
SANDIA REPORT
SAND2020-XXXX
Printed September 2020

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

An Overview of Gemma FY20
Verification Activities
Aaron Krueger, Jack Hamel, Neil Matula, Brian Freno

SAND2020-11229

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
Gemma verification activities for FY20 can be divided into three categories: the development of
specialized quadrature rules, initial progress towards the development of manufactured solutions
for code verification, and automated code-verification testing.

In the method-of-moments implementation of the electric-field integral equation, the presence of
a Green’s function in the four-dimensional integrals yields singularities in the integrand when two
elements are nearby. To address these challenges, we have developed quadrature rules to integrate
the functions through which the singularities can be characterized.

Code verification is necessary to develop confidence in the implementation of the numerical
methods in Gemma. Therefore, we have begun investigating the use of manufactured solutions to
more thoroughly verify Gemma. Manufactured solutions provide greater flexibility for testing
aspects of the code; however, the aforementioned singularities provide challenges, and existing
work is limited in rigor and quantity.

Finally, we have implemented automated code-verification testing using the VVTest framework to
automate the mesh refinement and execution of a Gemma simulation to generate mesh
convergence data. This infrastructure computes the observed order of accuracy from these data
and compares it with the theoretical order of accuracy to either develop confidence in the
implementation of the numerical methods or detect coding errors.

3

CONTENTS

1. Introduction 7

2. Geometrically Symmetric Quadrature Rules for the EFIE 9

3. Manufactured Solutions 10

4. Automated Code-Verification Testing 13
4.1. VVTest . 13
4.2. Postprocessing Tools . 13

4.2.1. Error . 14
4.2.2. Verification . 15
4.2.3. Plotting . 17

4.3. Tests and Results . 17

5. Future Work 20
5.1. Geometrically Symmetric Quadrature Rules for the MFIE . 20
5.2. Manufactured Solutions . 20
5.3. Automated Code-Verification Testing . 20

References 22

5

1. INTRODUCTION

Gemma is a boundary element method code that solves the method-of-moments implementations
of the electric-field integral equation (EFIE), the magnetic-field integral equation (MFIE), and the
combined-field integral equation (CFIE). To improve the numerical methods and verify their
implementation in Gemma, we have undertaken multiple activities in FY20. These activities
included the development of more suitable quadrature rules to integrate some of the singular
integrands that arise in Gemma, as well as more traditional code-verification activities.

In the method-of-moments implementation of the EFIE, the presence of a Green’s function in the
four-dimensional integrals yields singularities in the integrand when two elements are nearby. To
address these challenges, we published a journal article describing how to compute symmetric
triangle quadrature rules that can integrate arbitrary function sequences [1], and we characterized
the singularities in terms of function sequences [2].

To verify the implementation of the numerical methods in Gemma, we undertook multiple
code-verification activities. When numerically solving the underlying equations, the equations
must be discretized. Due to the finite nature of the discretization, the equations incur a truncation
error and, consequently, their solutions introduce a discretization error. As the discretization is
refined, the discretization error should decrease. More rigorously, the code should achieve an
expected order of accuracy: as the discretization is refined by a factor, the error should decrease at
a rate that is an expected power of that factor, provided the discretization is in the asymptotic
region. In practice, since the exact solution is generally unavailable, manufactured solutions are
frequently employed [3].

Code verification has been performed on computational physics codes associated with several
physics disciplines, including fluid dynamics [4, 5, 6, 7, 8], solid mechanics [9], fluid–structure
interaction [10], heat transfer in fluid–solid interaction [11], multiphase flows [12], radiation
hydrodynamics [13], and electrodynamics [14]. However, very little work has been done on
verification for integral equations, due to the challenges of analytically integrating arbitrary
functions, especially when they are singular.

Nonetheless, whether using manufactured or exact solutions to perform code verification, the
process can be facilitated through automation to run numerous tests frequently. Therefore, we
have developed an automated testing framework to verify the numerical methods. This framework
employs VVTtest and additional postprocessing tools to automate test execution and the
determination of whether the tests pass or fail.

