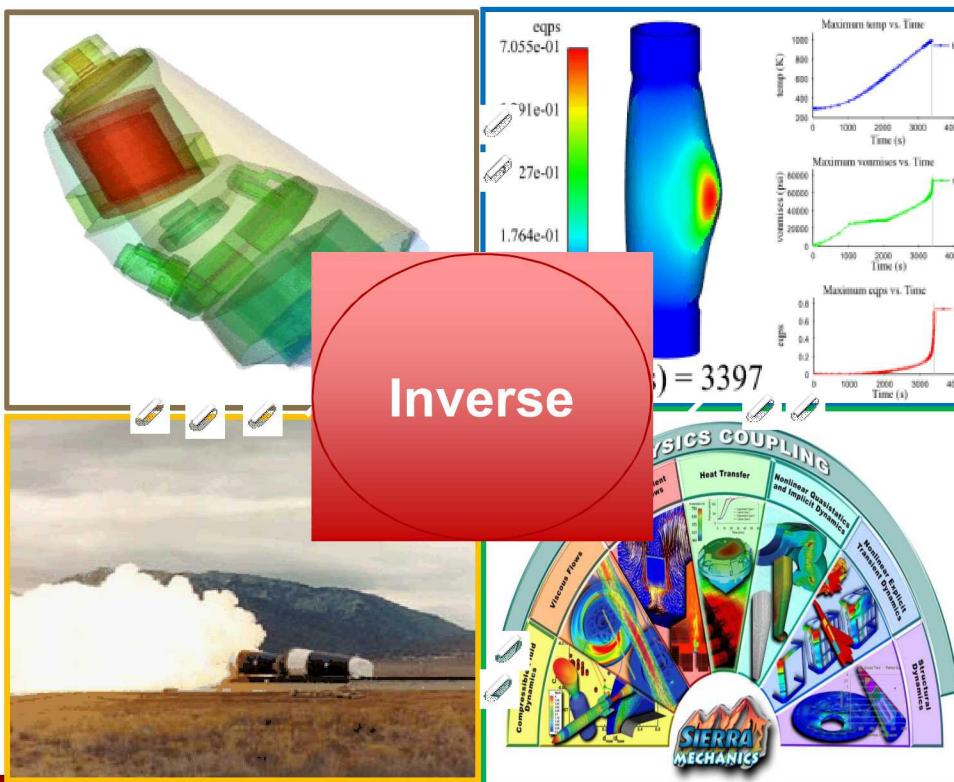
- Sierra Teams (SNL)
- Denis Ridzal, Drew Kouri, Rapid Optimization Library (SNL)
- Wilkins Aquino, Duke University
- Murthy Guddati, NC State University



Environmental Tests and Computational Simulation *Capabilities Required to Design, and Qualify the Stockpile*

Integrated theory, computational simulation and experimental discovery/validation across length and time scales is critical to develop the technical basis for complex systems.

Engineering Analysis



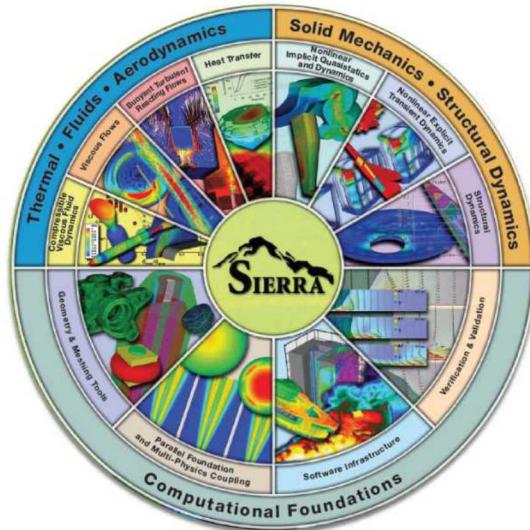
Engineering Science Physical Phenomena

Environmental Simulation & Test

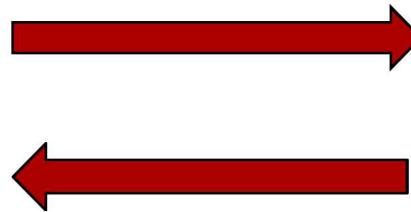
Computational Simulation Technology

Inverse Problem Strategy in Sierra

Finite Element and Optimization Codes operate as independent entities



Objective function, derivative operators



Next iterate of design variables

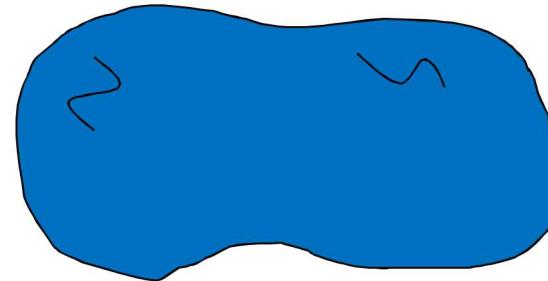
Sierra Mechanics – massively parallel multiphysics simulation

Gradient-based optimization (adjoint methods used to compute gradients)

Inverse Problems: Observing the Unobservable

Suppose we have a “black box” system in the *as-manufactured* state that has only partially known parameters

Question: can we *non-destructively* interrogate the system to “see what is inside”?



Typical quantities of interest:

- Material properties
- Loads
- Boundary conditions
- Residual stresses
- Size/shape/location of inclusions (e.g. composite materials)

Example applications:

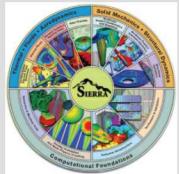
- Seismic imaging
- Medical imaging
- Non-destructive evaluation

Categories of Inverse Problems

- Imaging
 - Medical ultrasound
 - Seismic exploration
- Calibration of material models
 - Structural material properties, circuits, thermal properties, etc.
- Force reconstruction
 - Sub-structuring for mechanical testing of components
- Optimal Experimental Design
 - Best placement of sensors, test fixture setups
- Shape reconstruction
 - E.g. inverse scattering

Use Cases for Inverse Problems

Adjoint-based inversion enables new use cases for Sierra Apps



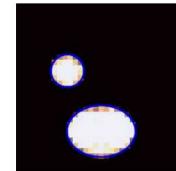
Experiment

InverseOpt
Toolkit

Enables use cases

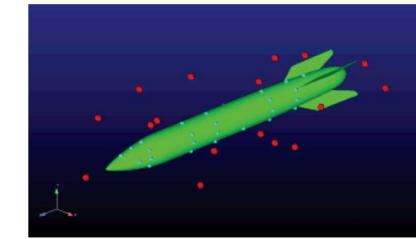
Flux boundary conditions

Thermal/mechanical material reconstruction, residual stress, metamaterial design



Detected debonded regions
(Thresholded plot)

Delamination/weld characterization



Ground-based
acoustic/thermal tests

Source
Reconstruction

Material/residual
stress
Reconstruction

Contact surface
Reconstruction

Design of
Experiments

Sierra apps with embedded sensitivities (adjoints, etc)

Goal: enable all Sierra apps to reconstruct forces, materials, contact surfaces, and assist in designing experiments

Uniqueness: Massively parallel inverse optimization framework that leverages Sierra Mechanics

PDE-Constrained Optimization Formulation

Abstract optimization formulation

$$\underset{\mathbf{u}, \mathbf{p}}{\text{minimize}} \quad J(\mathbf{u}, \mathbf{p})$$

$$\text{subject to} \quad \mathbf{g}(\mathbf{u}, \mathbf{p}) = \mathbf{0}$$

$$\mathcal{L}(\mathbf{u}, \mathbf{p}, \mathbf{w}) := J + \mathbf{w}^T \mathbf{g}$$

