
SANDIA REPORT
SAND20XX-XXXX
Printed Click to enter a date

SCEPTRE 2.3 Quick Start Guide
Donald E. Bruss, Clifton R. Drumm, Wesley C. Fan, and Shawn D. Pautz

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

SAND2021-11786

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods/

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

3

ABSTRACT
This report provides a summary of notes for building and running the Sandia Computational
Engine for Particle Transport for Radiation Effects (SCEPTRE) code. SCEPTRE is a general-
purpose C++ code for solving the linear Boltzmann transport equation in serial or parallel
using unstructured spatial finite elements, multigroup energy treatment, and a variety of
angular treatments including discrete ordinates (Sn) and spherical harmonics (Pn). Either the
first-order form of the Boltzmann equation or one of the second-order forms may be solved.
SCEPTRE requires a small number of open-source Third Party Libraries (TPL) to be
available, and example scripts for building these TPL are provided. The TPL needed by
SCEPTRE are Trilinos, Boost, and Netcdf. SCEPTRE uses an autotools build system, and a
sample configure script is provided. Running the SCEPTRE code requires that the user
provide a spatial finite-elements mesh in Exodus format and a cross section library in a format
that will be described. SCEPTRE uses an xml-based input, and several examples will be
provided.

4

CONTENTS
1. Introduction ..7

1.1. New features in Version 2.3 ...8
2. Obtaining and installing TPL ...9

2.1. Boost ..9
2.2. Netcdf ..9
2.3. Trilinos...10

3. Installing and testing SCEPTRE ...11
4. Installing and testing radTools...12
5. Running SCEPTRE...13

5.1. Generating a cross section library ...14
5.2. Creating a parallel mesh file ...15
5.3. Simple parallel test problem...15
5.4. Detailed description of the SCEPTRE input ..16

5.4.1. Output options ...17
5.4.2. Running in forward or adjoint mode ..17
5.4.3. Specifying the input mesh and output result files ...17
5.4.4. Specifying the cross section file ...18
5.4.5. Angular quadrature and scattering options ..18
5.4.6. Controlling the outer iterations..19
5.4.7. Material assignment and mixing options ..20
5.4.8. Assigning boundary conditions..21
5.4.9. Boundary source options ..21
5.4.10. Fixed source options..23
5.4.11. Setting the initial solution ...24
5.4.12. Source input from a separate file ...24

5.5. Solver options...25
5.5.1. Wave front sweeping algorithm keywords ...25
5.5.2. Krylov solver keywords...27
5.5.3. Transport Synthetic Acceleration (TSA) keywords ..29

5.6 Assigning solvers by energy group..30
Appendix A. Complete xml input file for running SCEPTRE...34

LIST OF FIGURES
Figure 1 Mesh of a coaxial-cable cross section for the rg402 SCEPTRE example problem17

5

This page left blank

6

7

ACRONYMS AND DEFINITIONS

Abbreviation Definition
SCEPTRE Sandia computational engine for particle transport for radiation effects

TPL Third-party libraries

DFE Discontinuous finite elements

CFE Continuous finite elements

SPD Symmetric positive definite

CG Conjugate gradients

CSD Continuous slowing down

Sn Discrete ordinates

Pn Spherical harmonics

MPI Message passing interface

QoI Quantities of interest

1. INTRODUCTION

The Sandia Computational Engine for Particle Transport for Radiation Effects (SCEPTRE)
(Pautz, Bohnhoff, Drumm, & Fan, 2009) (Pautz, Drumm, Bohnhoff, & Fan, 2009) is a general-
purpose C++ code for solving the linear Boltzmann transport equation in serial or parallel using
unstructured spatial finite elements, multigroup energy treatment, and a variety of angular
treatments including discrete ordinates and spherical harmonics (Drumm, 2015). SCEPTRE also
contains some capability for phase-space finite elements (angle and energy) (Drumm, Fan and
Pautz, 2013), which should be considered experimental in this release. This capability will be
further productized in future releases. The SCEPTRE code remains under active development,
containing some well-tested production capability and some newer, more experimental
capability. SCEPTRE has several unique features, partially motivated by the application space
for which the code was developed, providing for the transport of both neutral and charged
particles (photon/electron/positron).

SCEPTRE includes capability for solving the Boltzmann equation using many different
numerical and iterative methods and allows for a different transport solver to be used for each
energy group, enabling the user to apply the most appropriate methods for accuracy and
efficiency for each energy group/particle type in the problem. Either the first-order form of the
Boltzmann equation or one of the second-order forms of the Boltzmann equation may be solved
(Lewis & Miller, 1984) (Duderstadt & Martin, 1979) (Bell & Glasstone, 1970):

1. SCEPTRE provides a wave front sweeping algorithm for the first-order form of the
transport equation using Discontinuous Finite Elements (DFE) (Wareing, McGhee,
Morel, & Pautz, 2001). In the wave front sweeps-based solver, the entire source term
including the self-scatter source is on the right-hand side of the equation, the solution for
each particle direction is determined independently, and the scattering source term is
updated until convergence.

8

2. In addition to the sweeps-based solver, SCEPTRE has a class of algorithms based on an
entirely different solution approach with very different iterative convergence properties
(Drumm & Lorenz, 1999). With the alternative algorithm, the self-scatter source term is
included with the streaming and removal operators on the left-hand side of the equation
and the spatial and angular dependences of the solution are solved simultaneously for
each energy group. The main drawback of this method is that the memory requirement
may be large, but if enough memory is available, this method is a useful alternative to the
sweeps solver that generally converges more efficiently for charged particles. In this
approach, the linear system is constructed and handed off to Trilinos (Heroux &
Willenbring, 2003) for solution using one of the Krylov iterative methods available in the
Trilinos package.

SCEPTRE has the option of using either Discontinuous Finite Elements (DFE) or Continuous
Finite Elements (CFE). Use of DFE tends to be more accurate for certain transport problems but is
also more expensive. Under certain conditions the use of CFE results in a Symmetric Positive
Definite (SPD) linear system that may be solved using the highly efficient Conjugate Gradients (CG)
algorithm.

SCEPTRE requires a small number of open-source Third Party Libraries (TPL) to be available,
and example scripts for building these TPL are provided. The TPL needed by SCEPTRE are
Trilinos, Boost, and Netcdf. SCEPTRE uses an autotools build system, and a sample configure
script is provided. Running the SCEPTRE code requires that the user provide a spatial finite-
elements mesh in Exodus format and a cross section library in a format that will be described.
SCEPTRE uses an xml-based input, and several examples will be provided.

1.1.New features in Version 2.3

TPL versions have been updated to Boost 1.76.0, Netcdf 4.8.0 and Trilinos 13.0.1.

A Boltzmann-CSD (Continuous Slowing Down) solver has been implemented that will enable
more-accurate electron transport calculations to be performed. An adjoint Boltzmann-CSD
capability has also been implemented, which is needed for performing sensitivity analyses. This
capability requires compatible stopping powers and cross sections computed with the CEPXS code,
using the csdld keyword.

Several components have been modified for use with full space/angle/energy finite elements
solvers. The field metrics have been upgraded for use with angular finite elements fields, discrete
ordinates fields, and angular moments fields with a single interface. An angular Jacobian matrix
capability has been developed for use with angular finite elements, discrete ordinates, and angular
moments, replacing the previous temporary use of the spatial Jacobian for angle space. The angular
flux field containers (containers for the primary unknown in the radiation transport solution) have
been generalized for use with either Sn or angular FE. The capability for mapping between the
angular scattering moments and angular space has been generalized for use with either Sn or angular
FE. The FE matrices for space, angle and energy are being redesigned for consistent use with the
sweeps-based solver and the Trilinos-based solvers. These developments will enable code reuse for
discrete ordinates and angular FE modeling and for reuse of components in the various solvers
available in SCEPTRE. An angular FE sweeps-based solver test has been added.

9

We have made usability improvements in radlib and radTools. For example, the SCEPTRE input
file can be decomposed into multiple files for enhanced reuse of material specifications and spectra.
Other parameters can be automated versus requiring user specification, such as the number of
energy groups.

Dependencies on Epetra/AztecOO have been removed and replaced with Tpetra/Belos in
anticipation of eventual removal of Epetra/AztecOO support from Trilinos.

A number of updates to the RAPTURE package are included in Release 2.3. The format in which
the spectral Quantities of Interest (QoI) are reported has been updated to improve the usefulness
and readability of the output file. The algorithm that checks the convergence of reaction-rate QoI
has been improved, so that moments of the QoI are only checked in regions of interest rather than
across all regions. Several improvements have been made to the RAPTURE output for improved
clarity, including modifications of the naming of the directories generated by RAPTURE. Additional
checks of the user input have been included to prevent non-physical material densities.

2. OBTAINING AND INSTALLING TPL

All of the TPL needed to build and run SCEPTRE are freely available and may be installed without
modification. The purpose of this document is not to provide detailed installation instructions for
the TPL, but to provide minimal instructions for building each of them, referring the reader to the
specific TPL support for help.

Consistency between the TPL and SCEPTRE is essential. Once a compiler and MPI
implementation have been selected, ensure that these are specified consistently in all the TPL and
SCEPTRE configuration scripts. Several additional files (such as the LAPACK and BLAS libraries)
must also be specified; these must also be specified consistently. It may be helpful to modify the
configure scripts to first purge all loaded modules and then only load modules which will be used in
the compilation process.

Although some TPL include example configuration scripts, the scripts provided in this guide should
be used to compile these libraries to ensure compatibility with SCEPTRE.

2.1.Boost

The Boost software may be obtained from boost.org. SCEPTRE uses only header files from Boost,
so the Boost tarball merely needs to be unzipped in an appropriate location. SCEPTRE 2.3 has been
successfully built with Version 1.76.0 of Boost.

