

Replacement of calcium carbonate polymorphs by cerussite

YoungJae Kim^{1,*}, Bektur Abdilla², Ke Yuan³, Vincent De Andrade^{4, #}, Neil C. Sturchio², Sang Soo Lee¹,

Paul Fenter¹

¹Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

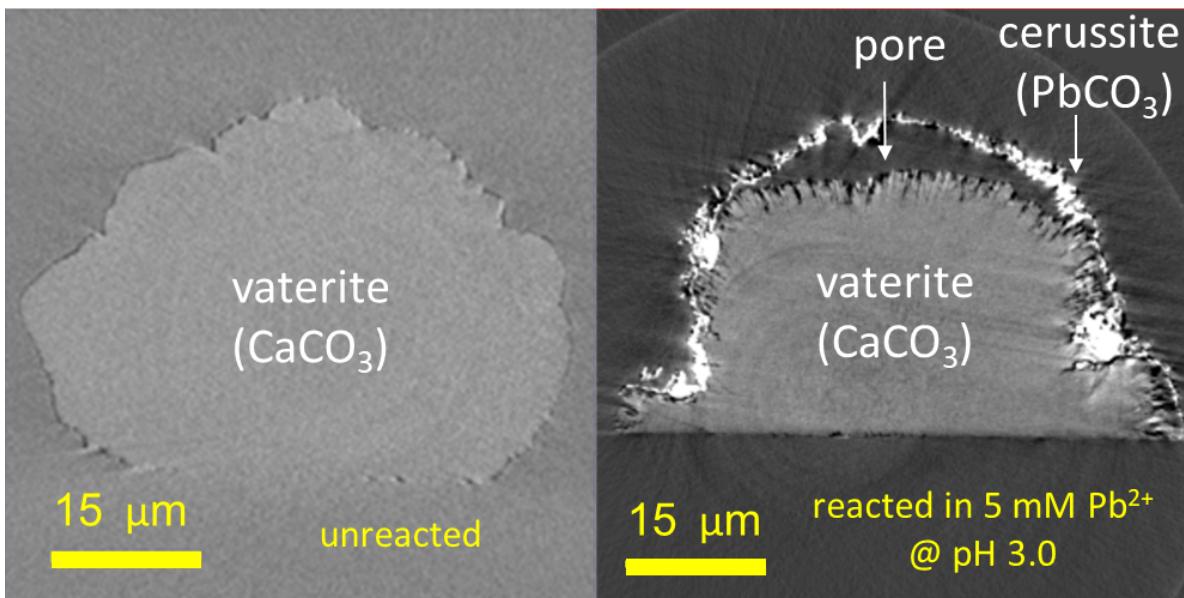
²Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States

³Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

⁴Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States

#Current Address: Sigray, Inc., 5750 Imhoff Drive, Suite I, Concord, California 94520, United States

* corresponding author; E-mail: youngjkm@anl.gov


Abstract

13 Calcium carbonate (CaCO_3) polymorphs, calcite, aragonite, and vaterite, serve as a major sink to retain
14 various metal ions in the natural and engineered systems. Here, we visualize the systematic trends in
15 reactivities of calcite, vaterite, and aragonite to Pb^{2+} dissolved in acidic aqueous solutions using in situ
16 optical microscopy combined with ex situ scanning electron and transmission X-ray microscopies. All three
17 polymorphs undergo pseudomorphic replacement by cerussite (PbCO_3) but with distinct differences in the
18 evolution of their morphologies. The replacement of calcite and aragonite occurs through the formation of
19 a pseudomorphic cerussite shell (typically 5-10 μm thick) followed by a slower inward propagation of
20 reaction fronts through thin solution gap ($\sim 0.1 \mu\text{m}$ wide) between the shell and the CaCO_3 substrate. The
21 replacement of vaterite is characterized by the formation of a thinner cerussite shell ($\leq 1 \mu\text{m}$ thick) and a
22 larger cavity between the shell and the host mineral. These systematic differences in cerussite morphology
23 for the different CaCO_3 polymorphs are explained by the relative dissolution and precipitation rates of the
24 reactants and products, coupled with the role of reactant transport through the cerussite product phase. We
25 also find that the replacement of calcite by cerussite is found to be the slowest when all three polymorphs

26 coexisted. Our results provide mechanistic insights on the growth mode of cerussite on dissolving calcium
27 carbonate and demonstrate these CaCO_3 polymorphs as promising substrate materials for removal and
28 recycling of Pb from acidic polluted water and industrial effluents.

29 *Keywords:* Calcite, Aragonite, Vaterite, Cerussite, Mineral replacement, pore, Pb removal

30 [Table of Contents/Abstract Graphics](#)

31
32 [1. Introduction](#)
33 Calcium carbonate (CaCO_3) occurs naturally in three crystalline polymorphs, calcite, aragonite, and
34 vaterite. Calcite is the most stable phase of CaCO_3 in the ambient conditions and shallow waters of Earth's
35 surface environments. Aragonite is commonly formed by biological processes in shells and coral skeletons
36 in marine environments.¹⁻³ As the high pressure polymorph of CaCO_3 , it is also observed in metamorphic
37 rocks in subduction zones.⁴ Vaterite is the least stable form of CaCO_3 and normally occurs as a metastable
38 intermediate in the course of calcite nucleation^{5, 6} or from biomimetication of carbon dioxide (CO_2).^{7, 8}
39 Besides their abundance in nature, the CaCO_3 polymorphs are of technological interest in the development
40 of functional materials.⁹⁻¹⁵ For example, calcium carbonate materials are used as fillers in paper and

41 adhesives, a major component in paints, base material for medical tablets, and sorbents for dissolved heavy
42 metals.

43 Since the calcium carbonate polymorphs are highly reactive to dissolved ions, their mineral-water
44 interfacial processes are critical in controlling the behavior of various metal ions in the natural and
45 engineered systems. Among the three polymorphs, metal sequestration by calcite has been most widely
46 studied and demonstrated to occur via mineral-water interfacial processes such as adsorption, precipitation,
47 and incorporation.¹⁶⁻²⁵ Recently, there is an increasing awareness that the sequestration of dissolved heavy
48 metals can occur via mineral replacement reactions.^{26, 27} For example, calcite can be replaced by cerussite
49 (PbCO_3) in acidic Pb^{2+} -containing solutions through coupled dissolution and precipitation with minimal
50 changes in overall morphology.^{28, 29} The distribution and growth rates of cerussite have previously been
51 postulated to be controlled by spatial variations in both solution pH and local ion concentrations,²⁸⁻³⁰ which
52 determine the (local) saturation index of the precipitating phase. Furthermore, the cerussite product is highly
53 porous, which facilitates transport of dissolved ions between the external solution and the substrate
54 interfaces in the product phase.^{29, 30}

55 Compared to calcite, less is known about the interaction of the other CaCO_3 polymorphs, aragonite and
56 vaterite with dissolved Pb^{2+} . Although there is a consensus that Pb uptake by aragonite and vaterite can
57 occur by mineral replacement,³¹⁻³⁵ which is similar to that by calcite, this is not yet supported by direct
58 observation of the morphological relationship between the host phases and the secondary minerals. In
59 addition, there are clear discrepancies among these studies. Gamsjager et al.³² reported that Pb^{2+} uptake by
60 aragonite occurs more rapidly and to a greater extent compared to that by calcite. In contrast, Di Lorenzo
61 et al.³¹ observed a lower reactivity of aragonite to Pb^{2+} than that of calcite. This lower reactivity appears
62 resulting from surface passivation of aragonite by cerussite, which hinders further dissolution/precipitation
63 at the interface. These previous studies highlight the need for systematic investigations of the crystallization
64 of cerussite coupled with dissolution of the CaCO_3 polymorphs to assess the relative reactivity of these
65 polymorphs in the presence of dissolved Pb^{2+} .