This report is organized as follows. In Chapter 2, we describe the quadrature work. In Chapter 3,
we discuss the importance of manufactured solutions in code verification, as well as the
challenges of implementing them in a code like Gemma, and our ongoing work. In Chapter 4, we

7

describe the automated verification testing infrastructure in detail. Finally, in Chapter 5, we
provide an outlook for our future work.

8

2. GEOMETRICALLY SYMMETRIC
QUADRATURE RULES FOR THE
EFIE

The method of moments is generally employed to solve the EFIE, MFIE, and CFIE, upon
discretizing surfaces using planar or curvilinear mesh elements. Through this method, the
integration over source and test elements leads to the evaluation of four-dimensional integrals.
However, the presence of a Green’s function in these equations yields scalar and vector potential
terms with singularities (in their higher-order derivatives) when the test and source elements share
one or more edges or vertices and near-singularities when they are otherwise close.

Many approaches have been developed to address the singularity and near-singularity for the
inner, source-element integral; fewer approaches have been developed to address the singularity
in the outer, test-element integral. We have developed geometrically symmetric quadrature rules
better suited for evaluating the logarithmic singularities in the test integral [1]. Symmetric rules
that can efficiently handle singularities are desirable because their mapping to the integration
domain is straightforward and points are not heavily concentrated near some vertices.
Asymmetric rules, on the other hand, which are generally employed to integrate singularities,
require the the determination of vertex mapping, and points may be concentrated nonuniformly at
the vertices.

We have demonstrated the effectiveness of these rules for several examples encountered in both
the scalar and vector potentials of the EFIE (singular, near-singular, and far interactions), and we
have compared their performance to existing rules [2]. These rules exhibit better convergence
properties than quadrature rules for polynomials and, in general, lead to better accuracy with a
lower number of quadrature points.

9

3. MANUFACTURED SOLUTIONS

In general, codes that approximately solve systems of differential, integral, or integro-differential
equations can only be verified by using them to solve problems with known solutions [3]. The
discretization of the governing equations (e.g., finite differences, volumes, or elements) will
necessarily incur some truncation error, and thus the approximate solutions produced from the
discretized equations will incur some associated discretization error. If the solution to the
problem is known, a measure of the discretization error (typically a discrete norm thereof) may be
evaluated directly from the approximate solution. In the most basic sense of verification, if the
discretization error tends to zero as the discretization is refined, the consistency of the code is
verified [15]. This may be taken a step further by examining not only consistency, but the rate at
which the error decreases as the discretization is refined, thereby verifying the order of accuracy
of the discretization scheme. The correctness of the numerical-method implementation may then
be verified by comparing the expected and observed orders of accuracy obtained from numerous
test cases with known solutions.

Unfortunately, exact solutions to systems of engineering interest are rare, and those that do exist
often require dramatic simplifications to both the domain geometry and the equations themselves
in order to obtain a tractable problem. Individually, these simple problems do not exercise enough
of the code to constitute convincing evidence of its correctness. However, a body of evidence
supporting the correctness of the code may be constructed by amassing a large suite of test cases
that collectively cover all terms of the governing equations, all possible boundary conditions, and
a wide range of domain geometries [16]. The tests documented in Chapter 4 are a significant step
toward such a body of evidence. Nevertheless, the most convincing code-verification tests come
from more complex cases that simultaneously exercise many terms of the governing equations on
nontrivial domain geometries, and exact solutions for problems with this level of complexity are
scarce.

The method of manufactured solutions (MMS) is a general technique for constructing problems
of arbitrary complexity with known solutions. One begins this process in reverse by
manufacturing the desired solution. In principle, this manufactured solution (MS) may be any
function, but several properties are desirable [16]:

1. The MS should be consist of combinations of elementary functions, such as polynomial,
trigonometric, and exponential functions. This not only simplifies derivations and
implementation, but ensures that the MS (and its derivatives) will be representable to
sufficient precision within the tested code. Series representations are undesirable, as they
create an additional concern regarding whether they have been carried to a sufficient
number of terms to obtain the required precision [3].

10

2. The MS should be sufficiently smooth, such that the error incurred by the discretization is
small on relatively coarse meshes. This ensures that the order of accuracy may be estimated
with minimal computational expense.

3. The MS should be general enough that all terms of the governing equations are exercised.

4. The MS should have a sufficient number of nontrivial derivatives, such that the expected
order of accuracy of the discretization can be observed. In the most ideal case, the solution
will have an infinite number of nontrivial derivatives.