2.2.Netcdf

The Netcdf software may be obtained from unidata.ucar.edu/software/netcdf. Netcdf may be used
without modification for versions later than 4.5.0. These are some brief notes on building and
installing Netcdf.

http://www.boost.org/
http://www.unidata.ucar.edu/software/netcdf/

10

First download and untar Netcdf into some directory, which we will call NETCDFDIR.

To build Netcdf first create a target directory (NETCDF_TARGET_DIR) and an installation directory
(NETCDF_INSTALL_DIR). Then do the following:
> cd $NETCDF_TARGET_DIR
> $NETCDFDIR/configure --prefix=$NETCDF_INSTALL_DIR CC=$CCOMPILER
CXX=$CXXCOMPILER FC= F90= --disable-netcdf-4 --disable-shared --disable-dap

Note that you need to specify the compilers explicitly, or the Netcdf build system will try to use
whatever compilers it thinks are "vendor" ones - even on Linux it doesn't pick up gcc.

Next build, test if desired, and install:
> make
> make check
> make install

The above has been successfully tested on several systems for Netcdf version 4.7.4 with gcc and
Intel.

2.3.Trilinos

The Trilinos software may be obtained from https://github.com/trilinos/trilinos.github.io. Trilinos
uses a cmake build system, and a sample script is shown here. The user needs to modify this script
to provide the locations of MPI, LAPACK, and BLAS libraries, and the locations of the Boost and
Netcdf installations. SCEPTRE 2.3 has been successfully built and tested with Trilinos version
13.0.1. A sample cmake script for building Trilinos with options needed by SCEPTRE is shown
here:

EXTRA_ARGS=$@

module purge
module load gnu/8.2.1
module load openmpi-gnu/4.0
module load mkl/19.0
module load cmake/3.12.2

export CODE_PATH=/projects/sceptre/CTS1
export COMPILER_VERS=gcc-8.2.1
export TRILINOS_PATH=$CODE_PATH/trilinos/13.0.1/$COMPILER_VERS-openmpi_install
export INTEL_LIB=/opt/intel/19.0/compiler/lib/intel64

cmake \
 -D Trilinos_VERBOSE_CONFIGURE:BOOL=ON \
 -D CMAKE_VERBOSE_MAKEFILE:BOOL=TRUE \
 -D CMAKE_BUILD_TYPE:STRING=RELEASE \
 -D TPL_ENABLE_BinUtils:BOOL=OFF \
 -D TPL_ENABLE_MPI:BOOL=ON \
 -D MPI_BASE_DIR:PATH=$MPIHOME \
 -D TPL_ENABLE_BLAS:BOOL=ON \
 -D TPL_ENABLE_LAPACK:BOOL=ON \
 -D LAPACK_LIBRARY_NAMES:STRING="mkl_core;mkl_sequential;mkl_intel_lp64" \
 -D LAPACK_LIBRARY_DIRS:PATH=$MKL_LIBS \
 -D BLAS_LIBRARY_NAMES:STRING="mkl_core;mkl_intel_lp64;mkl_intel_thread;iomp5" \
 -D BLAS_LIBRARY_DIRS:PATH="$MKL_LIBS;$INTEL_LIB" \
 -D TPL_ENABLE_Boost:BOOL=ON \
 -D Boost_INCLUDE_DIRS:PATH=$CODE_PATH/boost/1.76.0/boost_1_76_0 \
 -D TPL_ENABLE_Netcdf:BOOL=ON \
 -D Netcdf_LIBRARY_DIRS:PATH=$CODE_PATH/netcdf/4.8.0/$COMPILER_VERS_install/lib \
 -D Netcdf_INCLUDE_DIRS:PATH=$CODE_PATH/netcdf/4.8.0/$COMPILER_VERS_install/include \

11

 -D TPL_ENABLE_Matio:BOOL=OFF \
 -D TPL_ENABLE_X11:BOOL=OFF \
 -D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=OFF \
 -D Trilinos_ENABLE_Amesos:BOOL=ON \
 -D Trilinos_ENABLE_Amesos2:BOOL=ON \
 -D Trilinos_ENABLE_AztecOO:BOOL=ON \
 -D Trilinos_ENABLE_Belos:BOOL=ON \
 -D Trilinos_ENABLE_Epetra:BOOL=ON \
 -D Trilinos_ENABLE_EpetraExt:BOOL=ON \
 -D Trilinos_ENABLE_Tpetra:BOOL=ON \
 -D Trilinos_ENABLE_Xpetra:BOOL=ON \
 -D Trilinos_ENABLE_Thyra:BOOL=ON \
 -D Trilinos_ENABLE_Kokkos:BOOL=ON \
 -D Trilinos_ENABLE_Ifpack:BOOL=ON \
 -D Trilinos_ENABLE_Ifpack2:BOOL=ON \
 -D Trilinos_ENABLE_ML:BOOL=ON \
 -D Trilinos_ENABLE_MueLu:BOOL=ON \
 -D Trilinos_ENABLE_MueLu_ENABLE_Amesos2::BOOL=ON \
 -D Trilinos_ENABLE_ROL:BOOL=ON \
 -D Trilinos_ENABLE_SEACAS:BOOL=ON \
 -D SEACASExodus_ENABLE_MPI:BOOL=OFF \
 -D Trilinos_ENABLE_Teko:Bool=ON \
 -D Trilinos_ENABLE_Teuchos:BOOL=ON \
 -D Teuchos_ENABLE_COMPLEX:BOOL=OFF \
 -D Trilinos_ENABLE_Triutils:BOOL=ON \
 -D Trilinos_ENABLE_Zoltan:BOOL=ON \
 -D Trilinos_ENABLE_Zoltan2:BOOL=ON \
 -D Trilinos_ENABLE_TESTS:BOOL=OFF \
 -D Trilinos_ENABLE_DEBUG:BOOL=OFF \
 -D Trilinos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \
 -D Trilinos_ENABLE_STKTransfer:Bool=ON \
 -D Trilinos_ENABLE_STKSearch:Bool=ON \
 -D Trilinos_ENABLE_STKUtil:Bool=ON \
 -D CMAKE_INSTALL_PREFIX:PATH=$TRILINOS_PATH \
 $EXTRA_ARGS \
 ../Trilinos-trilinos-release-13-0-1

3. INSTALLING AND TESTING SCEPTRE

Release 2.3 consists of a single tarball, including all 10 packages in the SCEPTRE family. The
packages included are:

1. radlib (foundation SCEPTRE radiation transport functionality)
2. radTools (pre- and post-processing tools, including source- and simple mesh-generation

tools)
3. radlibTests (regression tests and testing tools for SCEPTRE)
4. radSens (sensitivity analysis tools)
5. radlibEM (experimental code for modeling charged particle transport in the presence of

electric and magnetic fields)
6. radEMTools (post-processing tools specific for cable and box SGEMP applications)
7. radNuGET (experimental code for handoff of SCEPTRE angular flux results to the

NuGET code)
8. radStochastic (research code for stochastic media)
9. radThermal (specialized executables for coupling with thermal codes)
10. rapture (a user-friendly interface to 1-D SCEPTRE)

The building and installation of radTools will be covered in the next section, and the building and
installation of radlib will be covered in this section.

12

Radlib may be compiled with either partial or full unit testing and various levels of optimization.
The compilation of optimized code is significantly slower than unoptimized code.

A successful build and installation of radlib will create three executables, 1) sceptre, 2) sceptre-1gFO,
which is test code for simple one energy group first order solves, and 3) tds which is experimental
code for time-dependent transport calculations.

radlib uses an autotools build system, and a sample configuration script is provided here:

../configure \
--prefix=/apps/radlib-2.3/$COMPILER_VERS-openmpi_install \
--disable-debug \
--with-unit-testing=full \
--with-opt=2 \
--with-cxx=mpicxx \
--with-cxxflags=-std=c++14 \
--with-cc=mpicc \
--with-mpi-type=openMPI \
--with-mpi-basedir=$MPI_HOME \
--with-mpirun-command=mpiexec \
--with-mpi-procs-flag=-np \
--with-mpi-tmpdir=/tmp \
--with-boost-incdir=$TPL_PATH/boost/1.76.0/boost_1_76_0 \
--with-exodus-basedir=$TRILINOS_PATH \
--with-nemesis-basedir=$TRILINOS_PATH \
--with-netcdf-basedir=$TPL_PATH/netcdf/4.8.0/$COMPILER_VERS_install \
--with-trilinos-basedir=$TRILINOS_PATH \
--with-lapack-basedir=$MKL_LIBS \
--with-lapack-libs=mkl_sequential \
--with-blas-basedir=$MKL_LIBS:$INTEL_LIB \
--with-blas-libs=mkl_core:mkl_intel_lp64:mkl_intel_thread:iomp5:dl \
--with-shared-library-path=/usr/lib64:$INTEL_LIB

This configuration script should be modified to provide paths to the MPI installation, TPL
locations, LAPACK and BLAS libraries, and compiler parameters. The following options may be
modified as described below:
--prefix=/apps/radlib-2.3/$COMPILER_VERS-openmpi_install! location where SCEPTRE is to be
installed
--disable-debug ! either enable-debug or disable-debug
--with-unit-testing=partial ! either partial or full testing suite
--with-opt=2 ! optimization level
--with-mpi-type=openMPI ! either mpich, mpich2 or openMPI

After successfully executing a configure command, radlib is built and tested using gmake (for a 12-
core compilation):

gmake –j12 install
gmake –j12 check

In order to fully test the installation, gmake check should be used with a debug version of the
code, since the test code contains many assert statements that are checked with a debug version.

