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ABSTRACT
Protecting against multi-step attacks of uncertain duration and timing forces defenders into an
indefinite, always ongoing, resource-intensive response. To effectively allocate resources, a
defender must be able to analyze multi-step attacks under assumption of constantly allocating
resources against an uncertain stream of potentially undetected attacks. To achieve this goal, we
present a novel methodology that applies a game-theoretic approach to the attack, attacker, and
defender data derived from MITRE´ s ATT&CK R© Framework. Time to complete attack steps is
drawn from a probability distribution determined by attacker and defender strategies and
capabilities. This constraints attack success parameters and enables comparing different defender
resource allocation strategies. By approximating attacker-defender games as Markov processes,
we represent the attacker-defender interaction, estimate the attack success parameters, determine
the effects of attacker and defender strategies, and maximize opportunities for defender strategy
improvements against an uncertain stream of attacks. This novel representation and analysis of
multi-step attacks enables defender policy optimization and resource allocation, which we
illustrate using the data from MITRE´ s APT3 ATT&CK R© Framework.
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0.1. INTRODUCTION

Cyber defenders have to monitor and respond to attacks continuously, and their resource
allocation decisions have to optimize against an uncertain stream of attacks. With no limits on
possible start and end times of attacks, the attacker defender interaction becomes a game of
indefinite duration where the attack success probability or other metrics associated with a
pre-defined time interval are not sufficient to measure the defender strategy effectiveness1.

The defender2 problem of securing the system becomes the problem of resource allocation across
different parts of the system, where the defender policy objective is to allocate resources to
detection and assessment and to place sensors across the defender system while keeping the
expenditures below a certain threshold. The top-level defender problem is then to design a system
that provides adequate response and warning about attacks, sufficient automated prevention or
response against identified attacks, and uses the available resources in an optimized fashion.

Real world attacks generally involve multiple steps. The attacker needs to get into the defender
system, move through it, gather additional information, communicate with a command and
control center, and act on objectives. This multi-step nature of attacks increases the scope of the
defender problem, but also presents multiple detection and response opportunities at different
steps in the attack. However, without quantitative metrics that reflect the effects of the defender
resource allocation, the defender has no reliable criteria for allocating resources across such
detection opportunities. Should the defender spend time educating system users against phishing
attempts, investigating lateral movement events, looking for command and control messages,
etc.?

We present an approach for solving this problem. It enables quantitative evaluation of the
defender policy against multi-step attacks. Our approach calculates attack success metrics, such
as time-to-success distribution and steady state distribution, as a function of attacker and defender
capabilities for each attack step. It quantifies the effects of a defender allocating more resources
for detection at specific attack steps by calculating the sensitivity of attack success metrics to such
changes. This tradeoffs evaluation allows defenders to understand where they will get the best
return from improving detection and therefore increasing attack difficulty. Furthermore, the
defender can continually evaluate their allocation decisions against the latest threat information
and improve their defense posture with future investments.

This approach allows incorporating real-world data, such as the results of MITRE ATT&CK R©

Evaluations3 (hereafter, ATT&CK Evaluations) into attack success metrics and defender response
evaluations. As importantly, it allows aggregating data from empirical observations associated
with parts of an attack, such as ATT&CK Evaluations or cyber experiments, into metrics
describing an attack as a whole. We describe the theoretical model and demonstrate our approach
using the APT3 ATT&CK Evaluations data overlaid on an attack scenario developed on the basis

1Our approach relates both to dynamic game theory and Markov decision process. Those areas tend to use terms
“strategy” and “policy” respectively to describe decision-making algorithms. We use terms policy and strategy
interchangeably here.

2We assume that both attackers and defenders can be individuals, groups, or organizations. This is why we sometimes
refer to them as “they”.

3https://github.com/mitre-attack/attack-evals
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of a simplified APT3 attack on a cyber-controlled power grid. In this scenario, an initial infection
occurs in an enterprise network, pivots to the power grid control network and affects grid control
devices in an attempt to disrupt grid operations. As in many real world scenarios, the grid
operator has no control on when an attack can start and end or when the attacker who is already in
the system and is ready to attack will execute on his objectives.

We show how streams of multi-step attacks can be analyzed by representing them as Markov
processes by extending the GPLADD framework introduced in [28] to games of indefinite
duration. We approximate GPLADD games by Markov chains with states being the success
conditions in the attack graph. In certain situations, GPLADD games can be represented by
Markov chains exactly, in other situations Markov chain approximation may be less precise than a
closed-form or a Monte Carlo simulation. This can happen when the attack graph has a
complicated structure or when agent strategies have long dependencies on attack history. In
practice, non-Markovian dynamics can be converted to Markovian by expanding the state space.
Markov processes are often used to approximate more general stochastic processes. For example
[13] provides a method for generating approximations of intractable probability distributions
using Markov chains. Yet, even approximate Markov chain representation is valuable because it
allows for analyzing and visualizing the attacker-defender game progress quickly and explicitly,
evaluating tradeoffs between detection expenditures at different parts of the defender system,
improving sensor placement and assessment strategies, and developing an optimized defender
strategy.

In this paper, we describe the following:

1. Attack success conditions representation using GPLADD.

2. Attack dynamics approximation using Markov chains.

3. Attack metrics evaluation

4. An example phishing-based attack chain represented using the APT3 ATT&CK Evaluations
data.

5. The methodology for inferring Markov chain transition rates from the ATT&CK
Evaluations data.

6. Sensitivity of attack success metrics to detection at different steps of the attack.

7. Analysis varying defender capabilities and their impact on attack success metrics and the
transition diagrams.

8. Applications to defender policy optimization.

A key part of our approach is the ability to evaluate the attack success metrics in regard to
different defender strategies and resource allocations. We show quantitative evaluation of the
overall attack success probability, time the attacker spends in the “Ready” (completed) state, and
evaluate effects of different defender mitigations and strategies. The “Ready” state residence time
is important, because it represents a practically important metric of how well the defender system
is protected and because it reflects the ability of the attacker to coordinate multiple attacks if they
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have the ability to keep them in the “Ready” state with low probability of disruption by
defender.

Our novel contributions include:

• A method for representing attacker defender contests as games of indefinite duration.