66 Here, we explore the reactivities of calcite, vaterite, and aragonite in the presence of dissolved Pb²⁺ to
67 understand the mineralogical and morphological controls over the calcium carbonate-Pb²⁺ interaction.
68 Calcium carbonate, in the form of single crystals or mixtures of calcium carbonate polymorphs, was subject
69 to reactions with acidic Pb²⁺-containing solutions. The morphological and chemical evolution of each
70 polymorph, observed with optical microscopy, scanning electron microscopy (SEM), synchrotron X-ray
71 nano-tomographic and fluorescence measurements, revealed that the growth mechanisms of the cerussite
72 product (e.g., pseudomorphic replacement vs. cerussite shell formation) depended on the types of calcium
73 carbonate polymorph. These different growth modes are postulated to be caused by the different solubilities
74 and dissolution rates of the calcium carbonate polymorphs, providing new insights into the mechanisms of
75 the replacement of carbonate minerals by cerussite. The results directly show differences in sorption
76 mechanism among the individual polymorphs and provide a direct comparison of their uptake efficiencies,
77 which will ultimately be important in designing the remediation strategy for Pb²⁺- contaminated sites.

78

79 2. METHODS

80 Minerals and reagents

81 Calcium carbonate polymorphs were prepared in two ways. Most samples were synthesized on 0.8 ×
82 0.8 cm² Kapton films or glass plates using the ammonium diffusion method.^{36, 37} Calcite was the dominant
83 product phase when grown at high Ca concentrations (CaCl₂ concentration ≥15 mM), while at intermediate
84 and low Ca concentrations (≤10 mM CaCl₂), the mineral assemblages were mixtures of calcite, vaterite,
85 and/or aragonite. Here, these mixture samples are denoted as vaterite/calcite and aragonite/vaterite/calcite
86 to describe the mineral compositions. Additional powder specimens of calcium carbonate were prepared
87 by crushing and sieving natural calcium carbonate minerals, including calcite (Chihuahua, Mexico) and
88 aragonite (Ivanpah Mt., California, USA) crystals to obtain particle sizes ranging from 47 to 53 µm (similar
89 to the crystals grown by the ammonium diffusion method). The prepared CaCO₃ samples were reacted with

90 acidic Pb²⁺-containing solutions. Pb(II) stock solutions were prepared using Milli-Q® water (resistivity =
91 18.2 MΩ·cm; TOC < 5 ppb) and lead nitrate (Pb(NO₃)₂, Sigma Aldrich; purity, 98-102 %).

92 **Reaction Protocols**

93 Operando observations of mineral replacement reactions were performed *in situ* using an in-house
94 constructed fluid cell having an internal volume of 4.2 mL by sealing two transparent glass windows onto
95 a cell body made of PEEK®.²⁹ An optical microscope equipped with a digital camera (Nikon Optiphot) and
96 an image recording system was used in a transmission light mode. The reaction system in the fluid cell
97 contained calcium carbonate minerals in contact with an input solution with 5 mM Pb(II) and an initial pH
98 of 2.5–3.0, using a solid to solution ratio of 0.1–0.2 g/L. This initial solution was undersaturated with respect
99 to calcite, resulting in dissolution of calcium carbonate minerals, which increased pH and (bi)carbonate
100 concentration in solutions. The final solutions, after reaction for 16 to 24 hr, had the pH ranging from 4.2
101 to 4.5 and dissolved total carbonate concentrations of 1 to 2 mM, where the saturation index (SI) of cerussite
102 ranged from –0.1 to 0.2 (because these solutions were not well-mixed, the cerussite saturation index was
103 likely higher near the dissolving calcium carbonate, which therefore drove the local growth of the cerussite
104 phase). Therefore, the increase of pH to values above 4 indicates that the solution chemistry evolved from
105 the cerussite-undersaturated to saturated/supersaturated regimes. The morphological changes of CaCO₃
106 polymorphs were imaged periodically in real-time in the fluid cell by optical microscopy for reaction times
107 up to 24 hr. After the reactions were completed, the samples were rinsed gently with ethanol, dried in air.
108 The samples were then imaged using a Phenom scanning electron microscope (SEM) with energy
109 dispersive X-ray spectroscopy (EDS) (Thermo Fisher Scientific).

110 **High resolution X-ray fluorescence spectroscopy (XRF)**

111 The reacted calcium carbonate minerals were analyzed using the synchrotron X-ray microprobe at
112 beamline 13-ID-E at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). X-ray
113 fluorescence maps of Pb and Ca distributions on reacted calcium carbonates mounted on Kapton substrates
114 were collected in a fly-scan raster mode using a 2 x 2 μm² beam size (5 x 5 μm² pixel size). Ca and Pb

115 fluorescence yields measured using Ca Ka1 and Pb La1 emission lines, respectively, were converted to ion
116 concentrations by calibration with respect to thin film XRF reference samples (AXO Dresden) measured
117 under the same experimental conditions.

118 **Transmission X-ray Microscopy (TXM)**

119 Synchrotron X-ray based nano-tomography measurements were performed at beamline 32-ID-C at the
120 APS (ANL). The incident X-ray photon energy was 8 keV with a field of view of $51 \times 51 \mu\text{m}^2$. The sample
121 was imaged in 721 projection directions spanning over $\sim 180^\circ$ of rotation angle with an exposure time of
122 0.5 or 1 s per image and a spatial resolution of 49 nm. Data reconstruction was processed using Tomopy.³⁸⁻⁴⁰
123 The acquired images were further analyzed, and visualized in Fiji ImageJ.^{41, 42}

124

125 **RESULTS**

126 **Replacement reactions of individual CaCO_3 polymorphs by cerussite**

127 ***Changes in external morphologies.*** Morphological changes of CaCO_3 polymorphs during reaction in
128 acidic Pb-containing solutions were observed using an optical microscope (Figure 1) and SEM (Figure 2).
129 Before the reaction, pristine calcite appeared as individual euhedral crystals, 30 to 80 μm in size (Figure
130 2a). Starting material vaterite commonly occurred in polycrystalline aggregates less than 150 μm in size
131 having rounded surfaces (Figure 2b). Aragonite starting material also occurred in aggregates that had
132 similar size to vaterite but with spiky surface features, distinctive from vaterite grains (Figure 2c).

133 Calcite crystals reacted in 5mM $[\text{Pb}^{2+}]_{\text{initial}}$ solution at pH 2.7 became smaller and less transparent with
134 time in optical microscopy (Figure 1a). This variation in transparency likely resulted from changes of the