4. INSTALLING AND TESTING RADTOOLS

The radTools package contains several useful utilities for pre- and post-processing, and for cross
section reformatting. The building and installation of radTools is very similar to that for radlib. The

13

configure line to configure radTools is almost the same as that for radlib, with the following
differences. The location of the installation directory is radTools rather than radlib

--prefix=/apps/radTools-2.3/$COMPILER_VERS-openmpi_install \

and an additional line included, which contains the location of the radlib installation directory.

--with-radlib-basedir=/apps/radlib-2.3/$COMPILER_VERS-openmpi_install \

radTools is then built and tested by executing:

gmake –j12 install
gmake –j12 check

5. RUNNING SCEPTRE

Running SCEPTRE requires three input items: 1) a mesh file in Exodus format (Schoof & Yarberry,
1994), 2) a cross section file, and 3) an xml input file containing parameters needed to run
SCEPTRE. The Exodus mesh file may be generated either by using (CUBIT, 2019) or a commercial
Ansys product (ANSYS ICEM CFD). It is not the purpose of this document to provide detailed
guidance in generating a mesh, but some information on preparing an Exodus mesh for a parallel
run will be included in this document. Also included will be some information on generating a cross
section file for SCEPTRE.

The driver/test folder contains a number of test problems, some of which will be described in detail
here. The examples are included merely to illustrate how to set up and run SCEPTRE and are not
intended to contain parameters realistic for a particular application. In general, more energy groups,
a higher angular-quadrature order, and more-refined spatial mesh will be needed to improve the
accuracy of results, but the examples included are intended to be fast-running and illustrate most of
the available features. These files may be used as a starting point and modified for a user’s particular
application. Included in the driver/test folder are:

1. rg402.xml is a test problem of a simple coaxial cable, demonstrating many SCEPTRE options
and features

2. several examples of serial and parallel runs
3. forward and adjoint example problems
4. tests illustrating the use of Exodus format and binary format angular flux storage
5. several first-collision source (FCS) tests

In order to run one of the sample input files, the run command is as follows, for a 4-processor
parallel run:

mpirun –np 4 $SCEPTRE_BIN/sceptre rg402.xml

Where $SCEPTRE_BIN is the file containing the radlib binaries and rg402.xml is the input file.

http://www.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD

14

The following subsection describes how to generate a coupled photon/electron cross section file for
use in SCEPTRE. The subsequent subsection then contains information for creating a parallel mesh
file for use in SCEPTRE. It is assumed that the user has created an Exodus format mesh file using
one of the available meshing tools. The subsection following, then, contains details of the many
options and features available in running SCEPTRE from the xml input file. A complete sample xml
input files for performing a SCEPTRE calculation is included in Appendix I and in the test folder
under the driver folder in the SCEPTRE source distribution. The individual sections of the input file
will then be described in detail.

5.1.Generating a cross section library

Cross sections for SCEPTRE are typically generated by the CEPXS code, which is distributed with
the ITS code package (ITS/CEPXS RSICC), but SCEPTRE may be run with other multi-group
Legendre cross section sets, provided the cross sections are reformatted into a form that SCEPTRE
can read.

The first step in generating a cross section library for SCEPTRE is to run the CEPXS code, with the
following example lines of code copied to the cepinp file. A * at the beginning of a line in the
input file signifies a comment line, and the sample input file includes several options for handling
the CSD term (Franke, 2008). E.g. for using the Boltzmann-CSD solver, the csdld keyword
should be uncommented and the second-order keyword should be commented out. The
second-order keyword is appropriate for most typical applications.

title
 5 photon 5 electron group test xsec
*first-order
*csda
*bfp
*csdld
second-order
energy 0.1
cutoff 0.001
legendre 8
no-lines
photon-source
 partial-coupling
photons
 linear 5
electrons
 linear 5
material fe
material cu
material ag
material c 0.2402 f 0.7598
 density 2.2
print
 leg 0
print-all

Running CEPXS generates a bxslib binary-format multi-group Legendre cross section library. This
bxslib file is converted to Netcdf format for use by SCEPTRE by using the convertBxslibToNetcdf
utility, which is located in the radTools installation /bin directory.

convertBxslibToNetcdf bxslib

https://rsicc.ornl.gov/PackageDetail.aspx?p=ITS6&id=C00792&cpu=PCX86&v=00&t=Integrated%20TIGER%20Series%20of%20Coupled%20Electron/Photon%20Monte%20Carlo%20Transport%20Codes%20System.

15

This creates a netcdf file named bxslib.ncd, which can be renamed to something more descriptive

mv bxslib.ncd 5photon5electronGroups.xslib

which is then ready for SCEPTRE. The file may be converted to a readable format by using the
ncdump utility, which is contained in the Netcdf distribution.

ncdump 5photon5electronGroups.xslib > 5photon5electronGroups.asci

5.2.Creating a parallel mesh file

Running the CUBIT or ANSYS/ICEM CFD software to create a mesh file is outside of the scope
of this document, but creating a parallel mesh file from a serial mesh file is briefly described here.
An Exodus file is partitioned by executing the nem_slice and nem_spread executables, which
are included with the Trilinos distribution and documented here SEACAS documentation

The following assumes that a subdirectory named “1” is included in the directory where the mesh
files are located. After creation of a mesh file called, for example, testMeshTri3.gen, the first step
is to execute nem_slice

nem_slice -e -l multikl -o testMeshTri3.nem -m mesh=4 testMeshTri3.gen

where the mesh keyword specifies the number of files to split the mesh file into.

Then the following lines of code are copied into a file named nem_spread.inp

Input FEM file = testMeshTri3.gen
LB file = testMeshTri3.nem
Parallel Disk Info= number=1
Parallel file location = root=./, subdir=.

And then the nem_spread executable is run

nem_spread

This will write the partitioned mesh files into the “1” subdirectory.

5.3.Simple parallel test problem

Running a test problem in parallel is straightforward. The name of the mesh file in the xml file is
modified to be the prefix of the parallel files existing in the radlib distribution.

 <Mesh_File>/apps/radlib-2.3/src/driver/test/testMeshTri3.par</Mesh_File>

A four-processor run expects to have four mesh files available:

/apps/radlib-2.3/src/driver/test/testMeshTri3.par.4.0
/apps/radlib-2.3/src/driver/test/testMeshTri3.par.4.1
/apps/radlib-2.3/src/driver/test/testMeshTri3.par.4.2
/apps/radlib-2.3/src/driver/test/testMeshTri3.par.4.3

https://gsjaardema.github.io/seacas-docs/sphinx/html/index.html

16

Then the run is executed with four processors by

mpirun –np 4 $SCEPTRE_BIN/sceptre simpleParallelTest.xml

5.4.Detailed description of the SCEPTRE input

A complete xml input file for running a SCEPTRE calculation is included in Appendix I and in the
test section under the driver folder in the source code. Individual input options for running
SCEPTRE are described in detail in this section. The mesh and cross section files are contained in
the radlib distribution, and the Mesh_File and XS_File lines should be edited to point to the
location of the radlib installation. Some of the inputs have default values that are set in the
SCEPTRE driver if the keyword is not found in the xml input. If an unknown or mistyped keyword
is encountered in the input, the xml parser generally skips the unknown input and uses the default,
without throwing an error. More error checking of the input will be added to future releases.

Fig. 1 shows one of the test mesh files included in the SCEPTRE distribution in the
driver/test/mesh subdirectory. The mesh is a very coarse triangular mesh that includes five element
blocks and five side sets for the interfaces between the blocks and the external boundary.

17

Figure 1 Mesh of a coaxial-cable cross section for the rg402 SCEPTRE example problem

The following sections describe in detail the various parameters that drive a SCEPTRE calculation.

5.4.1.Output options

The Verbosity tag dictates the level of output desired, and can be either High, Medium or None.
The default is Medium. The Write_Restart tag indicates whether or not a restart file is written for
performing a restart calculation from a partially-completed run. The default for Write_Restart is
true.

 <Output_Options>
 <Write_Restart>false</Write_Restart>
 <Verbosity>high</Verbosity>
 </Output_Options>

5.4.2.Running in forward or adjoint mode

The Transport_Mode tag can be specified as either Forward or Adjoint. Forward is the default.

 <Transport_Mode>Forward</Transport_Mode>

The same cross section library is used for either a forward or an adjoint run. The code handles
energy group and angular index reversal internally, so that the user specifies fixed and boundary
source terms in normal group and angle ordering. Unlike a forward run, for an adjoint run the
boundary source terms are specified for outgoing directions rather than for incoming directions. The
result of an adjoint calculation is the adjoint angular flux in normal energy group and angular index
order, which may then be postprocessed as needed for the particular application being considered.

5.4.3.Specifying the input mesh and output result files

The Mesh_File tag specifies the path of the mesh file for either a serial or parallel run. For serial
run, the path for the Genesis mesh file is specified, e.g. testMeshTri3.gen. For a parallel run, the
prefix of the partitioned Genesis file is specified, e.g. testMeshTri3.par, and SCEPTRE then
appends a partition number to complete the name of the partitioned Genesis file, e.g.
testMeshTri3.par.4.0 ... testMeshTri3.par.4.3 for a 4-processor run.

 <Mesh_File>mesh/testMeshTri3.par</Mesh_File>

The Output_Format tag specifies the format for writing the resulting angular flux files, which may
be quite large, including the full spatial, angular and energy angular flux. Three format options are
available, Exodus, Netcdf, or Binary, with Exodus being the default. Exodus directs SCEPTRE to
write the angular-flux results in an Exodus file, which may be quite time-consuming for large
problems. Binary directs SCEPTRE to write the angular flux results in a SCEPTRE binary format
that is much faster than writing to Exodus format. Netcdf directs SCEPTRE to write the angular
fluxes to a SCEPTRE Netcdf-format file (not Exodus format), that is intermediate between Exodus
and Binary formats for read/write times

 <Output_Format>Exodus</Output_Format>

18

The Output_Prefix tag specifies the prefix of the Exodus output, which may or may not include
the angular-flux results from the transport calculation. For Binary or Netcdf output format, the
Exodus output file does not include angular flux results, while for Exodus output format, the
Exodus output file does include angular flux results.

