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ABSTRACT

This report investigates the use of unsupervised probabilistic learning techniques for the analysis
of hypersonic trajectories. The algorithm first extracts the intrinsic structure in the data via a
diffusion map approach. Using the diffusion coordinates on the graph of training samples, the
probabilistic framework augments the original data with samples that are statistically consistent
with the original set. The augmented samples are then used to construct conditional statistics that
are ultimately assembled in a path-planing algorithm. In this framework the controls are
determined stage by stage during the flight to adapt to changing mission objectives in real-time. A
3DOF model was employed to generate optimal hypersonic trajectories that comprise the training
datasets. The diffusion map algorithm identified that data resides on manifolds of much lower
dimensionality compared to the high-dimensional state space that describes each trajectory. In
addition to the path-planing workflow we also propose an algorithm that utilizes the diffusion
map coordinates along the manifold to label and possibly remove outlier samples from the
training data. This algorithm can be used to both identify edge cases for further analysis as well
as to remove them from the training set to create a more robust set of samples to be used for the
path-planing process.
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1. INTRODUCTION

Real-time trajectory optimization for hypersonic vehicles is a difficult task that requires
simultaneous accounting for constraints related to flight dynamics, vehicle limitations during
flight, variable initial and terminal conditions, and a high-dimensional parameter set for the
models employed for these systems. Existing approaches to hypersonic trajectory optimization
problems can be generalized into two categories: indirect methods and direct methods [2]. The
indirect methods are based on the Pontryagin’s minimum principle and the optimal control is
determined by minimizing a Hamiltonian system with respect to the control variables. Indirect
methods can result in high-fidelity solutions through adaptive refinement techniques.
Nevertheless, because of high-dimensionality and sensitivity to the initial guess, the resulting
boundary-value problems are quite challenging to solve [14]. Direct methods discretize
trajectories into multiple segments characterized by state and control variables. The optimal
control problem is converted into a parameter optimization problem [9], which is typically solved
via nonlinear programming [3] or convex optimization methods [33, 34]. However, the
computational expense for direct methods cannot be a-priori estimated, and solution convergence
cannot always be guaranteed for hypersonic problems. Despite recent improvements in the
efficiency of both direct and indirect methods, their computational expense is high and
convergence challenges limit their adoption for onboard trajectory generation.

As a result of numerical challenges and computational cost, recent advances in flight dynamics
planning algorithms have largely focused on the identification of single trajectory solutions.
Nevertheless, during the design process, the envelope of solutions corresponding to a wide range
of trajectory constraints is often required. While the computational cost can be afforded during
off-line design and planning activities, this approach becomes infeasible when data needs to be
processed in real-time, often with limited access to large computing capabilities.

Deep learning techniques have been recently successful in a wide variety of control problems
across several research areas including aerospace, in particular for path planning of unmanned
aerial systems [35, 6] and agile flight guidance [17]. Deep learning has also found applications in
space missions planning. Deep Neural Networks (DNN) are trained on optimal state and control
vectors that come from the numerical solution of an equivalent optimal control problem (OCP).
During the training, the DNN learns a map from the state vector (e.g., position and velocity) to
the corresponding optimal control (e.g., the angle of attack and bank angle), by leveraging the
training data provided by the OCP solver. This approach reduces the problem to a supervised
learning task provided that a sufficiently large data set of optimal trajectories is available for the
problem at hand. Typical applications include the approximation of optimal state-feedback
control laws for interplanetary transfers [12] and planetary soft-landing maneuvers [31], as well
as the real-time onboard generation of a high number of optimal trajectories for either asteroid
landing [5] or atmospheric reentry of hypersonic vehicles [24, 25].

Federici et al [10] explored behavioral cloning and reinforcement learning algorithms for
real-time optimal spacecraft guidance in presence of both operational constraints and stochastic
effects, such as an inaccurate knowledge of the initial spacecraft state and the presence of random
in-flight disturbances. The performance of these models is assessed on a linear multi-impulsive
rendezvous mission. Zheng and Tsiotras [36] employed DNNs to learn the optimal feedback
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control law for online control prediction and generating near-optimal trajectories. Based on the
observation that the optimal feedback control law for the finite-time control problem is
non-stationary and also may be discontinuous, this work uses the time label as an additional state
of the dataset and introduces a clustering approach to sort the training data. Clustering divides the
offline trajectories into groups, and a separate DNN model is trained for each group. This
approach generates near-optimal trajectories that steer a system from any initial state inside a
specific group based on the DNN consistent with the corresponding training data. The training
data generation and DNN training are done offline thus the online computation is minimized. The
algorithm has been tested on several systems including a vehicle entry model. In all studies
referenced above, the DNN typically requires O(104−105) or more samples to train.

To address the high-dimensionality and computational cost challenges, we propose an
unsupervised probabilistic learning framework, employing diffusion maps [7]. This framework
assimilates the solution space of flight dynamics model inputs and outputs and both (a) identifies
underlying low-dimensional manifolds, and (b) provides a stochastic differential equation model
that can efficiently generate many sample trajectories on these manifolds that are probabilistically
consistent with the training data. We assemble these techniques into a probabilistic learning
framework where trajectories are proposed autonomously, and solution candidates can be used to
evaluate risk measures associated with flight conditions that exhibit low probabilities. The
diffusion map (DMAP) algorithm will assimilate computed samples adaptively until the basis sets
describing the low-dimensional manifolds converge, for a given set of trajectory constraints.
Then, in this joint and low-dimensional space, the algorithm will generate solution paths with
limited computational resources. These trajectories will be equipped with uncertainty ranges that
are consistent with the amount of (or lack of) data.

This report is organized as follows. Section 2 presents the modeling framework for this work,
including the 3DOF trajectory model and the optimal control algorithm. Section 4 presents the
unsupervised probabilistic learning approach, followed by the results in Section 5. The report
ends with conclusions in Section 6 and appendices presenting the continuation schedule for the
OCP, in Appendix A and the atmospheric density model in Appendix B.

2. MODELING FRAMEWORK

2.1. Trajectory Model

For this study, we consider a three-degree-of-freedom (3DOF) model [4] to describe the re-entry
trajectory of a hypersonic vehicle assumed as a point of mass inside a planetary atmosphere.
Further, we assume a spherical planet model with the distance from the planet center to the
vehicle location given by r = re +h, where re is the planet radius and h is the altitude from the
planet surface to the vehicle position. The three kinematic equations for the vehicle altitude h,
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longitude θ, and latitude φ are given by

dh
dt

= vsin(γ) (1)

dθ

dt
= v

cos(γ)cos(ψ)
r cos(φ)

(2)

dφ

dt
= v

cos(γ)sin(ψ)
r

(3)

In the results presented in this report, we will use the longitude/latitude coordinates
interchangeably with downrange/crossrange coordinates by conversion from angles to spatial
coordinates projected onto the planet surface. The vehicle velocity vector v relative to the planet
is expressed in terms of its magnitude v and two angles: the flight path angle γ between the
velocity vector and the local horizontal plane and heading angle ψ between the projection of v on
the horizontal plane and the local latitude parallel. The force equations for these components are
given by

dv
dt

=
1
m

FT −
µsin(γ)

r2 (4)

dγ

dt
=

FN

m
cos(σ)

v
− µ

r2v
cos(γ)+

v
r

cos(γ) (5)

dψ

dt
=

FN

m
sin(σ)

vcos(γ)
− v

r
cos(γ)cos(ψ) tan(φ). (6)

Here m is the mass of the vehicle, µ = 3.986×1014 m3/s2 is the gravitational parameter, and
(FT ,FN) are the the components of the aerodynamic and propulsive forces along and
perpendicular to the velocity vector. This work pertains to non-thrusting flights resulting in

FT =−D, FN = L (7)

where D and L are the aerodynamic drag and lift forces, respectively. The bank angle σ in Eqs. (5)
and (6) accounts for the angle between the direction of the lift force L and the (r,v) plane formed
by the vector from the center of the planet to the vehicle location and the velocity vector.