5. Since the robustness of the code is not the primary concern, the MS should not have any
features that inhibit the solution of the discretized equations.

Once a solution is manufactured, it is substituted directly into the governing equations. If the MS
is composed of elementary functions (as suggested in Item 1 of the above list), each term of the
governing equations may easily be evaluated exactly, either by hand or using symbolic
manipulation software. In general, the MS is not expected to satisfy the governing equations.
Instead, a residual term will appear, which quantifies the deviation from the satisfaction of the
equations. Since the MS is a prescribed function of space and time, the residual term will,
likewise, be a known function of space and time. If this residual is added to the governing
equations as a source term, the resulting modified equations will be exactly satisfied by the MS.
Concerns are immediately raised regarding uniqueness of the solution to the manufactured
problem, but this has rarely been found to cause difficulties in practice [3]. The result of this
process is a problem, of arbitrary complexity, for which an exact solution is known. At this point,
it should be noted that we have not restricted ourselves to any particular domain geometry or
boundary conditions. An arbitrary domain boundary may be selected, with portions allocated for
each type of boundary condition we wish to test. The selected boundary conditions are modified
to support the MS in the same manner as the governing equations; that is, by substituting in the
MS to obtain a residual term. Finally, the code to be tested is modified to support the additional
source term and boundary conditions. The code may then be verified by comparing the simulation
result for the manufactured problem against the known solution. Several benefits of this
framework bear repeating:

1. Exact solutions may be created for problems that simultaneously exercise every term of the
governing equations, thus providing more convincing evidence of code correctness than
several simpler tests that collectively exercise those same terms.

2. MMS is purely a mathematical process, i.e., the physics of the problem need not be
considered. This enables the user to avoid difficulties that would normally complicate the
solution, such as the singularities that would commonly appear at reentrant corners [17, p.
76].

3. Because the domain boundary choice is decoupled from the solution, the user has full
control over the complexity of the geometry to be considered. In practice, a range of
boundary complexities is employed in a test suite created with MMS. In some test cases,
unrealistically complicated geometries can be selected that fully stress the boundary
treatments of the code. In other cases, simple geometries that can be exactly represented

11

with the mesh elements supported by the tested code can be used to avoid the faceting
errors that commonly complicate grid convergence studies.

In the form outlined above, MMS has been used extensively in the verification of software for the
solution of systems of differential equations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19]. However,
the literature contains few instances of MMS being used in the verification of software for integral
equations. This is due to the simple fact that, while analytical differentiation is a straightforward
exercise, analytical integration is not always possible. Hence, the residual source term arising
from the manufactured solution may not be representable in closed form, and its implementation
may be accompanied by numerical techniques that carry their own uncertainties. Furthermore, in
many applications, such as the boundary element method (BEM) employed by Gemma, singular
integrals appear, which can further complicate the numerical evaluation of the source term.
Hence, much of the elegance, simplicity, and instilled confidence of MMS is lost when applied to
integral equations in a straightforward manner, and as a result, effective implementation of MMS
in the context of BEM codes is an open subject of research. The most substantial effort thus far in
the computational electromagnetics (CEM) community has been the work of Marchand [20], in
which the author calculated the MMS source terms for the EFIE using numerical techniques.
While the quadrature error can be driven low enough that grid-independence studies become
feasible, the presence of this additional error often places a lower bound on the discretization
error that can be obtained, and therefore limits the scope of the grid convergence study, in
addition to being undesirable for the aforementioned reasons.

In FY20, the authors of this report have pursued an implementation of MMS for Gemma that
avoids the complications discussed above. Two options have been proposed and pursued in
parallel:

1. Manufactured solutions composed of sums of point sources enable direct analytical
evaluation of all terms required by Gemma without relying on numerical integration.

2. Conventional manufactured solutions (with certain restrictions) may be carefully supplied
to Maxwell’s equations and associated boundary conditions to analytically build the
incident field and required source terms.

A simple code for solving the EFIE on a rectangular plate was developed in MATLAB as a
testbed for these ideas. If successful, these proposed methods will represent a significant step
forward in the verification of CEM codes using boundary elements by removing reliance on
numerical integration to implement the manufactured solution, thereby better demonstrating the
credibility of the software.