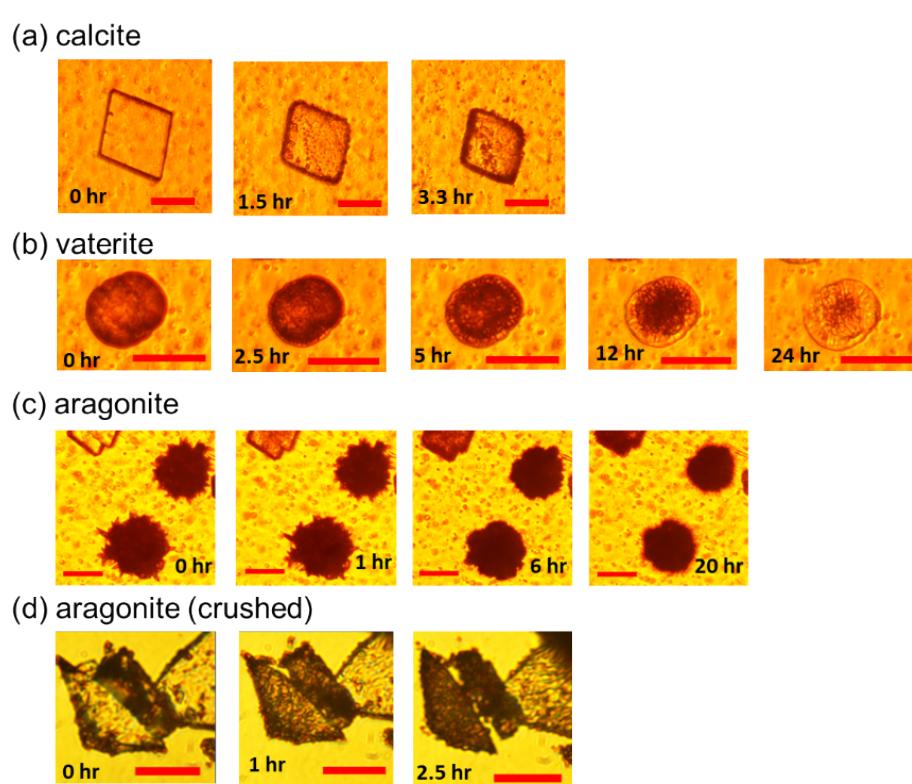


Figure 1. In situ optical micrograms of (a) calcite, (b) vaterite, and (c, d) aragonite in an acidic Pb^{2+} solution (i.e., initial pH 2.7 and 5 mM $\text{Pb}(\text{NO}_3)_2$) as a function of reaction time. The scale bars are 50 μm .

135 surface topography by the dissolution of the mineral substrate and the formation of cerussite (confirmed by
136 XRD; Figure S.1b). Precipitation of cerussite occurred on the side surfaces of the crystal with respect to the
137 Kapton support. Cerussite appeared as dark regions in optical microscope images (Figure 1a) and bright
138 rod-shaped crystals in SEM images (Figure 2e). The small dotted patterns on the top surface of the crystal
139 shown under optical microscope (Figure 1a) were mainly due to the dissolution of the calcite surface.²⁸

140 Morphological changes of vaterite particles during reaction in the same solution composition ($[Pb^{2+}]_{initial}$
 141 = 5mM; initial pH = 2.7) are shown in Figure 1b. After 2.5 hr of reaction, the particles became slightly
 142 darker presumably due to the dissolution of vaterite surfaces and precipitation of cerussite, the latter of
 143 which was confirmed by SEM (Figures 2f and j) and XRD (Figure S.1b). After 5 hr of reaction, the rim of

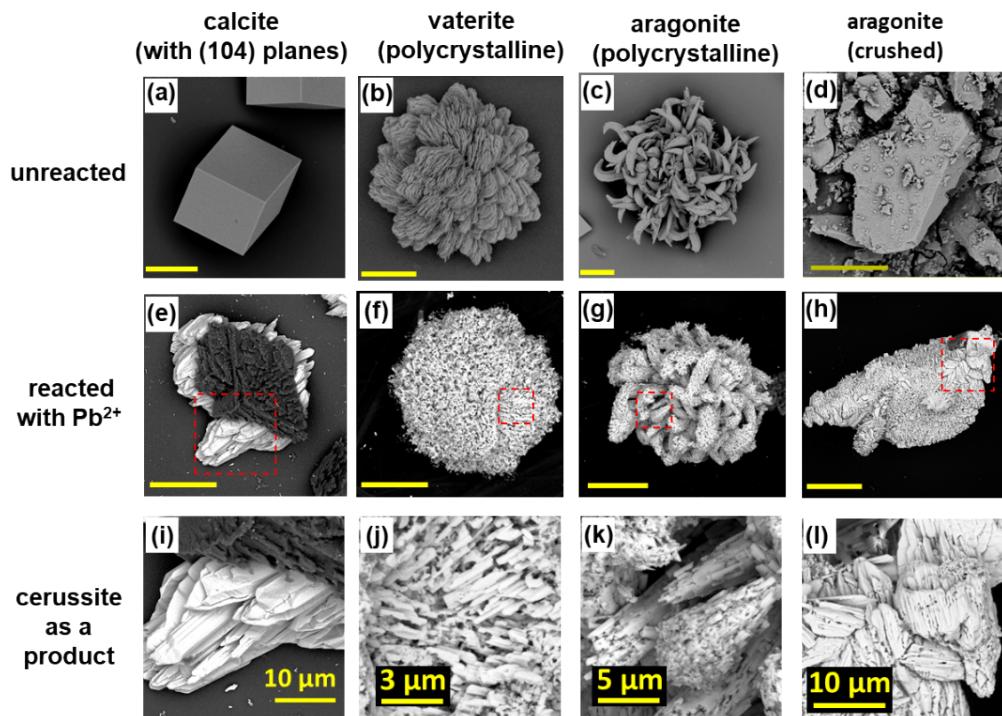


Figure 2. SEM images of calcite, vaterite, and aragonite (a-d) before and (e-l) after reaction with 5 mM $Pb(NO_3)_2$ at pH 2.7 for 16 hr. In (a to h), the scale bar is 30 μm . (i to l) Magnified images of the samples in (e to h) where cerussite products grow as tabular or reticulated crystals. In (a to l), the samples before and after the reaction are representative of each polymorph but are not identical particles.

144 the vaterite became optically translucent, and this translucent area propagated inward with time until it
 145 covered the entire vaterite surface (with respect to the projected area of the original particle) after 24 hr
 146 (Figure 1b).

147 Aragonite crystals reacted in the same solution composition ($[Pb^{2+}]_{initial}$ = 5mM; initial pH = 2.7)
 148 decreased in size and lost their spiny morphological features with time, indicating dissolution of the mineral
 149 substrate (Figure 1c). Little change in color was discernable for these particles by optical microscope. This
 150 is contrasted with observations of crushed aragonite particles, which changed from colorless (transparent)

151 to dark brown (opaque) within 2.5 hr of reaction with the same solution (Figure 1d). This color change
152 indicates the formation of cerussite on the aragonite grains, which is confirmed by SEM (Figures 2k and
153 2l) and XRD (Figure S.1b).

154 ***Changes in internal structure.*** The changes in the internal structure of CaCO_3 minerals after the
155 reaction with acidic Pb-containing solutions were examined using TXM (Figure 3). In these TXM images,
156 the brightness is proportional to the density of the materials: lead carbonate, the heaviest phase in the
157 system, appears brightest followed by calcium carbonate (intermediate) and air (darkest).

158 For reacted calcite and aragonite crystals, replacement by cerussite began at the external surfaces of the
159 crystals, consistent with observations from optical microscopy. The cerussite layers on the substrates were
160 typically \sim 5 to 10 μm thick. At the boundaries between the cerussite precipitate and the calcite substrates,
161 pores were observed with a size of \sim 100 nm (Figures 3a and b), consistent with a previous study.²⁹

The reacted vaterite specimens showed replacement structures that were distinct from those obtained