For the remainder of this report the location and velocity components are grouped into a state
vector denoted by xxx = {h,θ,φ,v,γ,ψ}. The angle of attack and the bank angle are grouped into
the control vector denoted by uuu = {α,σ}, and the 3DOF model can be written as ẋxx = fff (xxx,uuu)
where fff is the right hand side of Eqs. (1-6).

2.2. Vehicle Model

For this study the vehicle model is a blunt cone with mass m = 350 kg, reference area
Are f = π×0.3052m̃2, and nose radius rn = 0.0254 m [27]. The lift and drag coefficients are given
by

Cl(α) = c0 α Cd(α) = c1 α
2 + c2. (8)
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where α is the angle of attack (in radians). For the lift coefficient, the slope is set to c0 = 1.5658.
We will explore two sets of trajectories in this report. For the 1st set, the drag coefficient is
independent of altitude and the model parameters are given by c1 = 1.6537 and c2 = 0.0612. For
the 2nd set the drag coefficient depends on the altitude through the Knudsen number (Kn) defined
as the ratio between the atmospheric particle mean free path and the characteristic flowfield
dimension. For this work, the Kn number becomes [23]

Kn = mp
/(√

2πσ
2
prbρ

)
(9)

where mp is the particle mass, σp is the particle reference diameter, and rb is the vehicle base
radius. The particle mass is determined from the molecular weight of the air as mp = Ma/Na,
where Ma = 28.9kg/kmol (up to an altitude of 100 km), and Na is Avogadro’s number. The Kn
number is a function of altitude through the atmospheric density (see App. B for more details on
the density models).

We assume a hyperbolic tangent model for the Cd as a function of Kn:

Cd =C(l)
d +

1
2
[1+ tanh(.95+0.41258∗ log Kn)] (C(h)

d −C(l)
d ). (10)

The superscripts l and h refer to the drag coefficient expressions for low and high altitudes,
respectively. For the low altitude end, C(l)

d , the drag coefficient employs the same constants’
values as above. For the high altitude range the coefficient of drag was set much higher than the
low altitide values, C(h)

d = 4×C(l)
d , to illustrate the impact of model fidelities on the probabilistic

learning model. The variation of Kn number with altitude, in Fig. 2-1, mimics the atmospheric
density altitude dependence through the Kn number. This results in a transition between lower
coefficient of drag values at lower altitudes to higher values starting around 45–50 km, shown in
the right frame of Fig. 2-1.
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Figure 2-1 (Left Frame) Kn number dependence on altitude and (Right Frame) Coeffi-
cient of drag dependence on altitude.

The lift and drag forces are functions of the angle of attack, altitude, and velocity magnitude, and
are computed as

L = 0.5ρ(h)v2Cl(α)Are f , D = 0.5ρ(h)v2Cd(α)Are f (11)
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where Are f is the reference area of the vehicle, assumed independent of the angle of attack. For
this study we considered a circular reference area with a radius of 0.305 m. The atmospheric
density was approximated with an exponential dependence on height using both 1st- and 5th-order
polynomials as arguments for the exponential dependency. Appendix B presents more details
about the atmospheric density models.

2.3. Optimal Control Problem

We construct a variational problem to generate trajectories based on the models presented in § 2.1
and § 2.2. For the dependent state vector xxx, the variational problem seeks a time dependent
angle-of-attack α and bank angle σ that maximizes the magnitude of the terminal velocity vT at
the desired endpoint given by ΨΨΨ(xxx(t f ), t f ) : R6×R1 7→ R3 while satisfying the 3DOF model
ẋxx = fff (xxx,uuu, t). Additionally, the initial location of the vehicle is fixed with the initial constraint
function ΦΦΦ : R6×R1 7→ R6. In the case of ΨΨΨ, we have the vector-valued function

ΨΨΨ(xxx(t), t) =

h(t)−h f

θ(t)−θ f

φ(t)−φ f

 (12)

The initial constraint function ΦΦΦ is defined similarly with (h0,θ0,φ0,v0,γ0,ψ0) such that
ΦΦΦ(xxx(t), t)− xxx0 = 000. Finally, the control vector uuu is restricted to the set of admissible controls U.
The free-final time variational problem is posed as

min
uuu(t)

J =
∫ t f

t0
0dt− v2

f

Subject to: ẋxx = fff (xxx,uuu, t)
ΦΦΦ(xxx(t0), t0) = 000
ΨΨΨ(xxx(t f ), t f ) = 000

uuu ∈ U

(13)

In the objective function above, we included an integral term that is identically 0 to be consistent
with the Lagrange multiplier integral described below. We employ the beluga framework [27] to
solve the variational problem posed in Eq. (13) using indirect methods [16]. This process is
succinctly described here for completeness and in more detail in Ref. [28]. First, the initial,
terminal, and dynamic path constraints are adjoined to the cost functional with Lagrange
multipliers ξξξ0, ξξξ f and λλλ.

min
uuu(t)

J∗ =
∫ t f

t0
λλλ

T ( fff − ẋxx)dt +ξξξ
T
0 ΦΦΦ+ξξξ

T
f Ψ− v2

f (14)

Next, the control Hamiltonian, H ≡ λλλ
T fff , is substituted for convenience and the Euler-Lagrange

operator E is defined as

E=
∂

∂yyy
− d

dt
∂

∂ẏyy
(15)
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where yyy = (xxx,uuu,λλλ). Application of the Euler-Lagrange operator and integrating by parts solves
the original variational problem. In beluga this map is constructed using symbolic manipulation
with SymPy [22]. The result is an analytical solution in the form of a Hamiltonian Boundary
Value Problem (HBVP),

ẋxx =
∂H
∂λλλ

, λ̇λλ =−∂H
∂xxx

, 0 =
∂H
∂uuu

λλλ(t0) =−ξξξ
T
0

∂ΦΦΦ

∂xxx
, λλλ(t f ) = ξξξ

T
f

∂ΨΨΨ

∂xxx
−2v f , H(t f ) = 0

ΦΦΦ(xxx(t0), t0) = 0, ΨΨΨ(xxx(t f ), t f ) = 0

(16)

The first three terms in Eq. (16) define the equations-of-motion in a Hamiltonian dynamical
system while the latter five terms define values at the boundaries. From this, approximate
solutions to Eq. (13) may be found indirectly by numerically solving Eq. (16). For more details
regarding the numerical solution of this system see Refs. [13, 28].

3. TRAJECTORY DATA

For this study we consider hypersonic trajectories generated using the model choices presented in
§ 2.1. Some of the model parameters will be treated as random variables resulting in a number of
trajectories corresponding to individual choices for these parameters. Specifically, the initial
altitude, h0, velocity magnitude v0, longitude θ0, latitude φ0, were sampled from uniform
distributions, with ranges presented in Table 3-1. The constant H present in the lower fidelity
atmospheric density model will also treated as a uniform random variable. The initial flight path
and heading angles will be fixed to γ0 = ψ0 = 0, i.e. trajectories start in a horizontal plane, along
the local latitude parallel. The terminal (or final) altitude h f = 0 was also fixed for all data
presented in this report.