• Introduction of the fraction of the time that attack can achieve in the completed or ready
state (“Ready” state residence time) as a metric to evaluate defender strategy in games of
indefinite duration.

• Explicit estimation of time-to-success distribution for the entire attack.

• A method for representing ATT&CK Evaluations data as GPLADD games and Markov
chains.

• A method for generalizing defender capabilities from ATT&CK Evaluations detection
categories.

• A method for estimating the quantitative success parameters for attacks.

• A method for evaluating the effects of defender investments in detection at different parts of
the defender system by evaluating the attack success metrics and attack transition diagrams.

This paper is structured as the following: section 0.2 describes relevant literature. Section 0.3
describes our approach. We start with a detailed representation of attack as GPLADD games as
described in [28] and then show how this representation can be transformed into a Markov chain
representing the attack dynamics, where the transition probabilities are affected by the defender
strategy. Section 0.4 shows the analysis of a multi-step attack, similar to APT3 as it is described
in MITRE ATT&CK framework and using the MITRE ATT&CK Evaluations data. This example
starts as an attack against an enterprise network with the goal of pivoting and acquiring control of
an RTU (Remote Terminal Unit) on a SCADA/ICS system. The attacker attempts achieving his
goals by initiating attacks against individual users of the enterprise network, in what we call an
attack campaign composed from multiple single attacks. The Conclusions section summarizes
and outlines possible extensions to this work.

0.2. PRIOR WORK

Our theoretical approach builds on and extends our work building attack models as GPLADD
games ([28]). GPLADD is a game-theoretic approach to represent the attack success conditions
as attack graphs and to quantify the attack success metrics as a function of the attacker and
defender strategies in continuous time. In this paper, we extend and approximate GPLADD as
discrete-time Markov chains as described in 0.3.

GPLADD is a dynamic game between attacker and defender. GPLADD is formally specified by
the attack structure, and the attacker and defender strategies and actions at different stages of the
attack. GPLADD treats time explicitly as a physical constraint and represents explicitly and
probabilistically the time different attack steps take. It and provides for a rich and detailed
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representation of attack states steps and the time they take, and detailed attacker and defender
strategies, and attack analysis. It allows calculating the attack probability of success, probability
of detection, costs, and other parameters quantifying the attack dynamics. We briefly describe
GPLADD here, closely following [28].

It was originally introduced as a finite duration game to represent trust in outcomes of
development processes, where the defender has control . We extend it in the Section 0.3.1 to
represent games of indefinite duration to account for difference between trust and security, and to
include detection.

GPLADD can embody a specific attack, represent attack and system parameters and agent
strategies, and therefore enable evaluation of the defender strategy and attack success metrics
estimation.

The literature on Markov chains is vast. Markov chains applications to represent agent
interactions include [4] and [9] as well as literature on Partially Observed Markov Decision
Process (POMDP) ([24]). Paper [24] provides a model of an attacker-defender interaction in
represented as a POMDP from the point of view of a defender. [24] has a somewhat similar
formalism as in [28] to represent the attack success conditions, which the authors call a
“condition dependency graph”. It models the dependency between the attacker progress and the
resulting system state and the set of the available exploits available from the attacker. A
fundamental difference between the approaches in [24] and [28] is that the latter treats the time
required to complete an attack step explicitly. The POMDP-based approaches explicitly treat the
uncertainty in the defender knowledge in the system state and the resulting cyber awareness. A
full review of the corresponding literature is outside the scope for this paper. The literature on
cyber awareness include [43] that describes the implementation of their approach on an high
performance computer. [40] describes a defender strategy based on network segmentation. Game
theory and advanced persistent threats (APTs) are discussed in [16].

The MITRE ATT&CK Framework is described in [34]. It contains information on observed
adversary tactics, techniques, and procedures (TTPs). MITRE leveraged the information in this
framework to organize their ATT&CK Evaluations, which tested the capabilities of EDR
(Extended Detection and Response) vendors to detect TTPs associated with specific adversary
campaigns. The results of these evaluation provide information that can be used to estimate
attacker success and detection probabilities on different steps in an attack. APT datasets are also
discussed in [33]. Concrete steps and attacker options at different stages of the attack can be
informed from MITRE ATT&CK (see [34, 35, 10] for more information). Additional empirical
data on attackers and defenders might be generated using emulation ([38], see also
[39, 20, 8, 37]).

The kill chains described in [22] lay out the logical phases in attack progress, as well as provide a
high-level framework for reasoning about attacker and defender actions, attack progress, and
detection. However, kill chain representation itself does not provide a quantitative framework for
attack analysis or for specifying concrete steps in execution of a particular attack. Kill chains do
not map directly into GPLADD; they represent a different, higher level of abstraction that may
not represent the execution steps, strategies, timings, or dependencies.

Other papers that address detection and take into account the dynamic nature of the attacker
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defender interaction include [26], [45], [2] and [3]. They deal with the problem of detection
related tradeoffs and sensor data aggregation in a dynamic game setting, somewhat similar to
GPLADD. Unlike GPLADD, they do not represent the steps in the attack.

The approaches in [42] use detection and false alarm benchmarks to quantify confidence levels in
system verification procedures. Hardware Trojan detection methods include [1], [18], and [44],
and others. The [30] represent trust in the system as the product of individual subcomponents
trust levels. Additional work on the attacker-defender interaction includes [12, 11] and [21] which
optimize the Trojan detection technologies.

The security metrics literature includes [29] and work attacks and attack trees modeling that
include [32], [23], [25], [36], [17], [27], [31].

0.3. APPROACH

We start with a GPLADD game and translate it into a Markov chain representation. GPLADD
games were introduced in [28] and applied to Markov Games in [5]. A GPLADD game represents
the attacker-defender game as a general stochastic process that is determined jointly by the attack
graph and the attacker and defender capabilities and strategies. We introduce the Markov chain
representation of attacker-defender interaction in section 0.3.1. We then develop a Markov chain
representation of a simplified APT3 attack4 in section 0.4 and develop a method to estimate the
transition probabilities based on attacker and defender capabilities and available data. We then
apply our methodology using results from the APT3 ATT&CK Evaluations.