Objective function

PDE constraint

Lagrangian

$$\begin{Bmatrix} \mathcal{L}_u \\ \mathcal{L}_p \\ \mathcal{L}_w \end{Bmatrix} = \begin{Bmatrix} J_u + \mathbf{g}_u^T \mathbf{w} \\ J_p + \mathbf{g}_p^T \mathbf{w} \\ \mathbf{g} \end{Bmatrix} = \{\mathbf{0}\}$$

First order optimality conditions

$$\begin{bmatrix} \mathcal{L}_{uu} & \mathcal{L}_{up} & \mathbf{g}_u^T \\ \mathcal{L}_{pu} & \mathcal{L}_{pp} & \mathbf{g}_p^T \\ \mathbf{g}_u & \mathbf{g}_p & \mathbf{0} \end{bmatrix} \begin{Bmatrix} \delta \mathbf{u} \\ \delta \mathbf{p} \\ \mathbf{w}^* \end{Bmatrix} = - \begin{Bmatrix} J_u \\ J_p \\ \mathbf{g} \end{Bmatrix}$$

Newton iteration

$$\mathbf{W} \Delta \mathbf{p} = -\hat{\mathbf{J}}',$$

$$\mathbf{W} = \mathbf{g}_p^T \mathbf{g}_u^{-T} (\mathcal{L}_{uu} \mathbf{g}_u^{-1} \mathbf{g}_p - \mathcal{L}_{up}) - \mathcal{L}_{pu} \mathbf{g}_u^{-1} \mathbf{g}_p + \mathcal{L}_{pp}$$

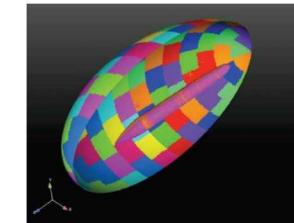
Hessian calculation

Example: Source Reconstruction

- Goal: reconstruct structural, thermal, and/or acoustic energy sources that produce the given accelerometer/temperature/microphone measurements
- Large parameter space – time histories for pressure functions
- Sensor placement – design of experiments

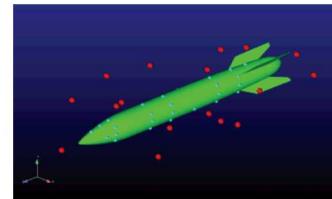
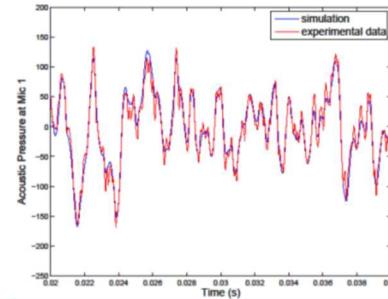
Structural loads

Attachment forces from accelerometer measurements



Acoustic loads

- Pressure distributions from microphone measurements



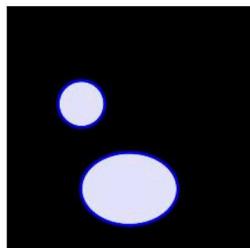
Thermal flux loads

Flux distributions from temperature measurements

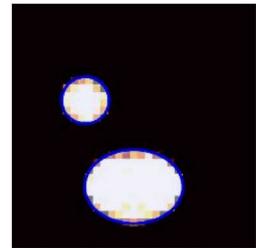
Fire flux boundary conditions

Example: Partially Connected Surfaces

- Partially-bonded plates/cylinders – can we invert for the bonded/debonded regions?
- Large parameter space – number of FEM modes on surfaces

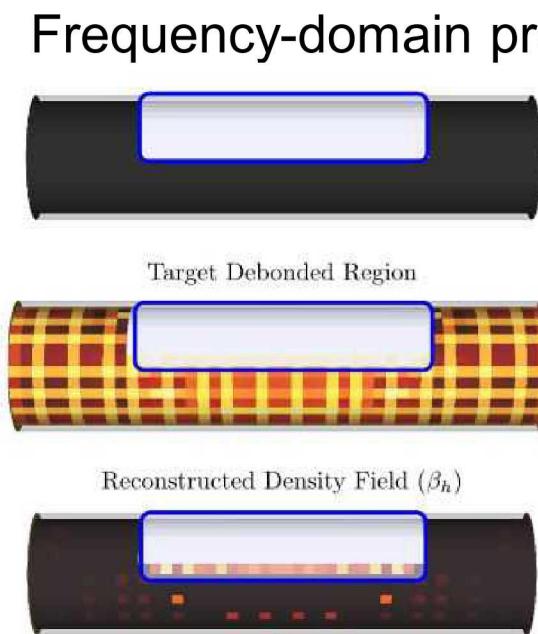


Target debonded regions



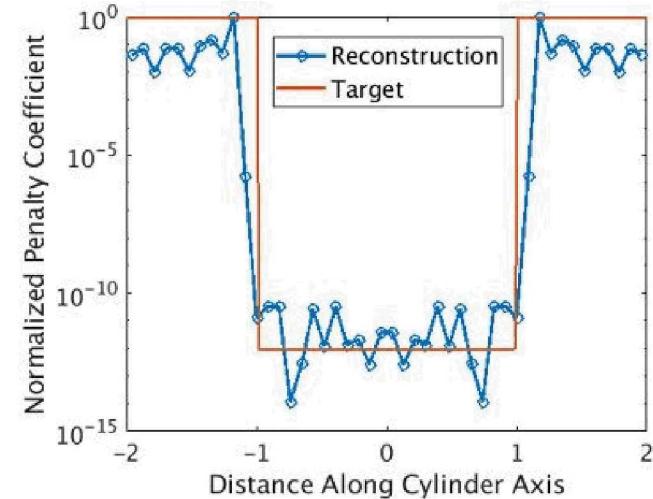
Detected debonded regions
(Thresholded plot)

Partially bonded
plates



Detected Debonded Region (Thresholded plot)

Partially bonded
cylinders



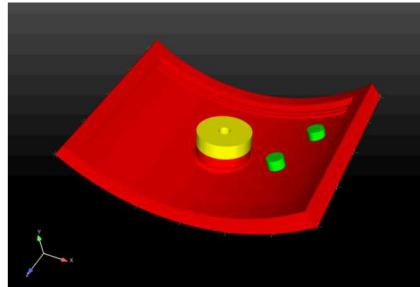
Line plot through
delaminated area

Example: Material Parameter Extraction

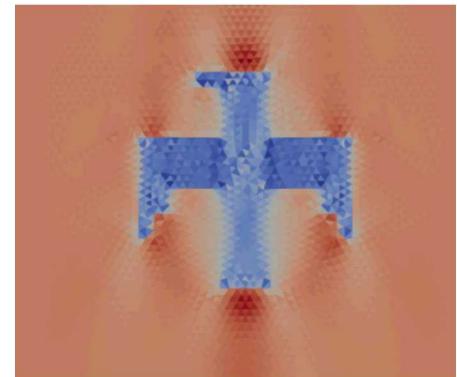
Problem: in-situ material parameters often unknown

- Parameters not measurable without destroying structure
- Interrogate material with mechanical/thermal inputs
- Measure response, infer missing in-situ properties
- Large parameter space – spatially-varying parameters