We generated two trajectory datasets for this study. The first set employs an exponential density
model with a 1st-order polynomial dependence on height. This dataset is described in §3.1. The
second trajectory dataset, described in §3.2, consists of a matrix of runs that will be used to
explore the impact of atmospheric density models (described in Appendix B) as well as the
impact of Kn number on the trajectory data.

3.1. Single fidelity dataset

Table 3-1 provides ranges for the initial altitude h0, longitude θ0, latitude φ0, velocity v0, and
density model scale parameter H. The terminal location for all trajectories was fixed to θ f = 3◦,
φ f = 2◦. In addition to the parameters shown in Table 3-1, the computational model also includes
a set of path constraints, resulting in trajectories that avoid regions centered around the two circles
shown in the left frame of Fig. 3-1. The intensity of these constraints is controlled by an
additional parameter, δ. When setting δ = 0, the path constraints are not activated, resulting in a
set of trajectories depicted in gray in Fig. 3-1. The optimization framework uses a numerical
continuation algorithm to increase the strength of path constraint expressions, resulting in the end
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Table 3-1 Parameter ranges for the uniform random variables that control the trajec-
tory dataset #1 .

Parameter
h0 [m] θ0[deg] φ0 [deg] v0 [m/s] H [m]

min 38×103 −0.3 −0.3 2000 7000
max 45×103 0.3 0.3 2200 8000

in the trajectory samples shown in blue and red, respectively. These samples correspond to the
same value, δ = 400, and are colored according their topology: the blue samples correspond to
paths that go in between the two regions while the red samples avoid these regions and stay on the
left side.

For this study, we employed 1,100 samples based on parameter choices drawn from the uniform
distributions presented in Table 3-1. For each sample, we generated 41 trajectories corresponding
to equally spaced δ values between δ = 0 and δ = 400.

Figure 3-1 Sample trajectory data. The left frame shows the downrange/crossrange
solution components and the right frame shows velocity/height components. The
samples shown in gray represent the unconstrained components while the red/blue
samples correspond to the maximum path constraint condition, δ = 400.

For each parameter sample, the time-dependent values for the state vector (location and velocity
components) and the control variables (angle of attack and bank angle) are interpolated on a
uniform time grid, and the corresponding solution vectors are concatenated together with the time
grid. The parameter values that control the simulation are also appended to the solution vector, in
addition to the value of path-constraint parameter δ. Each trajectory sample becomes a row in the
matrix of samples that will be processed via the algorithms presented in the next section. Since all
trajectories have the same initial conditions for the flight path and heading angles and the same
terminal location, the matrix is rank deficient if these values are included in the solution vector.
Instead, we choose a time grid that starts at 1% and ends at 99% of the total duration of each
trajectory.
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3.2. Multifidelity dataset

For these runs, the setup for θ0, φ0, and v0 is the same as for the previous dataset, while the range
for h0 was changed to 70–85 km. This dataset consists of 4 subsets. All subsets share the same
initial conditions. Table 3-2 describes the choice of models for the atmospheric density and Kn
number on/off switch that generate different levels of model fidelity for these subsets. The
terminal location for all trajectories in these dataset was fixed to θ f = 4◦, φ f = 3◦. Fig. 3-2 shows

Table 3-2 Choice of models for the multi-fidelity dataset.

Density
ρL ρH

K
n off RunL RunH

on RunL,Kn RunH,Kn

a subset of 50 sample pairs from RunH,Kn. Trajectories shown in gray correspond to the
unconstrained set, δ = 0, while the ones shown in blue correspond to δ = δmax = 400. For this
dataset trajectories always pass on one side of the two constrained regions.
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Figure 3-2 Sample trajectory data from RunH,Kn. The left frame shows the down-
range/crossrange solution components and the right frame shows velocity/height
components. The samples shown in gray represent the unconstrained trajecto-
ries while the blue samples correspond to the maximum path constraint condition,
δ = 400.

4. PROBABILISTIC LEARNING ON MANIFOLD

Probabilistic learning on manifolds (PLoM) is a recently developed unsupervised learning
technique for augmenting small datasets in a principled manner. An intrinsic structure is first
extracted from the initial training dataset and is subsequently used to constrain statistical sample
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generation. The intrinsic structure takes the form of diffusion coordinates on the graph of the
training dataset in its feature space, while the sample generation is in the form of a projected Itô
equation constrained to the span of these diffusion coordinates. Each additional sample is a
statistical replica of the training dataset, restricted to the same same dominant diffusion
coordinates. In this section, we next summarize this construction with the requisite technical
details for a self-contained assessment of the paper. A more complete presentation can be found
elsewhere [26].

We construe the initial, training, dataset xxxd , with N samples and n features, as a realization of a
n×N matrix-valued random variable XXX with n rows and N columns. Our objective is to generate
a new dataset xxxa, the augmented dataset, as realizations of XXX . This new dataset is then construed
as a surrogate for the joint probability density function of the n features and is used for various
statistical tasks, including the estimation of marginal and conditional density functions and for
non-parametric regression. The first step, is to de-correlate the features of XXX , through a linear
transformation HHH = µ−1/2ΦΦΦ

T (XXX− x̄xx) where µ is a diagonal matrix with the dominant ν

eigenvalues of the n×n covariance matrix of XXXm and ΦΦΦ is a n×ν matrix of the associated
eigenvectors. Also, x̄xx denotes the n×N matrix with duplicate columns that are each equal to the
average of the features over the N samples. This initial de-correlation step is a straightforward
application of the standard PCA procedure to the dataset xd .

We will denote samples of XXX by xxx and samples of HHH by ηηη. The sample of HHH associated with xxxd

will be denoted by ηηηd . Next we extract and describe an intrinsic structure from ηηηd . The first step
is to select a diffusion kernel (kε(ηηη,ηηη

′;ε) : Rn×Rn 7→ R) that will be used to define proximity
on the graph in Rn with N vertices. Here, ε is a parameter of the kernel, typically characterizing
its bandwidth. We next construct an N×N diffusion matrix KKK, from the training dataset, such that
KKKi j = k(ηηηd

i ,ηηη
d
j ). We then normalize KKK so that the sum over each of its rows is equal to 1. The

resulting stochastic matrix, PPP, can thus serve as a transition matrix for a Markov chain on the
graph. Its eigenvectors are denoted by ψψψα, α = 1, · · · ,N. Given its construction, the largest
eigenvalue of PPP is equal to 1 and the associated eigenvector is a constant. The N×m matrix
consisting of the m eigenvectors associated with the largest m eigenvalues (not counting the
largest unit eigenvalue) is denoted by ggg. It should be noted that matrix PPP is not symmetrical, and
care should therefore be taken in evaluating the associated eigenproblem. The eigenspectrum of PPP
typically exhibits a sharp, almost discontinuous, decrease after the first few eigenvalues. We
assign the index of the eigenvalue corresponding to this drop to the numerical value of m.

With the above procedure, we have now constructed a basis set, ggg, called the diffusion
coordinates, that localizes ηηηd to an m-dimensional subset in RN . We emphasize that this
localization is not in Rn, which is what the PCA usually accomplishes.