We assume that the defender constantly monitors for the attacker activity associated with some or
all steps and execution methods of the attack using the defender IDS system and by collecting
sensor information to infer and observe the attacker activity. This detection is fine-grained in the
sense that defender is able to associate detection events with possible attack steps. The defender
may not have the capability to disrupt the attack completely, and so may disrupt the attacker
progress only partially, for example by identifying and cleaning the malware used for a particular
lateral movement. Disrupting the attack completely sends the attacker to the beginning of attack,
and disrupting the game partially sends the attacker to one of the previous steps of the game.

In a PLADD game, the defender’s attack disruption is considered a “take move”, that sends the
attacker to one of the previous steps of the attack or to the beginning of the attack. We assume the
defender can take immediate control of their system, incurring appropriate cost for that action
(such a cost may include rendering the system inoperable for a period of time). The ability to
execute effective and timely take moves is determined by the ability to detect the attacker activity,
and associate it with an attack step and a part of the defender system, and may vary substantially
across different defenders. Detection is probabilistic and is affected by the defender capabilities
and allocation of resources to sensing and assessment of specific attack indicators. Allocating
more resources to detecting specific events may increase the probability of correctly detecting the

4We will call this a “notional attack” in what follows to indicate that we represent a simplified version of an APT3
attack.
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Figure 0-1. PLADD Game: blue indicates defender control, red
shows attacker control, and yellow shows attack in progress.

attacker activity, but it also increases the defender costs and potentially reduces resources
available to other parts of the system.

GPLADD represents multi-step games, where the attack graph is represented as a set of necessary
conditions for the attack success. The attacker strategy describes how the attacker will go about
achieving these conditions. As in [28], we focus on quantifying individual attack parameters to
enable the attack ranking both from the point of view of the attacker and the defender. We
demonstrate using Markov chain approximation of GPLADD attacks how the defender can
allocate their resource to diminish attack effectiveness.

A GPLADD game consists of multiple PLADD games (defined in [19]) connected by a graph
structure and other elements. A PLADD game is a contest for control of a single resource by the
attacker and the defender. In PLADD, the defender has one or more different moves (take and
morph in the original PLADD) to assert control over the resource. The attacker has only one
move that represents the initiation of the attack. We also call it a “take” move. The attacker take
move does not succeed immediately, but rather after a period of time termed time-to-success that
is represented as a random variable with the time-to-success distribution denoted as f (t).

This time-to-success distribution represents the difficulty of the corresponding stage in the attack.
It reflects both the attacker capabilities and the defender system and security measures in place.
An example determination of time-to-success distribution in application to a specific example is
described in [7]. A study by [14] evaluates possible distributions and their parameters for time to
compromise of a computer system based on empirical data.

Both the attacker and defender incur costs for executing their actions. These costs can be fixed or
dependent on action duration or other factors.

This attacker-defender contest can therefore be represented as a sequence of attacker and defender
moves that may be executed without the full knowledge of the system state. For example, the
defender may make the take move on a system that is not under attacker control. This interaction
is illustrated in the in Figure 0-1. It represents alternating periods of the defender control (blue
bars above the x-axis) and attacker control (red bars below the x-axis), .

In GPLADD an attack is a partially ordered collection of PLADD games. These PLADD games
can take place on certain parts of the defender system or outside of it. GPLADD distinguishes
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explicitly between an attack and attack graph. An attack is a game between attacker and defender
that takes place on attack graph. The game dynamics is affected by the attacker and defender
strategies.

An attack Ψ is defined as the following: Ψ = {ψ,ζ H ,ζ D}, where ψ is an attack graph, and
ζ H(ψ) and ζ D(ψ) are the attacker and defender strategies.

For the attack Ψ to succeed, the attacker must achieve a set of conditions defined over a set of
nodes Vψ that is composed of the nodes in V in the defender system denoted as vψ and may
involve the nodes outside of the defender system to represent the actions executed by the attacker
elsewhere. The latter are denoted as v′ψ with Vψ = vψ ∪ v′ψ . The attacker may complete certain
parts of the attack outside of the defender system. For example, the attacker may modify a file
using his own system after first stealing the file from the defender, with the goal of later injecting
the modified file. An example attack and a more extensive discussion on the attack graph
specification can be found in [28].

The attack graph ψ represents both the success conditions as the nodes in ψ and the logical
dependency between different steps in the attack as the links on the graph. These steps are
represented as a set of directed acyclic chains. For attack to succeed, the attacker must complete
all the steps.

The set of terminal nodes of all those chains in the attack graph constitute the necessary and
sufficient conditions for the attack success.

A single chain l in the attack graph ψ is {cl
1, . . . ,c

l
nl
}, where the superscript l signifies that this is

a l’th chain in the attack graph ψ . Each element in l is a logical condition on Vψ . The term cl
nl

denotes the terminal node in chain l. The numbering of the chains does not imply any ordering or
temporal precedence.

The attack graph ψ is represented as follows:

ψ = {{c1
1, . . . ,c

1
n1
}, . . . ,{cm

1 , . . . ,c
m
nm
}}, (0.1)

A condition c j
i in ψ may represent a specific system state or a change in the system state. For

example, the logical condition for attacker control on node vi is represented as s(vi) = 1 where s is
the state of the node and can take three values: {0,1,2}, where 0 denotes defender control, 1
stands for attacker control, and 2 for attack in progress.

Having all terminal conditions in ψ being satisfied at the same time is necessary for the attack
success. This is expressed as:

S(ψ) = {c1
n1
∧ . . .∧ cm

nm
}, (0.2)

where S represents “attack success” and ∧ represents logical “AND”.

Once started, the attack on node vi succeeds after a certain delay, which we call the
time-to-success. The time-to-success can be be either deterministic or probabilistic. The
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time-to-success is a node-specific random variable distributed according to
fi(·) for all vi ∈Vψ .

The time-to-success distribution reflects features of the node, of the defender system, as well as
the defender and attacker capabilities.

The attack graph by itself does not fully determine the paths through inside or outside of the
defender system that the attack may take. These paths and the attack dynamics are jointly
determined by the attack graph and the attacker and defender strategies. The attack dynamics can
have arbitrary complicated structure determined by the attack graph and the attacker and defender
strategies. Unlike the attack graph, the attack pathways do not need to be acyclic. This enables
generating the attack pathways as an emergent property of the attacker-defender interaction,
rather than as a fixed structure.