Viscoelastic material and joint stiffness extraction using Sierra-SD



Orthotropic material extraction for composite panel using Sierra-SD



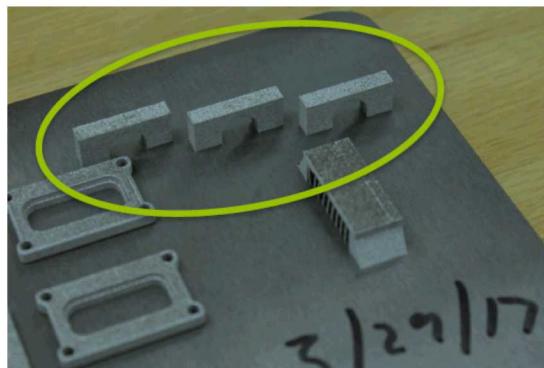
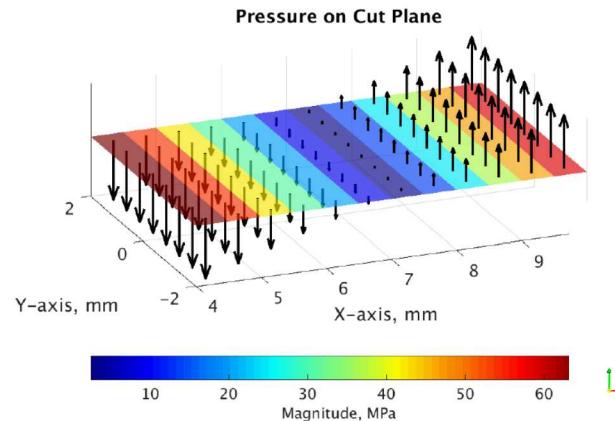
Reconstructed thermal conductivity from Sierra-TF (Aria)

Example: Residual Stress Extraction

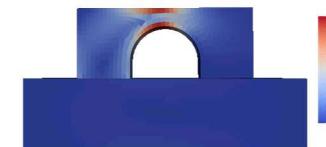
Problem: additively manufactured parts suffer from large residual stresses

- Compromises part integrity
- FEM modeling needs stresses for initial conditions
- Stress is not a measurable quantity
- Large parameter space – spatially-varying stress fields

Goal: estimate residual stress fields from measured displacement data (digital image correlation)



Predicted traction field from inverse solution (Sierra-SD)

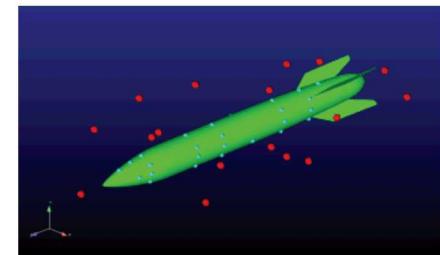


Reconstructed stress field from inverse solution (Sierra-SD)

Optimal Experimental Design (OED) in Sierra

Motivation:

- Experiments are expensive and time-consuming
- Would like to use simulation and optimization to accelerate the process
 - Sensor placement optimization
 - Source design/placement for control problems
- Decomposition into two optimization problems
 - Design of experiment
 - Solution of inverse problem from gathered experimental measurements



“Sequential” design of experiments

Example: Optimization for Sensor Placement

$$\bar{s}(\theta) := \arg \min_{s \in \mathcal{Z}} \left(\frac{1}{2} \|T(\theta)s - \hat{u}_o\|_2^2 + \frac{\alpha}{2} \|Ws\|_2^2 \right)$$

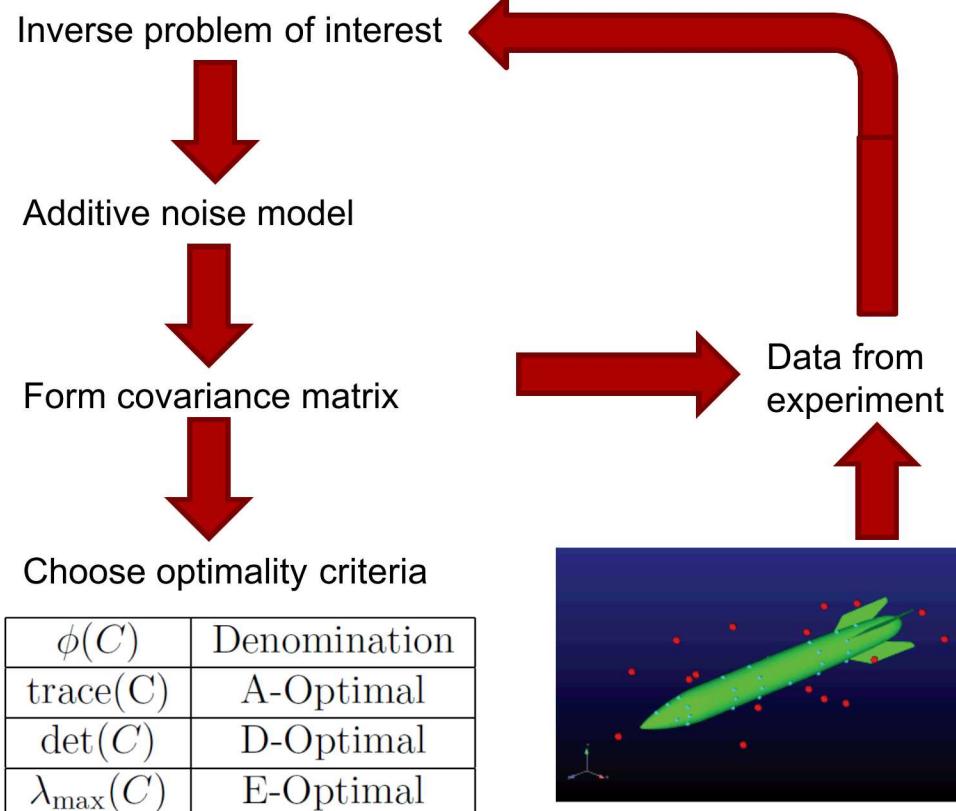
$$\hat{u}_o = T(\theta)s + \epsilon$$

$$\bar{\theta} := \arg \min_{\theta \in \mathcal{Q}} \phi(C(\theta))$$

$$\bar{\theta} := \arg \min_{\theta \in \mathbb{R}^M} \phi(C(\theta))$$

such that $\sum_i \theta_i = 1, 0 \leq \theta_i \leq 1$

Sparsification constraint



Conclusions

- Adjoint-based optimization enables inversions with **large parameter spaces** and/or **high dimensionality** of interest to Sandia
- Sandia's Sierra Mechanics suite ported to NGP platforms
- Leveraging Sandia software components
 - Sierra Mechanics for massively parallel multiphysics forward simulations
 - Rapid Optimization Library (ROL) for gradient-based optimization
- Application spaces at Sandia are broad and continuing to grow

Design, Optimization, and Fabrication of Mechanical Metamaterials for Vibration Isolation

Timothy Walsh, Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, C.A., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Acknowledgements

- Harlan Brown-Shaklee, Mike Sinclair, Bradley Jared, Sandia – 3D printing
- Ryan Schultz, Sandia (vibration testing)
- Chris Hammeter, Sandia (finite element simulations)
- Prof. Fabio Semperlotti et al, Purdue (metasurface collaboration)
- Wilkins Aquino, Clay Sanders Duke University (MECE-based optimization)
- Rapid Optimization Library (ROL) team, Sandia

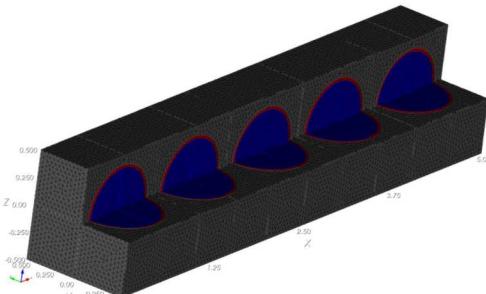
Outline

- The need for large-scale optimization in mechanical metamaterials
 - Optimization strategy – Sierra + ROL
 - Parameter estimation and optimization of unit cells
 - joint work with Aquino et al, Duke University
- 3D printing of mechanical metamaterials
 - Single material
 - Multi-material
 - Optimization of multi-material metamaterials
- Comparison of vibration test results and FEM simulations
- Metasurfaces for vibration control (joint work with Semperlotti et al, Purdue)
 - Total internal reflection (TIR) elastic metasurfaces
 - Achieves filtering with extremely thin material layer