The next step in our procedure is to describe an initial representation of the joint probability
distribution of random variable HHH. This is accomplished in two steps. First, the N samples of the
n features are used to estimate the joint PDF of these features using an n-dimensional Gaussian
mixture model (KDE). Then the joint occurrence of the whole graph is assumed to be achieved
through the independent occurrence of each of its N vertices. The joint PDF model, in RN×ν, for
the whole graph is therefore the product of N joint pdfs, each defined in Rν and represented as a
KDE centered at one of the N vertices. This final representation is in the following form of the
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product of sums of Gaussian kernels,

qHHH(ηηη) =
1
N

N

∏
i=1

N

∑
j=1

1
h

k(ηηηd, j,ηηηi;ξ) , (17)

where k(ηηη,ηηη′;ξ) is a Gaussian kernel on Rn with bandwidth ξ, ηηηd, j is the value of ηηηd at the jth

vertex, and ηηηi is the value of ηηη at the ith vertex. Criteria have been developed [26] for selecting
the bandwidth ξ so as to propagate the normalization and orthogonality conditions inherited from
the PCA step described previously.

The third and final step in the PLoM procedure is to construct a generator of samples that are
constrained by the diffusion coordinates while being informed by the KDE, both of which are
synthesized directly from the data. To that end, we start with an Itô equation whose invariant
measure is the above KDE. We then restrict both the potential and the samples of this equation to
the span of the eigenvectors ggg. This is accomplished using the following stochastic differential
equation,

dZZZ(ζ) = YYY (ζ)dζ

dYYY (ζ) = L(ZZZ(ζ))dζ− 1
2

f0YYY (ζ)dζ+
√

f0dWWW (ζ),

ZZZ(0) = HHHdaaa YYY (0) = NNNaaa aaa = ggg(gggT ggg)−1 (18)

where L(ZZZ) = ∇∇∇ logq(ZZZgggT )aaa is the projected potential, NNN is a ν×N matrix whose N columns are
independent copies of a standard Gaussian vector in Rν. Further, the columns of WWW are N
independent copies of a normalized Wiener process projected on the matrix aaa.

After a brief non-stationary period in the Itô dynamics, samples of HHH are reconstructed from
samples of ZZZ as

ηηη
` = ZZZ`gggT `= 1, · · · ,nMC . (19)

Realizations of the original random variable X are then obtained by reversing the application of
the PCA on η`. These realizations will augment the original set of samples of X and will be used
for the purpose of computing statistics (means, quantiles, PDFs) conditioned on select
observations at intermediate stages along specific trajectories.

5. MANIFOLD LEARNING RESULTS

In this section we will characterize the set of trajectories discussed in §3 using the algorithms
presented in the previous section. We will first inspect the topology of these manifolds via their
corresponding basis vectors in §5.1. We will then verify in §5.2 that the augmented set of
trajectories generated via manifold sampling are consistent with the 3DOF model, and then
introduce in §5.3 a workflow for sequential path planing using the augmented dataset to generate
conditional statistics for the state and control vectors. We conclude this section with an
illustration of manifold statistics in a multifidelity setting in §5.4.
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5.1. Manifold Characterization

First, we inspect the impact of kernel bandwidth on the intrinsic dimensionality of the diffusion
manifold and the topology of the basis vectors. For this task we select a random subset of
trajectories from the single fidelity dataset. This random subset includes trajectories
corresponding to random choices for the initial altitude, longitude, latitude, and velocity, as well
as random choices for the path constraint parameter δ. Fig. 5-1 displays the eigenvalue spectra for
several values for the kernel bandwidth ε. The results in the left frame of this figure indicate a
manifold dimension m = 52, for a graph Laplacian using a kernel bandwidth of ε = 1000. For
smaller bandwidth values, e.g. for ε = 200, the eigenvalue decay is mild indicating a a
less-defined structure in the high-dimensional trajectory space. The topology of the first two basis
vectors is presented in Fig. 5-2. The first row in this figure is constructed with the same dataset as
for the results presented in the left frame of Fig. 5-1. These plots shows most of the components
for the first two basis vectors are concentrated on much smaller values compared to a few select
trajectory samples; one of these samples is highlighted in red in these figures as it stands out even
for a relatively large bandwidth, ε = 1000. It appears these samples are significantly different
compared to the rest of the training set and their presence impact the magnitude of the basis
vectors components resulted from the diffusion manifold algorithm.
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Figure 5-1 Eigenvalues spectrum for several values for the kernel bandwidth ε: (left
frame) results corresponding to the entire training set; (right frame) results obtained
after several edge samples were removed from training.

We proceed to examine the impact of removing these edge (outlier) cases on the diffusion
manifold basis vectors. The remaining rows in Fig. 5-2 display a sequence of results obtained
after edge cases are gradually removed from the training dataset. The results on the second row
correspond to a training dataset for which the sample shown in red in the first row was removed,
while the results on the third row correspond to a dataset with three additional samples,
highlighted in red on the 2nd row, removed from training. As more edge samples are removed
from the training dataset, the manifold structure, illustrated through a projection on the first two
basis vectors, begins to form for smaller bandwidth values. The results on the bottom row are
obtained after several sets of samples are removed from the training dataset. These results
correspond to the same analysis displayed in the right frame of Fig. 5-1. The eigenvalue decay
presented in this figure indicates now that a diffusion manifold can be defined by a smaller
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number of basis vectors, approximately 45, and the sharp transition can be obtained with a
smaller bandwidth, i.e. the training dataset is more compact after removing edge cases identified
through a sequence of diffusion manifold basis vectors.
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Figure 5-2 Scatter plots showing the entries in the two most dominant eigenvec-
tors. Left to right columns correspond to diffusion map results based on ε =
{200,500,1000}, respectively. The top row shows the original dataset, while sub-
sequent rows show results with an increasing number of edge cases, identified by
red circles, removed at each stage.

Fig. 5-3 shows the dependency of the manifold dimension m on the kernel bandwidth ε. The
results presented in this figure are based on the same sequence of datasets underlying the results
shown in Fig. 5-2. For small bandwidth values the set of trajectories behave as an ensemble of
independent samples. As the KDE kernel bandwidth increases, a set of dominant basis vectors are
revealed. For results corresponding to the original dataset, there is one training sample that is
sufficiently different compared to the remaining data. This sample dominates the manifold
structure up to ε≈ 900. Beyond this value the kernels become sufficiently diffuse to diminish the
impact of this sample and the manifold dimension stabilizes around m≈ 50. Once this sample is
removed from the dataset the next layer of edge cases become dominant, see results
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corresponding to row 2. Since these samples are now less removed from the bulk of the samples,
the manifold is revealed for smaller bandwidth values, e.g. ε≈ 250, compared to the previous,
much larger bandwidth values. The trend continues as subsequent edge cases are removed.
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Figure 5-3 Manifold dimension m dependence on ε. Sets 1 through 4 correspond to
the results presented on rows 1 through 4 in Fig. 5-2.

Figs. 5-4 and 5-5 show the trajectories present in the training sets with gray lines and several sets
of edge samples with thick colored lines. The rajectory samples illustrated in physical coordinates
reveal characteristics that likely lead to their placement far away from other samples along the
diffusion manifold coordinates. The trajectory represented in red correspond to the first detected
edge sample. While not being the fastest trajectory, this sample exhibits less variation in the
altitude history and the flight path angle γ. Similarly, edge samples shown with other colors
suggest that combinations of features, e.g. trajectories starting in the bottom left in Fig. 5-5, or
some of the samples starting at larger initial latitude Φ values but evolving close to the exclusion
zones lead to their placement far away from other samples on the manifold.