0.3.1. Markov Chain Approximation

We approximate the game dynamics as a Markov chain. The ability to aggregate the agent-based,
and by extension, game theoretic models into a Markov chain approximation, is discussed
thoroughly in [4]. Here, we show how a simplified APT3 (“notional” in what follows) attack
represented as a GPLADD game can be treated as a Markov chain.

Depending on the assumptions about the time-to-success distributions and the attacker and
defender strategies, the Markov representation can be exact or approximate. The Markov chain
representation of the game dynamics allows a simpler and often practically useful and sufficient
treatment of certain aspects of the defender strategy optimization.

While the definition of a stochastic process state can often be expanded to make the dynamics
Markovian, it is likely that not all attacker-defender games can be represented in a practically
useful way as Markov chains. For example, a defender may keep a running tally of detections
across all attacks by all attackers and drastically change his system when the tally reaches a
certain point in a course of a particular attack. By construction, this process will look
non-Markovian for the attacker executing the attack when the tally reaches the threshold, because
this attacker will not have access to the defender state space representation and the running tally.
The possibility of non-Markovian transitions is raised in the context of POMDPs by [15]. As
shown in [15] this is resolved in POMDPs by introducing the agent belief state, whose updating is
Markovian. A similar approach maybe used in the previous example with the defender running a
tally of detected attackers, where the attacker may form a belief distribution over possible system
states that includes different tally counts.

For the notional attack example in this paper, we create the Markov chain representation of the
game between the attacker and the defender by two methods. The first method is used in the
Section 0.4.5. It is based on integrating the time-to-success distributions at each time step to
estimate the success probability, estimating the detection probability based on available data or
using the available subject-matter expert knowledge, and calculating the probability of the
attacker remaining at the same time step by treating the success and detection for each time step
as independent events, so that the resulting probability of all three possible events at each time
step is 1.
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This method then allows evaluating what the defender can improve in his system, by changing his
resource allocation across different attack steps. It demonstrates the opportunities and the need
for the defender detection strategy optimization.

Our second method is based on directly on the MITRE ATT&CK Evaluations data for the APT3
attack emulation. It estimates the Markov chain parameters directly from the MITRE ATT&CK
Evaluations data and skips integrating the time-to-success distributions.

The primary difference between the two representations is that the one based on ATT&CK
Evaluations assumes that the probability of staying in the same state between time steps is zero to
be consistent with the way the Evaluations are designed.

In the Markov chain approximation of the attack, we assume that the attacker conducts campaigns
composed from the individual attacks. Interpreting the Markov chain as an attack campaign
allows using the steady state distribution of the Markov to represent the fraction of the time an
attacker spends at a particular step.

The attacker runs campaigns either until he achieves the desired success conditions or abandons
the attack. The timing of the attacks in the campaign is determined by the attacker strategy.

The methodology for estimating the detection probabilities and Markov chain parameters from
the ATT&CK Evaluations is described in the Section 0.4.6. The first method and the notional
attack are described in the section 0.4.4 .

0.4. ATTACK DEFINITION, ATTACKER AND DEFENDER
STRATEGIES, AND MARKOV REPRESENTATION

0.4.1. Attack Definition and Markov Representation

We analyze a simplified version of the APT3 techniques as described in the MITRE ATT&CK
Framework. The attack chain starts with a phishing attack, and then pivots through the network
with the goal of gaining access to an ICS and taking control of an RTU or a set of RTUs.

The defender network consists of an enterprise network, an ICS (industrial control system)
network, and a DMZ (demilitarized zone subnetwork). The ICS controls an electric power system
via RTUs.

This attack goal is to take control of one or more RTUs (remote terminal unit) in an energy
distribution system. The attack consists of an “initial foothold” phase aimed at the enterprise
network, a pivot phase from the Enterprise network to the ICS, and the RTU control phase.

In the initial foothold phase, the attacker aims to establish presence on a computer inside of the
enterprise network with the goal of discovering an opportunity to pivot to a workstation on the
ICS network. The attack steps are visually represented in the Figure 0-2.

The attack begins with the attacker sending a phishing email to induce potential victim to follow a
link.
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1. Start 2. DelivEmail 3. FollowLnk 4. Exec 5. ObtIPEW 6. MessageBack 7. MvEW 8. FndRTU 9. Ready

Figure 0-2. APT3 attack steps.

We define a GPLADD game by describing the attack graph, and the attacker and defender
strategies. The attack graph is represented as a set of success conditions:

ψ = {c1,c2,c3,c4,c5,c6,c7,c8,c9}, (0.3)

where the intermediate attack success conditions, also represented in the Figure 0-2, are as
follows, with a short name in () indicating the attack step abbreviated description:

• c1 - Attack Start (Start).

• c2 - Email delivered to user (Email).

• c3 - User follows a link to a malicious website, designated as badguy.com (Link).

• c4 - The malicious code (trojan) from the website executes on the user computer (Exec).

• c5 - The trojan obtains “address” of an engineering workstation. This is a waiting stage, the
user of the infected machine either has access or doesn’t have access to the engineering
workstation (IPEW).

• c6 - After engineering workstation connection is established, the trojan sends a message
back to the command and control center (Msg).

• c7 - Once the user connects to the engineering workstation, the trojan moves to the
workstation (MvEW).

• c8 - The trojan finds RTUs and targets them (RTU).

• c9 - When RTUs are found, the trojan is in attack “Ready” state. The “Ready” state is
achieved if at least one RTU is found (Ready).

This readiness in the “Ready” state denotes the fact that the attacker has successfully completed
the infiltration to their desired network location, but before the attacker has executed their final
objective (e.g. exfiltration of data or changes to control systems). The fraction of the time when
the attacker is “ready” to execute on their objectives is represented by the steady state fraction of
time the attack spends in the “Ready” state.

An attack succeeds if all the terminal conditions are satisfied. For this attack, the attack succeeds
when the condition c9 is satisfied.