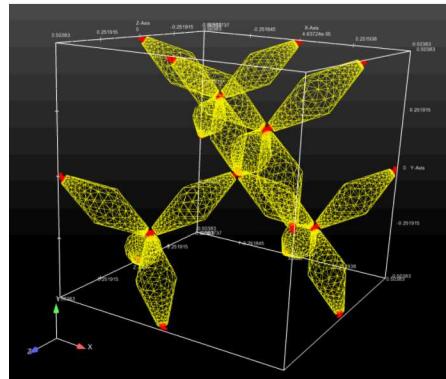
The Need for Large-Scale Optimization in Metamaterial Design

- Acoustic metamaterials: large number of parameters (>1000's to millions) poses challenge for global search-based optimization
- **Adjoint (gradient) based optimization allows for sensitivity computations that are independent of number of design variables**

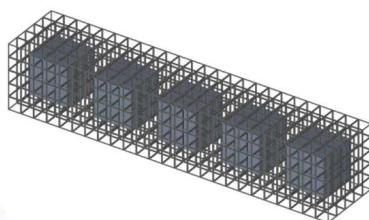
Multiphase composite



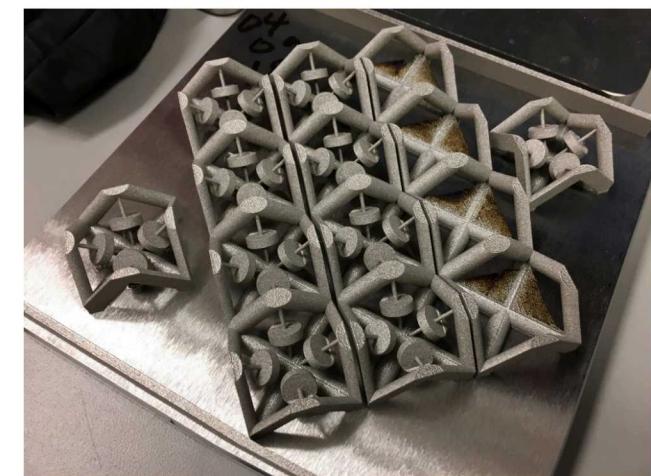
Pentamode lattice



Large number of tunable parameters



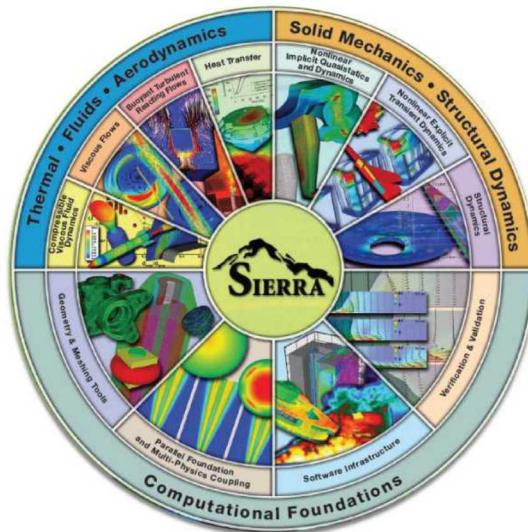
Lattice with embedded masses



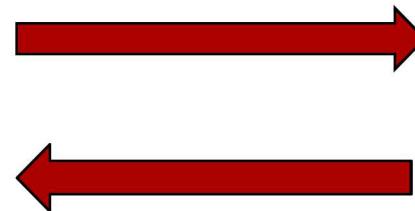
Single-material print (steel)

Design Optimization for Metamaterials

Finite Element and Optimization Codes operate as independent entities



Objective function,
derivative operators



RAPID OPTIMIZATION LIBRARY

Next iterate of
design variables

Sierra Mechanics – massively parallel
multiphysics simulation

Gradient-based optimization
(adjoint methods used to compute
gradients)

PDE-Constrained Optimization

Formulation for Material Design

Abstract
optimization
formulation

$$\underset{\mathbf{u}, \mathbf{p}}{\text{minimize}} \quad J(\mathbf{u}, \mathbf{p})$$

$$\text{subject to} \quad \mathbf{g}(\mathbf{u}, \mathbf{p}) = \mathbf{0}$$

$$\mathcal{L}(\mathbf{u}, \mathbf{p}, \mathbf{w}) := J + \mathbf{w}^T \mathbf{g}$$

Objective function

PDE constraint

Lagrangian

$$\begin{Bmatrix} \mathcal{L}_u \\ \mathcal{L}_p \\ \mathcal{L}_w \end{Bmatrix} = \begin{Bmatrix} J_u + \mathbf{g}_u^T \mathbf{w} \\ J_p + \mathbf{g}_p^T \mathbf{w} \\ \mathbf{g} \end{Bmatrix} = \{\mathbf{0}\}$$

First order optimality
conditions

$$\begin{bmatrix} \mathcal{L}_{uu} & \mathcal{L}_{up} & \mathbf{g}_u^T \\ \mathcal{L}_{pu} & \mathcal{L}_{pp} & \mathbf{g}_p^T \\ \mathbf{g}_u & \mathbf{g}_p & \mathbf{0} \end{bmatrix} \begin{Bmatrix} \delta \mathbf{u} \\ \delta \mathbf{p} \\ \mathbf{w}^* \end{Bmatrix} = - \begin{Bmatrix} J_u \\ J_p \\ \mathbf{g} \end{Bmatrix}$$

Newton iteration

$$\mathbf{W} \Delta \mathbf{p} = -\hat{J}',$$

$$\mathbf{W} = \mathbf{g}_p^T \mathbf{g}_u^{-T} (\mathcal{L}_{uu} \mathbf{g}_u^{-1} \mathbf{g}_p - \mathcal{L}_{up}) - \mathcal{L}_{pu} \mathbf{g}_u^{-1} \mathbf{g}_p + \mathcal{L}_{pp}$$

Hessian calculation

Objective Functions for Inverse Problem

Time Domain objective function

$$J(\{\mathbf{u}\}, \{\mathbf{p}\}) = \frac{\kappa}{2} \left(\{\mathbf{u}\} - \{\mathbf{u}_m\} \right)^T [\mathcal{Q}] \left(\{\mathbf{u}\} - \{\mathbf{u}_m\} \right) + \mathcal{R}(\{\mathbf{p}\}),$$

Mode Shape/Frequency objective function

$$J(\{\lambda_i\}, \{\mathbf{u}_i\}, \mathbf{p}) := \frac{\beta_i}{2} \|\{\mathbf{r}_i\}\|^2 + \frac{\kappa_i}{2} \mathcal{G}(\{\mathbf{u}_i\}, \{\mathbf{u}_{mi}\}) + \mathcal{R}(\mathbf{p}).$$

$$r_i = \frac{\lambda_i - \lambda_{mi}}{\lambda_{mi}}$$

Frequency Domain objective function

$$\tilde{J}(\{\mathbf{p}\}) = \frac{\kappa}{2} \sum_{k=1}^N (\mathbf{z}_k - \mathbf{z}_{m_k})^h [\mathcal{Q}] (\mathbf{z}_k - \mathbf{z}_{m_k}) + \mathcal{R}(\{\mathbf{p}\})$$

Discrete Equations for Inverse Problem

Time-domain

$$\mathbf{g}(\mathbf{u}, \mathbf{p}) = \mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}(\mathbf{p})\dot{\mathbf{u}} + \mathbf{K}(\mathbf{p})\mathbf{u} - \mathbf{f}$$

Frequency-domain

$$\mathbf{g}(\mathbf{u}, \mathbf{p}) = [\mathbf{K}(\mathbf{p}) + i\omega\mathbf{C}(\mathbf{p}) - \omega^2\mathbf{M}] \mathbf{u} - \mathbf{f}$$