12

4. AUTOMATED CODE-VERIFICATION
TESTING

To automate the verification tests for Gemma, the VVTest infrastructure is employed with a
custom postprocessing script, which determines whether the tests pass or fail. This chapter
describes the VVTest infrastructure and the pass/fail criteria, with examples.

4.1. VVTEST

To perform code-verification tests, Gemma employs VVTest, which has been used to perform
code-verification testing for other Sandia codes. VVTest is a simulation manager that executes
multiple simulations either sequentially, or in parallel. For a given simulation, VVTest executes
the simulation for differently sized discretizations to assess how the discretization impacts the
solution. The solutions from the different discretizations are compared with an exact solution to
compute their error. This error can be a quantity-of-interest (QoI) error, or a norm of the solution
error. As the discretization is refined, the discretization error should decrease. More rigorously,
the code should achieve an expected order of accuracy or rate of convergence: as the mesh is
refined by a factor, the error should decrease at a rate that is an expected power of that factor,
provided the mesh is in the asymptotic region. Comparing the theoretical convergence rate to the
observed convergence rate helps determine whether the numerical scheme is implemented
correctly. Additional information about VVTest can be found at
https://gitlab.sandia.gov/rrdrake/scidev/-/wikis/home. Information
about the Gemma-specific VVTest implementation can be found at at
https://cee-gitlab.sandia.gov/EMR_codes/gemma/-/wikis/vvtest.

4.2. POSTPROCESSING TOOLS

The simulation data generated by VVTest are postprocessed using additional tools, which
compute the errors and determine whether the test passes or fails.

13

https://gitlab.sandia.gov/rrdrake/scidev/-/wikis/home
https://cee-gitlab.sandia.gov/EMR_codes/gemma/-/wikis/vvtest

4.2.1. Error

The Gemma implementation of VVTest employs a variety of options for computing errors via
various functions, which are documented here. These functions are contained in
gemma/gemma_vvtest_config/gemma/error_tools.py.

Discrete Lp-Norms

The first function is computeDiscreteNorms(p, A), which computes a discrete norm. p
indicates the Lp-norm (e.g., p = 1, p = 2), and A is an M×N array of M row vectors ai ∈ RN , for
i = 1, . . . ,M. The function returns

‖ai‖p=

(
N

∑
j=1
|ai j|p

)1/p

.

Discrete L∞-Norms

The second function is computeLInfinityNorms(A), which computes the L∞-norm. A is
an M×N array of M row vectors ai ∈ RN , for i = 1, . . . ,M. The function returns

‖ai‖∞= max
j
|ai j|.

Discrete Lp Error Norms

The third function is computeDiscreteNormError(p, A, B), which computes the
average Lp-norm of the error between the M rows of A and B. A and B are M×N arrays, and p
indicates the Lp-norm. The function returns

Error =
1
M

M

∑
i=1

(
N

∑
j=1
|ai j−bi j|p

)1/p

.

Weighted Discrete Error Norms

The fourth function is computeWeightedNormError(p, A, B, w), which computes a
relative, row-weighted entrywise Lp-norm of the error between A and B. A and B are M×N
arrays, p indicates the Lp-norm, and w is a vector of M weights. The function returns

Error =

(
∑

M
i ∑

N
j wi|ai j−bi j|p

∑
M
i ∑

N
j wi|ai j|p

)1/p

.

14

Discrete L∞ Error Norms

The fifth function is computeLInfinityNormError(A, B), which computes the average
L∞-norm of the error between the M rows of A and B. A and B are M×N arrays. The function
returns

Error =
1
M

M

∑
i

max
j
|ai j−bi j|.

4.2.2. Verification

Once the error is available, calculating the convergence rate of the error and determining whether
it agrees with the theoretical rate is possible. There are three different functions within
verification tools:

1. order_of_accuracy_weighted_sets(numbers_of_unknowns_1d,
errors)

2. pass_criteria_simple(slopes, expected_slope,
tolerance_acceptable)

3. pass_criteria_robust_tolerance(slopes, expected_slope,
tolerance_fine, tolerance_coarse)

The following sections explain each function in detail.