As explained before, this attack graph does not uniquely determines the attack pathways. The
attack can follow a large number of pathways even for this simple single-chain attack graph
shown here, depending on the attacker and defender actions. These actions are determined by the
attacker and defender strategies, described below.
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0.4.2. Attacker strategy
The attacker strategy is composed of active components that are relevant to the interaction with
the defender systems and in preparatory components that are relevant as a reflection of the
attacker background and other capabilities available for the attack. We treat these background and
prepared capabilities as static during the attack and use only information on active components of
the strategy in the game analysis.

Additionally, we represent the attacker strategy as two components operating at different time
scales: 1) the attack campaign that consists of a number of sequentially executed attacks; and 2)
single attack execution strategy.

The purpose of introducing an attack campaign is two-fold: to represent attackers who may
attempt multiple attempts at getting into a particular system; and 2) to enable representation of the
attack difficulty via the analysis of the corresponding stochastic process and to allow certain
parameters of such process, as steady state distribution, expected time to success, etc. to be
interpreted as attack metrics. As a part of the attack campaign, the attacker sends emails at certain
intervals, determined by their strategy. The emails spread over time to decrease the chance of
being noticed by the IDS system of the target organization. We assume that the attacker sends just
one email at any given time to avoid detection.

We consider here an “eager” attacker strategy, defined in [28] as the attacker starting at the next
attack step as soon as all the preconditions are satisfied.

0.4.3. Defender Strategy
The defender runs an IDS (Intrusion Detection System) that attempts detecting malicious activity.
The specific tools and techniques used by the defender affect the probability of detection at
different stages of the attack. These probabilities are also affected by the structure of defender
networks and the attacker capabilities. Changes to the structure and operation of the Enterprise
and the ICS networks, such as segmenting the network, can be deployed as mitigations to
decrease the attack effectiveness or impacts.

If detection occurs, the defender can roll back some or all of the attacker success. In this paper,
we assume that detection of the attack at any stage terminates and completely disrupts that
particular attack, and as the result the attacker moves back to the “Start” step of the attack.
Relaxing this assumption and allowing the attacker to persist at previous steps of the attack will
not change the analysis methodology but requires a more extensive data gathering effort.

If the detection does not occur, there are two other possible outcomes: the attacker may succeed
or may stay at the same step. Specifying all such probabilities under the Markov assumption that
only the current state affects the probability distribution of the future states gives rise to a Markov
transitions matrix. This matrix can be represented as a graph showing the transition probabilities
between the states. We will call this graph a (Markov) Transition Diagram. An example Markov
Transition Diagram, along with the transition probabilities, is displayed in 0-3.

The structure of the Markov chain is the result of the event probabilities in the underlying
GPLADD model and of the attacker and defender strategies and capabilities. Its calculation is
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Figure 0-3. A Markov chain representation of notional attack.
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described in the following section 0.4.4.

0.4.4. Markov Chain Representation

This is a description of the first method for inferring the attack success parameters:

• We introduce a fixed time step duration for all attack steps, δ t. This duration does not need
to be the same for different attack steps. It is assumed to be the same for all attack steps for
simplicity.

• We introduce a set of detection probabilities associated with each step in the attack graph.
These probabilities are dependent on the time step duration. We also refer to them as
time-to-detection probabilities to reflect that the longer the attacker spends on a particular
step, the larger the detection probability will be.

• We interpret detections as giving the defender the ability to disrupt the attack and to send
the attacker to the very first step or to one of the preceding steps in the attack.

• Attacker success for each step means moving to the next step and avoiding detection.

• The attacker may also stay at the same step of the attack in multiple time steps, if they did
not succeed in executing the methods required to getting to the next attack step and at the
same time has not been detected.

• Therefore, each step has success (moving to the next step and not getting detected), failure
(detection), and stay-in-place probabilities. The stay-in-place probability is not addressed in
the MITRE ATT&CK Evaluations in this paper.

The Markov chain representation is then inferred from the time-to-success distributions and
attacker and defender strategies.

The raw probability of success for each attack step is calculated by integrating the corresponding
time-to-success distribution f (t) for each step starting at zero and with the corresponding time
step duration as the upper bound. The effective probability of success for an attack step is
calculated as the raw probability of success times the probability that detection did not occur,
under assumption that success and detection are independent random variables.

The time-to-success distribution parameters are based on the SME Evaluations and published
research. For example, according to [41], about 30% of phishing emails are opened by their
targets. The [41] also describes certain attack success parameters dependence on the attack
technique used. This and other information have been incorporated into the attack
representation.

In this method, the probability of detection is based on SME information and in some cases on the
parameters inferred from published research.

There is also a probability that the attacker will not be detected and will not be able to complete
an attack step. This is calculated as one minus the detection and effective success probabilities for
the corresponding time step.
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This and the approach described above based on the ATT&CK Evaluations data allow creating a
Markov chain representation with the states of the Markov chain based on nodes in ψ .

A somewhat different method for creating a Markov chain representation for an attacker defender
interaction can be found in [6].

We have created a Markov transition matrix based on this method and populated it with
transitions probabilities with the δ t = 1hr. This transition matrix is shown in the Table 0-1.

Table 0-1. The Markov process transition matrix showing the
transition probability for each attack step. The transition prob-
abilities were inferred from the available literature and/or based
on subject matter expert opinions. The time step for which the
probabilities were evaluated is 1 hour.

Step
1 2 3 4 5 6 7 8 9

1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.05 0.0 0.95 0.0 0.0 0.0 0.0 0.0 0.0
3 0.65 0.0 0.13 0.22 0.0 0.0 0.0 0.0 0.0
4 0.25 0.0 0.0 0.0 0.75 0.0 0.0 0.0 0.0
5 0.25 0.0 0.0 0.0 0.28 0.47 0.0 0.0 0.0
6 0.05 0.0 0.0 0.0 0.0 0.0 0.95 0.0 0.0
7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0
8 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.18 0.32
9 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.95

At this point, they should be treated as rough approximations for three reasons: 1) they are based
on the available data and SME opinion about such probabilities in general and as such can only
reflect the averages describing the current and recent state of practice in cyber security; 2) they
vary significantly between different defender capabilities as shown in the Section 0.4.6.1; 3) they
can change with improvements in defensive or offensive capabilities. Certain parameters can also
be informed in the future by cyber and emulation-based experimentation and refined with
uncertainty quantification.