5.2. Conditional Trajectories

In this section we explore the degree to which the augmented set of samples created via the
stochastic differential system in Eq. (18), are consistent with the 3DOF model used to generate
optimal trajectories via the OCP. Specifically, for each synthetic trajectory in the augmented set,
we evaluate the time derivatives in the left-hand side of Eqs. (1-6) via finite differences, then
compute the discrepancy with the right-hand side

ri, j =
xi, j− xi−1, j

ti− ti−1
− 1

2
(

f j(xi−1,ui−1)+ f j(xi,ui)
)

(20)

Here, subscript i represents the time index and subscript j represents the component of the state
vector x. Additionally, for the residuals corresponding to the altitude h and velocity v we scale the
residual by the average magnitude over each time interval

ri, j→ ri, j×
2

xi−1, j + xi, j
(21)
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Figure 5-4 Trajectory data defining the samples used for learning the diffu-
sion map representation: grey lines show a random subset of 100 samples;
red/blue/green/magenta/cyan show samples removed from the learning set (in this
order).
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Figure 5-5 Same dataset and color scheme as in Fig. 5-4, shown in longitude/latitude
coordinates.

Finally, for each synthetic trajectory we evaluate the L2-norm. These results are collected for all
augmented trajectory samples constructed via Eq. (18). Fig. 5-6 shows histograms for several sets
of trajectories conditioned on select terminal velocity values vT and path constraint parameter δ

values. The samples used to construct the results in the left frame are conditioned on vT = 650
[m/s] and δ = 100, p(·|vt = 650,δ = 100). The results in the middle and right frames correspond
to trajectory conditioned on the same terminal velocity but increasingly path constrained, with
δ = 200 and 300, respectively. We selected several ε values to asses the impact the KDE
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bandwidth for the manifold construction ultimately has on manifold sampled trajectories. For all
cases the scaled residual L2 norms are O(10−3) and of the same order of magnitude as the
numerical residuals for the training dataset, shown with black histograms in this figure.
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Figure 5-6 Distribution of 3DOF residual norms for synthetic trajectories conditioned
on the terminal velocity of 650 m/s and several values for δ: 100 (top left frame), 200
(top right frame), and 300 (bottom frame).

5.3. Path Planning via PLOM

We continue our analysis with a workflow that adjusts the vehicle trajectory sequentially using the
observed state vector at intermediate locations, including the option to change flight path
objectives mid-flight.

We start the workflow, presented below in Alg. 1, by defining an objective for the vehicle
trajectory. This objective consists of an ensemble of constraints. In this section we will display
several examples, using either the same set of constraints throughout the flight or a set of
constraints that adjusts during the flight. It should be noted that these objectives should not be
confused with the cost function defined in Eq. (13). Rather, we would like to select from the
manifold of optimal solutions, constructed as described in §2.3, the set of samples that satisfy
additional constraints related to the path constraint parameter δ and the terminal velocity vT .
Once the initial objective objt=0 is defined, we estimate the trajectory that satisfies this objective
as a conditional expectation solution constrained on the manifold of optimal trajectories. This
yields the set of state vectors x(e) and controls u(e) required to realize this trajectory. We then
enter a control loop corresponding to rows 3-8, during which the control u is adjusted over a
series of stages to correct for errors in the vehicle path, as well as to adjust the controls in case the
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set of constraints imposed on the workflow changes during the flight. In the workflow below, the
time step ∆t is represented as a fraction of the trajectory duration. Inside the control loop, we first
proceed with estimating the trajectory over a specific stage [t, t +∆t] (row 4). It is possible that,
due to model errors or incomplete knowledge of the environmental conditions, that the expected
state vector at t +∆t, x(e)t+∆t

, will not match the actual (or measured) solution, x(m)
t+∆t

. If this
discrepancy is larger than a lower bound threshold ε∆t , or if the overall objective has to be
adjusted, i.e. objt+∆t 6= objt , we proceed to update the set of controls for the next flight segment
on line 7.

Algorithm 1: Sequential path-planing algorithm using conditional sampling on manifolds.
1 select initial objective, e.g. objt=0;

2 Compute expected trajectory E[x,u|objt=0]→
(

x(e),u(e)
)

;

3 while t < tend do
4 advance from t to t +∆t using the expected control u(e)[t,t+∆t];

5 retrieve position at t +∆t : x(m)
t+∆t

;

6 if
∣∣∣∣∣∣x(e)t+∆t

− x(m)
t+∆t

∣∣∣∣∣∣> ε∆t ∨
(
objt+∆t 6= objt

)
then

7 re-compute control E
[
u|objt+∆t

,x(m)
t+∆t

]
→ u(e)t+∆t,tend

;

8 end
9 t→ t +∆t ;

10 end

Fig. 5-7 displays the conditional marginal PDFs for the vehicle location, p((θ,φ)t+∆t |x
(m)
t ) (left

frame), p((h,θ)t+∆t |x
(m)
t ) (middle frame), and p((h,φ)t+∆t |x

(m)
t ) (right frame). Also shown in

these figures are the start (left frame, lower left corner) and end (left frame, upper right corner)
positions, with “x” marks, and the location of the exclusion regions, with solid circles. These
results are based on the same initial condition for the vehicle height, velocity, and longitude
{4×104[m],2000[m/s],0[rad]} and the initial density model constant H = 7700m. Four sets of
results are shown in this figure corresponding to initial latitude values of
{0(black),0.001(red),0.002(green),0.003(blue)} (in radians), respectively. The sequence of
stages in this figure are constructed using Alg. 1. At each intermediate stage t, the algorithm
computes the statistics for the set of trajectories at t +∆t by conditioning on the current state
vector x(m) at time t. The algorithm further conditions on the current density model constant
H = H(t). For the results displayed in this figure, we assume that H(t) = 7700− t×300 m,
where time t was normalized by the trajectory duration, i.e. t ∈ [0,1]. The range of uncertainties
that arise from one stage to the next are due the range of training data used for this demonstration.
Here we consider results corresponding to objt ≡ {50 < δ≤ 400}. The range of path constraint
values results in the statistics shown in Fig. 5-7. These results illustrate conditional statistics
constrained on a manifold corresponding to a multi-modal behavior. The multi-modality here is
induced by set of trajectories that avoid the two regions shown by circles in Fig. 5-7. These
exclusion regions partition the training data into two subsets, with one set of trajectories passing
in between the two regions and the other avoiding the two regions on the left. Depending on the
start of each trajectory assembled via Alg. 1, the conditional densities for the vehicle location
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Figure 5-7 2D pdf’s for vehicle location at intermediate locations for
trajectories that originate at h0 = 40 [km], θ0 = 0 [rad], and φ0 =
{0(black),0.001(red),0.002(green),0.003(blue)} [rad]. The "x" symbols mark
the start and end points and the large circles mark the location of the exclusion
regions.

evolve on either of these paths. For the run shown in black, the sequence of intermediate locations
point to an ensemble of paths going in between the two circles. For the simulation shown in red,
the location at the 10% mark (the first set of contours near the start points) displays a bi-modal
behavior. At later times this trajectory stays on the same side as the trajectories shown in green
and blue.

We will further illustrate this workflow with several numerical examples that employ the manifold
statistics constructed with trajectory datasets presented in previous sections. Table 5-1 lists
choices for several algorithm knobs chosen for these runs. Runs 1 and 2 employ the same
objective throughout the entire trajectory, with vT > vT,min = 650m/s and δ > 50. For Runs 3 and
4, the flight path constraint δ is adjusted after 30% and 60%, respectively, of the entire trajectory
duration. All runs share the same initial condition as the simulation shown in black in Fig. 5-7.
For each set of runs, we introduce random noise into the height measured at the end of each stage
t +∆t to simulate the effect of noise in the atmospheric density model. We explore the impact of
positive bias, in Runs 1 and 3 - shown in red in figures below, and negative biases, in Runs 2 and 4
- shown in blue. We also explored unbiased noise (results not shown) and observed trends that are
in-between the positive and negative biased noise results. For all runs, the noise level is about
10% for the entire span of the trajectory. Finally, we compared two sets of runs, given two choices
for the time step ∆t, 5% and 10% respectively. These test (results not shown) revealed a negligible
impact for the stage duration on the trajectories generated via Algorithm 1. All results below
correspond to ∆t = 10%.