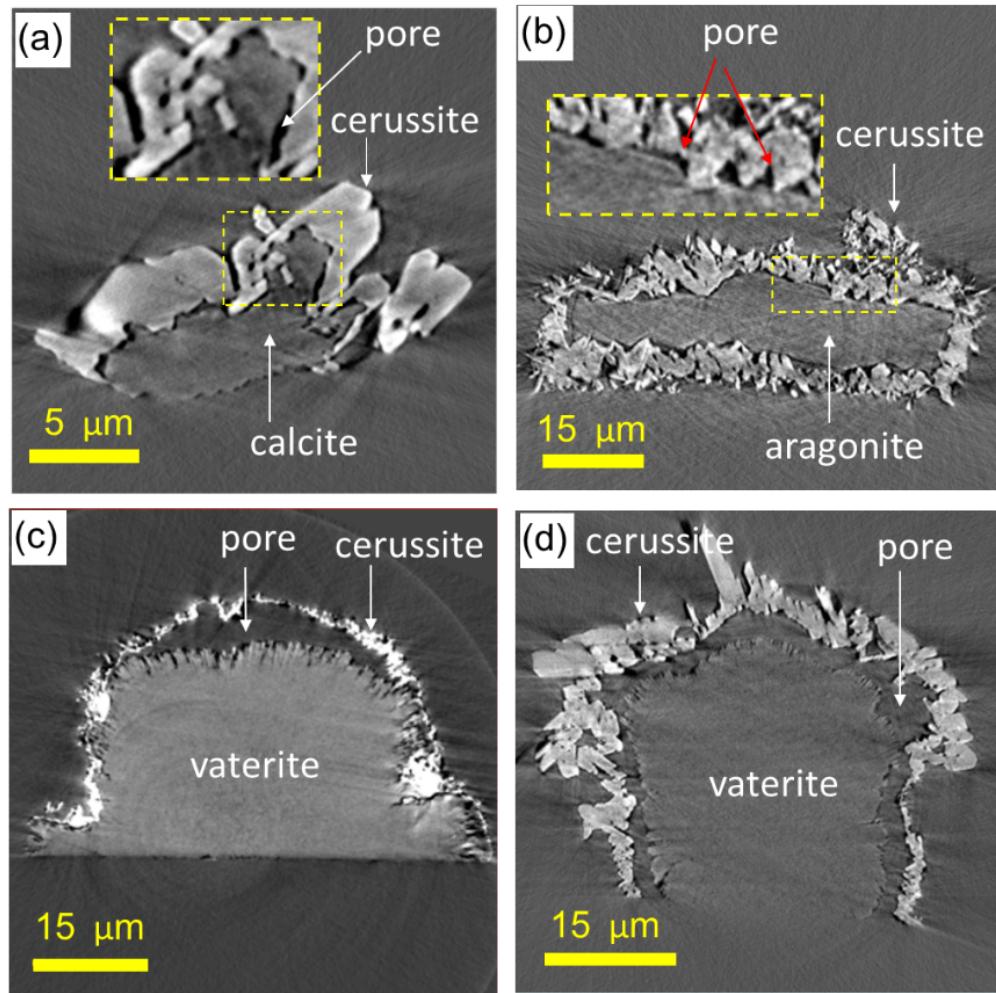


Figure 3. Nano-tomographic images of (a) calcite, (b) aragonite, and (c, d) vaterite crystals reacted with acidic Pb^{2+} solution (initial pH 2.7 and 5 mM $\text{Pb}(\text{NO}_3)_2$) for 6–16hr. Starting CaCO_3 materials were crushed calcite/aragonite and polycrystalline vaterite. Pores are found in reacted calcite and aragonite (a, b). In reacted vaterite, cerussite forms pseudomorphic shells over the outer part of the parent material

163 from calcite and aragonite. The replacement of vaterite was dominated by the formation of thin
 164 pseudomorphic cerussite shells (typically, $\leq 1 \mu\text{m}$ thick, Figure 3c). At the same time, the host vaterite
 165 continued to dissolve, resulting in the formation of large cavities separating the cerussite shells from the
 166 dissolving vaterite substrate. This internal structure of the reacted vaterite was consistent with the optical
 167 microscope observations (Figure 1b) where vaterite became initially darker and then increased in
 168 transparency. We postulate that the initial growth of precipitates was indicated by an increase in opaqueness
 169 while the subsequent formation of a large gap between the substrate and precipitation led to an increase in

170 transparency. In some cases, the extension of cerussite crystals into the aqueous solution was seen,
171 indicating that the growth of the secondary cerussite occurred preferentially on the external surface of the
172 shells (Figures 2i and 3d). This growth feature was more commonly observed around vaterite, especially
173 when a large number of CaCO_3 particles was located in proximity to one another (i.e., in a high particle
174 density per area). Similar replacement patterns have been seen previously for different systems, including
175 lepidocrocite on calcite⁴³ (for calcite in acidic Fe^{2+} solutions) and bassanite on calcite⁴⁴ (for calcite in acidic
176 SO_4^{2-} solutions).

177 Replacement reactions of CaCO_3 mixtures by cerussite

178 Mixtures of vaterite/calcite and aragonite/vaterite/calcite were reacted with acidic Pb^{2+} solution to
179 determine relative reactivities of these CaCO_3 polymorphs with dissolved Pb^{2+} . The distributions of Ca and
180 Pb measured by EDS and XRF showed that cerussite precipitation preferentially occurred on vaterite over
181 calcite (Figure 4). This result is consistent with optical microscope observations of a vaterite/calcite mixture
182 reacted with the same acidic Pb^{2+} solution (Figure S.2). When reacted simultaneously, vaterite particles
183 showed significant changes in optical transparency whereas calcite particles showed little variations (Figure

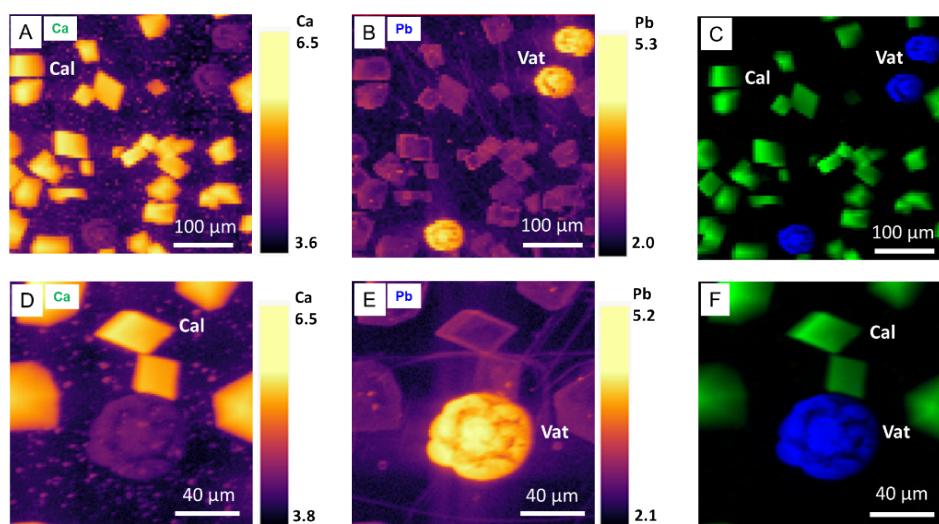


Figure 4. X-ray fluorescence maps of (A, D) Ca and (B, E) Pb and (C, F) two-colored maps of Ca (green) and Pb (blue) over the vaterite/calcite mixture reacted with 5 mM $\text{Pb}(\text{NO}_3)_2$ at pH 2.7 for 16 hr. The images in A to C and in D to F, respectively, show elemental maps over the same area. The angular particles are calcite and the rounded particles are vaterite. The color scale is in the unit of $\log(\text{ng}/\text{cm}^2)$.

184 S.2). The thickness of the cerussite shell around the dissolved vaterite grain was \sim 0.3 μm (estimated by
185 dividing the Pb concentration per area (in units of 10^{-9} g/mm²) by the density of cerussite, $6.58\text{ g/cm}^3 = 658$
186 g/mm²), which is in good agreement with the TXM result (Figure 3c). In turn, this result supports the
187 interpretation that the main sorption mode of Pb on vaterite occurred as a mineral replacement reaction
188 rather than surface adsorption. Aragonite was also found to preferentially retain Pb compared to calcite
189 when these carbonate polymorphs coexisted in acidic Pb²⁺ containing solutions (Figure S.3).