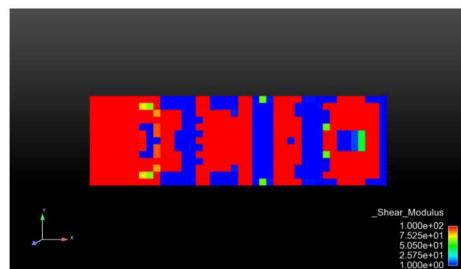
Eigenvalue (modal)

$$\mathbf{g}_i = \mathbf{g}(\mathbf{u}_i, \lambda_i, \mathbf{p}) = \mathbf{K}(\mathbf{p})\mathbf{u}_i - \lambda_i \mathbf{M}\mathbf{u}_i = \mathbf{0}$$

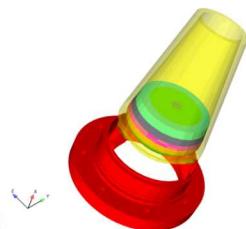
Optimization Results

Structural Isolation:
Material distribution

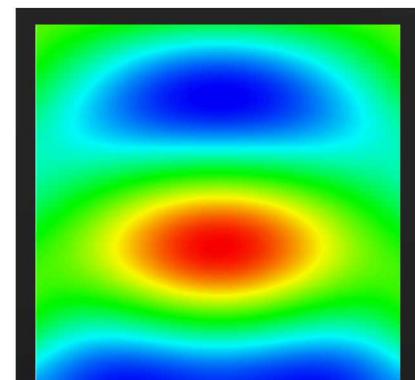
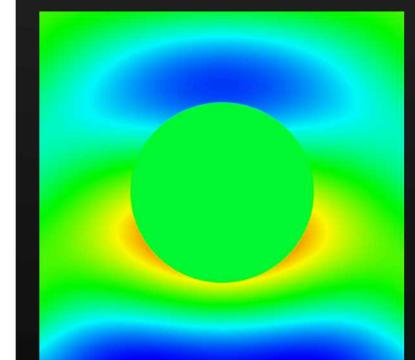
Frequency-domain
objective: Two-phase
material distribution



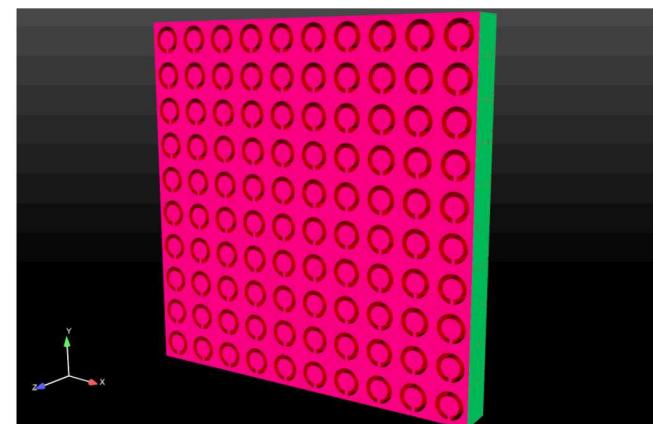
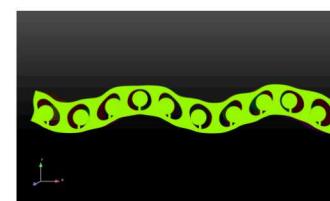
Viscoelastic foam
optimization



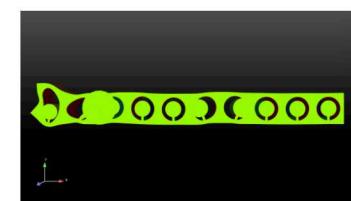
Acoustic cloaking:
Viscoelastic foam
optimization



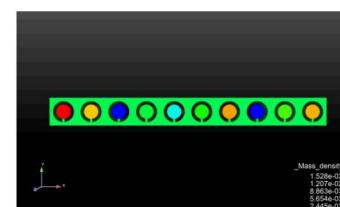
Split-Ring Resonators: resonator
radius and beam thickness
optimization



Initial guess



Optimized Structure



Optimized mass
distribution

2 strategies: optimize continuum material vs optimize distribution of discrete parameters

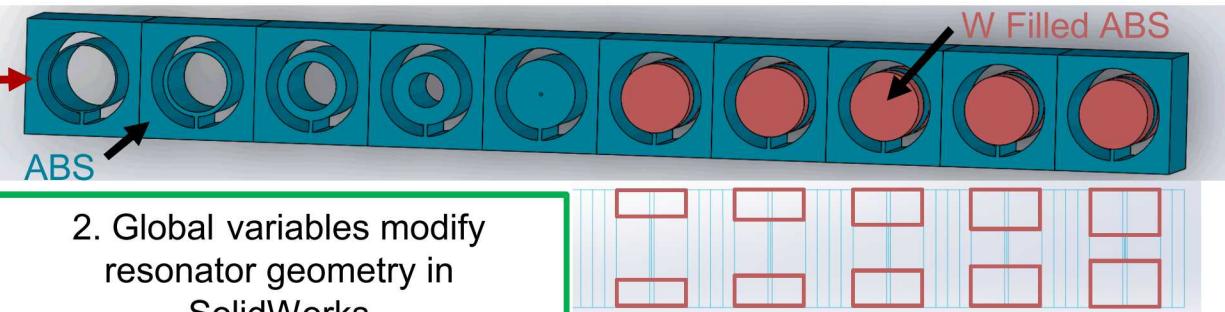
3D Printing Optimized Internal Mass Resonators

Multi-material additive manufacturing enables optimized mass distributions

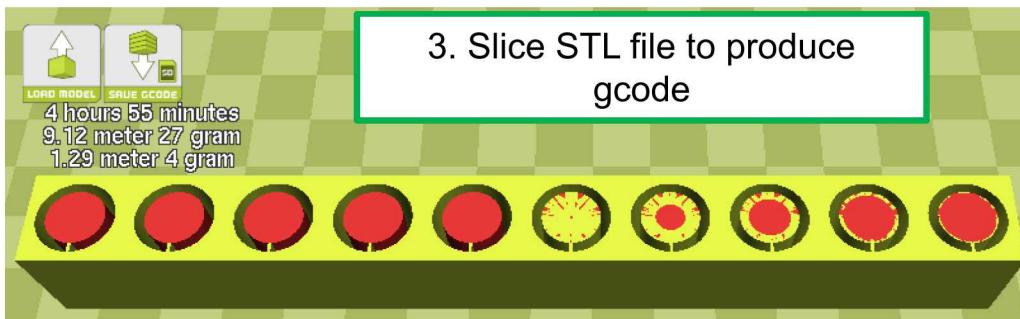
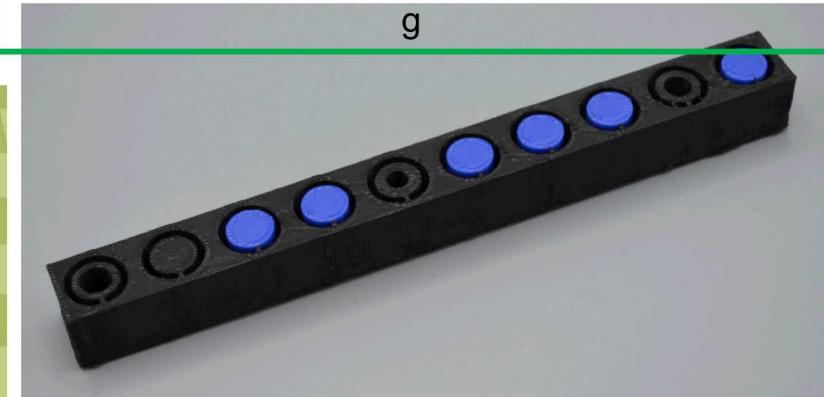
1. Input optimized resonator mass values

```
GlobalVariables.txt - Notepad
File Edit Format View Help
"m1"=0.1
"m2"=0.25
"m3"=0.5
"m4"=0.75
"m5"=1
"m6"=1.25
"m7"=2
"m8"=3
"m9"=4
"m10"=5
"rho_abs"=1.05
"rho_Wf"=8
"t"=1.5
"D1"=0.9
```