Fig. 5-8 displays results for Runs 1 and 3 in a manner similar to Fig. 5-7. In addition to the
constraints underlying the results in the previous figure, here we consider a setup for which the
lower bound for δ changes during the flight, for Run 3. The conditional statistics are further
constrained on vT > 650 m/s. Results remain similar at the end of the first two stages, t = 10%
and 20%, respectively (near the lower end of the vertical axis in the left frame and near the top in
the other two frames). The increase in the lower bound for δ for Run 3 results in a shift of 2D
marginal densities further away from the region depicted by the lower left circle in the left frame.
The subsequent adjustment of δmin at t = 60% has a negligible impact on trajectories beyond this

27



Run ID δmin,0−30 δmin,30−60 δmin,60−100 Altitude Bias
1 50 50 50 +
2 50 50 50 −
3 50 200 300 +
4 50 200 300 −

Table 5-1 Numerical settings for the set of runs chosen to illustrate the workflow in
Alg. 1. For all runs vT,min = 650 m/s.

point since by this time the vehicle is sufficiently far from the region depicted by the upper right
circle (results not shown).
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Figure 5-8 Marginal PDFs for vehicle location at intermediate locations for Runs 1
(red) and 3 (blue) conditional on the location at previous stages. The "x" symbols
mark the start and end points and the large circles mark the location of the exclusion
regions.

Further, we will compare conditional statistics results for the terminal velocity, flight path, and
heading angles with results from beluga simulations. The beluga-generated trajectories start from
the same intermediate locations and employ the same set of constraints as the conditional
statistics using the low-dimensional manifold information. Fig. 5-9 shows, with filled symbols,
the expected terminal velocity conditioned on the intermediate conditions at different stages along
the trajectory, E [vT |xt ]. The error bars represent two standard deviations on either side of the
mean value. The open symbols represent terminal velocity values computed with beluga, starting
from select intermediate stages. In this figure, and for the remainder of this section, red
corresponds to Runs 1 and 3 for which a positive multiplicative error bias was added to the
altitude at each intermediate stage, while blue corresponds to Runs 2 and 4 for which a negative
multiplicative error bias was added to the altitude at each intermediate stage.

We will first discuss the source of uncertainties illustrated in these figures. These are the result of
the range of options for the path constraint parameter δ. The resulting ensemble of trajectories
and the associated low-dimensional manifold leads to a range of choices for possible paths also
illustrated by the joint densities on the intermediate locations in Fig. 5-8. This in turn results in a
range of terminal conditions, shown in Fig. 5-9. As the vehicle approaches the target, the
uncertainty for vT shrinks as all trajectories funnel towards one point according to the training
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data. For Runs 3 and 4, shown in the right frame, the range of path constrain values was shrunk
from [50−400] to [200−400] as the vehicle approached the first exclusion region, and further
reduced to [300−400] for t > 60%. This adjustment changes the expected terminal velocity for
Runs 3 and 4 compared to Runs 1 and 2 and reduces the uncertainty in these estimates. Each run
was conducted three times each with a different random number generator (RNG) seed. Both the
RNG seed and the choice of bias, positive vs negative, have a limited impact of the results. Most
of the variability here is due to the choice of δ. We also compared results using ∆t = 5% and 10%,
respectively. Similar to the previous observation, the stage length does not have a sizeable impact
on the terminal conditions, given the setup of this numerical experiment (results not shown).
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Figure 5-9 Mean and standard deviations for the terminal velocity vT conditioned on
intermediate conditions along the trajectory: Runs 1 and 2 (left frame) and Runs 3
and 4 (right frame).

Figs. 5-10 and 5-11 show results for the terminal flight path angle γT and terminal heading angle
ψT using the same settings as the results shown in Fig. 5-9. These results indicate that the biggest
driver for the range of terminal values predicted at various stages remains the range of paths taken
to avoid the two exclusion regions. Similarly to the previous observations, the bias added to
altitude measurements and the RNG seed associated with it as well as the time step size has only a
limited impact for the datasets presented in this report. While the beluga results for the terminal
velocity and heading angle generally fall inside the manifold-based statistics, some discrepancy is
observed for the flight path angle, in Fig. 5-10. We attribute this discrepancy to the rapid change
in the flight path angle as the vehicle approaches the terminal location, as seen Fig. 5-4.

We conclude this section with a discussion on the impact of intermediate flight path and heading
angles on the conditional statistics for the terminal conditions. The results presented in Fig. 5-12
are computed as follows. In the left frame the terminal velocity statistics are conditioned on the
intermediate vehicle position and velocity magnitude, p(vT |h∗t ,θt ,φt ,vt), the middle frame
statistics correspond to p(vT |h∗t ,θt ,φt ,vt ,γt ,ψt), and the right frame p(vT |h∗t ,θt ,φt ,vt ,γ

∗
t ,ψ

∗
t ). The

“*” superscript indicate the corresponding variable was perturbed at time t to mimic either sensor
inaccuracies or the impact of unaccounted external factors that lead to discrepancies between the
predicted and realized vehicle trajectory over the stage [t−∆t, t]. These results indicate that
constraining on all state vector components narrows the range on uncertainties at an early stage
during the flight, t = 10% and 20%. Terminal velocity predicted at later stages are similar across
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Figure 5-10 Mean and standard deviations for the terminal flight path angle γT condi-
tioned on intermediate conditions along the trajectory. The frames setup is the same
as for Fig. 5-9.
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Figure 5-11 Mean and standard deviations for the terminal heading angle ψT condi-
tioned on intermediate conditions along the trajectory. The frames setup is the same
as for Fig. 5-9.

the cases presented in this figure signaling that uncertainties are now driven largely by the choice
of path constraint parameter δ.

5.4. Diffusion Manifolds in a Multifidelity Framework

In this section we present diffusion manifold results based on the trajectory datasets introduced in
§3.2. We will analyze results based on both individual runs, e.g. RunL and RunH , as well as data
constructed from combined datasets, e.g. RunH and RunH,Kn. We adopt two approaches to
combine datasets of various fidelities. In the first approach, referred to as ∆1 below, individual
trajectories are interpolated on uniform time grids. The ensembles of state vectors corresponding
to the same trajectory conditions are then joined together to form one sample, i.e. one row in the
dataset that feeds into PLoM. Eq. (22) describes this approach for samples corresponding to
RunH and RunH,Kn

∆1 :
(
∪Nt

i=1t( j)
i H

)
∪
(
∪Nt

i=1x( j)
i H

)
∪
(
∪Nt

i=1u( j)
i H

)
∪
(
∪Nt

i=1x( j)
i H,Kn

)
∪
(
∪Nt

i=1u( j)
i H,Kn

)
. (22)
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Figure 5-12 Mean and standard deviations for the terminal velocity vT corresponding
to Runs 1 and 2 conditioned on intermediate vehicle locations: 1st column - marginal
over the intermediate flight path and heading angles; 2nd column - conditioned over
intermediate flight path and heading angles; 3rd column - conditioned over perturbed
intermediate flight path and heading angles.

Here, x( j)
i and u( j)

i refer to the state and control vectors, respectively, corresponding to time step ti
for sample j, and Nt is the number of equally spaced time steps. For the results presented in this
section, Nt was set to either 100 or 200.