190 **Discussion**

191 **Chemical exchange between the calcium carbonate and the solution**

192 The formation of pores between the dissolving calcium carbonate and the cerussite product was
193 observed from the tomographic cross sections of calcium carbonate polymorphs reacted with acidic Pb²⁺
194 containing solution (Figures 3). During the replacement reactions, pores likely retained fluid that enabled
195 chemical exchange among the dissolving carbonate mineral, the precipitating cerussite product, and the
196 bulk solution. The main chemical reactions that are expected to occur during the replacement are

200 In acidic Pb²⁺-containing solution, calcium carbonate minerals undergo a proton-mediated dissolution
201 process, releasing Ca²⁺ and bicarbonate (HCO₃⁻) (eq 1).⁴⁵ In an acidic bulk solution (with initial pH = 2.7
202 and final pH \leq 4.5), bicarbonate can transform to the thermodynamically more stable carbonic acid
203 (H₂CO_{3(aq)}) (eq 2), yet it is expected to be the dominant species near the carbonate mineral surface where
204 pH is higher.⁴⁶ Within the pore space, therefore, it is likely that dissolved Pb²⁺ reacted with bicarbonate,
205 leading to the formation of cerussite (eq 3). This interface-mediated dissolution/precipitation mechanism^{26,}
206 ²⁷ explains the observation that the overall morphologies of calcium carbonate polymorphs were preserved
207 during their replacement by cerussite (Figure 2). In some cases (e.g., Figures 2i and 3d), the outward growth

208 of cerussite on the substrate occurred from dissolved carbonate species that were sourced externally from
209 the bulk solution (for instance, through dissolution of neighboring calcium carbonate crystals).

210 **Reactivity of calcium carbonates to dissolved Pb²⁺ under disequilibrium conditions**

211 When calcite, aragonite, and vaterite coexisted, replacement reactions of CaCO₃ by Pb-carbonate
212 occurred dominantly for vaterite and aragonite over calcite (Figures 4 and S.3). The different reactivities of
213 these calcium carbonate minerals are likely due to their relative solubilities and dissolution rates. The
214 solubility product constant, K_{sp} (= $a_{Ca^{2+}} \cdot a_{CO_3^{2+}}$, where a is the equilibrium activities of calcium and
215 carbonate) at 25 °C and 1 atm is 10^{-8.48} for calcite, 10^{-8.34} for aragonite and 10^{-7.91} for vaterite,⁴⁷ showing
216 that vaterite is more soluble than calcite and aragonite under ambient aqueous conditions. The vaterite and
217 aragonite crystals examined in this study were polycrystalline (Figures 2b and c) whereas the calcite crystals
218 were single euhedral crystals with (104) facets (Figure 2a). Therefore, the former likely had larger specific
219 surface areas than the latter. Hence, one can expect that vaterite and aragonite dissolved faster than calcite.
220 As a result, the local carbonate concentration near vaterite and aragonite crystals was expected to be higher
221 than that near calcite crystals and thus cerussite was more likely to precipitate on vaterite and aragonite.
222 The faster dissolution of vaterite and aragonite would have increased both solution pH and dissolved
223 carbonate concentration, resulting in a decrease in the dissolution rate of neighboring calcite. Overall, the
224 different reactivities of these CaCO₃ minerals revealed that the replacement reactions relied on the mass
225 transport of dissolved carbonate and metal ions near the crystals, which was controlled by differences in
226 the dissolution rates, solubilities, habits, and surface areas of the host minerals.

227 **Reaction mechanisms of calcium carbonate replacement by cerussite**

228 We have demonstrated that the outcome of the replacement reaction depends on the type and
229 morphology of the initial calcium carbonate polymorphs with behavior ranging from nearly complete
230 pseudomorphic mineral replacement to hollow cerussite shell formation. The primary control over these
231 morphological differences appears to be the relative rates of calcium carbonate dissolution and product
232 precipitation, which can be further altered or controlled by the local concentrations of chemical species that

233 are sourced from dissolving neighbors. Here, we use a conceptual model to demonstrate how the growth
234 modes of cerussite on calcium carbonate polymorphs can be controlled by the balance between the
235 dissolution and precipitation rates.

236 The nucleation and initial growth of cerussite occur spontaneously when fresh calcium carbonate
237 crystals are reacted in acidic Pb^{2+} containing solutions (Figure 5a). Pore space between cerussite crystals
238 allows diffusive flow of the acidic solution containing dissolved Pb^{2+} to the interface between the initial
239 shell and the substrate, leading to further dissolution of CaCO_3 crystals and subsequent precipitation of
240 cerussite. In the classical mineral-replacement model^{26, 27}, the precipitate growth and the substrate
241 dissolution occur nearly at the same rates and the reaction front moves inward with little changes in its
242 dimension^{19, 20} (Figure 5b). In this mode, the dissolution and precipitation processes are spatially coupled
243 and complete replacement of the substrate by the precipitate is possible. For example, our experimental
244 conditions (i.e., solution pH, Pb concentration, and solid-to-solution ratio)²⁹ were chosen to satisfy these
245 criteria for the replacement of calcite by cerussite (Figure 3a). When the substrate dissolution is faster than
246 the precipitate growth, the gap between the substrate and the precipitate will be expanded, resulting in
247 decoupling between the dissolution and precipitation processes (Figure 5c). Among the CaCO_3 polymorphs
248 examined in this study, large separations between the host and secondary minerals were observed for
249 vaterite reacted with dissolved Pb^{2+} (Figure 3c), presumably due to the faster dissolution rates of vaterite
250 than those of calcite or aragonite (as described in the previous section).

251 We also observed a unique feature in which secondary cerussite crystals grew on the exterior of the
252 pseudomorphic shells of some CaCO_3 polymorphs (Figure 3d). These observations were made for vaterite
253 crystals when many of them were located closely together (i.e., in a high particle density). We expect that
254 the external growth of cerussite is related to the fast dissolution of vaterite, which can lead to rapid increases
255 in the local carbonate concentration and supersaturation of the solution with respect to cerussite. To drive
256 external growth, the cerussite shell is required to be permeable to allow for the rapid transport of carbonate
257 ions out of the shell (Figure 5d). Implicit in this model is the assumption that these reactions are transport

258 limited (including, diffusion of CO_3 away from and Pb towards the dissolving calcium carbonate, as
259 mediated by the porosity of the cerussite shell). For example, limited growth of cerussite in the shell may
260 result from a slow diffusion of dissolved Pb into the interior of the shell although the molecular origin that
261 restricts the inward transport of the cation (while allowing outward diffusion of carbonate ions) is unclear.
262 We also note the possibility that decoupling of the substrate dissolution from the precipitate growth (Figure
263 5d) may occur when the growth of the cerussite shell on the substrate occurs with carbonate species that
264 are sourced externally (i.e., from the bulk solution, or from the local dissolution of neighboring carbonate
265 crystals) as observed for vaterite crystals (Figure 3d and 5d).