2. Global variables modify resonator geometry in SolidWorks

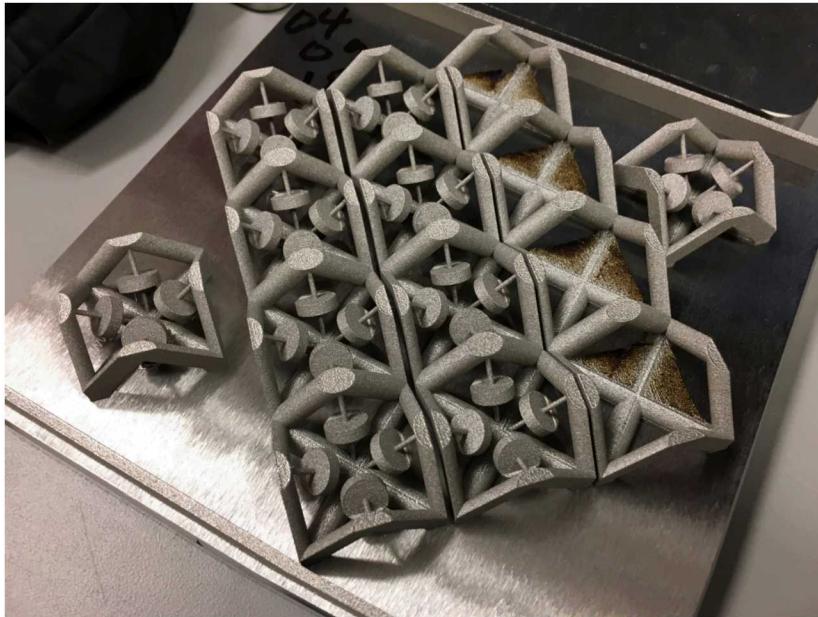


4. 3D print optimized resonator masses up to 7.3 g

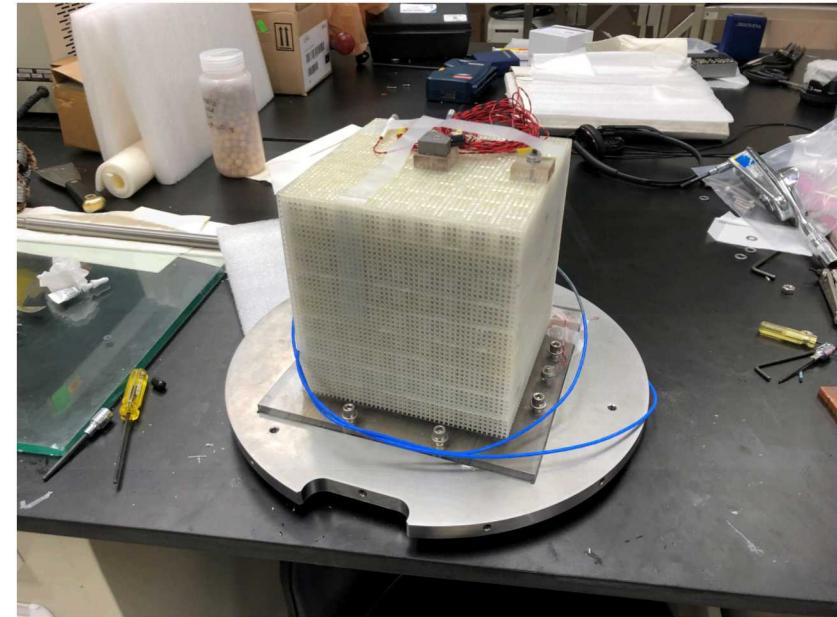


3D Printed Lattices with Embedded Resonators

3D vibration control applications require additively manufactured materials that filter in kHz regime

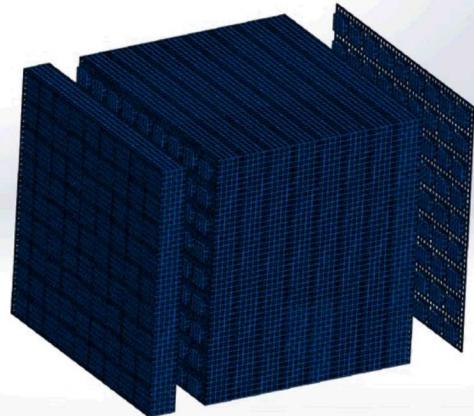
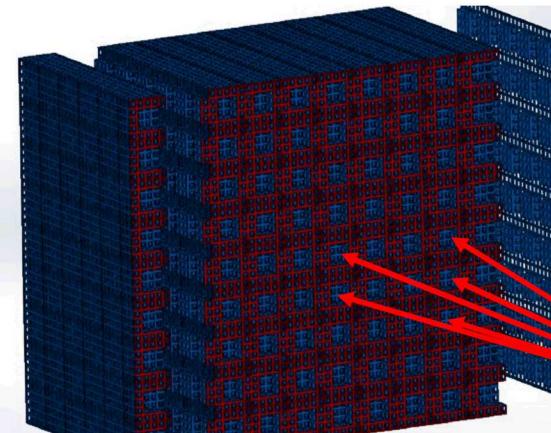
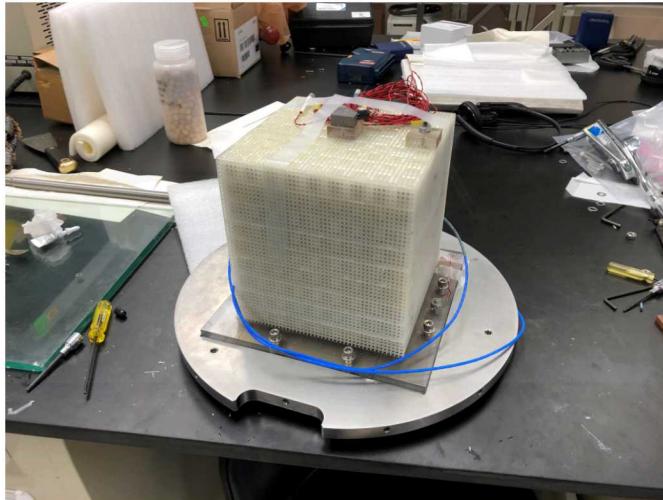


Single material – stainless steel with embedded resonators – filters 6-7kHz



Multi-material – ABS lattice with embedded tungsten cube resonators – filters > 2-5kHz