In the second approach, referred to as ∆2 below, the state vectors corresponding to adjacent model
fidelities are subtracted from each other. Eq. (23) presents this approach

∆2 :
(
∪Nt

i=1

(
t( j)
i H− t( j)

i H,Kn

))
∪
(
∪Nt

i=1

(
x( j)

i H− x( j)
i H,Kn

))
∪
(
∪Nt

i=1

(
u( j)

i H−u( j)
i H,Kn

))
. (23)

For this approach the differences between the corresponding state vectors are done component by
component, and similar for the control vectors.

Preliminary tests showed that the control angles display discontinuities induced by the solution
procedure and ±2π periodicity for sin and cos functions. Instead of working directly with the
control angles we instead employed {αi sinσi,αi cosσi} to replace the set of controls
uti = {αi,σi}. This improved the smoothness in the manifold topology, dropping the manifold
dimension from about 50 to less than 35 when assimilating trajectory data from single models.

We also formulate an approach to eliminate outliers/edge samples; this formalizes the visual
inspection approach that utilized the components of the first few diffusion map vectors to identify
samples with coordinates vastly different than all the others and eliminate them from the learning
set. We employ the expression below [7] to compute pairwise distances along the diffusion
manifold between samples

di j =

(
m

∑
k=1

λ
2
k
(
Ψi,k−Ψ j,k

)2

)1/2

(24)

where m is the manifold dimension defined in §4, and Ψi,k and Ψ j,k are the entries for samples i
and j, respectively, in the diffusion manifold basis vector k. Alg. 2 presents a sequence of steps
employed to detect and discard samples that are located far from the mean across all median
distances from each sample to all other samples. In the examples below, τ was set to 3 and
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E= {500,200,100}.
Algorithm 2: Sequential outliers removal.
Input: dataset D, set of bandwidths E, threshold factor τ

1 foreach ε ∈ E do
2 while True do
3 evaluate basis vectors Ψ and eigenvalues λ for dataset D;
4 compute di j for all sample pairs using Eq. (24);
5 evaluate median distances d̃i for each samples i;
6 remove samples for which the d̃i > τµ(d̃1, d̃2, . . .);
7 if no outliers found then
8 break
9 end

10 end
11 end

Fig. 5-13 shows the outcome of applying Alg. 2 to RunL and RunH . In this figure the blue line
shows the manifold dimension for the original set of samples, while the rest of the curves
correspond to diffusion manifolds with outliers sequentially removed using the kernel bandwidths
provided above. These results suggest negligible differences between datasets with 100 time steps
and runs using twice more steps. We also observe that the choice of density model does not
impact the manifold dimension for the datasets considered here.

Fig. 5-14 shows a similar set of results based on a combination of datasets both using ρH with and
without Kn number impacting the aerodynamic model. The datasets are combined using the
approaches described in Eq. (22) and Eq. (23). Similar to results presented in the previous figure,
these results indicate that 100 state vectors, equally spaced in time, are sufficient to obtain
converged results. We note that the dimensionality m of the diffusion manifold based the union of
datasets corresponding to RunH and RunH,Kn is about 37 which is only slightly larger compared
to the dimensionality of manifolds for individual datasets, approximately 32. However, the
dimensionality of the manifold based on the joint dataset computed via Eq. (23) is much larger,
approximately 105. We attribute this large difference to different initial control choices at higher
altitudes motivated by stronger drag forces for RunH,Kn compared to RunH . This results in strong
nonlinearities introduced by Eq. (23). The alternate approach facilitates correlations across time
scales thus reducing the impact of misaligned time dependencies.

Figs. 5-15 and 5-16 show the diffusion map eigenvalue spectra for the same conditions as the
previous two figures and selected bandwidth values. These results show the impact of outlier
removal on the sharp drop in the eigenvalue magnitude.
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Figure 5-13 Manifold dimension m dependence on ε. Rows 1 and 2 display results
for RunL with 100 and 200 state vectors, respectively, uniformly distributed along
each trajectory, and row 3 displays results for RunH with 200 state vectors uniformly
distributed along each trajectory. The blue, orange, green, and red lines correspond
to datasets with an increasing count of outliers removed.
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Figure 5-14 Manifold dimension m dependence on ε. Rows 1 and 2 display results
for RunH,Kn,∆1 with with 100 and 200 state vectors, respectively, uniformly distributed
along each trajectory, and row 3 displays results for RunH,Kn,∆2 with 200 state vectors
uniformly distributed along each trajectory. The blue, orange, green, and red lines
correspond to datasets with an increasing count of outliers removed.
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Figure 5-15 Eigenvalues spectrum for several values for the kernel bandwidth ε: (left
frame) results corresponding to RunL; (right frame) results corresponding to RunH .
Dashed lines display results based on the original datasets, while solid lines are
based on datasets with outliers/edge cases removed.
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Figure 5-16 Eigenvalues spectrum for several values for the kernel bandwidth ε: (left
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6. CONCLUSION

This report introduces an unsupervised probabilistic learning technique for the analysis of
hypersonic trajectories. The algorithm first extracts the intrinsic structure in the data via a
diffusion map approach. Using the diffusion coordinates on the graph of training samples, the
probabilistic framework then augments the original data with samples that are statistically
consistent with the original set. The augmented samples are used to construct conditional
statistics that are ultimately assembled in a path-planing algorithm. The algorithm is designed to
adjust the controls mid-flight to adapt the trajectory to changing mission objectives in real-time.

We employ a 3DOF model to generate optimal trajectories that satisfy path-constraints and
maximize impact velocities. The model considers two options for the atmospheric density
dependence on altitude, as well as the effect of Knudsen number on the drag coefficient at higher
altitudes. The diffusion map workflow reveals the presence of low-dimensional structures in the
high-dimensional datasets. Typical manifold dimensions vary between 30 and 50 depending on
the formulation employed for the control parameters.

The diffusion map algorithm revealed the presence of outliers (or edge cases). The outlier
samples display diffusion coordinates that place these samples outside the “cloud” where the bulk
of the samples reside. Based on this observation, we proposed an algorithm to automatically label
and, if desired, remove outliers from the set of trajectories used for training.

We propose a novel path-planing workflow that splits the hypersonic trajectories into a set of
stages. The probabilistic learning framework then utilizes conditional statistics to generate a set
of controls for a specific flight stage conditioned on the information available at the beginning of
each stage. The algorithm is adjusting the controls during subsequent stages to account for errors
due to external factors and/or due to evolving mission objectives.

Finally, we illustrate the unsupervised learning framework in a multi-fidelity setting. We find that,
for this application space, the diffusion manifold structure lives in a space only slightly higher
dimensional when datasets of different fidelities are joined together compared to individual
datasets. In contrast, learning the structure from datasets based on discrepancies between datasets
of various fidelities leads to a much higher dimensional structure. More tests are required to
verify this observation for other datasets and model configurations.

37



REFERENCES

[1] U.S. Standard Atmosphere, 1976. Technical Report NASA-TM-X-74335, NASA, October
1976.

[2] John T. Betts. Survey of numerical methods for trajectory optimization. Journal of
Guidance, Control, and Dynamics, 21(2):193–207, 1998.

[3] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming, Second Edition. Society for Industrial and Applied Mathematics, second
edition, 2010.

[4] A. Busemann, N. X. Vinh, and R. D. Culp. Hypersonic flight mechanics. Technical Report
NASA-CR-149170, NASA, 1976.

[5] Lin Cheng, Zhenbo Wang, Fanghua Jiang, and Junfeng Li. Fast generation of optimal
asteroid landing trajectories using deep neural networks. IEEE Transactions on Aerospace
and Electronic Systems, 56(4):2642–2655, 2020.