Order of Accuracy

The order of accuracy function uses the error metrics computed in Section 4.2.1 to calculate the
rate at which the error decreases as the discretization is refined (i.e., as the number of unknowns is
increased). There are two inputs to the order of accuracy function: 1) the number of unknowns
and 2) the array of the errors. The error data are then used to fit an error model, which is based on
the leading term of the local truncation error (LTE) of the numerical scheme:

e(N) =CN−p,

where e is the error as a function of the one-dimensional number of degrees of freedom, N is the
one-dimensional number of degrees of freedom, C is independent of the mesh in the asymptotic
region, and p is the order of accuracy, which is to be computed. When two errors are available, p
can be computed from

p =− log
(∣∣∣∣e2

e1

∣∣∣∣)/log
(

N2

N1

)
.

15

When error metrics are available for two or more mesh refinement levels, a linear regression is
possible to calculate the order of accuracy. However, it should be noted that the linear regression
used here is unweighted, and as such, the error from the coarsest meshes may have an undue
influence on the estimated order of accuracy. To mitigate this effect, VVTest generates multiple
order-of-accuracy estimates, first using data from all M available meshes, then the M−1 finest
meshes, and so on, until only data from the two finest meshes are used (for which the linear fit
will be exact). This enables the user to determine whether the order of accuracy estimates are
converging to the expected value. A visualization of this calculation is shown in Fig. 4-1. This
slope array is then passed to one of the two functions for assessing whether the pass criteria has
been met.

Figure 4-1. Visualization of the datasets used in the calculation
of order of accuracy.

Pass Criteria

There are two different functions to determine whether Gemma passes the code-verification
assessment:

1. pass_criteria_simple(slopes, expected_slope, tolerance_
acceptable)

2. pass_criteria_robust_tolerance(slopes, expected_slope,
tolerance_fine, tolerance_coarse)

Both of these functions check that the estimated order of accuracy matches the theoretical
performance of the numerical method. The only difference is that
pass_criteria_robust_tolerance also checks to make sure the order of accuracy is
converging to the theoretical value. Below is an explanation of each function and its arguments.

16

pass_criteria_simple is the standard way to determine if a code passes the
order-of-accuracy code-verification test. The first argument is slopes, which is a
one-dimensional array containing the observed orders of accuracy calculated using the functions
described in Section 4.2.2. This array is ordered with the results from the coarsest meshes first.
The second argument is expected_slope, which is the theoretical order of accuracy. The
third argument is tolerance_acceptable, which is a decimal value indicating the
acceptable level of relative error between the observed and theoretical orders of accuracy
(0.1 = 10% error). If the test does not complete for any reason, it is assigned a Fail result.
Otherwise, the slope calculated with the two finest meshes is compared to the theoretical order of
accuracy. If the two agree within the prescribed tolerance, the test is assigned a Pass result, and
if the tolerance is not met, the test is assigned a Diff result.

pass_criteria_robust_tolerance is a modification of the function above, which is
intended to increase robustness. The first two arguments are slopes and expected_slope,
which have the same meaning defined above. The third and fourth arguments are
tolerance_fine and tolerance_coarse. These indicate the relative errors acceptable in
the estimated orders of accuracy obtained from the two finest meshes and the complete set of
meshes, respectively. If the test does not complete for any reason, it is assigned a Fail result.
Otherwise, both estimates for the order of accuracy are compared against the theoretical value. If
both estimates agree with the theoretical value within their respective tolerances, the test is
assigned a Pass result, and if either or both tolerances are not met, the test is assigned a Diff
result.

4.2.3. Plotting

We included a tool to generate plots from the results of a single test. The plots show how the
errors vary with respect to the number of unknowns. A trend line is included, with the slopes
annotated. For example, the top annotation is the slope of the trend line across all data points. The
second annotation is the slope of the trend line across all of the data points except that from the
coarsest discretization. The annotations continue this trend until only the two finest
discretizations are included in the fit. Figure 4-2 provides an example of a plot generated with this
tool. Over the course of FY20, the test problem size was increased up to 1.4 million unknowns.
Generating the data for this plot required 8 wall-clock hours on Eclipse, utilizing 24 cores per
node on 718 nodes.