0.4.5. Attack Metrics Sensitivity to Defender Resource Allocation
and Opportunities for the Defender Strategy Optimization

Our primary goal on this stage of the analysis is to illustrate the ability to use the Markov chain
representation of GPLADD games to calculate the attack success metrics and the defender ability
to allocate their resources to degrade the attack success metrics.

We show that the defender effort at different parts of his system has substantially different effect
on the attack success metrics, on the transitions and the structure of the Markov graph
representing the attack, and on the overall attack difficulty. We show that the defender can change
the attack transition graph by changing his strategy.
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Figure 0-4. A simulation of attack state over time.

This analysis can assist in success metrics quantification, representing the attack dynamics, attack
ranking, identification of improvements to defender system, ranking the improvements,
improving defender responses and strategies, system hardening, and mitigations.

We start with representation of the attack dynamics over time. Figure 0-4 shows an example of
simulated time dynamics of an attack, where the attack succeeded sometime before the time step
200, and then was subsequently detected sometime after time step 400, thus allowing the attacker
at least 200 time steps to execute either a single, or a set of coordinated attacks. Unlike the
fraction of the time the attack spends in the “Ready” state, which is based on the steady state of
the Markov process, this plot illustrates a single realization of the attack, that may differ between
different realizations. In the realization shown here, the attacker spends a lot of time at the steps 1
- 3 of the attack, and only occasionally reaches the steps 4, 5, 6, and 8, only to be quickly
dislodged from there. When the attacker finally reaches the step 9 “Ready”, he stays there for a
while, because of the low detection probability in that state.

Figure 0-5 shows the distribution of the attack first passage time to the “Ready” state. The
distribution of the first passage time to the “Ready” or other states reflects the attack expected
progression speed and improve the defender policies.

The time shown on the X-axis is effectively the number of steps in all the attacks done as a part of
the attack campaign until success. If a successful attack campaign for a linear attack graph, such
as our notional attack, has more steps than the attack graph, it means that one or more of the
attacks have failed, and the attacker had to restart the attacks.

Given enough time and an opportunity to conduct the attack campaign even when a set of attacks
in the campaign have been disrupted, the attacker eventually succeeds with high probability in
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Figure 0-5. The distribution of the time of the first passage to the
“Ready” state.

this example.

On the other hand, the probability of the attack succeeding undetected (in the case of the notional
attack this means succeeding in 9 steps) is small, perhaps in the neighborhood of 4%.

Figure 0-6 shows how the fraction of time the attack spends in the “Ready” state is affected by the
improved detection at specific stages of an attack. One clear implication is that from the
cost-benefit point of view, it is best to detect the attack at the last, “Ready”, state. The intuition for
this result is very simple: given that the attack spends most time in the “Ready” state and little
time in any other state, the chances of detecting attack in other states are low, given that most of
the time there is nothing to detect there. However, this may not be optimal from the
risk-minimization point of view, because if detection at the “Ready” state fails, then there are no
other options available for the defender to stop the attack. The ability to quantify the effects of
improvements in detection corresponding to different steps in the attack, allows the defender to
improve their resource allocation and can be used as an input for the defender strategy
optimization.

We also observe here that making a single step in the attack difficult generally does not have a
strong effect on the fraction of the time the Markov chain steady state distribution assigns to the
“Ready” state, because once that difficult step is passed, there is nothing else that stops the attack
from succeeding and we conjecture that changing the defender system so that there are more ways
in which the attack may fail or be pushed back to one of the earlier stages may be an effective
heuristic for defender optimization.
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Figure 0-6. Declines in the attack time spent in the “Ready” state
vs. investments corresponding to detection at specific stages
of an attack.

0.4.6. Attack Metrics Comparisons for Different Defender
Capabilities

MITRE ATT&CK R© is an industry-standard framework that captures adversary behaviors as they
have been observed, and publicly reported, in real world attacks and intrusion campaigns. This
framework, and the underlying cyber threat intelligence, informed the MITRE ATT&CK R©

Evaluations (Evaluations). The Evaluations team built a test plan that emulated the cyber
intrusion steps demonstrated by a known threat actor, APT3 or Gothic Panda. The emulated
scenario was then tested against Endpoint Detection and Response (EDR) products of companies
interested in demonstrating their product’s detection capabilities. The released results represent a
set of data that can be leveraged to estimate attacker success in similar scenarios or in scenarios
that use techniques tested during the Evaluations.

0.4.6.1. Markov Process Parameter Inference from MITRE ATT&CK Evaluations

Many steps in the previous GPLADD scenario could be directly mapped to techniques tested in
the Evaluations. In this new work, we leveraged Evaluations data to approximate probabilities of
detection to inform the Markov chain simulations of GPLADD models. To calculate these
probabilities, each step of the scenario in our prior work was mapped to a step in the Evaluations
test plan, as outlined in Table 0-2. In the Evaluations, each step of the test plan was made up of
sub-steps that tested detection for one ATT&CK Technique. Because our scenario steps more
closely aligned with the test plan steps, rather than the sub-steps, we calculated probability of
detection for a step as the ceiling of the probabilities of its sub-steps. Probabilities of detection for
a sub-step were considered to be the number of detections (detailed below) by unique vendors
divided by the total number of vendors (twelve) who participated in the Evaluations.
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In the real world, detection depends on the tools and capabilities of the defenders. We tried to
capture that dependency by using the “detection categories” defined in the Evaluations and
mapping them to a level of defender. The mapping was based on the level of ambiguity that
human defenders would be required to deal with. The three ATT&CK Evaluations categories
used in defender capabilities were Indicator of Compromise (IOC), Specific Alert, and General
Alert. IOCs provide the highest level of confidence that a system artifact is malicious, as it has
been previously identified and labeled as such. Accordingly, the capability to recognize a threat
using IOCs requires the lowest investment in defender skills and tools. Specific Alerts signal high
confidence that activity or artifacts are malicious, but they may still require investigation by a
more skilled defensive team. General Alerts are the most ambiguous of the alert categories, and
thus require the most defender expertise when determining malicious activity or artifacts. These
defender parameters are summarized in the Table 0.4.6.1.