Unlike the reaction for vaterite, the cerussite growth and CaCO_3 dissolution rates were found to be similar for calcite and aragonite (Figure 3a and b). The observed differences in cerussite morphology between these polymorphs likely originate from differences in the morphology of initial CaCO_3 polymorphs (e.g., calcite rhombs, crushed aragonite/calcite, and polycrystalline aragonite in Figure 2 and 3) and the ion permeability of porous cerussite shells, which would control chemical exchange between the pore and bulk solution. Overall, the differences in dissolution/precipitation patterns between CaCO_3 polymorphs reacted

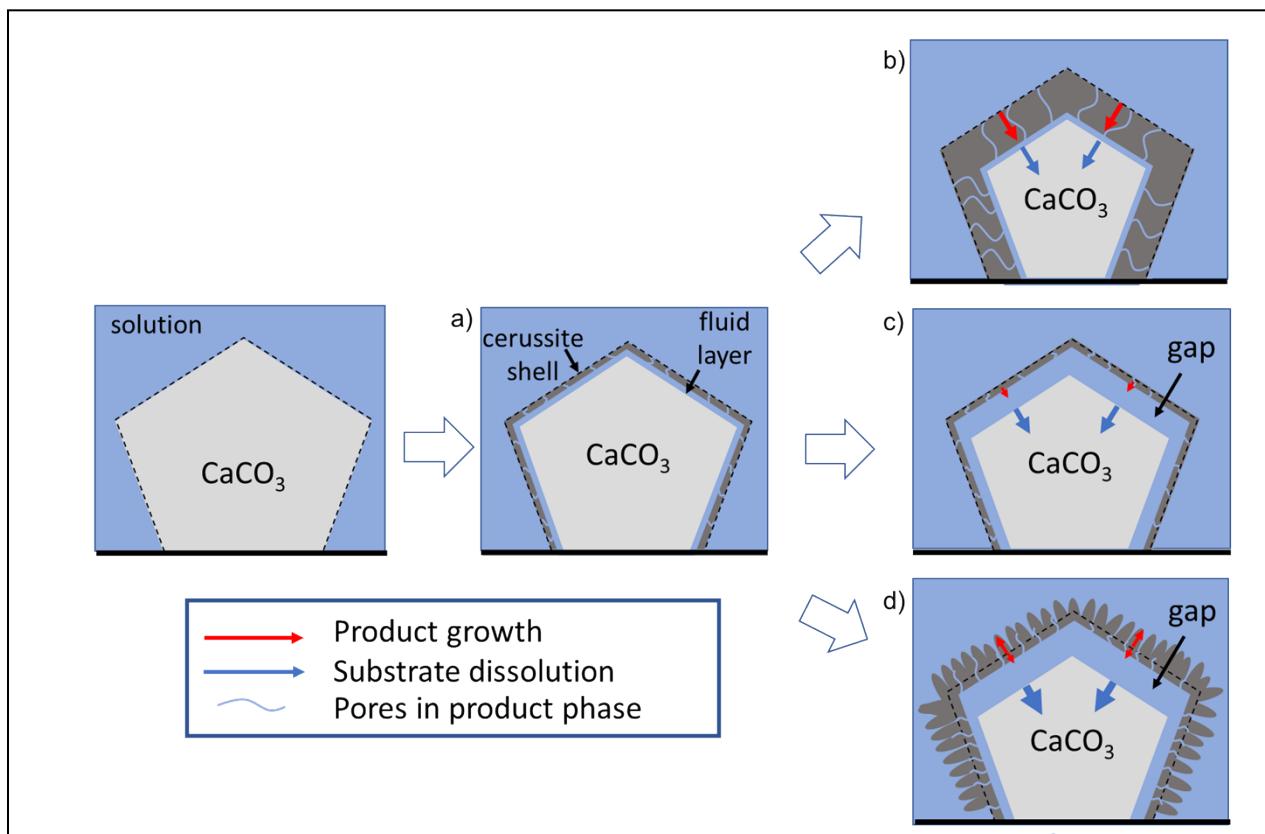


Figure 5. Proposed mechanisms for different growth modes of cerussite in calcium carbonate polymorphs. a) The formation of a cerussite shell from the reaction of carbonate minerals with acidic Pb^{2+} containing solution. The grain boundaries in the cerussite shell allow ion exchange between acidic solution and the carbonate substrate. This step may be followed by b) subsequent inward propagation of the thin solution layer via coupled dissolution/precipitation processes. Decoupling of the dissolution and precipitation processes can occur c) when the dissolution of the substrate is faster than the crystallization of the precipitate or d) when the local cerussite saturation index on the outside of the cerussite shell is sufficient to allow outward growth of cerussite on the shell. The behavior in d) can also occur when the reaction proceeds from carbonate species that are externally sourced from the bulk solution or the dissolution of neighboring particles.

272 with dissolved Pb^{2+} illustrate how the morphological evolution is controlled by the balance between the
273 dissolution rate of the substrate and the precipitation rate of the product phase.

274

275 **Conclusions**

276 This study has established a mechanistic understanding of the replacement of CaCO_3 minerals by
277 cerussite in acidic Pb^{2+} -containing aqueous solutions. The growth modes of cerussite on dissolving calcium
278 carbonate crystals were observed to be sensitive to the choice of calcium carbonate polymorph, and the
279 result of a delicate balance between dissolution and precipitation rates. The reactivities of calcium carbonate
280 polymorphs are mineralogically and morphologically controlled. The replacement of calcite by cerussite
281 was found to be slowest when all three polymorphs coexisted, which could be attributed to the different
282 dissolution rates, solubilities, and morphologies among the polymorphs.

283 The present results provide a way to understand the reactivity of CaCO_3 with Pb^{2+} in natural
284 environments. These support the concept that the dissolution of calcite, aragonite, and vaterite coupled with
285 the precipitation of cerussite are significant sequestration mechanisms that occur under at acidic natural
286 waters (pH 2.5 to 4.5; $[\text{Pb}^{2+}]_{\text{initial}} = 5 \text{ mM}$). Similar sorption mechanisms observed in the present study are
287 expected to occur in environments where acidic Pb^{2+} -contaminated water interacts with carbonate-rich soils
288 and rocks (e.g., mine tailings and acid mine drainage). While the Pb^{2+} containing fluid is transported through
289 these carbonate-bearing media, the mobility of dissolved Pb^{2+} can be limited by precipitation of lead
290 carbonates that are physically (and/or chemically) bound with the substrate of calcium carbonate. In
291 environment where calcite and aragonite are in contact with mildly acidic to neutral Pb^{2+} containing solution
292 (e.g., pH 5 to 7; $[\text{Pb}^{2+}]_{\text{initial}} = 0.05 \text{ to } 5 \text{ mM}$)^{31, 48}, similar dissolution-precipitation processes might occur but
293 in association with the formation of hydrocerussite as a main product. At more alkaline pH, such as when
294 the solutions are at equilibrium with calcite and atmospheric CO_2 (i.e., at pH ~8.3), it is likely that the
295 interaction of Pb^{2+} with CaCO_3 polymorphs will be distinct, occurring at lower concentrations (e.g.,

296 $[\text{Pb}^{2+}]_{\text{initial}} = 1 \text{ to } 5 \mu\text{M}$), both due to the formation of inner-sphere sorption complexes on calcite¹⁷ and by
297 precipitation of Pb hydroxide.

298 The new understanding achieved in this study provides a mechanistic insight into the reaction
299 processes that might be leveraged for the remediation of Pb polluted environments. For remediation
300 purposes, calcite and aragonite can be sourced from natural rocks (e.g., limestone) and biogenic CaCO_3 -
301 bearing materials such as egg/oyster shells. Vaterite can be formed via microbial mineralization⁸ or
302 prepared by processing shell wastes.³³ Our studies demonstrate that these CaCO_3 polymorphs can be
303 promising substrate materials for Pb removal and potentially Pb recycling from acidic polluted water and
304 industrial effluents and that their relative reactivities could be important in designing related remediation
305 strategies. For example, rapid sequestration of Pb from contaminated water might be achieved by adding
306 vaterite and aragonite to induce precipitation on the exterior of pre-existing CaCO_3 grains. In contrast, the
307 use of complete replacement of calcite by cerussite might be more cost-effective for situations where
308 reaction capacity, rather than reaction rate, is the primary consideration, especially since calcite is the most
309 dominant CaCO_3 polymorph in natural systems. Systematic investigation of dissolution of calcium
310 carbonates coupled with precipitation of other forms of metal (e.g., Zn^{2+} and Cd^{2+}) carbonates will benefit
311 the development of alternative techniques for heavy metal sequestrations in geological and industrial
312 settings.