4.3. TESTS AND RESULTS

To ensure the code-verification tests provide adequate coverage, we develop various tests for
different portions of Gemma. The different options exercised in Gemma through the testing
include different equations, QoIs, geometries, and excitation lengths. The list that follows
provides details of the various convergence tests added in FY20 to Gemma’s VVTest suite. The
testing information is summarized in Table 4-1 and includes the tests’ pass status. Each test has

17

Figure 4-2. Annotated convergence plot for sphere test problem.

an analytical reference solution, which is used to compute an exact error. In Table 4-1, PMCHWT
denotes the Poggio–Miller–Chang–Harrington–Wu–Tsai integral equation and Müller denotes the
Müller formulation.

1. disk_tz_pecef_pw.vvt: This test solves the EFIE for the surface current on a flat
disc. The disc is a perfect electrical conductor (PEC), with a radius of 1 m, and the
excitation is a plane wave with a wavelength of 1 m and a unit incident magnetic field. The
analytical solution comes from a Fortran code written by Andrew Peterson based on
Flammer’s Solution.

2. sphere_field_tout_pecef_pw.vvt: This test solves the EFIE for the electric
field, evaluated at certain points away from a sphere. The sphere is a PEC with a radius of 1
m and the excitation is a plane wave with a wavelength of 10 m and a unit incident electric
field. The analytical solution is obtained from a Mie series.

3. sphere_RCS_tout_pecef_pw.vvt: This test solves the EFIE for the radar
cross-section (RCS) computed at 32 locations for the same sphere as in
sphere_field_tout_pecef_pw.vvt.

4. sphere_current_tout_lowdiel_pmchwt_pw.vvt: This test solves the
Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) integral equation for the surface
current on a dielectric sphere with εr = 2 and a radius of 1 m. The excitation is a plane

18

wave with a wavelength of 10 m and a unit incident electric field. The analytical solution is
obtained from a Mie series.

5. sphere_current_tout_lowdiel_muller_pw.vvt: This tests solves the Müller
formulation for the surface current on a dielectric sphere with εr = 2 and a radius of 1 m.
The excitation is a plane wave with a wavelength of 10 m and a unit incident electric field.
The analytical solution is obtained from a Mie series.

6. sphere_current_tout_highdiel_pmchwt_pw.vvt: This test solves the
PMCHWT integral equation for the surface current on a dielectric sphere with εr = 10 and
a radius of 1 m. The excitation is a plane wave with a wavelength of 10 m and a unit
incident electric field. The analytical solution is obtained from a Mie series.

7. sphere_current_tout_highdiel_muller_pw: This tests solves the Müller
formulation for the surface current on a dielectric sphere with εr = 10 and a radius of 1 m.
The excitation is a plane wave with a wavelength of 10 m and a unit incident electric field.
The analytical solution is obtained from a Mie series.

Table 4-1. List of VVTest simulations.
Case Number Name Geometry Material QoI Equation Excitation p Pass/Fail

1 disk_tz_pecef_pw disk (r = 1m) PEC J EFIE H = 1 A/m; λ = 1 m −2 Pass
2 sphere_field_tout_pecef_pw sphere (r = 1m) PEC E EFIE E = 1 V/m; λ = 10 m −2 Pass
3 sphere_RCS_tout_pecef_pw sphere (r = 1m) PEC RCS EFIE E = 1 V/m; λ = 10 m −2 Pass
4 sphere_current_tout_lowdiel_PMCHWT_pw sphere (r = 1m) εr = 2 J PMCHWT E = 1 V/m; λ = 10 m −1 Pass
5 sphere_current_tout_lowdiel_muller_pw sphere (r = 1m) εr = 2 J Müller E = 1 V/m; λ = 10 m −1 Pass
6 sphere_current_tout_highdiel_PMCHWT_pw sphere (r = 1m) εr = 10 J PMCHWT E = 1 V/m; λ = 10 m −1 Pass
7 sphere_current_tout_highdiel_muller_pw sphere (r = 1m) εr = 10 J Müller E = 1 V/m; λ = 10 m −1 Pass

19

5. FUTURE WORK

In this chapter, we describe our ongoing and future work, as related to the previously described
activities.