Table 0-2. Detection and Defender Capabilities
Defender Name Level of Ambiguity Detection Categories
Blue 0 None IOC
Blue 1 Medium IOC,

Specific Alerts
Blue 2 Most IOC, Specific Alerts,

General Alerts

Each level of defender capability increases the ability to deal with ambiguity, as outlined by the
table. Probabilities of detection were calculated, as detailed above, for each of the three detection
categories. For a particular level of defender, their overall probability of detection was determined
by the ceiling of the probabilities of detection for their relevant detection categories.

We have further considered the two versions of the APT3 attack: 1 and 2 as outlined in the table.
Taking some steps from each variation of APT 3 as emulated by the Evaluations team allowed us
to create two unique scenarios that mapped to the GPLADD (notional attack) index. Additional
information on the MITRE ATT&CK chains specification and representation can be found in
[10].

Applying the methodology described above gives us the probabilities of detection associated with
each step for each defender type and each attack variant, as represented in the Table 0-4. We will
refer to the combination of defender type and attack variant as Evaluations.

0.4.6.2. Defender Performance Analysis

We compare and contrast here the attack results analysis for the three kinds of defender and two
kinds of attacks described in section 0.4.6.1 and specified in the Table 0-4, designated as
Evaluations B10 . . . B22.

Our primary inferences from this analysis are three-fold: 1) we conclude that even state of the art
capabilities available on the market at the time of the original Evaluations, may not be able to
prevent certain APT threats from succeeding; 2) there is significant variation in outcomes
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Table 0-3. Attack Chains used in the analysis.
GPLADD Index Attack Chain 1 Steps Attack Chain 2 Steps
Start
Deliver Email
Follow Link
Execute Implant/Malware 1.A.1 11.A.1
Obtain Password 15.B.1 5.A.1
Message Back (C2) 1.C.1 11.B.1
Move to Engineering Workstation 6.C.1 16.E.1
Find RTU 4.A.1 13.A.1
Ready 7.C.1 17.C.1

Table 0-4. Detection probability by attack step for each evalu-
ation (E). First number after B is the attack variant (1, 2) and
second number is the defender type (0, 1, 2).

E Step
1 2 3 4 5 6 7 8 9

B10 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.0 0.0
B11 0.0 0.0 0.0 0.58 0.08 0.17 0.0 0.0 0.67
B12 0.0 0.0 0.0 0.58 0.08 0.17 0.17 0.25 0.67
B20 0.0 0.0 0.0 0.17 0.0 0.08 0.0 0.0 0.0
B21 0.0 0.0 0.0 0.75 0.5 0.17 0.0 0.0 0.42
B22 0.0 0.0 0.0 0.75 0.5 0.17 0.08 0.42 0.42

between defenders of different capabilities and outcomes; 3) the ability to increase the difficulty
of the attack at a single step is insufficient to make the overall attack difficult. Rather, resource
allocation must be optimized across the enterprise based on data corresponding to different steps
in possible attacks.

We have analyzed the Markov chains corresponding to detection probabilities in the Table 0-4.
Figures 0-7 - 0-9 show how the ability to detect the attacker at different steps in the attack changes
the structure of the corresponding Transition Diagram. Qualitatively, the results for the attack
variants 1 and 2 are very similar, so we describe here the analysis for the attack variant 2.

Figure 0-7 shows the transition diagram for evaluation B20 from Table 0-2.

It is clear that in evaluation B20 the defender, B0, is not very capable, because they are able to
detect and disrupt the attack only at the earlier attack stages; once the attacker succeeds at the step
6, there is no chance of detecting and arresting the attacker progress anymore.

Figures 0-8 and 0-9 show defenders with improving capabilities. In Evaluation B21 (0-8), the
defender B1 is better able to detect and respond to threats than defender B0. This is reflected in
the fact that the transitions diagram for B21 has more ways that B1 can disrupt the attack than
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Figure 0-7. The transition diagram for Defender B0 and Evalua-
tion B20 from Table 0-2.

Figure 0-8. The transition diagram for evaluation B21 for de-
fender B1.

B20.

Defender B2 (Figure 0-9) has the best capability of all three. They are able to roll back the
attacker progress at most steps in the attack.

Understanding of the attack progress can be improved by augmenting it with the quantitative
attack success parameters. Given the corresponding Markov chain transition probabilities, we can
calculate the steady state of the Markov chain and a measure of the time-to-success distribution.
We define the time-to-success distribution as distribution of the first time the attacker reaches the
“Ready” node.

We first analyze the steady state distributions corresponding to the Evaluations B20 - B22 and see
that they paint even more drastic difference between the defenders B0, B1, and B2.

B0 effectively has no defense against the attack - the steady state distribution as shown in Figure
0-10 has all its weight on the “Ready” state. This can be interpreted as a reflection of the fact that
if the attacker is able to repeat their campaign until step 6 succeeds, the defender has no ability to
revert that outcome, unless the defender rebuilds his system from scratch (this option is not
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Figure 0-9. The transition diagram for evaluation B22 for de-
fender B2.

considered in this analysis).

This result is consistent with the transition graph shown in the Figure 0-8.

When we look at the improved defender capabilities for defenders B1 (0-11) and B2 (0-12), we
see vastly different steady state distributions. In Figure 0-12, it is the attacker who appears to be a
a significant disadvantage.

It is also notable that while Figures 0-11 and 0-12 look similar, the attacker performance at the
“Ready” state is noticeably worse in Figure 0-12 with about 2% of the time allocated to the
“Ready” state as compared to about 5% of time at the “Ready” state in Figure 0-11 . This
difference is due to the fact that the defender B1 cannot detect the attacker at stages 7 and 8. It is
also a result of weak detection capabilities at stages 7 and 8 (8% and 42% respectively) for
defender B2. Whether the difference between 5% vs. 2% in “Ready”state is material would be
determined by the defender preferences, cost difference between B1 and B2 capabilities, and the
nature of the system the defender is protecting.