 <Output_Prefix>testMeshTri3.e</Output_Prefix>

For Binary or Netcdf output format, an additional tag Dump_File_Prefix specifies the file
prefix for writing the SCEPTRE angular flux results.

 <Dump_File_Prefix>testMeshTri3.bin</Dump_File_Prefix>

5.4.4.Specifying the cross-section file

The name of the Netcdf cross section file is specified by the XS_File tag. The creation of a Netcdf-
format cross section file from a CEPXS run is described in Sec. 5.1 of this document.

 <XS_File>xsec/10g.xslib</XS_File>

5.4.5.Angular quadrature and scattering options

The angular quadrature parameters are specified in the Sn_Options section. The Sn_Order tag
specifies the SN order for the transport calculation, and the Angular_Quadrature_Type tag
specifies which angular quadrature is desired. For one-dimensional calculations, acceptable values
for the Angular_Quadrature_Type are Gauss_Legendre or Gauss_Lobatto. For multi-
dimensional calculations, acceptable values are Level_Symmetric, Lebedev (Lebedev & Laikov,
1999) or Chebyshev. Acceptable values for the Sn_Order for specific Angular_Quadrature_Type
are as follows. For the one-dimensional quadratures, any even order is allowed. For
Level_Symmetric quadrature, any even order up to and including order 20 is allowed. Arbitrary-
order Chebyshev quadratures are allowed. Levedev quadratures of orders: 2 4 6 8 10 12 14 16
18 20 22 24 26 28 30 34 40 46 52 58 64 70 76 82 88 94 100 106 112 118 124 130 130
are allowed. Quadrature weights and direction cosines for the various quadratures are included in a
separate document (Bruss. et. al, 2021)

 <Sn_Options>
 <Sn_Order>4</Sn_Order>
 <Angular_Quadrature_Type>Level_Symmetric</Angular_Quadrature_Type>
 </Sn_Options>

Options for handling the particle scattering are included in the Scattering_Options section. The
Scattering_Order tag specifies the order of the Legendre expansion of the angular treatment of
the particle scattering. The user is responsible for ensuring that the Sn_Order is sufficiently large to
accurately integrate the angular dependence of the scattering; typically, an Sn_Order of at least two
times the Scattering_Order is sufficient.

<Scattering_Options>
 <Scattering_Order>1</Scattering_Order>
 <Delta_Function_Scattering_Correction>true</Delta_Function_Scattering_Correction>
 <Scattering_Moments_Method>STANDARD</Scattering_Moments_Method>
</Scattering_Options>

19

SCEPTRE has two methods for handling extremely forward-peaked scattering, that are needed for
charged-particle transport. In one method, a -function down scattering portion of the scattering is
treated explicitly, and the remaining less forward-peaked part of the scattering is handled with a
standard multigroup-Legendre approach. The Delta_Function_Scattering_Correction tag
specifies whether a -function (extended-transport) correction is applied to the angular
approximation (Drumm, 2007). This option greatly increases accuracy for particles with highly-
forward-peaked scattering, e.g., electron transport. The
Delta_Function_Scattering_Correction has very little effect on x-ray transport but can be
used for any particle type. The user is responsible for ensuring that the cross-section library was
generated with a Legendre order of at least one greater than the Scattering_Order desired for the
SCEPTRE calculation (or with a Legendre order at least as great as the Scattering_Order without
the Delta_Function_Scattering_Correction).

Another method for handling the extreme forward-peaked electron scattering is to use a Galerkin
scattering treatment (Morel J. , 1989), which is invoked by setting the
Scattering_Moments_Method to Galerkin. For Galerkin Scattering_Moments_Method, the
scattering moments are determined from the SN order and angular quadrature type specified, rather
than from the Scattering_Order. Using a Galerkin treatment (Morel, J. 1989), there is an exact
mapping from the angular moments to angular quadrature space, and the number of scattering
moments is equal to the number of directions in the angular quadrature. Standard is the default
Angular_Moments_Method. This is the approach that is used in the one-dimensional
CEPXS/ONELD and ADEPT codes.

In the Galerkin approach, a square moment-to-discrete matrix is constructed that is invertible, so
that the conversion from discrete space to moment space and back again is exact. For one-
dimensional geometry, the use of Gauss-Legendre quadrature with the same number of Legendre
moments as discrete directions is equivalent to Galerkin. For multi-dimensional geometries, the
Galerkin scattering treatment is not unique, but the procedure is the same. A square, invertible
moment-to-discrete matrix is constructed, which can exactly handle the -function down scatter.
SCEPTRE contains algorithms for computing Galerkin moment-to-discrete matrices for all available
quadrature types: level-symmetric, Lebedev, Gauss-Legendre, and Lobatto.

For methods resulting in an SPD linear system, the -function down scatter method should be used
rather than the Galerkin method, since use of the Galerkin scattering treatment results in a non-
symmetric matrix.

5.4.6.Controlling the outer iterations

For problems involving upscattering or full-particle scattering coupling, several outer iterations may
be required. The Outer_Iteration_Options include two parameters, the
Maximum_Number_Iterations and Convergence_Tolerance. There are no default values for
these parameters.

 <Outer_Iteration_Options>
 <Maximum_Number_Iterations>2</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-3</Convergence_Tolerance>
 </Outer_Iteration_Options>

20

5.4.7.Material assignment and mixing options

In the Materials section of the xml input, the materials from the cross-section library are sequentially
named and assigned a material density.

 <Materials enable="true">
 <Material name="iron">
 <Density>7.874</Density>
 </Material>
 <Material name="copper">
 <Density>8.96</Density>
 </Material>
 <Material name="silver">
 <Density>10.5</Density>
 </Material>
 <Material name="teflon">
 <Density>2.2</Density>
 </Material>
 </Materials>

In addition to Density, there are several optional parameters that can be assigned to each material:
Conductor (true or false), DielectricConstant and ElectricalConductivity.

In the Mixtures section, material mixtures are named and assembled from individual materials from
the cross-section library

 <Mixtures enable="true">
 <Mixture name="Void">
 <Composition>
 <Material_Fraction>copper 0.0</Material_Fraction>
 </Composition>
 </Mixture>
 <Mixture name="FeCu">
 <Composition>
 <Material_Fraction>iron 0.5</Material_Fraction>
 <Material_Fraction>copper 0.5</Material_Fraction>
 </Composition>
 </Mixture>
 </Mixtures>

In the Material_Assignment section, materials are assigned to element blocks in the Exodus mesh.
The materials are assigned by element block name.

 <Material_Assignment enable="true">
 <ElementBlock name="block1">copper</ElementBlock>
 <ElementBlock name="block2">iron</ElementBlock>
 <ElementBlock name="block3">silver</ElementBlock>
 <ElementBlock name="block4">teflon</ElementBlock>
 <ElementBlock name="block5">copper</ElementBlock>
 </Material_Assignment>

21

5.4.8.Assigning boundary conditions

Boundary conditions are assigned in the Boundary_Condition_Assignment section. Boundary
conditions are assigned to side sets in the Exodus mesh, and can be either Vacuum, Reflective or
Periodic. For a periodic boundary condition, two side sets are specified, which must have nodes
that match up with each other. As an example, for a mesh with four side sets, TOP, BOTTOM, LEFT
and RIGHT, boundary conditions could be assigned as follows.

 <Boundary_Condition_Assignment explicit=”true”>
 <Boundary_Condition>Vacuum TOP</Boundary_Condition>
 <Boundary_Condition>Reflective BOTTOM</Boundary_Condition>
 <Boundary_Condition>Periodic LEFT RIGHT</Boundary_Condition>
 </Boundary_Condition_Assignment>

5.4.9.Boundary source options

SCEPTRE has very powerful source-assignment capability, which will be described in this section.
Boundary sources are assigned by energy group, angle index, and side set. The boundary source is
specified in the Boundary_Source_Options section. Individual boundary sources are assigned in
sections with the Source tag, and the individual sources are then summed together. The angular
distribution is specified with the Angle_Expansion keyword, the energy distribution is specified
with the Energy_Expansion keyword, and the side set expansion is specified with the
SideSet_Expansion keyword.

Boundary sources are specified for all incoming directions on the external boundary of the
geometry. If an Energy_Expansion is omitted, the default is uniform in each energy group. If an
Angle_Expansion is omitted, the default is isotropic in direction. If the SideSet_Expansion
keyword is omitted, the default is uniform over all external boundary sides. A Scale_Factor may
also be specified to multiply the boundary source by a single scaling factor.

The simplest source specification is
 <Source>
 </Source>

which specifies a unit source by energy group, isotropic in angle and for all incoming directions on
the external boundary of the geometry.

If a Scale_Factor is included, as here

 <Source>
 <Scale_Factor>3.</Scale_Factor>
 </Source>

the source is the same as the previous example, except multiplied by a factor of 3.

The next example specifies individual source values of 1.0, 0.4, and 0.2 for groups 1, 2, and 3,
respectively, and a value of 0.6 for groups 4 through 6.