313

314 **Acknowledgements**

315 This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy
316 Sciences, Chemical Sciences, Geosciences, and Biosciences Division (Geochemistry Research Program)
317 under Contracts DE-AC02-06CH11357 to UChicago Argonne, LLC as operator of Argonne National
318 Laboratory. The X-ray data were collected at beamlines 13-ID-E (GeoSoilEnviroCARS) and 32-ID-C,
319 Advanced Photon Source. We acknowledge the assistance of Drs. Tony Lanzirotti and Matt Newville at
320 GeoSoilEnviroCARS. Use of the Advanced Photon Source was supported by the U.S. Department of
321 Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357 to
322 UChicago Argonne, LLC as operator of Argonne National Laboratory. GeoSoilEnviroCARS is supported
323 by the National Science Foundation – Earth Sciences (EAR – 1634415) and Department of Energy-
324 GeoSciences (DE-FG02-94ER14466). The submitted manuscript has been created by UChicago Argonne,
325 LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
326 Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government
327 retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in
328 said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and
329 display publicly, by or on behalf of the Government.

330 **Supporting Information description**

331 X-ray diffraction patterns of aragonite, calcite, and vaterite/calcite mixture before and after reaction
332 with acidic Pb^{2+} -containing solution; Variation in the morphology of a calcite/vaterite; in acidic Pb^{2+}
333 solution; SEM images and energy dispersive X-ray spectroscopy measurement of a
334 calcite/aragonite/vaterite mixture reacted in acidic Pb^{2+} -containing solution.

335

336 **References**

337 1. Checa, A. G.; Jiménez-López, C.; Rodríguez-Navarro, A.; Machado, J. P. Precipitation of aragonite
338 by calcitic bivalves in Mg-enriched marine waters. *Mar. Biol.* **2007**, *150*, (5), 819-827.

339 2. Gillikin, D. P.; Lorrain, A.; Navez, J.; Taylor, J. W.; André, L.; Keppens, E.; Baeyens, W.; Dehairs,
340 F. Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. *Geochim. Geophys.*
341 *Geosyst.* **2005**, *6*, (5).

342 3. Keith, M.; Anderson, G.; Eichler, R. Carbon and oxygen isotopic composition of mollusk shells
343 from marine and fresh-water environments. *Geochim. Cosmochim. Acta* **1964**, *28*, (10-11), 1757-1786.

344 4. Santillán, J.; Williams, Q. A high pressure X-ray diffraction study of aragonite and the post-
345 aragonite phase transition in CaCO_3 . *Am. Mineral.* **2004**, *89*, (8-9), 1348-1352.

346 5. Rodriguez-Blanco, J. D.; Shaw, S.; Benning, L. G. The kinetics and mechanisms of amorphous
347 calcium carbonate (ACC) crystallization to calcite, via vaterite. *Nanoscale* **2011**, *3*, (1), 265-271.

348 6. Spanos, N.; Koutsoukos, P. G. The transformation of vaterite to calcite: effect of the conditions of
349 the solutions in contact with the mineral phase. *J. Cryst. Growth* **1998**, *191*, (4), 783-790.

350 7. Li, H.; Yao, Q.-Z.; Wang, F.-P.; Huang, Y.-R.; Fu, S.-Q.; Zhou, G.-T. Insights into the formation
351 mechanism of vaterite mediated by a deep-sea bacterium *Shewanella piezotolerans* WP3. *Geochim.*
352 *Cosmochim. Acta* **2019**, *256*, 35-48.

353 8. Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Gonzalez-Muñoz, M. T.;
354 Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. *Geochim. Cosmochim. Acta* **2007**,
355 *71*, (5), 1197-1213.

356 9. He, M.; Cho, B.-U.; Won, J. M. Effect of precipitated calcium carbonate—cellulose nanofibrils
357 composite filler on paper properties. *Carbohydr. Polym.* **2016**, *136*, 820-825.

358 10. Jimoh, O. A.; Ariffin, K. S.; Hussin, H. B.; Temitope, A. E. Synthesis of precipitated calcium
359 carbonate: a review. *Carbonates Evaporites* **2018**, *33*, (2), 331-346.

360 11. Karakaş, F.; Hassas, B. V.; Celik, M. S. Effect of precipitated calcium carbonate additions on
361 waterborne paints at different pigment volume concentrations. *Prog. Org. Coat.* **2015**, *83*, 64-70.

362 12. Ok, Y. S.; Lee, S. S.; Jeon, W.-T.; Oh, S.-E.; Usman, A. R.; Moon, D. H. Application of eggshell
363 waste for the immobilization of cadmium and lead in a contaminated soil. *Environ. Geochem. Health* **2011**,
364 *33*, (1), 31-39.

365 13. Ok, Y. S.; Oh, S.-E.; Ahmad, M.; Hyun, S.; Kim, K.-R.; Moon, D. H.; Lee, S. S.; Lim, K. J.; Jeon,
366 W.-T.; Yang, J. E. Effects of natural and calcined oyster shells on Cd and Pb immobilization in
367 contaminated soils. *Environ. Earth Sci.* **2010**, *61*, (6), 1301-1308.

368 14. Poh, B.; Lee, P.; Chuah, S. Adhesion property of epoxidized natural rubber (ENR)-based adhesives
369 containing calcium carbonate. *Express Polym. Lett.* **2008**, *2*, (6), 398-403.

370 15. Fausett, H.; Gayser, C.; Dash, A. K. Evaluation of quick disintegrating calcium carbonate tablets.
371 *AAPS PharmSciTech* **2000**, *1*, (3), 37-43.

372 16. Callagon, E.; Fenter, P.; Nagy, K. L.; Sturchio, N. C. Incorporation of Pb at the calcite (104)-water
373 interface. *Environ. Sci. Technol.* **2014**, *48*, (16), 9263-9269.

374 17. Elzinga, E. J.; Rouff, A. A.; Reeder, R. J. The long-term fate of Cu^{2+} , Zn^{2+} , and Pb^{2+} adsorption
375 complexes at the calcite surface: An X-ray absorption spectroscopy study. *Geochim. Cosmochim. Acta*
376 **2006**, *70*, (11), 2715-2725.

377 18. Rouff, A. A.; Elzinga, E. J.; Reeder, R. J.; Fisher, N. S. X-ray absorption spectroscopic evidence
378 for the formation of $\text{Pb}(\text{II})$ inner-sphere adsorption complexes and precipitates at the calcite– water
379 interface. *Environ. Sci. Technol.* **2004**, *38*, (6), 1700-1707.

380 19. Rouff, A. A.; Elzinga, E. J.; Reeder, R. J.; Fisher, N. S. The influence of pH on the kinetics,
381 reversibility and mechanisms of Pb (II) sorption at the calcite-water interface. *Geochim. Cosmochim. Acta*
382 **2005**, *69*, (22), 5173-5186.

383 20. Rouff, A. A.; Elzinga, E. J.; Reeder, R. J.; Fisher, N. S. The effect of aging and pH on Pb (II)
384 sorption processes at the calcite– water interface. *Environ. Sci. Technol.* **2006**, *40*, (6), 1792-1798.

385 21. Rouff, A. A.; Reeder, R. J.; Fisher, N. S. Pb (II) sorption with calcite: A radiotracer study. *Aquat.*
386 *Geochem.* **2002**, *8*, (4), 203-228.

387 22. Sturchio, N. C.; Chiarello, R. P.; Cheng, L.; Lyman, P. F.; Bedzyk, M. J.; Qian, Y.; You, H.; Yee,
388 D.; Geissbuhler, P.; Sorensen, L. B. Lead adsorption at the calcite-water interface: Synchrotron X-ray
389 standing wave and X-ray reflectivity studies. *Geochim. Cosmochim. Acta* **1997**, *61*, (2), 251-263.