When looking at the steady state distributions, it is also important to understand whether they are
operationally relevant, because the convergence time to steady state may be long. To investigate
that aspect of the notional APT3 attack, we calculated the “time-to-success”distribution defined
as the time of the first passage to the “Ready” state. These distributions are shown in Figures 0-13
- 0-15. The times to success shown here are somewhat notional. A key component of the time is
to allow artifacts generated by the adversary behaviors to register in the necessary logs that seed
defensive information analysis capabilities. The time required for information to percolate from
logging to analysis can also vary widely between defenders, but we did not have data to
incorporate this variability into our analysis. Despite this limitation of the analysis, we believe
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Figure 0-10. The Markov chain steady state distribution for eval-
uation B10 and defender B0.
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Figure 0-11. The Markov chain steady state distribution for the
evaluation B21 and defender B1.
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Figure 0-12. The Markov chain steady state distribution for eval-
uation B12 and defender B2.

these distributions are still informative for defender decision making, because of substantial
differences in the shape of the distributions.

In evaluation B20 (Figure 0-13), defender B0 is largely unable to stop the attacker progress: about
80% of the time the attacker succeeds completely unimpeded.

The improved defender B1 (0-14) and B2 (0-15) capabilities result in substantially better
outcomes and time-to-success distributions that are more favorable to the defender.

We see that in the evaluation B21, the attacker succeeds unimpeded with a probability of only
about 10% and in the evaluation B22, this probability further drops to about 6%.

Given appropriate timing information, the same technique for quantifying the time-to-success
distribution for the attack that starts at step 1 can be applied to estimating the attacker progress as
a conditional distribution given a delayed detection at a different particular step of the attack. The
likely progress the attacker has made between an attacker’s action (reflected in logs) and detection
by defender (an actionable alert) can then be estimated by applying the attack state at the
action/logging time to the corresponding Markov process transition diagram. This generates the
distribution of possible states at the detection time and can help direct either automated or manual
response.

We also would like to highlight another, less immediately obvious implication from our analysis
that emphasizes the need for defenders to optimize resource allocation between different attack
steps (in real world, this would roughly correlate to investing resources in detection of a variety of
TTPs from the ATT&CK framework). If we compare Evaluations B12 and B22 by looking at the
Table 0-4, it is not immediately clear which one would give better outcomes to the defender. The
set of steps with positive detection probabilities is the same for both Evaluations, but the detection
probabilities themselves are different between B12 and B22. In some cases, B12 has a higher
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Figure 0-13. The time to success for evaluation B20 and de-
fender B0.
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Figure 0-14. The time to success for the evaluation B21 and de-
fender B1.
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Figure 0-15. The time to success for the evaluation B22 and de-
fender B2.

probability of detection vs. B22: in step 7 and especially in step 9 with 67% detection probability
vs. 42% for evaluation B22.In other steps, e.g. 4 and 8, the detection probability for B12 is lower
than for B22. This can be interpreted as B2 allocating more resources to detection on steps 7 and
9 of attack chain 1 and the same defender B2 allocating more resources to steps 4 and 8 for attack
chain 2. We can not say a priori which allocation is better, but we can use the time-to-success
distribution to investigate the differences between the outcomes defender B2 achieves against
attack chains 1 and 2 represented respectively in Evaluations B12 (Figure 0-15) and B22 (Figure
0-16). We see that even though the evaluation B12 provides the defender with a much better
opportunity to detect the attacker at “Ready” (step 9), this alone is insufficient to degrade the
attacker success.

In particular, we see that the attacker succeeds very quickly with probability of about 20% in
evaluation B12 and with probability of only about 6% in evaluation B22. This means that
optimized effort allocation by defenders (B2 in this case) across different parts of their system
may be more important than making a single step substantially more difficult. This result also
supports the need to look at the whole defender system in the context of possible attacks and
allocate the resources across multiple opportunities for attack disruption, rather than rely on a
single robust defense.

We also note that more advanced defenders, B1 and B2, exhibit non-monotonic time-to-success
distributions where relatively high values alternate with relatively low values, giving an
appearance of a mixture of distributions. We believe this is because the probability of all possible
pathways to attack success that have the same length does not need to be a monotonically
decreasing function of the pathway length but leave the exploration of this phenomenon to the
future work.
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Figure 0-16. The time to success for the evaluation B12 and de-
fender B2.

0.5. CONCLUSIONS

We developed a model and a method for explicit quantification of attack success parameters and
costs based on individual attack steps difficulty and detection probabilities. Our approach started
with explicit characterization of the attack success conditions and attacker and defender
strategies, and it used Markov chain representation to generate attack success metrics including
the “Ready” residence time, time-to-success distribution, and steady state distribution.

This allowed evaluating tradeoffs between defender actions, such as detection efforts at different
parts of the system and at different steps of the attack. For a real-world defender, these differences
might look like the tradeoff between investing in tools to alert on a larger variety of TTPs or
investing in training for the team analyzing the alerts to recognize more subtle signs of adversary
actions. These metrics can be used to allocate resources between detection on different parts of
the system and optimize the defender policy against an attack or a set of attacks. These metrics
can also inform cyber or emulation-based experiments.

We used the MITRE ATT&CK R© vendor Evaluations APT3 data to quantify attacks success
parameters and difficulty. We showed that performance of different defender models against
APT3 notional attack varied greatly and could mean the difference in the attacker always
achieving their objectives vs. the attacker spending the most of their time trying to regain a
foothold in the system and rarely accomplishing their objectives.

We showed that changes to the defender resource allocation and detection capabilities on different
steps of the attack affected the attack success metrics, potentially in a non-intuitive fashion, and
compared such metrics for defenders with different capabilities.

We showed that the defender detection expenditures corresponding to different stages of the
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attack or attacker TTPs have substantially different effects on the attack success parameters and
different returns on defender investments. This strengthens the need to look at the whole defender
system in the context of possible attacks and allocate the resources across multiple opportunities
for attack disruption, rather than rely on a single robust defense.

This approach can be applied to a large set of attacks, including other attacks and attacker
capabilities documented in the MITRE ATT&CK Framework. The resulting attack metrics
assessment can be used to develop or improve the defender policy for a given system, or to
change the system if necessary to achieve cybersecurity risk reduction or other defender
objectives. In addition to MITRE ATT&CK Evaluations data, this approach can use similar data
derived from cyber experimentation in emulated environments and other empirical methods. The
analysis in this paper can also allow identifying the parameters whose uncertainty has the greatest
effect on attack success metrics and therefore guide the emulation experiments or other data
collection efforts.

35



REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan detection using ic
fingerprinting,. In Proc. IEEE Symp. Security Privacy, pages 296–310, 2007.
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