 <Source>
 <Scale_Factor>2.</Scale_Factor>

22

 <Energy_Expansion enable="true">
 <Group index="1">0.5</Group>
 <Group index="2">0.2</Group>
 <Group index="3">0.1</Group>
 <Group_Range>0.3 4 6</Group_Range>
 </Energy_Expansion>
 </Source>

The next example specifies a source for energy groups 1 and 6, with all the remaining groups
defaulting to zero. Angular values are specified for angles with indices of 1, 2, and 3, with the
angular distribution for the remaining angle indices defaulting to zero. Boundary sources are scaled
by a factor of 5 for all sides included in the side set named “sideset5”, with default values of zero for
all other sides in the external boundary. Finally, the source is scaled by a factor of 8.

 <Source>
 <Scale_Factor>8.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">2.5</Group>
 <Group index="6">3.5</Group>
 </Energy_Expansion>
 <Angle_Expansion enable="true">
 <Angle index="1">3.2</Angle>
 <Angle_Range>3.3 2 3</Angle_Range>
 </Angle_Expansion>
 <SideSet_Expansion enable="true">
 <SideSet name="sideset5">5.</SideSet>
 </SideSet_Expansion>
 </Source>

As noted previously, multiple source distributions may be specified, which are added together to
generate a complete boundary source for the SCEPTRE transport calculation, allowing for very
complicated boundary source specifications. In this manner, it is possible to specify a full
energy/angular distribution, by either specifying an energy distribution for each angle, or by
specifying an angular distribution for each energy group.

<Boundary_Source_Options enable="true">
 <Source>
 </Source>
 <Source>
 <Scale_Factor>3.</Scale_Factor>
 </Source>
 <Source>
 <Scale_Factor>2.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">0.5</Group>
 <Group index="2">0.2</Group>
 <Group index="3">0.1</Group>
 <Group_Range>0.3 4 6</Group_Range>
 </Energy_Expansion>
 </Source>
 <Source>
 <Scale_Factor>8.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">2.5</Group>

23

 <Group index="6">3.5</Group>
 </Energy_Expansion>
 <Angle_Expansion enable="true">
 <Angle index="1">3.2</Angle>
 <Angle_Range>3.3 2 3</Angle_Range>
 </Angle_Expansion>
 <SideSet_Expansion enable="true">
 <SideSet name="sideset5">5.</SideSet>
 </SideSet_Expansion>
 </Source>
 </Boundary_Source_Options>

5.4.10. Fixed source options

The fixed-source capability in SCEPTRE is similar to that described in the previous section for the
boundary-source options, with the notable exception that the fixed source can be specified by
element block rather than by side set. The fixed source is specified by setting the
Fixed_Source_Options tag to “true”. Angular and energy dependencies and scaling are the same
for both source types. In order to specify a fixed source by element block, the Block_Expansion
tag is set to “true”, and the values are set by block name with the Block tag.

 <Block_Expansion enable="true">
 <Block name="block4">5.</Block>
 </Block_Expansion>

It is also possible to read in a fixed source from a file, either in Exodus format or in binary format.
In order to read in a fixed source in Exodus format, the fixed source is simply added to the
Mesh_File, as shown here for an adjoint source example. Use of this method requires that the fixed
source has been previously written to the Exodus mesh file. Tools for adding a fixed source are
available in the preprocessing tools included in the SCEPTRE distribution, and users requiring this
capability are encouraged to contact the SCEPTRE support team for assistance with their particular
application.

 <Mesh_File>source/adjointSource.e</Mesh_File>

In order to read in a fixed source from a binary format file requires inclusion of the
Binary_Fixed_Source_Input tag, which is given a File_Prefix that provides the binary adjoint
source file or files.

 <Binary_Fixed_Source_Input enable="true">
 <File_Prefix>source/adjointSource.bin</File_Prefix>
 </Binary_Fixed_Source_Input>

A complete example fixed source specified in the xml input file is shown as follows.

 <Fixed_Source_Options enable="true">
 <Source>
 </Source>
 <Source>
 <Scale_Factor>3.</Scale_Factor>
 </Source>
 <Source>

24

 <Scale_Factor>2.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">0.5</Group>
 <Group index="2">0.2</Group>
 <Group index="3">0.1</Group>
 <Group_Range>0.3 4 6</Group_Range>
 </Energy_Expansion>
 </Source>
 <Source>
 <Scale_Factor>8.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">2.5</Group>
 <Group index="6">3.5</Group>
 </Energy_Expansion>
 <Angle_Expansion enable="true">
 <Angle index="1">3.2</Angle>
 <Angle_Range>3.3 2 3</Angle_Range>
 </Angle_Expansion>
 <Block_Expansion enable="true">
 <Block name="block4">5.</Block>
 </Block_Expansion>
 </Source>
 </Fixed_Source_Options>

5.4.11. Setting the initial solution

The default initial solution is set to zero, but if an estimate of the final solution is available, use of
the estimate as an initial guess can greatly speed up convergence of the result. The initial estimate of
the angular flux solution is specified by setting the
Internal_Angular_Flux_Initialization_Options tag to “true”. The options available for
setting the initial solution estimate are the same as those for setting the fixed source. An example for
setting the initial guess is shown here.

 <Internal_Angular_Flux_Initialization_Options enable="true">
 <Scale_Factor>1</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">1</Group>
 <Group index="2">1</Group>
 <Group index="3">1</Group>
 <Group index="4">1</Group>
 <Group index="5">1</Group>
 </Energy_Expansion>
 <Angle_Expansion enable="false">
 <Angle index="1">1</Angle>
 </Angle_Expansion>
 <Block_Expansion enable="true">
 <Block index="1">1</Block>
 </Block_Expansion>

 </Internal_Angular_Flux_Initialization_Options>

5.4.12. Source input from a separate file

Alternatively, source information can be included from a separate xml file

25

<Fixed_Source_Options enable="true">
 <Input_From_Separate_File enable="true">sourceInput.xml</Input_From_Separate_File>
</Fixed_Source_Options>

<Boundary_Source_Options enable="true">
 <Input_From_Separate_File enable="true">sourceInput.xml</Input_From_Separate_File>
</Boundary_Source_Options>

with the fixed source and/or boundary source input included in a separate xml file named
sourceInput.xml

5.5.Solver options

SCEPTRE includes capability for solving the Boltzmann equation using many different numerical
and iterative methods and allows for a different transport solver to be used for each energy group,
enabling the user to apply the most appropriate methods for accuracy and efficiency for each energy
group/particle type in the problem. For example, the sweeps-based solver is very efficient for
neutral-particle transport, e.g., photon transport, while one of the Krylov iterative solvers may be
more efficient for solving charged-particle transport. The user can define as many solvers as desired,
giving each solver a unique name.

 <Solver name="Sn-LS">
 …
 </Solver>

Then the individual solvers are assigned by energy group by using the Solver_Assignment tag, as
described in the previous section.

By setting the Enable_User_Defined_Solvers tag to “true”, the user can define any number of
different solvers, each solver within a Solvers section.

<Enable_User_Defined_Solvers>true</Enable_User_Defined_Solvers>
 <Solvers>
 <Solver name="1stOrder">
 <Solver_Form>First_Order</Solver_Form>
 </Solver>
 </Solvers>

The Solver_Form keyword can be either First_Order to define a wave front sweeping solver, or
Krylov to define a solver using Trilinos to perform a simultaneous space/angle solve. Options for
the wave-front sweeping solvers will be described in the next section, and options for the Trilinos
solvers will be described in the following section.

5.5.1.Wave front sweeping algorithm keywords

If First_Order is specified as the solver form, the following options may be specified within that
Solver section:

26

The Element_Set_Size option is used to control how the solver aggregates spatial elements during
the solution process. The default is 1 if this option is not explicitly specified. This is an
experimental option; it may lead to increased number of iterations in order to obtain solution
convergence if a value greater than 1 is used.

The Coarse_Sn_Order option is used to control how the solver aggregates angular directions
during the solution process. The default is the value specified in the Sn_Order option described
earlier. Values less than that may reduce the time required per iteration, but they also may increase
the number of iterations required for solution convergence; the trade-off will be problem- and
machine-dependent.

The Preconditioner option is used to control how and whether the solver attempts to speed up
the iterative process. Valid options are “none” (the default), “dsa” or “tsa”. If “dsa” is specified,
then additional options may be specified with a Preconditioner_Options keyword. Within that
option are the following suboptions:

 Solver (valid options are “gmres” (the default) or “cg”)
 Maximum_Number_Iterations (default is 1000)
 Convergence_Tolerance (default is 1.e-10)

For “tsa” preconditioner options, refer to Sec. 5.7.3.

The Error_Control_Options section is always required with the sweeping algorithm; some of its
suboptions do not have default values. The following suboptions are contained in this section:

 The Maximum_Number_Iterations suboption specifies the maximum number of source
iterations that this solver will use. There is no default value, so this suboption must be
explicitly specified.

 The Convergence_Tolerance suboption specifies the maximum iterative error allowed;
iterations will continue until either the error is smaller or until
Maximum_Number_Iterations is reached. There is no default value, so this suboption
must be explicitly specified.

 The Number_Aggregated_Iterations suboption specifies how many source iterations will
be used in between the measurement of errors to determine iterative convergence. The
default is 1. Higher numbers can help produce a better estimate of the iterative error, but
can also cause more iterations to be used than strictly necessary.

 The next two suboptions require some explanation. Within the sweep solver are a variety of
tests to determine if iterative convergence has been achieved. Some transport quantities of
interest may converge to the desired accuracy more rapidly than others. The suboptions
Error_Metrics and Boundary_Errors are provided to allow the user to specify one or
more iterative tests that must all pass in order for the iterative process to complete. Each
estimates the remaining iterative error in some quantity. We describe each in turn:

 The Error_Metrics suboption allows the user to specify one or more metrics that measure
some quantity in the interior of the problem. The default is “default” – this creates a single
interior error metric with default values for each of the various parameters described below.
Alternatively, the user may desire to explicitly create some error metrics. To do so the user
needs to specify one or more Error_Metric sections within the Error_Metrics
suboption. Within each of the sections the following options may appear:

27

o Metric_Type: This specifies the region of interest for the error measurement. The
following are valid values:
 “whole”: The entire volume of the problem will be examined. This is the

default.
 “region”: Attention will be restricted to a particular region of the problem. If

this value is specified, the user will also need to include a Region_Name
option that specifies the name of the element block to be examined.