5.1. GEOMETRICALLY SYMMETRIC QUADRATURE
RULES FOR THE MFIE

Like the EFIE, the MFIE contains singularities that would benefit from similarly developed
quadrature rules designed to integrate the singularities. In FY21, we will work on developing
these rules.

5.2. MANUFACTURED SOLUTIONS

In FY21, we will continue efforts to develop manufactured solutions to mitigate the challenges
and limitations described in Chapter 3. These approaches consist of finding ways to compute the
singular integrals accurately, through variable transformations and adaptive integration.

5.3. AUTOMATED CODE-VERIFICATION TESTING

For FY21, code verification work will continue in four directions:

1. Refactoring Verification_Tools.py, Error_Tools.py, and
Plotting_Tools.py

2. Automating code-verification testing through Jenkins

3. Adding additional tests to ensure greater coverage of the relevant physical phenomena

4. Working towards utilizing Sandia’s Feature Coverage Tool (FCT) to quantify testing
coverage of specific features

20

One of the first activities for FY21 is to refactor Verification_Tools.py,
Error_Tools.py, and Plotting_Tools.py. After reviewing the Python tool scripts,
refactoring these scripts will significantly simplify the code and reduce the effort to maintain the
code. Refactoring will also simplify the VVTest scripts by having more compact calls to the
Python tool functions.

To ensure the code continues to pass the code-verification tests as Gemma is developed, Jenkins
(https://jenkins-srn.sandia.gov) will be employed to automate testing. Jenkins will
be configured to run VVTest and notify the developers if the tests fail. These tests will run nightly
for short tests and during the weekends for long tests.

The tests listed in Table 4-1 currently do not test all of the capabilities of Gemma. For example,
certain types of boundary conditions and elements, as well as the ability to solve the MFIE and
CFIE, are capabilities not covered by the current verification tests. In addition, the tests in
Table 4-1 should report more QoIs to ensure complete coverage for each test. Since analytic
solutions do not exist for many of Gemma’s features, manufactured solutions are being developed
to cover these features.

To ensure adequate test coverage and to provide Gemma’s users with code-verification evidence,
we will ultimately utilize the FCT. The FCT will be able to provide developers and users testing
information on specific features utilized in application problems.

21

https://jenkins-srn.sandia.gov

REFERENCES

[1] B. A. Freno, W. A. Johnson, B. F. Zinser, S. Campione, Symmetric triangle quadrature rules
for arbitrary functions, Computers & Mathematics with Applications 79 (10) (2020)
2885–2896. doi:https://doi.org/10.1016/j.camwa.2019.12.021.

[2] B. A. Freno, W. A. Johnson, B. F. Zinser, D. F. Wilton, F. Vipiana, S. Campione,
Characterization and integration of the singular test integrals in the method-of-moments
implementation of the electric-field integral equation, arXiv preprint arXiv:1911.02107
(2020).

[3] P. J. Roache, Code verification by the method of manufactured solutions, Journal of Fluids
Engineering 124 (1) (2001) 4–10. doi:10.1115/1.1436090.

[4] C. J. Roy, C. C. Nelson, T. M. Smith, C. C. Ober, Verification of Euler/Navier–Stokes codes
using the method of manufactured solutions, International Journal for Numerical Methods in
Fluids 44 (6) (2004) 599–620. doi:10.1002/fld.660.

[5] R. B. Bond, C. C. Ober, P. M. Knupp, S. W. Bova, Manufactured solution for computational
fluid dynamics boundary condition verification, AIAA Journal 45 (9) (2007) 2224–2236.
doi:10.2514/1.28099.

[6] S. Veluri, C. Roy, E. Luke, Comprehensive code verification for an unstructured finite
volume CFD code, in: 48th AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics,
2010. doi:10.2514/6.2010-127.

[7] T. Oliver, K. Estacio-Hiroms, N. Malaya, G. Carey, Manufactured solutions for the
Favre-averaged Navier–Stokes equations with eddy-viscosity turbulence models, in: 50th
AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Exposition, American Institute of Aeronautics and Astronautics, 2012.
doi:10.2514/6.2012-80.

[8] B. A. Freno, B. R. Carnes, V. G. Weirs, Code-verification techniques for hypersonic reacting
flows in thermochemical nonequilibrium, Journal of Computational Physics (2020).
doi:https://doi.org/10.1016/j.jcp.2020.109752.