3D Acoustic Metamaterial: ABS Lattice with Tungsten Resonators



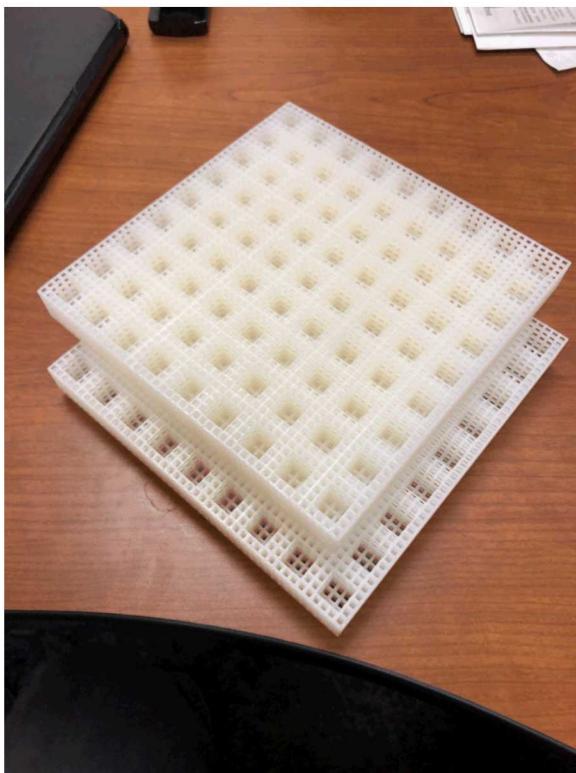
Triaxis
accelerometers



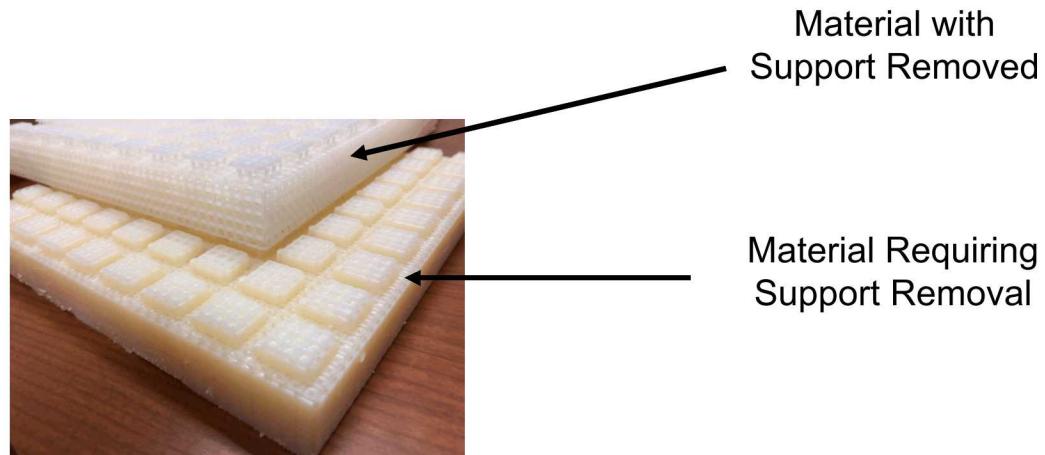
ABS-Tungsten Metamaterials

Generated with the Stratasys PolyJet

Multi-material 3D printing still requires some manual assembly



- Print time is ~4 hrs per layer in acrylic “Vero”
 - 36 hr total print time
 - 4.5hr total support removal time
- 729 tungsten cubes
- Structure assembly and bonding
 - 8 hr (estimate)



Sierra SD simulation of vibrational energy transfer

Large-scale FEM for 3D metamaterials with microstructure

-Direct frequency response analysis in Sierra-SD

-5.45 million hex elements

-Ran in 7 hours on 1303 processors

-Mass elements tied to lattice mesh

-Traction applied in negative X-direction on positive X-face of structure. Positive X-face nodes are constrained to remain coplanar.

-Output (transmitted signal) and Input (incident signal) extracted as average displacement/velocity of X-face nodes.

Lattice (Vero Clear) Properties:

$G = 1.18 \text{ GPa}$

$E = 3.3 \text{ GPa}$

Density = 1.185 g/cm^3

Cut-away of unit cell mesh

Lattice structure meshed with 0.55 mm elements

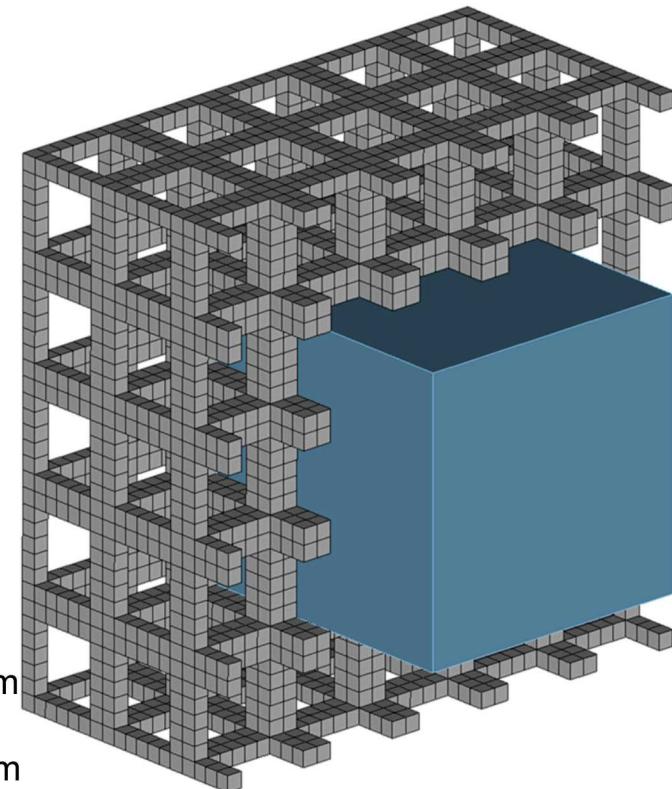
Masses meshed with a single 9.85 mm element

Mass (Tungsten) Properties:

$G = 156 \text{ GPa}$

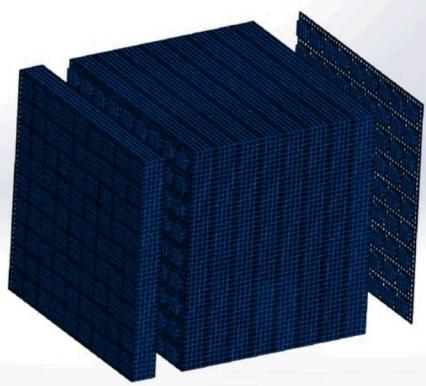
$E = 400 \text{ GPa}$

Density = 19.25 g/cm^3

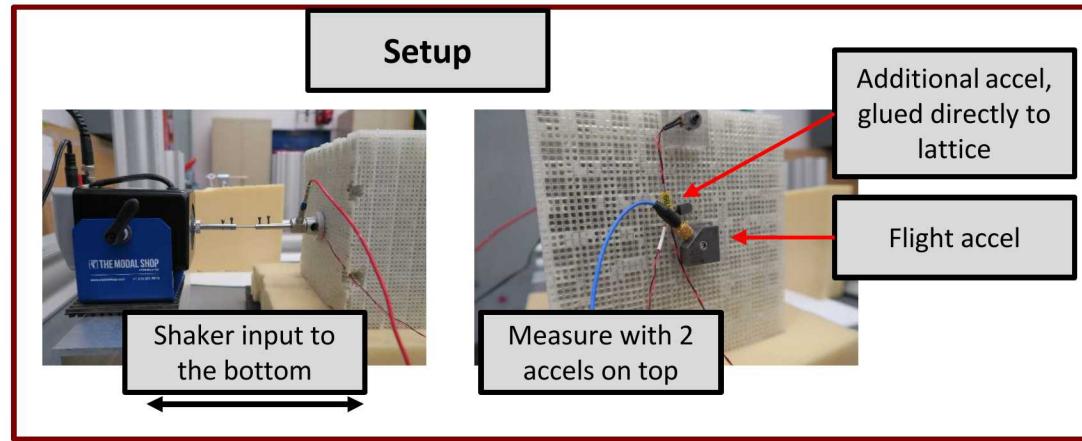


FEM vs. Experiment Comparison

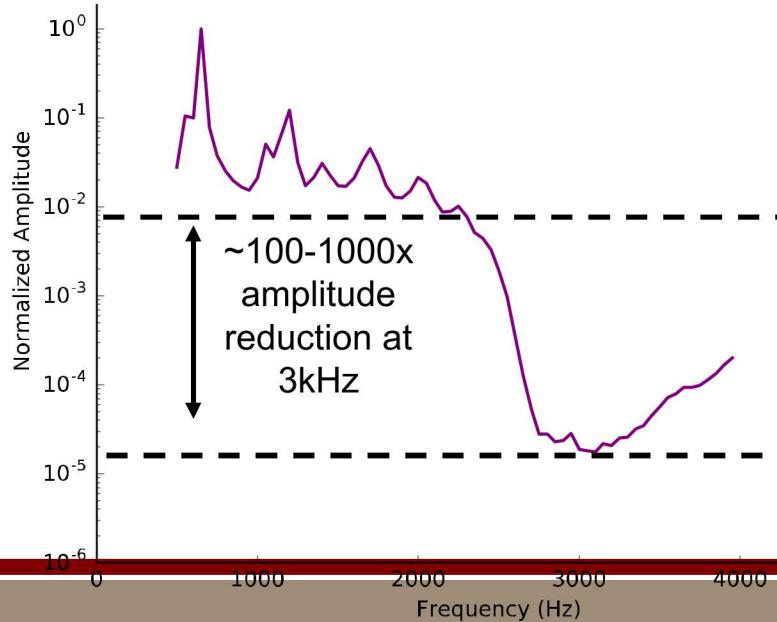
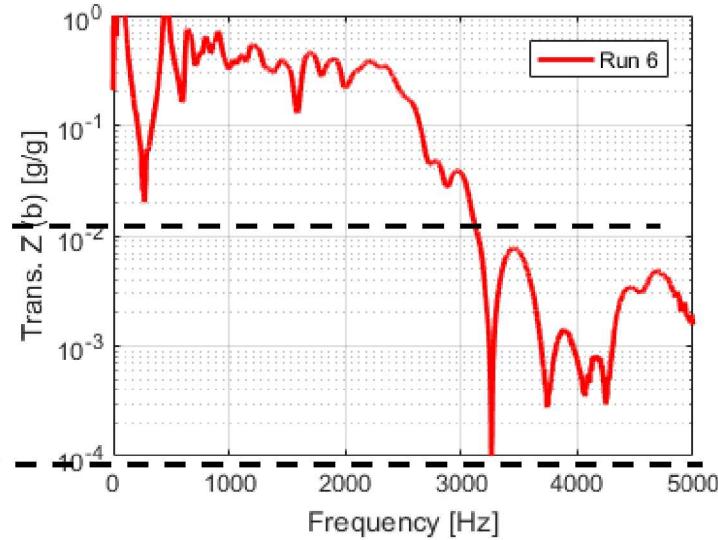
FEM simulation



Experiment

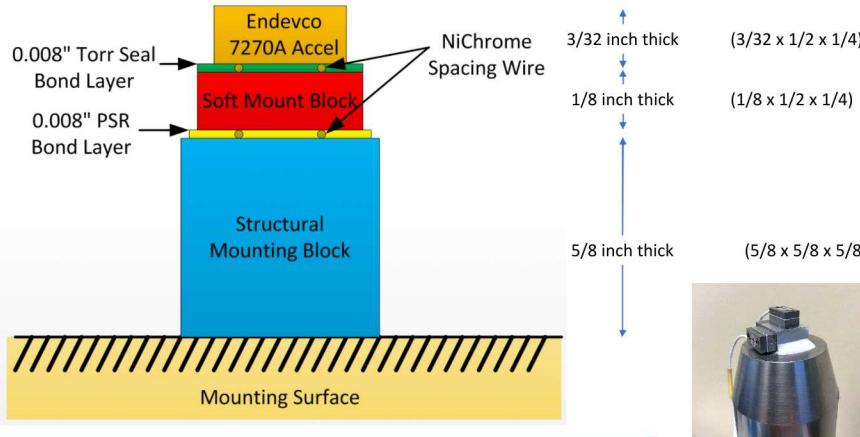
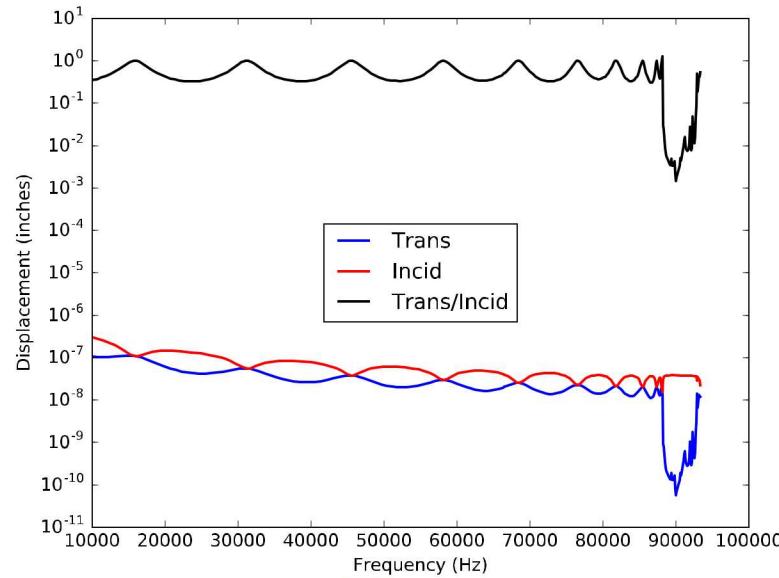


Average transmitted amplitude normalized by the peak amplitude as a function of frequency.

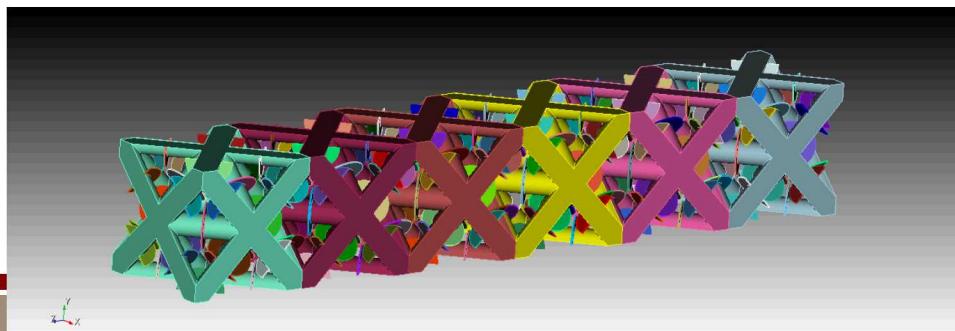
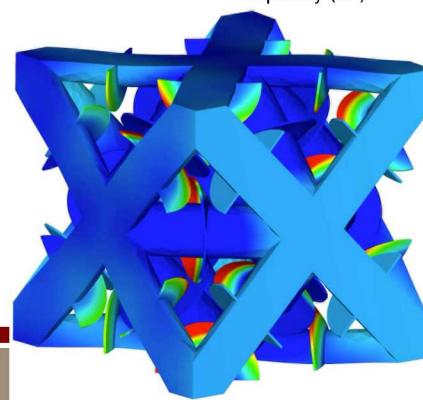


Application: Accelerometer Gauge Frequency Isolation

Goal: filter out gauge resonance without altering signal otherwise
Typical gauge resonance (Endevco) 90kHz



Lattice with Resonator Discs



Conclusions

- 3D printed, optimized mechanical metamaterials and metasurfaces are practical for kHz filtering
- Inverse optimization framework has been developed in Sierra using Rapid Optimization Library (ROL)
- Spatially-varying mass/stiffness distributions achieved from optimization can be realized with multi-material printing
- 3D metamaterial designs printed on a variety of example applications
- Material samples have been dynamically tested. Initial results demonstrate promising filtering behavior
- Metasurfaces can achieve similar vibration isolation as volumetric metamaterials, but with much thinner layers