 “surface”: Fluxes at a surface will be examined. If this value is specified, the
user will also need to include a Surface_Name option that specifies the name
of the surface (Exodus side set) to be examined.

 “leakage”: This is similar to the “surface” option, except that the net leakage
at a surface will be examined. The Surface_Name option will also need to
be specified.

 “null”: This produces an error metric that does nothing. This can be useful if
the user desires to have the solver perform a fixed number of iterations
regardless of whether convergence has been achieved.

o Integration_Policy: This specifies how the various point values of the fluxes are
weighted relative to each other. Valid values are:
 “discrete”: The set of fluxes is treated as a simple vector quantity; each value

is equally weighted. This is the default.
 “continuous”: A true integration of the fluxes over the mesh is performed.

If the volumes and/or shapes of the elements in the mesh differ from each
other the continuous option will yield a different value than the discrete
option; it is more accurate but more expensive.

o Error_Norm: This specifies whether the angular fluxes themselves will be used or if
some operator will be applied first. Valid values are
 “L”: This applies the familiar L-norm to the errors in the fluxes. This is the

default.
 “H”: This applies the H-norm, i.e. the L-norm of |∇𝜓|, the magnitude of the

gradient in the errors in the fluxes.
 “S”: This applies the streaming norm, which is the L-norm of Ω ⋅ ∇𝜓.

o Error_Order: This specifies the power of the metric. Valid values are “1”, “2” (the
default), or “I” (infinity). For example, an Error_Norm of “L” and an Error_Order
of “2” produces the L2 norm.

o Sign_Policy: This determines whether the absolute value of the integrand is used
(a true norm) or whether sign cancellations are allowed (as happens when calculating
integral quantities such as reaction rates). Valid values are “absolute” (the default)
and “signed”.

 The Boundary_Errors suboption has been largely superseded by the Error_Metrics
suboption. A single metric may be specified that is applied to the entire external boundary.
This suboption has the same sections as the Error_Metrics suboption: Metric_Type,
Integration_Policy, Error_Order, and Sign_Policy. The difference is that the default
for Metric_Type is “null”, and the keyword “external” is used instead of “surface”.

5.5.2.Krylov solver keywords

SCEPTRE includes many options for solving the transport equation, including several different

28

 forms of the Boltzmann transport equation
 angular approximations
 preconditioning options
 iterative methods

In order to define one of the Trilinos-based solvers, the solver is given a unique name, and the
Solver_Form tag is set to Krylov.

<Enable_User_Defined_Solvers>true</Enable_User_Defined_Solvers>

 <Solvers>
 <Solver name="Sn-LS">
 <Solver_Form>Krylov</Solver_Form>
 …
 </Solver
 </Solvers>

SCEPTRE includes three forms of the transport equation that may be solved, that are defined by
the Krylov_Transport_Method key. Currently available methods include a LeastSquares
method (Drumm, 2011), a self-adjoint angular flux (SAAF) method (Morel, 1999), specified by the
SelfAdjoint key, and solving the standard first-order form of the transport equation, specified by
the FirstOrder key. The FirstOrder method results in a solution identical to the use of the
sweeps-based solver. Other solvers are planned to be included in SCEPTRE in the future, e.g. an
even-odd parity solver, but this has not been implemented yet.

 <Krylov_Transport_Method>LeastSquares</Angular_Transport_Method>

SCEPTRE includes four methods for handling the angular dependence of the radiation transport,
specified by the Angular_Method tag, two production methods and two experimental methods
that are under active development. The two production methods are discrete ordinates, specified by
the Sn key, and spherical harmonics, specified by the Pn key. The two experimental methods for
handling the angular dependence are AngularCFE for continuous angular finite elements and
AngularDFE for discontinuous angular finite elements.

 <Angular_Method>Sn</Angular_Method>

SCEPTRE includes capability for both continuous spatial finite elements, SpatialCFE, and
discontinous spatial finite elements, SpatialDFE, specified by the SpatialFE_Method tag.
Methods resulting in a symmetric positive definite (SPD) linear system (SelfAdjoint and
LeastSquares) must use SpatialCFE, while the FirstOrder Krylov_Transport_Method must
use SpatialDFE. This will be enforced in future releases, but for now the user is responsible for
using the correct spatial FE method.

 <SpatialFE_Method>SpatialCFE</SpatialFE_Method>

A number of different solver options are available in Trilinos, and SCEPTRE can make use of three
of them, by setting the Linear_Solver tag. Belos is by far the most commonly used linear
solver for most problems. For small problems, e.g. one-dimensional applications, use of a direct
solver may be very efficient, used by setting the Linear_Solver tag to Direct. SCEPTRE
also can make use of MueLu as a solver, by setting the Linear_Solver tag to MueLu.

29

 <Linear_Solver>Belos</Linear_Solver>

Some additional parameters can be set when using one of the Trilinos Krylov iterative solvers, but
are not needed when using a direct solver. Trilinos includes a number of Krylov iterative solvers,
and SCEPTRE can make use of two of them by setting the Iterative_Method tag. CG specifies a
conjugate-gradients iterative solver is to be used and GMRES indicates that a
GeneralizedMinimumRESiduals solver is to be used. CG is used for the methods that result in an
SPD linear system, LeastSquares and SelfAdjoint, and GMRES is used for the FirstOrder
method. This will be enforced in future releases, but for now the user is responsible for using the
appropriate Krylov iterative method for the particular transport method chosen for the solver.

 <Iterative_Method>CG</Iterative_Method>

The Verbosity is set to high, medium, low or none.

 <Verbosity>medium</Verbosity>

Control of the Krylov iterative solvers is specified by setting the Maximum_Number_Iterations,
Convergence_Tolerance, and, for a GMRES solve, Krylov_Subspace_Size.

 <Maximum_Number_Iterations>100</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-2</Convergence_Tolerance>
 <Krylov_Subspace_Size>200</Krylov_Subspace_Size>

By using Trilinos to perform the iterative linear solve, it is fairly easy to include various
preconditioiners in the algorithm. SCEPTRE includes options for two different preconditioners, 1)
an incomplete-factorization method and 2) a multi-level method. It generally takes some
experimentation to determine which combination of solvers and preconditioners is optimal for a
given application and particle/energy group.

The Preconditioner can be either None for no preconditioner of the linear system,
IncompleteFactorization for algebraic preconditioning using IFPACK (Sala & Heroux, 2005),
or MultiLevel to use multigrid preconditioning using MuLue (Propenko et al., 2014).

 <Preconditioner>IncompleteFactorization</Preconditioner>

5.5.3.Transport Synthetic Acceleration (TSA) keywords

A Transport Synthetic Acceleration (TSA) preconditioner (Adams and Larsen, 2003) uses a low-
order transport solve to reduce the low-order error in the angular flux for each source iteration. This
method may greatly speed up convergence for applications with high scattering ratios, e.g.
electron/positron transport. Within a First_Order solver block, the keyword TSA is specified as a
Preconditioner. In the Preconditioner_Options block, any of the Krylov transport solver
options may then be specified to define the coarse solve. The only restriction at this point is the only
allowed angular method is Pn. Future releases of SCEPTRE will include capability for an Sn TSA
solve.

 <Preconditioner>TSA</Preconditioner
 <Preconditioner_Options>
 <SpatialFE_Method>SpatialDFE</SpatialFE_Method>
 <Angular_Method>Pn</Angular_Method>

30

 <Pn_Order>1</Pn_Order>
 <Krylov_Transport_Method>FirstOrder</Krylov_Transport_Method>
 <Iterative_Method>gmres</Iterative_Method>
 <Preconditioner>None</Preconditioner>
 <Maximum_Number_Iterations>1000</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-4</Convergence_Tolerance>
 <Verbosity>low</Verbosity>
 </Preconditioner_Options>

The TSA preconditioner can be further preconditioned by specifying either
IncompleteFactorization of MultiLevel for the Preconditioner tag, thus
providing great flexibility in specifying a TSA preconditioner. Much experimentation with different
options and parameters is often needed to optimize convergence for a particular application.

5.6 Assigning solvers by energy group

SCEPTRE includes several different methods for solving the Boltzmann transport equation, along
with various acceleration methods. Solvers available in SCEPTRE include a wave front sweeping
first-order transport algorithm (Wareing, McGhee, Morel, & Pautz, 2001), a Self-Adjoint Angular
Flux (SAAF) (Morel & McGhee, 1999) second-order transport solver, and a Least-Squares Finite-
Element (LSFE) solution method. The user may define any number of different solvers with
associated preconditioners/accelerators. The solvers are then assigned to specific energy groups for
the multi-group transport solve. Keywords used to define specific solvers are described in the next
section.

The names of the solvers are arbitrary and may be defined by the user. The solvers are assigned by
energy group range; in this example the unpreconditioned first-order solver is assigned to energy
groups 1-4 (which are photon groups for this test problem) and first-order solvers with various
preconditioners and the SAAF solver are assigned to groups 6-10 (which are electron groups).
Details of the solver specifications will be described in detail in the next section for each of the
transport solver methods.

 <Enable_User_Defined_Solvers>true</Enable_User_Defined_Solvers>
 <Solvers>
 <Solver name="1stOrder">
 …
 </Solver>
 </Solvers>

Individual solvers are assigned to specific energy groups by specifying either the
Solver_By_Group_Range tag to associate a solver with a range of energy groups, or the
Solver_By_Group tag to associate a solver with a single energy group.