[9] É. Chamberland, A. Fortin, M. Fortin, Comparison of the performance of some finite
element discretizations for large deformation elasticity problems, Computers & Structures
88 (11) (2010) 664 – 673. doi:10.1016/j.compstruc.2010.02.007.

22

https://doi.org/https://doi.org/10.1016/j.camwa.2019.12.021
https://arxiv.org/abs/1911.02107
https://doi.org/10.1115/1.1436090
https://doi.org/10.1002/fld.660
https://doi.org/10.2514/1.28099
https://doi.org/10.2514/6.2010-127
https://doi.org/10.2514/6.2012-80
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109752
https://doi.org/10.1016/j.compstruc.2010.02.007

[10] S. Étienne, A. Garon, D. Pelletier, Some manufactured solutions for verification of
fluid–structure interaction codes, Computers & Structures 106-107 (2012) 56–67.
doi:10.1016/j.compstruc.2012.04.006.

[11] A. Veeraragavan, J. Beri, R. J. Gollan, Use of the method of manufactured solutions for the
verification of conjugate heat transfer solvers, Journal of Computational Physics 307 (2016)
308–320. doi:10.1016/j.jcp.2015.12.004.

[12] P. T. Brady, M. Herrmann, J. M. Lopez, Code verification for finite volume multiphase
scalar equations using the method of manufactured solutions, Journal of Computational
Physics 231 (7) (2012) 2924–2944. doi:10.1016/j.jcp.2011.12.040.

[13] R. G. McClarren, R. B. Lowrie, Manufactured solutions for the p1 radiation-hydrodynamics
equations, Journal of Quantitative Spectroscopy and Radiative Transfer 109 (15) (2008)
2590–2602. doi:10.1016/j.jqsrt.2008.06.003.

[14] J. R. Ellis, C. D. Hall, Model development and code verification for simulation of
electrodynamic tether system, Journal of Guidance, Control, and Dynamics 32 (6) (2009)
1713–1722. doi:10.2514/1.44638.

[15] P. J. Roache, Verification and Validation in Computational Science and Engineering,
Hermosa Publishers, 1998.

[16] K. Salari, P. Knupp, Code verification by the method of manufactured solutions, Sandia
Report SAND2000-1444, Sandia National Laboratories (Jun. 2000).
doi:10.2172/759450.

[17] P. Monk, et al., Finite element methods for Maxwell’s equations, Oxford University Press,
2003.

[18] C. J. Roy, M. A. McWherter-Payne, W. L. Oberkampf, Verification and validation for
laminar hypersonic flowfields, part 1: Verification, AIAA Journal 41 (10) (2003)
1934–1943. doi:10.2514/2.1909.

[19] R. Gollan, P. Jacobs, About the formulation, verification and validation of the hypersonic
flow solver Eilmer, International Journal for Numerical Methods in Fluids 73 (1) (2013)
19–57. doi:10.1002/fld.3790.

[20] R. G. Marchand, The method of manufactured solutions for the verification of
computational electromagnetic codes, phdthesis, Stellenbosch (Mar. 2013).

23

https://doi.org/10.1016/j.compstruc.2012.04.006
https://doi.org/10.1016/j.jcp.2015.12.004
https://doi.org/10.1016/j.jcp.2011.12.040
https://doi.org/10.1016/j.jqsrt.2008.06.003
https://doi.org/10.2514/1.44638
https://doi.org/10.2172/759450
https://doi.org/10.2514/2.1909
https://doi.org/10.1002/fld.3790

DISTRIBUTION

Hardcopy—External

Number of
Copies Name(s) Company Name and

Company Mailing Address

Hardcopy—Internal

Number of
Copies Name Org. Mailstop

Email—Internal

Name Org. Sandia Email Address

Technical Library 01177 libref@sandia.gov

24

25

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	Geometrically Symmetric Quadrature Rules for the EFIE
	Manufactured Solutions
	Automated Code-Verification Testing
	VVTest
	Postprocessing Tools
	Error
	Verification
	Plotting

	Tests and Results

	Future Work
	Geometrically Symmetric Quadrature Rules for the MFIE
	Manufactured Solutions
	Automated Code-Verification Testing

	References