390 23. Davis, J. A.; Fuller, C. C.; Cook, A. D. A model for trace metal sorption processes at the calcite
391 surface: Adsorption of Cd^{2+} and subsequent solid solution formation. *Geochim. Cosmochim. Acta* **1987**, *51*,
392 (6), 1477-1490.

393 24. Kang, C.-H.; Han, S.-H.; Shin, Y.; Oh, S. J.; So, J.-S. Bioremediation of Cd by microbially induced
394 calcite precipitation. *Appl. Biochem. Biotechnol.* **2014**, *172*, (6), 2907-2915.

395 25. Zavarin, M.; Roberts, S.; Hakem, N.; Sawvel, A.; Kersting, A. Eu (III), Sm (III), Np (V), Pu (V),
396 and Pu (IV) Sorption to Calcite. *Radiochim. Acta* **2005**, *93*, (2), 93-102.

397 26. Putnis, A. Mineral replacement reactions: from macroscopic observations to microscopic
398 mechanisms. *Mineral. Mag.* **2002**, *66*, (5), 689-708.

399 27. Putnis, A. Mineral replacement reactions. In *Reviews in mineralogy and geochemistry*, 2009; Vol.
400 70, pp 87-124.

401 28. Yuan, K.; De Andrade, V.; Feng, Z.; Sturchio, N. C.; Lee, S. S.; Fenter, P. Pb^{2+} –Calcite Interactions
402 under Far-from-Equilibrium Conditions: Formation of Micropyramids and Pseudomorphic Growth of
403 Cerussite. *J. Phys. Chem. C* **2018**, *122*, (4), 2238-2247.

404 29. Yuan, K.; Lee, S. S.; De Andrade, V.; Sturchio, N. C.; Fenter, P. Replacement of calcite (CaCO_3)
405 by cerussite (PbCO_3). *Environ. Sci. Technol.* **2016**, *50*, (23), 12984-12991.

406 30. Yuan, K.; Starchenko, V.; Lee, S. S.; De Andrade, V.; Gursoy, D.; Sturchio, N. C.; Fenter, P.
407 Mapping three-dimensional dissolution rates of calcite microcrystals: Effects of surface curvature and
408 dissolved metal ions. *ACS Earth Space Chem.* **2019**, *3*, (5), 833-843.

409 31. Di Lorenzo, F.; Ruiz-Agudo, C.; Churakov, S. V. The key effects of polymorphism during Pb^{II}
410 uptake by calcite and aragonite. *CrystEngComm* **2019**, *21*, (41), 6145-6155.

411 32. Gamsjäger, H.; Fluch, A.; Swinehart, J. H. The effect of potential aqueous pollutants on the
412 solubility of Pb^{2+} in cerussite—Calcite phase. *Monatsh. Chem.* **1984**, *115*, (3), 251-259.

413 33. Lin, P.-Y.; Wu, H.-M.; Hsieh, S.-L.; Li, J.-S.; Dong, C.; Chen, C.-W.; Hsieh, S. Preparation of
414 vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions
415 removal. *Chemosphere* **2020**, *254*, 126903.

416 34. Miyake, M.; Komarneni, S.; Roy, R. Immobilization of Pb^{2+} , Cd^{2+} , Sr^{2+} and Ba^{2+} ions using calcite
417 and aragonite. *Cem. Concr. Res.* **1988**, *18*, (3), 485-490.

418 35. Munemoto, T.; Fukushi, K.; Kanzaki, Y.; Murakami, T. Redistribution of Pb during transformation
419 of monohydrocalcite to aragonite. *Chem. Geol.* **2014**, *387*, 133-143.

420 36. Hu, Q.; Zhang, J.; Teng, H.; Becker, U. Growth process and crystallographic properties of
421 ammonia-induced vaterite. *Am. Mineral.* **2012**, *97*, (8-9), 1437-1445.

422 37. Ihli, J.; Bots, P.; Kulak, A.; Benning, L. G.; Meldrum, F. C. Elucidating Mechanisms of
423 Diffusion-Based Calcium Carbonate Synthesis Leads to Controlled Mesocrystal Formation. *Adv. Funct.*
424 *Mater.* **2013**, *23*, (15), 1965-1973.

425 38. De Carlo, F.; Gürsoy, D.; Marone, F.; Rivers, M.; Parkinson, D. Y.; Khan, F.; Schwarz, N.; Vine,
426 D. J.; Vogt, S.; Gleber, S.-C. Scientific data exchange: a schema for HDF5-based storage of raw and
427 analyzed data. *J. Synchrotron Radiat.* **2014**, *21*, (6), 1224-1230.

428 39. Gürsoy, D.; De Carlo, F.; Xiao, X.; Jacobsen, C. TomoPy: a framework for the analysis of
429 synchrotron tomographic data. *J. Synchrotron Radiat.* **2014**, *21*, (5), 1188-1193.

430 40. Pelt, D. M.; Gürsoy, D.; Palenstijn, W. J.; Sijbers, J.; De Carlo, F.; Batenburg, K. J. Integration of
431 TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron
432 data. *J. Synchrotron Radiat.* **2016**, *23*, (3), 842-849.

433 41. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.;
434 Rueden, C.; Saalfeld, S.; Schmid, B. Fiji: an open-source platform for biological-image analysis. *Nat.*
435 *Methods* **2012**, *9*, (7), 676-682.

436 42. Schmid, B.; Schindelin, J.; Cardona, A.; Longair, M.; Heisenberg, M. A high-level 3D visualization
437 API for Java and ImageJ. *BMC bioinformatics* **2010**, *11*, (1), 1-7.

438 43. Yuan, K.; Lee, S. S.; Wang, J.; Sturchio, N. C.; Fenter, P. Templating Growth of a Pseudomorphic
439 Lepidocrocite Microshell at the Calcite–Water Interface. *Chem. Mater.* **2018**, *30*, (3), 700-707.

440 44. Ruiz-Agudo, E.; Putnis, C. V.; Hövelmann, J.; Álvarez-Lloret, P.; Ibañez-Velasco, A.; Putnis, A.
441 Experimental study of the replacement of calcite by calcium sulphates. *Geochim. Cosmochim. Acta* **2015**,
442 *156*, 75-93.

443 45. Sjoerberg, E. L.; Rickard, D. T. Calcite dissolution kinetics: surface speciation and the origin of the
444 variable pH dependence. *Chem. Geol.* **1984**, *42*, (1-4), 119-136.

445 46. Kawano, J.; Toyofuku, T.; Nishimura, K.; Ueda, A.; Nagai, Y.; Kawada, S.; Teng, H.; Nagai, T.
446 Direct Two-Dimensional Time Series Observation of pH Distribution around Dissolving Calcium
447 Carbonate Crystals in Aqueous Solution. *Cryst. Growth Des.* **2019**, *19*, (8), 4212-4217.

448 47. Plummer, L. N.; Busenberg, E. The solubilities of calcite, aragonite and vaterite in $\text{CO}_2\text{-H}_2\text{O}$
449 solutions between 0 and 90 C, and an evaluation of the aqueous model for the system $\text{CaCO}_3\text{-CO}_2\text{-H}_2\text{O}$.
450 *Geochim. Cosmochim. Acta* **1982**, *46*, (6), 1011-1040.

451 48. Godelitsas, A.; Astilleros, J. M.; Hallam, K.; Harissopoulos, S.; Putnis, A. Interaction of calcium
452 carbonates with lead in aqueous solutions. *Environ. Sci. Technol.* **2003**, *37*, (15), 3351-3360.

453