 <Solver_Assignment explicit="true">
 <Solver_By_Group_Range>1stOrder 1 4</Solver_By_Group_Range>
 <Solver_By_Group>
 <Group index="5">Pn-Direct</Group>
 <Group index="6">1stOrder</Group>
 <Group index="7">Sn-FirstOrderKrylov</Group>
 <Group index="8">1stOrder-TSA-P0</Group>
 <Group index="9">1stOrder-TSA-P0</Group>
 <Group index="10">Sn-LS</Group>

31

 </Solver_By_Group>
 </Solver_Assignment>

A solver must be assigned to each energy group.

32

REFERENCES

Adams, M. L. and Larsen, E. W. (2002), “Fast Iterative Methods for Discrete-Ordinates Particle
Transport Calculations,” Prog. Nucl. Energy, 40, 3.

Bell, G. I., & Glasstone, S. (1970). Nuclear Reactor Theory. New York: Van Nostrand Reinhold.
Bruss, D. & Campbell, B. (2020), RAPTURE User's Guide, Albuquerque: Sandia National

Laboratories Report, SAND2020-3581.
Bruss, D., Drumm, C., Fan, W., and Pautz, S. (2021), SCEPTRE 2.2 Angular Quadrature Sets,

Albuquerque: Sandia National Laboratories Report, SAND 2021-3084.
CUBIT user's manual. (2019). Retrieved from CUBIT 15.4
Drumm, C. (2007). An Analysis of the Extended-Transport Correction with Application to

Electron Beam Transport. Nuclear Science and Engineering, 155, 355-366.
Drumm, C. R., & Lorenz, J. (1999), Parallel FE Electron-Photon Transport Analysis on a 2-D

Unstructured Mesh. Mathematics and Computation, Reactor Physics and Environmental
Analysis in Nuclear Applications (pp. 858-868). Madrid: American Nuclear Society.

Drumm, C., Fan, W., & Pautz, S. (2013). Phase-Space Finite Elements in a Least-Squares
Solution of the Transport Equation. Proceedings of the 2013 International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering -
M and C 2013 (pp. 877-892). Sun Valley: American Nuclear Society.

Drumm, C., Fan, W., Bielen, A., & Chenhall, J. (2011). Least Squares Finite Elements
Algorithms in the SCEPTRE Radiation Transport Code. International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering
(M&C 2011). Rio de Janeiro: American Nuclear Society.

Drumm, C, "Spherical Harmonics (PN) Methods in the SCEPTRE Radiation Transport Code,"
ANS MC2015 - Joint International Conference on Mathematics and Computation (M&C),
Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Nashville, TN
(M&C 2015).

Duderstadt, J. J., & Martin, W. R. (1979). Transport Theory. New York: John Wiley & Sons.
Franke, B. et al., “ITS Version 6.7: The Integrated TIGER Series of Coupled Electron/Photon

Monte Carlo Transport Codes,” Sandia National Laboratories report, SAND2008-3331
(2008).

Heroux, M. A., & Willenbring, J. M. (2003). Trilinos Users Guide. Albuquerque: Sandia
National Laboratories report, SAND2003-2952.

Mark Hoemmen, Jonathan Hu, and Chris Siefert, Ifpack2 documentation.
Lebedev, V. I., & Laikov, D. N. (1999). A Quadrature Formula for the Sphere of the 131st

Algebraic Order of Accuracy. Doklady Mathematics, 741-745.
Lewis, E. E., & Miller, W. F. (1984). Computational Methods of Neutron Transport. New York:

John Wiley & Sons.
Lorence, L. J., Morel, J. E., & and Valdez, G. D. (1989). Physics Guide to CEPXS: A Multigroup

Coupled Electron-Photon Cross-Section Generating Code Version 1.0. Albuquerque,
NM 87185: SAND89-1685 Sandia National Laboratories.

Morel, J. (1989). A Hybrid Collocation-Galerkin-Sn Method for Solving the Boltzmann
Transport Equation. Nuclear Science and Engineering, 72-87.

Morel, J. E., & McGhee, J. M. (1999). A Self-Adjoint Angular Flux Equation. Nuclear Science
and Engineering, 312-325.

https://cubit.sandia.gov/15.4/help_manual/WebHelp/cubit_users_manual.html
https://trilinos.org/packages/ifpack2/

33

Pautz, S., Bohnhoff, W., Drumm, C., & Fan, W. (2009). Parallel Discrete Ordinates Methods in
the SCEPTRE Project. International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009). Saratoga Springs, New York: American
Nuclear Society.

Pautz, S., Drumm, C., Bohnhoff, B., & Fan, W. (2009). Software Engineering in the SCEPTRE
Code. International Conference on Mathematics, Computational Methods & Reactor
Physics (M&C 2009). Saratoga Springs: American Nuclear Society.

Prokopenko, A., Hu, J., Wiesner, T., Siefert, C., and Tuminaro, R., (2014) MueLu User’s Guide for
Trilinos Version 11.12, Albuquerque, NM 87185, SAND2014-18874 Sandia National
Laboratories.

Schoof, L. A., & Yarberry, V. R. (1994). EXODUS II: A finite element data model. Albuquerque:
Sandia National Laboratories report SAND92-2137.

Wareing, T. A., McGhee, J. M., Morel, J. E., & Pautz, S. D. (2001). Discontinuous Finite
Element SN Methods on Three-Dimensional Unstructured Grids. Nuclear Science and
Engineering, 256-268.

34

APPENDIX A. COMPLETE XML INPUT FILE FOR RUNNING SCEPTRE
<?xml version="1.0" encoding="utf-8"?>

<SCEPTRE_Input>

 <Output_Options>
 <Verbosity>high</Verbosity>
 </Output_Options>

 <Transport_Mode>Forward</Transport_Mode>

 <Mesh_File>mesh/rg402Tri3.par</Mesh_File>

 <XS_File>xsec/rg402_10g.xslib</XS_File>

 <Output_Prefix>rg402Tri3</Output_Prefix>
 <Output_Format>Exodus</Output_Format>

 <Sn_Options>
 <Sn_Order>4</Sn_Order>
 <Angular_Quadrature_Type>Level_Symmetric</Angular_Quadrature_Type>
 </Sn_Options>

 <Scattering_Options>
 <Scattering_Order>1</Scattering_Order>
 <Delta_Function_Scattering_Correction>true</Delta_Function_Scattering_Correction>
 <Scattering_Moments_Method>STANDARD</Scattering_Moments_Method>
 </Scattering_Options>

 <Outer_Iteration_Options>
 <Maximum_Number_Iterations>2</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-3</Convergence_Tolerance>
 </Outer_Iteration_Options>

 <Enable_User_Defined_Solvers>true</Enable_User_Defined_Solvers>
 <Solvers>

 <Solver name="1stOrder">
 <Solver_Form>First_Order</Solver_Form>
 <Element_Set_Size>1</Element_Set_Size>
 <Coarse_Sn_Order>4</Coarse_Sn_Order>
 <Preconditioner>None</Preconditioner>
 <Error_Control_Options>
 <Maximum_Number_Iterations>100</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-4</Convergence_Tolerance>
 <Error_Metrics>
 <Error_Metric>
 <Metric_Type>whole</Metric_Type>
 <Integration_Policy>discrete</Integration_Policy>
 <Error_Norm>L</Error_Norm>
 <Error_Order>2</Error_Order>
 <Sign_Policy>absolute</Sign_Policy>
 </Error_Metric>
 </Error_Metrics>
 <Boundary_Errors>
 <Metric_Type>null</Metric_Type>
 </Boundary_Errors>
 </Error_Control_Options>
 </Solver>

 <Solver name="1stOrder-DSA">
 <Solver_Form>First_Order</Solver_Form>
 <Element_Set_Size>1</Element_Set_Size>
 <Coarse_Sn_Order>4</Coarse_Sn_Order>
 <Preconditioner>DSA</Preconditioner>
 <Preconditioner_Options>
 <Solver>CG</Solver>
 <Maximum_Number_Iterations>1000</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-2</Convergence_Tolerance>
 </Preconditioner_Options>

35

 <Error_Control_Options>
 <Maximum_Number_Iterations>100</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-4</Convergence_Tolerance>
 <Error_Metrics>
 <Error_Metric>
 <Metric_Type>whole</Metric_Type>
 <Integration_Policy>discrete</Integration_Policy>
 <Error_Norm>L</Error_Norm>
 <Error_Order>2</Error_Order>
 <Sign_Policy>absolute</Sign_Policy>
 </Error_Metric>
 </Error_Metrics>
 <Boundary_Errors>
 <Metric_Type>null</Metric_Type>
 </Boundary_Errors>
 </Error_Control_Options>
 </Solver>

 <Solver name="1stOrder-TSA-S2">
 <Solver_Form>First_Order</Solver_Form>
 <Element_Set_Size>1</Element_Set_Size>
 <Coarse_Sn_Order>4</Coarse_Sn_Order>

 <Preconditioner>TSA</Preconditioner>
 <Preconditioner_Options>
 <SpatialFE_Method>SpatialDFE</SpatialFE_Method>
 <Angular_Method>Sn</Angular_Method>
 <Sn_Order>2</Sn_Order>
 <Pn_Order>1</Pn_Order>
 <Krylov_Transport_Method>FirstOrder</Krylov_Transport_Method>
 <Iterative_Method>gmres</Iterative_Method>
 <Preconditioner>None</Preconditioner>
 <Maximum_Number_Iterations>1000</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-4</Convergence_Tolerance>
 <Verbosity>medium</Verbosity>
 </Preconditioner_Options>