[6] Uihwan Choi and Jaemyung Ahn. Imitation learning-based unmanned aerial vehicle
planning for multitarget reconnaissance under uncertainty. Journal of Aerospace
Information Systems, 17(1):36–50, 2020.

[7] R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic
Analysis, 21(1):5–30, 2006.

[8] James W Demmel, Stanley C Eisenstat, John R Gilbert, Xiaoye S Li, and Joseph WH Liu. A
supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and
Applications, 20(3):720–755, 1999.

[9] Fariba Fahroo and I. Michael Ross. Direct trajectory optimization by a chebyshev
pseudospectral method. Journal of Guidance, Control, and Dynamics, 25(1):160–166, 2002.

[10] Lorenzo Federici, Boris Benedikter, and Alessandro Zavoli. Deep learning techniques for
autonomous spacecraft guidance during proximity operations. Journal of Spacecraft and
Rockets, 0(0):1–12, 2021.

[11] Casey Heidrich and Michael J. Grant. Personal communication, July 2020.

[12] Dario Izzo, Ekin Öztürk, and Marcus Märtens. Interplanetary transfers via deep
representations of the optimal policy and/or of the value function. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, page 1971–1979, New
York, NY, USA, 2019. Association for Computing Machinery.

[13] Jacek Kierzenka and Lawrence F Shampine. A bvp solver based on residual control and the
maltab pse. ACM Transactions on Mathematical Software (TOMS), 27(3):299–316, 2001.

[14] Marco La Mantia and Lorenzo Casalino. Indirect optimization of low-thrust capture
trajectories. Journal of Guidance, Control, and Dynamics, 29(4):1011–1014, 2006.

38



[15] Xiaoye S Li and James Demmel. A scalable sparse direct solver using static pivoting. In
PPSC. Citeseer, 1999.

[16] James M Longuski, José J Guzmán, and John E Prussing. Optimal control with aerospace
applications. Springer, 2014.

[17] Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and
Davide Scaramuzza. Deep drone racing: From simulation to reality with domain
randomization. IEEE Transactions on Robotics, 36(1):1–14, 2020.

[18] Kshitij Mall. Advancing Optimal Control Theory Using Trigonometry For Solving Complex
Aerospace Problems. PhD thesis, Purdue University Graduate School, 2019.

[19] Kshitij Mall and Michael J Grant. Trigonomerization of optimal control problems with
bounded controls. In AIAA Atmospheric Flight Mechanics Conference, page 3244, 2016.

[20] Kshitij Mall and Michael J Grant. Trigonometrization of optimal control problems with
mixed constraints and linear controls. In AIAA Scitech 2019 Forum, page 0261, 2019.

[21] Kshitij Mall and Michael James Grant. Epsilon-trig regularization method for bang-bang
optimal control problems. Journal of Optimization Theory and Applications,
174(2):500–517, 2017.

[22] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev,
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APPENDIX A. CONTINUATION SCHEDULE FOR THE OPTIMAL CONTROL
SOLUTION

Table A-1 displays the continuation stages setup for the solution of the OCP for the dataset #1,
described in §3.1. All simulations start with a trajectory state defined by

x0 = {hIC,θ0 = 0◦,φ0 = 0◦,vIC,γ0 =−90◦,ψ0 = 0◦},

and constraints θ f = φ f = 0◦. This essentially leads to the initial trajectory pointing straight down
from the initial altitude. Trajectories are then gradually adjusted to satify the desired initial,
intermediate, and final constraints through a set of continuation stages. During Stage 1 the final
height is pulled to h f = 0 and the final downrange location (expressed as θ f ) to θ f = 0.05◦. The
final downrage location is pushed further out during Stage 2. During Stage 3 the initial flight path
angle is adjusted from the initial straight down direction to horizonthal direction and the final
downrange location is adjusted to the value setup for this set of simulated trajectories, θ f = 3◦.
The final crossrange location (expressed as φ f ) is pushed to the desired location, φ f = 2◦, during
Stage 4, followed by Stage 5, during which the longitude and latitude for the start point are
adjusted to the set of initial conditions θIC and φIC, respectively. Stage 6 (if needed) is used to
adjust the density model from the low fidelity ρL to the high-fidelity ρF . Finally, Stage 7 adjusts
the path-constraint parameter δ from 0 (no constraint) to the maximum value desired for a
particular set of runs, δmax. These last two stages are shown in gray to indicate they are optional
when generating trajectory samples. These stages are turned on/off through command-line
options.

Table A-1 Continuation stages for the optimal control problem #1.

Stage Parameters adjusted No. of steps
1 h f → 0, θ f → 0.05◦ 21
2 θ f → 0.5◦ 21
3 γ0→ 0, θ f → 3◦ 41
4 φ f → 2◦ 41
5 θ0→ θIC, φ0→ φIC 21
6 ρ = (1− ε)ρL + ερH , 0→ ε→ 1 50
7 0→ δ→ δmax 41

Table A-2 displays the continuation stages setup for the solution of the optimal control solution
for the dataset #2, described in §3.2. This set of runs starts with an initial estimate setup as for the
previous set described above. For set #2, y0 is set to

y0 = {45×103m,θ0 = 0◦,φ0 = 0◦,VIC,γ0 =−90◦,ψ0 = 0◦}.

Stages 1 through 4 in Table A-2 are the same as the stages discussed above. These stages are
followed by a continuation stage, shown in dark gray in the table, during which the initial height
is adjusted from the initial choice of 45×103m to the desired initial condition hIC and the final
crossrange and downrange values to θ f → 4◦ and φ f → 3◦, respectively. Finally, the last two
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stages in Table A-2 are the same as the corresponding last two stages in Table A-1 and are used to
adjust the density model and the path-constraint parameter. These continuation stages are used
both for simulations with the Knudsen number turned off and for simulations with Knudsen
number turned on.

Table A-2 Continuation stages for the optimal control problem #2.

Stage Parameters adjusted No. of steps
1 h f → 0, θ f → 0.05◦ 21
2 θ f → 0.5◦ 21
3 γ0→ 0, θ f → 3◦ 41
4 φ f → 2◦ 41
5 θ0→ θIC, φ0→ φIC 21
6 h0→ hIC, θ f → 4◦, φ f → 3◦ 21
7 ρ = (1− ε)ρL + ερH , 0→ ε→ 1 50
8 0→ δ→ δmax 41

APPENDIX B. ATMOSPHERIC DENSITY MODEL

This work utilizes two models for the atmospheric density. Both models employ an exponential
dependence on polynomials that are functions of altitude. The first model employs a 1st-order
polynomial

ρL = ρ0 exp(−h/7500), (25)

where h is expressed in meters. The second model [11] is constructed as

ρL = ρ0 exp

(
5

∑
i=1

hi/ci

)
, (26)

with coefficients given by

c1 = 13317.606714653284, c2 = 218603284.61942446, c3 = 9502259870121.428,
c4 = 1.0673576770076096e+18, c5 = 3.7690900249546926e+23.

Fig. B-1 show a comparison of these models against the data provided by the standard atmosphere
model [1]. The relative error results shown in the right frame, computed as

|ρM−ρD|/ρD,

where ρM is either ρL or ρH and ρD is the data, demonstrate a better fidelity for the higher order
polynomial approximation in ρH compared to the 1-st order polynomial approximation under the
exponent in ρL.
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Figure B-1 Comparison of exponential models for the atmospheric density using 1st-
and 5th-order polynomial arguments: (left frame) atmospheric density vs altitude and
(right frame) relative `1 error between the models and the reference data.

43



Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration
under contract DE-NA0003525.