 <Error_Control_Options>
 <Maximum_Number_Iterations>10</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-4</Convergence_Tolerance>
 <Error_Metrics>
 <Error_Metric>
 <Metric_Type>whole</Metric_Type>
 <Integration_Policy>discrete</Integration_Policy>
 <Error_Norm>L</Error_Norm>
 <Error_Order>2</Error_Order>
 <Sign_Policy>absolute</Sign_Policy>
 </Error_Metric>
 </Error_Metrics>
 <Boundary_Errors>
 <Metric_Type>null</Metric_Type>
 </Boundary_Errors>
 </Error_Control_Options>
 </Solver>

 <Solver name="1stOrder-TSA-P0">
 <Solver_Form>First_Order</Solver_Form>
 <Element_Set_Size>1</Element_Set_Size>
 <Coarse_Sn_Order>4</Coarse_Sn_Order>

 <Preconditioner>TSA</Preconditioner>
 <Preconditioner_Options>
 <SpatialFE_Method>SpatialDFE</SpatialFE_Method>
 <Angular_Method>Pn</Angular_Method>
 <Pn_Order>0</Pn_Order>
 <Krylov_Transport_Method>FirstOrder</Krylov_Transport_Method>
 <Iterative_Method>gmres</Iterative_Method>
 <Preconditioner>None</Preconditioner>
 <Maximum_Number_Iterations>1000</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-4</Convergence_Tolerance>
 <Verbosity>medium</Verbosity>

36

 </Preconditioner_Options>

 <Error_Control_Options>
 <Maximum_Number_Iterations>10</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-4</Convergence_Tolerance>
 <Error_Metrics>
 <Error_Metric>
 <Metric_Type>whole</Metric_Type>
 <Integration_Policy>discrete</Integration_Policy>
 <Error_Norm>L</Error_Norm>
 <Error_Order>2</Error_Order>
 <Sign_Policy>absolute</Sign_Policy>
 </Error_Metric>
 </Error_Metrics>
 <Boundary_Errors>
 <Metric_Type>null</Metric_Type>
 </Boundary_Errors>
 </Error_Control_Options>
 </Solver>

 <Solver name="Sn-LS">
 <Solver_Form>Krylov</Solver_Form>

 <!-- Sn, Pn, AngularCFE or AngularDFE -->
 <Angular_Method>Sn</Angular_Method>

 <!-- SelfAdjoint, LeastSquares, EvenOddParity, EvenParity, OddParity or FirstOrder -->
 <Krylov_Transport_Method>LeastSquares</Krylov_Transport_Method>

 <!-- SpatialCFE or SpatialDFE -->
 <SpatialFE_Method>SpatialCFE</SpatialFE_Method>

 <!-- Belos, MueLu or Direct -->
 <Linear_Solver>Belos</Linear_Solver>

 <!-- CG or GMRES -->
 <Iterative_Method>CG</Iterative_Method>

 <Maximum_Number_Iterations>100</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-2</Convergence_Tolerance>

 <!-- high, medium, low or none -->
 <Verbosity>medium</Verbosity>

 <!-- None, MultiLevel, IncompleteFactorization -->
 <Preconditioner>IncompleteFactorization</Preconditioner>

 </Solver>

 <Solver name="Pn-Direct">
 <Solver_Form>Krylov</Solver_Form>

 <!-- Sn, Pn, AngularCFE or AngularDFE -->
 <Angular_Method>Pn</Angular_Method>

 <!-- SelfAdjoint, LeastSquares, EvenOddParity, EvenParity, OddParity or FirstOrder -->
 <Krylov_Transport_Method>FirstOrder</Krylov_Transport_Method>

 <!-- SpatialCFE or SpatialDFE -->
 <SpatialFE_Method>SpatialDFE</SpatialFE_Method>

 <!-- Belos, MueLu or Direct -->
 <Linear_Solver>Direct</Linear_Solver>

 <!-- high, medium, low or none -->
 <Verbosity>medium</Verbosity>

 </Solver>

 <Solver name="Sn-FirstOrderKrylov">
 <Solver_Form>Krylov</Solver_Form>

37

 <!-- Sn, Pn, AngularCFE or AngularDFE -->
 <Angular_Method>Sn</Angular_Method>

 <!-- SelfAdjoint, LeastSquares, EvenOddParity, EvenParity, OddParity or FirstOrder -->
 <Krylov_Transport_Method>FirstOrder</Krylov_Transport_Method>

 <!-- SpatialCFE or SpatialDFE -->
 <SpatialFE_Method>SpatialDFE</SpatialFE_Method>

 <!-- Belos, MueLu or Direct -->
 <Linear_Solver>Belos</Linear_Solver>

 <!-- CG or GMRES -->
 <Iterative_Method>GMRES</Iterative_Method>

 <Maximum_Number_Iterations>100</Maximum_Number_Iterations>
 <Convergence_Tolerance>1.e-2</Convergence_Tolerance>
 <Krylov_Subspace_Size>100</Krylov_Subspace_Size>

 <!-- high, medium, low or none -->
 <Verbosity>medium</Verbosity>

 <!-- None, MultiLevel, IncompleteFactorization -->
 <Preconditioner>None</Preconditioner>

 </Solver>

 </Solvers>

 <Solver_Assignment explicit="true">
 <Solver_By_Group_Range>1stOrder 1 4</Solver_By_Group_Range>
 <!--Solver_By_Group_Range>Sn-LS 6 10</Solver_By_Group_Range-->
 <Solver_By_Group>
 <Group index="5">Pn-Direct</Group>
 <Group index="6">1stOrder</Group>
 <Group index="7">Sn-FirstOrderKrylov</Group>
 <Group index="8">1stOrder-TSA-P0</Group>
 <Group index="9">1stOrder-TSA-P0</Group>
 <Group index="10">Sn-LS</Group>
 </Solver_By_Group>
 </Solver_Assignment>

 <Materials enable="true">
 <Material name="iron">
 </Material>
 <Material name="copper">
 </Material>
 <Material name="silver">
 </Material>
 <Material name="teflon">
 </Material>
 </Materials>

 <Material_Assignment enable="true">
 <ElementBlock name="block1">copper</ElementBlock>
 <ElementBlock name="block2">iron</ElementBlock>
 <ElementBlock name="block3">silver</ElementBlock>
 <ElementBlock name="block4">teflon</ElementBlock>
 <ElementBlock name="block5">copper</ElementBlock>
 </Material_Assignment>

 <Internal_Angular_Flux_Initialization_Options enable="false">
 <Scale_Factor>1</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">1</Group>
 <Group index="2">1</Group>
 <Group index="3">1</Group>
 <Group index="4">1</Group>
 <Group index="5">1</Group>
 </Energy_Expansion>

38

 <Angle_Expansion enable="false">
 <!-- Angle index="1">1</Angle -->
 </Angle_Expansion>
 <Block_Expansion enable="true">
 <Block index="1">1</Block>
 <Block index="2">0</Block>
 <Block index="3">0</Block>
 <Block index="4">0</Block>
 <Block index="5">0</Block>
 </Block_Expansion>

 </Internal_Angular_Flux_Initialization_Options>

 <Fixed_Source_Options enable="true">
 <Source>
 </Source>
 <Source>
 <Scale_Factor>3.</Scale_Factor>
 </Source>
 <Source>
 <Scale_Factor>2.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">0.5</Group>
 <Group index="2">0.2</Group>
 <Group index="3">0.1</Group>
 <Group_Range>0.3 4 6</Group_Range>
 </Energy_Expansion>
 </Source>
 <Source>
 <Scale_Factor>8.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">2.5</Group>
 <Group index="6">3.5</Group>
 </Energy_Expansion>
 <Angle_Expansion enable="true">
 <Angle index="1">3.2</Angle>
 <Angle_Range>3.3 2 3</Angle_Range>
 </Angle_Expansion>
 <Block_Expansion enable="true">
 <Block name="block4">5.</Block>
 </Block_Expansion>
 </Source>
 </Fixed_Source_Options>

 <Boundary_Source_Options enable="true">
 <Source>
 </Source>
 <Source>
 <Scale_Factor>3.</Scale_Factor>
 </Source>
 <Source>
 <Scale_Factor>2.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">0.5</Group>
 <Group index="2">0.2</Group>
 <Group index="3">0.1</Group>
 <Group_Range>0.3 4 6</Group_Range>
 </Energy_Expansion>
 </Source>
 <Source>
 <Scale_Factor>8.</Scale_Factor>
 <Energy_Expansion enable="true">
 <Group index="1">2.5</Group>
 <Group index="6">3.5</Group>
 </Energy_Expansion>
 <Angle_Expansion enable="true">
 <Angle index="1">3.2</Angle>
 <Angle_Range>3.3 2 3</Angle_Range>
 </Angle_Expansion>
 <SideSet_Expansion enable="true">
 <SideSet name="sideset5">5.</SideSet>

39

 </SideSet_Expansion>
 </Source>
 </Boundary_Source_Options>

</SCEPTRE_Input>

40

DISTRIBUTION
Click here, then press delete to remove this guidance statement.
Required. Must be on an odd-numbered page. SAND Reports submitted through R&A are
automatically sent to the Technical Library; however, it still needs to be included on the distribution.
Ensure a blank odd-numbered page is inserted prior to the back cover.

Email—Internal
Name Org. Sandia Email Address

Donald Bruss 01341 dbruss@sandia.gov

Clifton Drumm 01341 crdrumm@sandia.gov

Wesley Fan 01341 wcfan@sandia.gov

Shawn Pautz 01341 sdpautz@sandia.gov

Technical Library 01977 sanddocs@sandia.gov

41

This page left blank

42

This page left blank

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

